AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function
Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithm...
Saved in:
| Published in | Scientific reports Vol. 11; no. 1; pp. 17485 - 13 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
01.09.2021
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-021-96707-8 |
Cover
| Abstract | Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithms to that of dermatologists. However, training neural networks on an imbalanced dataset leads to imbalanced performance, the specificity is very high but the sensitivity is very low. This study proposes a method for improving melanoma prediction on an imbalanced dataset by reconstructed appropriate CNN architecture and optimized algorithms. The contributions involve three key features as custom loss function, custom mini-batch logic, and reformed fully connected layers. In the experiment, the training dataset is kept up to date including 17,302 images of melanoma and nevus which is the largest dataset by far. The model performance is compared to that of 157 dermatologists from 12 university hospitals in Germany based on the same dataset. The experimental results prove that our proposed approach outperforms all 157 dermatologists and achieves higher performance than the state-of-the-art approach with area under the curve of 94.4%, sensitivity of 85.0%, and specificity of 95.0%. Moreover, using the best threshold shows the most balanced measure compare to other researches, and is promisingly application to medical diagnosis, with sensitivity of 90.0% and specificity of 93.8%. To foster further research and allow for replicability, we made the source code and data splits of all our experiments publicly available. |
|---|---|
| AbstractList | Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithms to that of dermatologists. However, training neural networks on an imbalanced dataset leads to imbalanced performance, the specificity is very high but the sensitivity is very low. This study proposes a method for improving melanoma prediction on an imbalanced dataset by reconstructed appropriate CNN architecture and optimized algorithms. The contributions involve three key features as custom loss function, custom mini-batch logic, and reformed fully connected layers. In the experiment, the training dataset is kept up to date including 17,302 images of melanoma and nevus which is the largest dataset by far. The model performance is compared to that of 157 dermatologists from 12 university hospitals in Germany based on the same dataset. The experimental results prove that our proposed approach outperforms all 157 dermatologists and achieves higher performance than the state-of-the-art approach with area under the curve of 94.4%, sensitivity of 85.0%, and specificity of 95.0%. Moreover, using the best threshold shows the most balanced measure compare to other researches, and is promisingly application to medical diagnosis, with sensitivity of 90.0% and specificity of 93.8%. To foster further research and allow for replicability, we made the source code and data splits of all our experiments publicly available. Abstract Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithms to that of dermatologists. However, training neural networks on an imbalanced dataset leads to imbalanced performance, the specificity is very high but the sensitivity is very low. This study proposes a method for improving melanoma prediction on an imbalanced dataset by reconstructed appropriate CNN architecture and optimized algorithms. The contributions involve three key features as custom loss function, custom mini-batch logic, and reformed fully connected layers. In the experiment, the training dataset is kept up to date including 17,302 images of melanoma and nevus which is the largest dataset by far. The model performance is compared to that of 157 dermatologists from 12 university hospitals in Germany based on the same dataset. The experimental results prove that our proposed approach outperforms all 157 dermatologists and achieves higher performance than the state-of-the-art approach with area under the curve of 94.4%, sensitivity of 85.0%, and specificity of 95.0%. Moreover, using the best threshold shows the most balanced measure compare to other researches, and is promisingly application to medical diagnosis, with sensitivity of 90.0% and specificity of 93.8%. To foster further research and allow for replicability, we made the source code and data splits of all our experiments publicly available. Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithms to that of dermatologists. However, training neural networks on an imbalanced dataset leads to imbalanced performance, the specificity is very high but the sensitivity is very low. This study proposes a method for improving melanoma prediction on an imbalanced dataset by reconstructed appropriate CNN architecture and optimized algorithms. The contributions involve three key features as custom loss function, custom mini-batch logic, and reformed fully connected layers. In the experiment, the training dataset is kept up to date including 17,302 images of melanoma and nevus which is the largest dataset by far. The model performance is compared to that of 157 dermatologists from 12 university hospitals in Germany based on the same dataset. The experimental results prove that our proposed approach outperforms all 157 dermatologists and achieves higher performance than the state-of-the-art approach with area under the curve of 94.4%, sensitivity of 85.0%, and specificity of 95.0%. Moreover, using the best threshold shows the most balanced measure compare to other researches, and is promisingly application to medical diagnosis, with sensitivity of 90.0% and specificity of 93.8%. To foster further research and allow for replicability, we made the source code and data splits of all our experiments publicly available.Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithms to that of dermatologists. However, training neural networks on an imbalanced dataset leads to imbalanced performance, the specificity is very high but the sensitivity is very low. This study proposes a method for improving melanoma prediction on an imbalanced dataset by reconstructed appropriate CNN architecture and optimized algorithms. The contributions involve three key features as custom loss function, custom mini-batch logic, and reformed fully connected layers. In the experiment, the training dataset is kept up to date including 17,302 images of melanoma and nevus which is the largest dataset by far. The model performance is compared to that of 157 dermatologists from 12 university hospitals in Germany based on the same dataset. The experimental results prove that our proposed approach outperforms all 157 dermatologists and achieves higher performance than the state-of-the-art approach with area under the curve of 94.4%, sensitivity of 85.0%, and specificity of 95.0%. Moreover, using the best threshold shows the most balanced measure compare to other researches, and is promisingly application to medical diagnosis, with sensitivity of 90.0% and specificity of 93.8%. To foster further research and allow for replicability, we made the source code and data splits of all our experiments publicly available. |
| ArticleNumber | 17485 |
| Author | Luong, Chi-Mai Pham, Tri-Cong Hoang, Van-Dung Doucet, Antoine |
| Author_xml | – sequence: 1 givenname: Tri-Cong surname: Pham fullname: Pham, Tri-Cong organization: ICT Laboratory, Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Thuyloi University, FPT Software – sequence: 2 givenname: Chi-Mai surname: Luong fullname: Luong, Chi-Mai organization: ICT Laboratory, Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Institute of Information Technology, Vietnam Academy of Science and Technology – sequence: 3 givenname: Van-Dung surname: Hoang fullname: Hoang, Van-Dung organization: Ho Chi Minh City University of Technology and Education – sequence: 4 givenname: Antoine surname: Doucet fullname: Doucet, Antoine email: antoine.doucet@univ-lr.fr organization: L3i Laboratory, University of La Rochelle |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34471174$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstu1TAUjFARLaU_wAJZYtMFAb8SOxuk6opHpapsYG352if3ukrsYDutysfwrfg-KG0XFd7YOp4Zzznjl9WBDx6q6jXB7wlm8kPipOlkjSmpu1ZgUctn1RHFvKkpo_Tg3vmwOknpCpfV0I6T7kV1yDgXhAh-VP0-O0dhzhPEPsQRLIJriLfIQhx1DkNYuZSR89tCSCZMzqARBu3DqJF1euVDcukdmpPzK6Q9ClN2o_tVlCzAVC8uL5GOZu0ymDxHQDcur5GZUw4jGp139VJns0abl0zh23JKCfWzN9kF_6p63ushwcl-P65-fP70ffG1vvj25XxxdlGbhuNcW42BSUGWzC5bYaBtrJBCcoZJx0FA3xkpWC-4oFbTvunbrmOGEZCN7bnF7Lg63-naoK_UFN2o460K2qltIcSV0jE7M4AyPZYCa0vK6LlhdCkoBQrWCKq10H3RYjut2U_69kYPw50gwWoTntqFp4qC2oanZGF93LGmeVlyMOBz1MMDKw9vvFurVbhWkhMsurYInO4FYvg5Q8pqdMnAULKCMCdFm1Y2nWCcFujbR9CrMEdfBrxFlc7aboN6c9_RnZW_n6cA5A5gYsksQq-My3oTWzHohqe7pY-o_zWi_WBTAfsVxH-2n2D9AbpK_NA |
| CitedBy_id | crossref_primary_10_1186_s12859_023_05516_5 crossref_primary_10_1111_ddg_15115_g crossref_primary_10_1142_S1793351X24300073 crossref_primary_10_1109_ACCESS_2023_3295001 crossref_primary_10_1111_jep_13980 crossref_primary_10_1111_ajd_14269 crossref_primary_10_3390_app15063318 crossref_primary_10_1016_j_jid_2023_09_289 crossref_primary_10_3390_bioengineering11080758 crossref_primary_10_1016_j_jaad_2023_05_053 crossref_primary_10_3389_fsurg_2023_1266399 crossref_primary_10_1038_s41746_024_01420_1 crossref_primary_10_3390_cancers15194694 crossref_primary_10_5213_inj_2346294_147 crossref_primary_10_1016_j_compmedimag_2023_102241 crossref_primary_10_3390_cancers15184463 crossref_primary_10_1155_2021_5591614 crossref_primary_10_1016_j_esmorw_2024_100077 crossref_primary_10_1111_jdv_18814 crossref_primary_10_1186_s12910_023_00990_1 crossref_primary_10_3390_info14010036 crossref_primary_10_1086_734552 crossref_primary_10_3390_electronics11203275 crossref_primary_10_5213_inj_2346106_053 crossref_primary_10_1038_s41746_024_01103_x crossref_primary_10_1109_ACCESS_2023_3319087 crossref_primary_10_3389_fmed_2024_1380405 crossref_primary_10_3390_cancers16122262 crossref_primary_10_1016_j_euros_2022_12_012 crossref_primary_10_1080_07357907_2022_2122488 crossref_primary_10_1155_2022_9018939 crossref_primary_10_14512_tatup_33_1_48 crossref_primary_10_1007_s11912_023_01407_3 crossref_primary_10_1002_der2_248 crossref_primary_10_1002_jvc2_224 crossref_primary_10_2196_49613 crossref_primary_10_3390_ijms232213838 crossref_primary_10_3390_bioengineering10111322 crossref_primary_10_1111_ddg_15115 crossref_primary_10_1080_13682199_2023_2226894 crossref_primary_10_1007_s00170_022_10355_4 crossref_primary_10_1097_MAO_0000000000004267 crossref_primary_10_3390_cancers15072174 crossref_primary_10_1002_jbio_202400277 crossref_primary_10_1007_s11042_024_19301_w crossref_primary_10_1016_j_jaad_2022_08_028 crossref_primary_10_1111_vde_13221 crossref_primary_10_1038_s41598_023_41463_0 crossref_primary_10_3389_fonc_2022_889223 crossref_primary_10_3390_life14060652 crossref_primary_10_1136_jme_2023_109848 |
| Cites_doi | 10.1016/j.ejca.2019.04.001 10.1038/nature14539 10.1109/IJCNN.2010.5596486 10.1109/TBME.2019.2915839 10.1007/978-3-319-75420-8_54 10.1109/CVPR.2016.308 10.1038/s41746-020-00380-6 10.1038/nature21056 10.1109/CVPR.2017.243 10.1038/sdata.2018.161 10.1111/exd.13777 10.1109/CVPR.2016.90 10.1109/IJCNN.2016.7727770 10.1109/72.286891 10.1007/978-3-319-24834-9_6 10.1109/GlobalSIP.2013.6736861 10.1109/WACV.2017.58 10.1145/312129.312220 10.1016/j.ejca.2018.12.016 10.1001/jamadermatol.2018.4378 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-021-96707-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_cf0870ad10214c32b722e2edc72aa7af 10.1038/s41598-021-96707-8 PMC8410796 34471174 10_1038_s41598_021_96707_8 |
| Genre | Journal Article Comparative Study |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c540t-da0e3871b3db67ce65d7878430194e7ef9c873f7472da2f5f6993c31e85df4d03 |
| IEDL.DBID | AAJSJ |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 18:50:15 EDT 2025 Sun Oct 26 04:12:20 EDT 2025 Tue Sep 30 16:49:49 EDT 2025 Fri Sep 05 13:32:30 EDT 2025 Tue Oct 07 07:48:29 EDT 2025 Thu Jan 02 22:25:20 EST 2025 Thu Apr 24 23:02:00 EDT 2025 Wed Oct 01 04:28:19 EDT 2025 Fri Feb 21 02:38:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-da0e3871b3db67ce65d7878430194e7ef9c873f7472da2f5f6993c31e85df4d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://doi.org/10.1038%2Fs41598-021-96707-8 |
| PMID | 34471174 |
| PQID | 2568102692 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cf0870ad10214c32b722e2edc72aa7af unpaywall_primary_10_1038_s41598_021_96707_8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8410796 proquest_miscellaneous_2568597342 proquest_journals_2568102692 pubmed_primary_34471174 crossref_citationtrail_10_1038_s41598_021_96707_8 crossref_primary_10_1038_s41598_021_96707_8 springer_journals_10_1038_s41598_021_96707_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. Rethinking the inception architecture for computer vision. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2818–2826 (2016). SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: A simple way to prevent neural networks from overfittingJ. Mach. Learn. Res.20141511929195832315921318.68153 Ioffe, S., & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015). Domingos, P. Metacost: A general method for making classifiers cost-sensitive. in Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 155–164 (1999). Young, A. T. et al. Stress testing reveals gaps in clinic readiness of image-based diagnostic artificial intelligence models. npj Digit. Med.4, 10 (2021). BrinkerTJHeklerAHauschildABerkingCSchillingBEnkAHHaferkampSKaroglanAvon KalleCWeichenthalMComparing artificial intelligence algorithms to 157 German dermatologists: The melanoma classification benchmarkEur. J. Cancer2019111303710.1016/j.ejca.2018.12.016 Thai-Nghe, N., Gantner, Z., & Schmidt-Thieme, L. Cost-sensitive learning methods for imbalanced data. in The International Joint Conference on Neural Networks (IJCNN). 1–8 (IEEE, 2010). TschandlPRosendahlCKittlerHThe ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesionsSci. Data2018518016110.1038/sdata.2018.161 LeCunYBengioYHintonGDeep learningNature201552175534364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 Song, S., Chaudhuri, K., & Sarwate, A.D. Stochastic gradient descent with differentially private updates. in 2013 IEEE Global Conference on Signal and Information Processing. 245–248 (IEEE, 2013). Smith, L.N. Cyclical learning rates for training neural networks. in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). 464–472 (IEEE, 2017). Pham, T.-C., Luong, C.-M., Visani, M., & Hoang, V.-D. Deep cnn and data augmentation for skin lesion classification. in Asian Conference on Intelligent Information and Database Systems. 573–582 (Springer, 2018). GessertNSentkerTMadestaFSchmitzRKniepHBaltruschatIWernerRSchlaeferASkin lesion classification using cnns with patch-based attention and diagnosis-guided loss weightingIEEE Trans. Biomed. Eng.201967249550310.1109/TBME.2019.2915839 Krawczyk, B., & Woźniak, M. Cost-sensitive neural network with roc-based moving threshold for imbalanced classification. in International Conference on Intelligent Data Engineering and Automated Learning. 45–52 (Springer, 2015). Combalia, M., Codella, N.C., Rotemberg, V., Helba, B., Vilaplana, V., Reiter, O., Carrera, C., Barreiro, A., Halpern, A.C., Puig, S. et al. Bcn20000: Dermoscopic lesions in the wild. arXiv preprint arXiv:1908.02288 (2019). TschandlPRosendahlCAkayBNArgenzianoGBlumABraunRPCaboHGourhantJ-YKreuschJLallasAExpert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networksJAMA Dermatol.20191551586510.1001/jamadermatol.2018.4378 EstevaAKuprelBNovoaRAKoJSwetterSMBlauHMThrunSDermatologist-level classification of skin cancer with deep neural networksNature201754276391151182017Natur.542..115E1:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056 YapJYollandWTschandlPMultimodal skin lesion classification using deep learningExp. Dermatol.201827111261126710.1111/exd.13777 Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K.Q. Densely connected convolutional networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4700–4708 (2017). He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778 (2016). BrinkerTJHeklerAEnkAHKlodeJHauschildABerkingCSchillingBHaferkampSSchadendorfDHolland-LetzTDeep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification taskEur. J. Cancer2019113475410.1016/j.ejca.2019.04.001 AnandRMehrotraKGMohanCKRankaSAn improved algorithm for neural network classification of imbalanced training setsIEEE Trans. Neural Netw.1993469629691:STN:280:DC%2BD1c7hsl2htQ%3D%3D10.1109/72.286891 Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., & Kennedy, P. J. Training deep neural networks on imbalanced data sets. in 2016 International Joint Conference on Neural Networks (IJCNN). 4368–4374. (IEEE, 2016). Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., & Marchetti, M. et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019). Maloof, M.A. Learning when data sets are imbalanced and when costs are unequal and unknown. in ICML-2003 Workshop on Learning from Imbalanced Data Sets II. Vol. 2. 2–1 (2003). Codella, N. C. et al. International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 168–172 (IEEE, 2017). Y LeCun (96707_CR2) 2015; 521 96707_CR12 96707_CR13 96707_CR10 96707_CR11 TJ Brinker (96707_CR7) 2019; 111 A Esteva (96707_CR3) 2017; 542 N Gessert (96707_CR9) 2019; 67 R Anand (96707_CR8) 1993; 4 96707_CR16 96707_CR17 96707_CR14 96707_CR15 TJ Brinker (96707_CR26) 2019; 113 J Yap (96707_CR5) 2018; 27 96707_CR19 N Srivastava (96707_CR18) 2014; 15 96707_CR23 96707_CR24 96707_CR21 P Tschandl (96707_CR6) 2019; 155 96707_CR22 96707_CR4 96707_CR1 P Tschandl (96707_CR20) 2018; 5 96707_CR25 |
| References_xml | – reference: Smith, L.N. Cyclical learning rates for training neural networks. in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). 464–472 (IEEE, 2017). – reference: Thai-Nghe, N., Gantner, Z., & Schmidt-Thieme, L. Cost-sensitive learning methods for imbalanced data. in The International Joint Conference on Neural Networks (IJCNN). 1–8 (IEEE, 2010). – reference: Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., & Kennedy, P. J. Training deep neural networks on imbalanced data sets. in 2016 International Joint Conference on Neural Networks (IJCNN). 4368–4374. (IEEE, 2016). – reference: Ioffe, S., & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015). – reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. Rethinking the inception architecture for computer vision. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2818–2826 (2016). – reference: He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778 (2016). – reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: A simple way to prevent neural networks from overfittingJ. Mach. Learn. Res.20141511929195832315921318.68153 – reference: LeCunYBengioYHintonGDeep learningNature201552175534364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539 – reference: Song, S., Chaudhuri, K., & Sarwate, A.D. Stochastic gradient descent with differentially private updates. in 2013 IEEE Global Conference on Signal and Information Processing. 245–248 (IEEE, 2013). – reference: EstevaAKuprelBNovoaRAKoJSwetterSMBlauHMThrunSDermatologist-level classification of skin cancer with deep neural networksNature201754276391151182017Natur.542..115E1:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056 – reference: TschandlPRosendahlCAkayBNArgenzianoGBlumABraunRPCaboHGourhantJ-YKreuschJLallasAExpert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networksJAMA Dermatol.20191551586510.1001/jamadermatol.2018.4378 – reference: AnandRMehrotraKGMohanCKRankaSAn improved algorithm for neural network classification of imbalanced training setsIEEE Trans. Neural Netw.1993469629691:STN:280:DC%2BD1c7hsl2htQ%3D%3D10.1109/72.286891 – reference: BrinkerTJHeklerAHauschildABerkingCSchillingBEnkAHHaferkampSKaroglanAvon KalleCWeichenthalMComparing artificial intelligence algorithms to 157 German dermatologists: The melanoma classification benchmarkEur. J. Cancer2019111303710.1016/j.ejca.2018.12.016 – reference: BrinkerTJHeklerAEnkAHKlodeJHauschildABerkingCSchillingBHaferkampSSchadendorfDHolland-LetzTDeep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification taskEur. J. Cancer2019113475410.1016/j.ejca.2019.04.001 – reference: Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., & Marchetti, M. et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019). – reference: Domingos, P. Metacost: A general method for making classifiers cost-sensitive. in Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 155–164 (1999). – reference: Pham, T.-C., Luong, C.-M., Visani, M., & Hoang, V.-D. Deep cnn and data augmentation for skin lesion classification. in Asian Conference on Intelligent Information and Database Systems. 573–582 (Springer, 2018). – reference: GessertNSentkerTMadestaFSchmitzRKniepHBaltruschatIWernerRSchlaeferASkin lesion classification using cnns with patch-based attention and diagnosis-guided loss weightingIEEE Trans. Biomed. Eng.201967249550310.1109/TBME.2019.2915839 – reference: Maloof, M.A. Learning when data sets are imbalanced and when costs are unequal and unknown. in ICML-2003 Workshop on Learning from Imbalanced Data Sets II. Vol. 2. 2–1 (2003). – reference: Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K.Q. Densely connected convolutional networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4700–4708 (2017). – reference: YapJYollandWTschandlPMultimodal skin lesion classification using deep learningExp. Dermatol.201827111261126710.1111/exd.13777 – reference: TschandlPRosendahlCKittlerHThe ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesionsSci. Data2018518016110.1038/sdata.2018.161 – reference: Young, A. T. et al. Stress testing reveals gaps in clinic readiness of image-based diagnostic artificial intelligence models. npj Digit. Med.4, 10 (2021). – reference: Krawczyk, B., & Woźniak, M. Cost-sensitive neural network with roc-based moving threshold for imbalanced classification. in International Conference on Intelligent Data Engineering and Automated Learning. 45–52 (Springer, 2015). – reference: Combalia, M., Codella, N.C., Rotemberg, V., Helba, B., Vilaplana, V., Reiter, O., Carrera, C., Barreiro, A., Halpern, A.C., Puig, S. et al. Bcn20000: Dermoscopic lesions in the wild. arXiv preprint arXiv:1908.02288 (2019). – reference: Codella, N. C. et al. International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 168–172 (IEEE, 2017). – volume: 113 start-page: 47 year: 2019 ident: 96707_CR26 publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2019.04.001 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 96707_CR2 publication-title: Nature doi: 10.1038/nature14539 – ident: 96707_CR10 doi: 10.1109/IJCNN.2010.5596486 – volume: 67 start-page: 495 issue: 2 year: 2019 ident: 96707_CR9 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2915839 – ident: 96707_CR4 doi: 10.1007/978-3-319-75420-8_54 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 96707_CR18 publication-title: J. Mach. Learn. Res. – ident: 96707_CR14 doi: 10.1109/CVPR.2016.308 – ident: 96707_CR25 doi: 10.1038/s41746-020-00380-6 – ident: 96707_CR19 – ident: 96707_CR22 – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 96707_CR3 publication-title: Nature doi: 10.1038/nature21056 – ident: 96707_CR16 doi: 10.1109/CVPR.2017.243 – volume: 5 start-page: 180161 year: 2018 ident: 96707_CR20 publication-title: Sci. Data doi: 10.1038/sdata.2018.161 – ident: 96707_CR13 – volume: 27 start-page: 1261 issue: 11 year: 2018 ident: 96707_CR5 publication-title: Exp. Dermatol. doi: 10.1111/exd.13777 – ident: 96707_CR15 doi: 10.1109/CVPR.2016.90 – ident: 96707_CR17 doi: 10.1109/IJCNN.2016.7727770 – volume: 4 start-page: 962 issue: 6 year: 1993 ident: 96707_CR8 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.286891 – ident: 96707_CR12 doi: 10.1007/978-3-319-24834-9_6 – ident: 96707_CR23 doi: 10.1109/GlobalSIP.2013.6736861 – ident: 96707_CR24 doi: 10.1109/WACV.2017.58 – ident: 96707_CR11 doi: 10.1145/312129.312220 – volume: 111 start-page: 30 year: 2019 ident: 96707_CR7 publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2018.12.016 – ident: 96707_CR21 – ident: 96707_CR1 – volume: 155 start-page: 58 issue: 1 year: 2019 ident: 96707_CR6 publication-title: JAMA Dermatol. doi: 10.1001/jamadermatol.2018.4378 |
| SSID | ssj0000529419 |
| Score | 2.581717 |
| Snippet | Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a... Abstract Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 17485 |
| SubjectTerms | 639/705/117 692/4028/67/2322 Algorithms Artificial Intelligence Datasets Deep Learning Dermatologists - statistics & numerical data Dermatology Dermoscopy - methods Diagnosis Humanities and Social Sciences Humans Melanoma Melanoma - diagnosis multidisciplinary Neural networks Neural Networks, Computer Nevus ROC Curve Science Science (multidisciplinary) Skin cancer Skin Neoplasms - diagnosis Training |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQSgg4IL4JLMhI3Gi0ie3Y8XFZsVo49MRKe4sc22EjtUlFWqHyY_itzNhpaAVaOHCrErtyPW_GM_XMG0Le1oXSTBUKmR8tluRYVCmZ1pzpwjZaKhOyLeby4lJ8uiqu9lp9YU5YpAeOG3dimwwgZVxoQW05qxVjnnlnFTNGmQatb1bqvWAqsnozLXI9VslkvDwZ4KTCajLMSJAqA9N8cBIFwv4_eZm_J0tON6b3yJ1NtzLbb2ax2DuUzh-Q-6M3SU_jr3hIbvnuEbkd-0tuH5Mfpx9pv1mvYnGAd9QDcLfUoTUOfWtBxrTtwoMe61NaS5d-Ybp-aaiLSXjtMKOYHP-Fmo72YGCW7Xf4Juf9Kj2bz-n-TQTFf3Wp3YBDuaRIWpLWYOmvabCvMN_Bp2GgeJYiHp6Qy_MPn88u0rEhQ2rBsVunzmSeQ4RVc1dLZb0sHOh7KcBIaOGVb7QtFW8gQmHOsKZoJHg_lue-LFwjXMafkqOu7_xzQsEtY5rlsrDKCi9ULUCgQkmjtfWlLBOS74RT2ZGtHJtmLKpwa87LKgq0AoFWQaAVzHk3zVlFro4bR79HmU8jkWc7PAD0VSP6qr-hLyHHO8RUo_IPFQskb0xqlpA302tQW7yLMZ3vN3EMxHJcwJhnEWDTSpCEMYdIMSHqAHoHSz1807XXgRq8FBDOa5mQ2Q6kv5Z101bMJiD_w869-B8795LcZaiMIV3vmBytv278K_Dv1vXroMo_AahZS_0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVgg4IN5dKMhI3NioiePY8QGhtmpVOKwQolJvkWM77Uq7SehuVC0_ht_KjPNoV6AVtyixIyfz8Ixn5htCPuSJVEwmEpEfDZbkGBQpEeQxU4kplJDaZ1tMxdk5_3qRXOyQaV8Lg2mVvU70itpWBs_ID5hHzmJCsc_1zwC7RmF0tW-hobvWCvaThxi7R3YZImONyO7RyfTb9-HUBeNaPFJd9UwYpwdL2MGwygwzFYQMQWVv7FAeyP9f1uffSZRDJPURedCUtV7f6Pn8zmZ1-oQ87qxMetiyxVOy48pn5H7bd3L9nPw-_EKrZlW3RQPOUgcMvaYWtbTvZwu0p7PS36iwbmVm6MLNdVktNLVtct5sOaGYNH9JdUkrUDyL2S94k3WuDo6nU3o3QkHxtJeaBgzNBUUwkyCHHeCKer0L8y1cLZcU91jkkxfk_PTkx_FZ0DVqCAwYfKvA6tDF4Hnlsc2FNE4kFvRAykF5KO6kK5RJZVyA58KsZkVSCLCKTBy5NLEFt2H8kozKqnR7hIK5xhSLRGKk4Y7LnBvJuBRaKeNSkY5J1BMnMx2KOTbTmGc-mh6nWUvQDAiaeYJmMOfjMKduMTy2jj5Cmg8jEX_b36iuL7NOnDNThKDotPWN0U3McsmYY8AMkmktdTEm-z3HZJ1SWGa3LDwm74fHIM4Yo9Glq5p2DPh4MYcxr1oGG1aC4IwReJBjIjdYb2Opm0_K2ZWHDE85uPlKjMmkZ9LbZW37FZOBkf_jz73e_tFvyEOGYuYT9PbJaHXduLdg0a3yd52Y_gG8uklc priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbGEAIeEL8XGMhIvNFA4zh2_IDQmJgGEn2i0t4ix3a2SGnSNY2g_DH8rZztJKyimuCtSuzI8n13vqvvvkPodZ5wQXjCLfOjsiU5yqoUC_OYiEQVgnHpsi1m7HROv5wlZ3toaHfUb2C7M7Sz_aTmq-rtj8vNB1D4975kPH3XwiFkC8VssgHjU7C6N9BNOKmEbeXwtXf3Pdc3ETQSfe3M7qlb55Oj8d_le_6dQjneo95Ft7t6KTffZVVdOapO7qN7vY-JjzwoHqA9Uz9Et3zXyc0j9OvoM2669dKXDBiNDcB5g7W10a6bLUgel7V70NiqlVLhhalk3Swk1j41r2wn2KbMn2NZ4wbMzqL8CV_SxizD49kMX72fwPa_Xqw6cDMX2FKZhDnY_wvsrC7M1_CrbbE9YS1KHqP5yadvx6dh36YhVODurUMtpyaGuCuPdc64MizRYAVSCqZDUMNNIVTK4wLiFqIlKZKCgU-k4sikiS6onsZP0H7d1OYAYXDWiCARSxRX1FCeU8UJ5UwKoUzK0gBFg3Ay1XOY21YaVebu0uM08wLNQKCZE2gGc96Mc5aewePa0R-tzMeRln3bPWhW51mvzJkqpmDmpHZt0VVMck6IIQAGTqTksgjQ4YCYbEB0Rhz1G2GCBOjV-BqU2d7QyNo0nR8DEV5MYcxTD7BxJZaaMYL4MUB8C3pbS91-U5cXjjA8pRDkCxagyQDSP8u6bismI5D_Yeee_d_Xn6M7xKqdS9c7RPvrVWdegH-3zl86pf0NQJxKXQ priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44JtRGMhIvNF0qZ3YyWOZmAYPFQ9UjKfIsZ0tok2itdHU_TH8rZydD1aYJvZWJefKuZx_d47vfgfwPg1FTEUoLPOjsiU5yi4p7qWMxqHKYi6ky7aY8eN58OUkPNkB3tXCuKR9R2npYLrLDjtYoaOxxWA2oYALH5F1XOnsDuzyEGPwAezOZ1-nP2wnOYxRPAwTaFsh47PomsFbXsiR9V8XYf6bKNmflj6Ae3VRyc2FXCyuOKSjR_C9e5QmD-XnuF6nY3X5F8vj7Z_1MTxsY1QybSSfwI4pnsLdpmvl5hn8mn4mZb2umpIDo4nB5bAh2mK864aLlkPywl0obdVLrsjSLGRRLiXRTWpfvhoRm3J_SmRBSoStZX6J_6SNqbzD2YxcPd8g9lsxUTWGqUtiqVC8FP3HGXGojeM1_lqtiPXQ1sqew_zo07fDY69t8-ApDBfXnpa-YbhvS5lOuVCGhxpRJAoQeuLACJPFKhIsw30P1ZJmYcYxplJsYqJQZ4H22QsYFGVhXgLBYI_GdMJDJVRgApEGStBAcBnHykQ8GsKke-2JajnQbSuOReLO4lmUNLpPUPeJ032CYz70Y6qGAeRG6Y_WmnpJy97tLpTnp0n7hhOV-QiTUru26orRVFBqKJqZoFIKmQ1hv7PFpIWUVUIddRzlMR3Cu_42goE94ZGFKetGBneILECZvcZ0-5lYascJ7j-HILaMemuq23eK_MwRjkfBxBcxH8KoM_8_07pJFaN-ifyH5l7dTvw13Kd2hbh0v30YrM9r8wbjw3X6tgWD30FXYEM priority: 102 providerName: Unpaywall |
| Title | AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function |
| URI | https://link.springer.com/article/10.1038/s41598-021-96707-8 https://www.ncbi.nlm.nih.gov/pubmed/34471174 https://www.proquest.com/docview/2568102692 https://www.proquest.com/docview/2568597342 https://pubmed.ncbi.nlm.nih.gov/PMC8410796 https://www.nature.com/articles/s41598-021-96707-8.pdf https://doaj.org/article/cf0870ad10214c32b722e2edc72aa7af |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8LR1QsAD4nuBURmJNxrROo4dP3bVplGJaAIqlafIsR1WqU2qtRUqP4bfytlJw6qhCV6ayvZFVu7Dd74vgHd5LCQVsXCVH7VLydGOpXiYR1TGupBcKB9tkfKLCRtP4-kB9Ha5MHv-e1-6e4VHjEsDc6EEXPRRph7CUYKEmXTgaDgcfxm3dyrOa8UGssmNQfAPt4H3zh9fpv9vuuXtEMnWT_oQ7m_Kpdr-UPP5jaPo_DE8anRIMqyR_gQObPkU7tVdJbfP4NfwI6k262WdEmANsUiuW2KcDPbdahGzZFb6gcplpcw0Wdi5KquFIqYOvZutesSFxH8nqiQVipXF7Ce-yVi7DEdpSm76H4i7yyV6g2rkgrhSJWGO8v2KeKmK8Ab_rVbEnaCOCp7D5Pzs6-gibNowhBrVuXVoVN9GaFflkcm50JbHBrk8YSgaJLPCFlIjOgq0S6hRtIgLjjqPjgY2iU3BTD96AZ2yKu0xEFTGqKQDHmuhmWUiZ1pQJriSUtuEJwEMdsjJdFOj3LXKmGfeVx4lWY3QDBGaeYRmCPO-hVnWFTruXH3qcN6udNW1_QASXdYwa6aLPooxZXzbcx3RXFBqKRKDoEoJVQRwsqOYrGH5VUZ9aTfKJQ3gbTuNzOo8MKq01aZegxZcxHDNy5rA2p240osDtA8DEHukt7fV_ZlyduULgicMjXjJA-jtiPTPtu76FL2WkP_hy736v7e_hgfUsZ0PxzuBzvp6Y9-g_rbOu3AopqLbMC8-T8_Sy884OuKjrr8Twd9PLMGZSXo5_PYbvl5Ehg |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjT2gLhTGGAkeKLREsex44cJbWNTy0aF0CbtLXNsZ6vUJt3Saio_hp_Cb-PYuWwVqOJlb1FiR07O53PxuSH0IY24IDzitvKjsik5ym4p5qUhEZHKBOPSRVsMWO-Efj2NTlfQ7yYXxoZVNjzRMWpdKHtGvkVc5SzCBPk8ufRs1yjrXW1aaMi6tYLediXG6sSOQzO_BhOu3O5_AXp_JORg_3iv59VdBjwF2srU09I3IZgNaahTxpVhkQYQxxSQL6jhJhMq5mEGajfRkmRRxkCkqzAwcaQzqv0Q3nsPrdGQCjD-1nb3B99_tKc81o9GA1Fn6_hhvFWCxLRZbTYygnEfRMSCRHSNA_6l7f4dtNl6bjfQ-iyfyPm1HI1uCceDR-hhrdXinQqGj9GKyZ-g-1Wfy_lT9Gunj4vZdFIlKRiNDWygOdZWKrj-uYA1PMzdjcLmyQwVHpuRzIuxxLoKBhyWXWyD9M-xzHEBjG48_Alv0sZMvL3BAN_2iGB7uozVDBTbMbbFU7wUJM4Fdnwe5mu4KktsZbrF5TN0cicke45W8yI3LxEG9ZAIErBIcUUN5SlVnFDOpBDKxCzuoKAhTqLqqum2eccocd77ME4qgiZA0MQRNIE5n9o5k6pmyNLRu5bm7Uhb79vdKK7Ok5p9JCrzgbFK7Rqxq5CknBBDAAycSMll1kGbDWKSmgmVyc2W6aD37WNgH9YnJHNTzKoxYFOGFMa8qADWrsQWgwzAYu0gvgC9haUuPsmHF65EeUwDnwvWQd0GpDfLWvYrui2Q_-PPvVr-0e_Qeu_421Fy1B8cvkYPiN1yLjhwE61Or2bmDWiT0_RtvWUxOrtrLvEHNbaGAg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGELcHxJ3CACPBE42a2EkcPyA0NqqVoYoHJu0tOLazVWqTsrSayo_hh_DrOMe5bBWo4mVvUWJHTs53Lva5EfImi4RkIhJY-VFjSo5Gloq9jDMZ6VzGQrloi3F8cBR-Po6Ot8jvNhcGwypbmegEtSk1npEPmKucxWLJBnkTFvF1f_hh_sPDDlLoaW3badQQObSrc9i-Ve9H-0Drt4wNP33bO_CaDgOeBktl4RnlWw5bhoybLBbaxpEBACchoF6GVthc6kTwHExuZhTLozwGda55YJPI5KHxObz3GrkuOJcYTiiORXe-gx60MJBNno7Pk0EFuhLz2TAmIhY-KIc1XehaBvzLzv07XLPz2d4ht5bFXK3O1XR6SS0O75G7jT1Ld2sA3idbtnhAbtQdLlcPya_dES2Xi3mdnmANtcA6K2pQH7jOuYAyOincjRIzZCaazuxUFeVMUVOHAU6qPsXw_BOqClqCiJtNfsKbjLVzb288ppd9IRTPlalegkk7o1g2xctA15xSJ-FhvoGrqqKozRGRj8jRlRDsMdkuysI-JRQMQyZZEEda6NCGIgu1YKGIlZTaJnHSI0FLnFQ39dKxbcc0dX57nqQ1QVMgaOoImsKcd92ceV0tZOPoj0jzbiRW-nY3yrOTtBEcqc59EKnKuBbsmrNMMGYZgEEwpYTKe2SnRUzaiJ8qvWCWHnndPQbBgd4gVdhyWY-B3SQPYcyTGmDdSrAMZAB71R4Ra9BbW-r6k2Jy6oqTJ2HgCxn3SL8F6cWyNv2Kfgfk__hzzzZ_9CtyE2RD-mU0PnxObjPkOBcVuEO2F2dL-wLMyEX20vErJd-vWkD8AYdFg5w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44JtRGMhIvNF0qZ3YyWOZmAYPFQ9UjKfIsZ0tok2itdHU_TH8rZydD1aYJvZWJefKuZx_d47vfgfwPg1FTEUoLPOjsiU5yi4p7qWMxqHKYi6ky7aY8eN58OUkPNkB3tXCuKR9R2npYLrLDjtYoaOxxWA2oYALH5F1XOnsDuzyEGPwAezOZ1-nP2wnOYxRPAwTaFsh47PomsFbXsiR9V8XYf6bKNmflj6Ae3VRyc2FXCyuOKSjR_C9e5QmD-XnuF6nY3X5F8vj7Z_1MTxsY1QybSSfwI4pnsLdpmvl5hn8mn4mZb2umpIDo4nB5bAh2mK864aLlkPywl0obdVLrsjSLGRRLiXRTWpfvhoRm3J_SmRBSoStZX6J_6SNqbzD2YxcPd8g9lsxUTWGqUtiqVC8FP3HGXGojeM1_lqtiPXQ1sqew_zo07fDY69t8-ApDBfXnpa-YbhvS5lOuVCGhxpRJAoQeuLACJPFKhIsw30P1ZJmYcYxplJsYqJQZ4H22QsYFGVhXgLBYI_GdMJDJVRgApEGStBAcBnHykQ8GsKke-2JajnQbSuOReLO4lmUNLpPUPeJ032CYz70Y6qGAeRG6Y_WmnpJy97tLpTnp0n7hhOV-QiTUru26orRVFBqKJqZoFIKmQ1hv7PFpIWUVUIddRzlMR3Cu_42goE94ZGFKetGBneILECZvcZ0-5lYascJ7j-HILaMemuq23eK_MwRjkfBxBcxH8KoM_8_07pJFaN-ifyH5l7dTvw13Kd2hbh0v30YrM9r8wbjw3X6tgWD30FXYEM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+outperformed+every+dermatologist+in+dermoscopic+melanoma+diagnosis%2C+using+an+optimized+deep-CNN+architecture+with+custom+mini-batch+logic+and+loss+function&rft.jtitle=Scientific+reports&rft.au=Pham%2C+Tri-Cong&rft.au=Luong%2C+Chi-Mai&rft.au=Hoang%2C+Van-Dung&rft.au=Doucet%2C+Antoine&rft.date=2021-09-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-96707-8&rft.externalDocID=10_1038_s41598_021_96707_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |