AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function

Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithm...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 17485 - 13
Main Authors Pham, Tri-Cong, Luong, Chi-Mai, Hoang, Van-Dung, Doucet, Antoine
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-96707-8

Cover

Abstract Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithms to that of dermatologists. However, training neural networks on an imbalanced dataset leads to imbalanced performance, the specificity is very high but the sensitivity is very low. This study proposes a method for improving melanoma prediction on an imbalanced dataset by reconstructed appropriate CNN architecture and optimized algorithms. The contributions involve three key features as custom loss function, custom mini-batch logic, and reformed fully connected layers. In the experiment, the training dataset is kept up to date including 17,302 images of melanoma and nevus which is the largest dataset by far. The model performance is compared to that of 157 dermatologists from 12 university hospitals in Germany based on the same dataset. The experimental results prove that our proposed approach outperforms all 157 dermatologists and achieves higher performance than the state-of-the-art approach with area under the curve of 94.4%, sensitivity of 85.0%, and specificity of 95.0%. Moreover, using the best threshold shows the most balanced measure compare to other researches, and is promisingly application to medical diagnosis, with sensitivity of 90.0% and specificity of 93.8%. To foster further research and allow for replicability, we made the source code and data splits of all our experiments publicly available.
AbstractList Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithms to that of dermatologists. However, training neural networks on an imbalanced dataset leads to imbalanced performance, the specificity is very high but the sensitivity is very low. This study proposes a method for improving melanoma prediction on an imbalanced dataset by reconstructed appropriate CNN architecture and optimized algorithms. The contributions involve three key features as custom loss function, custom mini-batch logic, and reformed fully connected layers. In the experiment, the training dataset is kept up to date including 17,302 images of melanoma and nevus which is the largest dataset by far. The model performance is compared to that of 157 dermatologists from 12 university hospitals in Germany based on the same dataset. The experimental results prove that our proposed approach outperforms all 157 dermatologists and achieves higher performance than the state-of-the-art approach with area under the curve of 94.4%, sensitivity of 85.0%, and specificity of 95.0%. Moreover, using the best threshold shows the most balanced measure compare to other researches, and is promisingly application to medical diagnosis, with sensitivity of 90.0% and specificity of 93.8%. To foster further research and allow for replicability, we made the source code and data splits of all our experiments publicly available.
Abstract Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithms to that of dermatologists. However, training neural networks on an imbalanced dataset leads to imbalanced performance, the specificity is very high but the sensitivity is very low. This study proposes a method for improving melanoma prediction on an imbalanced dataset by reconstructed appropriate CNN architecture and optimized algorithms. The contributions involve three key features as custom loss function, custom mini-batch logic, and reformed fully connected layers. In the experiment, the training dataset is kept up to date including 17,302 images of melanoma and nevus which is the largest dataset by far. The model performance is compared to that of 157 dermatologists from 12 university hospitals in Germany based on the same dataset. The experimental results prove that our proposed approach outperforms all 157 dermatologists and achieves higher performance than the state-of-the-art approach with area under the curve of 94.4%, sensitivity of 85.0%, and specificity of 95.0%. Moreover, using the best threshold shows the most balanced measure compare to other researches, and is promisingly application to medical diagnosis, with sensitivity of 90.0% and specificity of 93.8%. To foster further research and allow for replicability, we made the source code and data splits of all our experiments publicly available.
Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithms to that of dermatologists. However, training neural networks on an imbalanced dataset leads to imbalanced performance, the specificity is very high but the sensitivity is very low. This study proposes a method for improving melanoma prediction on an imbalanced dataset by reconstructed appropriate CNN architecture and optimized algorithms. The contributions involve three key features as custom loss function, custom mini-batch logic, and reformed fully connected layers. In the experiment, the training dataset is kept up to date including 17,302 images of melanoma and nevus which is the largest dataset by far. The model performance is compared to that of 157 dermatologists from 12 university hospitals in Germany based on the same dataset. The experimental results prove that our proposed approach outperforms all 157 dermatologists and achieves higher performance than the state-of-the-art approach with area under the curve of 94.4%, sensitivity of 85.0%, and specificity of 95.0%. Moreover, using the best threshold shows the most balanced measure compare to other researches, and is promisingly application to medical diagnosis, with sensitivity of 90.0% and specificity of 93.8%. To foster further research and allow for replicability, we made the source code and data splits of all our experiments publicly available.Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a successful cure. Recent researches have used artificial intelligence to classify melanoma and nevus and to compare the assessment of these algorithms to that of dermatologists. However, training neural networks on an imbalanced dataset leads to imbalanced performance, the specificity is very high but the sensitivity is very low. This study proposes a method for improving melanoma prediction on an imbalanced dataset by reconstructed appropriate CNN architecture and optimized algorithms. The contributions involve three key features as custom loss function, custom mini-batch logic, and reformed fully connected layers. In the experiment, the training dataset is kept up to date including 17,302 images of melanoma and nevus which is the largest dataset by far. The model performance is compared to that of 157 dermatologists from 12 university hospitals in Germany based on the same dataset. The experimental results prove that our proposed approach outperforms all 157 dermatologists and achieves higher performance than the state-of-the-art approach with area under the curve of 94.4%, sensitivity of 85.0%, and specificity of 95.0%. Moreover, using the best threshold shows the most balanced measure compare to other researches, and is promisingly application to medical diagnosis, with sensitivity of 90.0% and specificity of 93.8%. To foster further research and allow for replicability, we made the source code and data splits of all our experiments publicly available.
ArticleNumber 17485
Author Luong, Chi-Mai
Pham, Tri-Cong
Hoang, Van-Dung
Doucet, Antoine
Author_xml – sequence: 1
  givenname: Tri-Cong
  surname: Pham
  fullname: Pham, Tri-Cong
  organization: ICT Laboratory, Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Thuyloi University, FPT Software
– sequence: 2
  givenname: Chi-Mai
  surname: Luong
  fullname: Luong, Chi-Mai
  organization: ICT Laboratory, Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Institute of Information Technology, Vietnam Academy of Science and Technology
– sequence: 3
  givenname: Van-Dung
  surname: Hoang
  fullname: Hoang, Van-Dung
  organization: Ho Chi Minh City University of Technology and Education
– sequence: 4
  givenname: Antoine
  surname: Doucet
  fullname: Doucet, Antoine
  email: antoine.doucet@univ-lr.fr
  organization: L3i Laboratory, University of La Rochelle
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34471174$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1TAUjFARLaU_wAJZYtMFAb8SOxuk6opHpapsYG352if3ukrsYDutysfwrfg-KG0XFd7YOp4Zzznjl9WBDx6q6jXB7wlm8kPipOlkjSmpu1ZgUctn1RHFvKkpo_Tg3vmwOknpCpfV0I6T7kV1yDgXhAh-VP0-O0dhzhPEPsQRLIJriLfIQhx1DkNYuZSR89tCSCZMzqARBu3DqJF1euVDcukdmpPzK6Q9ClN2o_tVlCzAVC8uL5GOZu0ymDxHQDcur5GZUw4jGp139VJns0abl0zh23JKCfWzN9kF_6p63ushwcl-P65-fP70ffG1vvj25XxxdlGbhuNcW42BSUGWzC5bYaBtrJBCcoZJx0FA3xkpWC-4oFbTvunbrmOGEZCN7bnF7Lg63-naoK_UFN2o460K2qltIcSV0jE7M4AyPZYCa0vK6LlhdCkoBQrWCKq10H3RYjut2U_69kYPw50gwWoTntqFp4qC2oanZGF93LGmeVlyMOBz1MMDKw9vvFurVbhWkhMsurYInO4FYvg5Q8pqdMnAULKCMCdFm1Y2nWCcFujbR9CrMEdfBrxFlc7aboN6c9_RnZW_n6cA5A5gYsksQq-My3oTWzHohqe7pY-o_zWi_WBTAfsVxH-2n2D9AbpK_NA
CitedBy_id crossref_primary_10_1186_s12859_023_05516_5
crossref_primary_10_1111_ddg_15115_g
crossref_primary_10_1142_S1793351X24300073
crossref_primary_10_1109_ACCESS_2023_3295001
crossref_primary_10_1111_jep_13980
crossref_primary_10_1111_ajd_14269
crossref_primary_10_3390_app15063318
crossref_primary_10_1016_j_jid_2023_09_289
crossref_primary_10_3390_bioengineering11080758
crossref_primary_10_1016_j_jaad_2023_05_053
crossref_primary_10_3389_fsurg_2023_1266399
crossref_primary_10_1038_s41746_024_01420_1
crossref_primary_10_3390_cancers15194694
crossref_primary_10_5213_inj_2346294_147
crossref_primary_10_1016_j_compmedimag_2023_102241
crossref_primary_10_3390_cancers15184463
crossref_primary_10_1155_2021_5591614
crossref_primary_10_1016_j_esmorw_2024_100077
crossref_primary_10_1111_jdv_18814
crossref_primary_10_1186_s12910_023_00990_1
crossref_primary_10_3390_info14010036
crossref_primary_10_1086_734552
crossref_primary_10_3390_electronics11203275
crossref_primary_10_5213_inj_2346106_053
crossref_primary_10_1038_s41746_024_01103_x
crossref_primary_10_1109_ACCESS_2023_3319087
crossref_primary_10_3389_fmed_2024_1380405
crossref_primary_10_3390_cancers16122262
crossref_primary_10_1016_j_euros_2022_12_012
crossref_primary_10_1080_07357907_2022_2122488
crossref_primary_10_1155_2022_9018939
crossref_primary_10_14512_tatup_33_1_48
crossref_primary_10_1007_s11912_023_01407_3
crossref_primary_10_1002_der2_248
crossref_primary_10_1002_jvc2_224
crossref_primary_10_2196_49613
crossref_primary_10_3390_ijms232213838
crossref_primary_10_3390_bioengineering10111322
crossref_primary_10_1111_ddg_15115
crossref_primary_10_1080_13682199_2023_2226894
crossref_primary_10_1007_s00170_022_10355_4
crossref_primary_10_1097_MAO_0000000000004267
crossref_primary_10_3390_cancers15072174
crossref_primary_10_1002_jbio_202400277
crossref_primary_10_1007_s11042_024_19301_w
crossref_primary_10_1016_j_jaad_2022_08_028
crossref_primary_10_1111_vde_13221
crossref_primary_10_1038_s41598_023_41463_0
crossref_primary_10_3389_fonc_2022_889223
crossref_primary_10_3390_life14060652
crossref_primary_10_1136_jme_2023_109848
Cites_doi 10.1016/j.ejca.2019.04.001
10.1038/nature14539
10.1109/IJCNN.2010.5596486
10.1109/TBME.2019.2915839
10.1007/978-3-319-75420-8_54
10.1109/CVPR.2016.308
10.1038/s41746-020-00380-6
10.1038/nature21056
10.1109/CVPR.2017.243
10.1038/sdata.2018.161
10.1111/exd.13777
10.1109/CVPR.2016.90
10.1109/IJCNN.2016.7727770
10.1109/72.286891
10.1007/978-3-319-24834-9_6
10.1109/GlobalSIP.2013.6736861
10.1109/WACV.2017.58
10.1145/312129.312220
10.1016/j.ejca.2018.12.016
10.1001/jamadermatol.2018.4378
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-021-96707-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_cf0870ad10214c32b722e2edc72aa7af
10.1038/s41598-021-96707-8
PMC8410796
34471174
10_1038_s41598_021_96707_8
Genre Journal Article
Comparative Study
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c540t-da0e3871b3db67ce65d7878430194e7ef9c873f7472da2f5f6993c31e85df4d03
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Tue Oct 14 18:50:15 EDT 2025
Sun Oct 26 04:12:20 EDT 2025
Tue Sep 30 16:49:49 EDT 2025
Fri Sep 05 13:32:30 EDT 2025
Tue Oct 07 07:48:29 EDT 2025
Thu Jan 02 22:25:20 EST 2025
Thu Apr 24 23:02:00 EDT 2025
Wed Oct 01 04:28:19 EDT 2025
Fri Feb 21 02:38:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-da0e3871b3db67ce65d7878430194e7ef9c873f7472da2f5f6993c31e85df4d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://doi.org/10.1038%2Fs41598-021-96707-8
PMID 34471174
PQID 2568102692
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_cf0870ad10214c32b722e2edc72aa7af
unpaywall_primary_10_1038_s41598_021_96707_8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8410796
proquest_miscellaneous_2568597342
proquest_journals_2568102692
pubmed_primary_34471174
crossref_citationtrail_10_1038_s41598_021_96707_8
crossref_primary_10_1038_s41598_021_96707_8
springer_journals_10_1038_s41598_021_96707_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. Rethinking the inception architecture for computer vision. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2818–2826 (2016).
SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: A simple way to prevent neural networks from overfittingJ. Mach. Learn. Res.20141511929195832315921318.68153
Ioffe, S., & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).
Domingos, P. Metacost: A general method for making classifiers cost-sensitive. in Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 155–164 (1999).
Young, A. T. et al. Stress testing reveals gaps in clinic readiness of image-based diagnostic artificial intelligence models. npj Digit. Med.4, 10 (2021).
BrinkerTJHeklerAHauschildABerkingCSchillingBEnkAHHaferkampSKaroglanAvon KalleCWeichenthalMComparing artificial intelligence algorithms to 157 German dermatologists: The melanoma classification benchmarkEur. J. Cancer2019111303710.1016/j.ejca.2018.12.016
Thai-Nghe, N., Gantner, Z., & Schmidt-Thieme, L. Cost-sensitive learning methods for imbalanced data. in The International Joint Conference on Neural Networks (IJCNN). 1–8 (IEEE, 2010).
TschandlPRosendahlCKittlerHThe ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesionsSci. Data2018518016110.1038/sdata.2018.161
LeCunYBengioYHintonGDeep learningNature201552175534364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
Song, S., Chaudhuri, K., & Sarwate, A.D. Stochastic gradient descent with differentially private updates. in 2013 IEEE Global Conference on Signal and Information Processing. 245–248 (IEEE, 2013).
Smith, L.N. Cyclical learning rates for training neural networks. in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). 464–472 (IEEE, 2017).
Pham, T.-C., Luong, C.-M., Visani, M., & Hoang, V.-D. Deep cnn and data augmentation for skin lesion classification. in Asian Conference on Intelligent Information and Database Systems. 573–582 (Springer, 2018).
GessertNSentkerTMadestaFSchmitzRKniepHBaltruschatIWernerRSchlaeferASkin lesion classification using cnns with patch-based attention and diagnosis-guided loss weightingIEEE Trans. Biomed. Eng.201967249550310.1109/TBME.2019.2915839
Krawczyk, B., & Woźniak, M. Cost-sensitive neural network with roc-based moving threshold for imbalanced classification. in International Conference on Intelligent Data Engineering and Automated Learning. 45–52 (Springer, 2015).
Combalia, M., Codella, N.C., Rotemberg, V., Helba, B., Vilaplana, V., Reiter, O., Carrera, C., Barreiro, A., Halpern, A.C., Puig, S. et al. Bcn20000: Dermoscopic lesions in the wild. arXiv preprint arXiv:1908.02288 (2019).
TschandlPRosendahlCAkayBNArgenzianoGBlumABraunRPCaboHGourhantJ-YKreuschJLallasAExpert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networksJAMA Dermatol.20191551586510.1001/jamadermatol.2018.4378
EstevaAKuprelBNovoaRAKoJSwetterSMBlauHMThrunSDermatologist-level classification of skin cancer with deep neural networksNature201754276391151182017Natur.542..115E1:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056
YapJYollandWTschandlPMultimodal skin lesion classification using deep learningExp. Dermatol.201827111261126710.1111/exd.13777
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K.Q. Densely connected convolutional networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4700–4708 (2017).
He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778 (2016).
BrinkerTJHeklerAEnkAHKlodeJHauschildABerkingCSchillingBHaferkampSSchadendorfDHolland-LetzTDeep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification taskEur. J. Cancer2019113475410.1016/j.ejca.2019.04.001
AnandRMehrotraKGMohanCKRankaSAn improved algorithm for neural network classification of imbalanced training setsIEEE Trans. Neural Netw.1993469629691:STN:280:DC%2BD1c7hsl2htQ%3D%3D10.1109/72.286891
Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., & Kennedy, P. J. Training deep neural networks on imbalanced data sets. in 2016 International Joint Conference on Neural Networks (IJCNN). 4368–4374. (IEEE, 2016).
Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., & Marchetti, M. et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019).
Maloof, M.A. Learning when data sets are imbalanced and when costs are unequal and unknown. in ICML-2003 Workshop on Learning from Imbalanced Data Sets II. Vol. 2. 2–1 (2003).
Codella, N. C. et al. International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 168–172 (IEEE, 2017).
Y LeCun (96707_CR2) 2015; 521
96707_CR12
96707_CR13
96707_CR10
96707_CR11
TJ Brinker (96707_CR7) 2019; 111
A Esteva (96707_CR3) 2017; 542
N Gessert (96707_CR9) 2019; 67
R Anand (96707_CR8) 1993; 4
96707_CR16
96707_CR17
96707_CR14
96707_CR15
TJ Brinker (96707_CR26) 2019; 113
J Yap (96707_CR5) 2018; 27
96707_CR19
N Srivastava (96707_CR18) 2014; 15
96707_CR23
96707_CR24
96707_CR21
P Tschandl (96707_CR6) 2019; 155
96707_CR22
96707_CR4
96707_CR1
P Tschandl (96707_CR20) 2018; 5
96707_CR25
References_xml – reference: Smith, L.N. Cyclical learning rates for training neural networks. in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). 464–472 (IEEE, 2017).
– reference: Thai-Nghe, N., Gantner, Z., & Schmidt-Thieme, L. Cost-sensitive learning methods for imbalanced data. in The International Joint Conference on Neural Networks (IJCNN). 1–8 (IEEE, 2010).
– reference: Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., & Kennedy, P. J. Training deep neural networks on imbalanced data sets. in 2016 International Joint Conference on Neural Networks (IJCNN). 4368–4374. (IEEE, 2016).
– reference: Ioffe, S., & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. Rethinking the inception architecture for computer vision. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2818–2826 (2016).
– reference: He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778 (2016).
– reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: A simple way to prevent neural networks from overfittingJ. Mach. Learn. Res.20141511929195832315921318.68153
– reference: LeCunYBengioYHintonGDeep learningNature201552175534364442015Natur.521..436L1:CAS:528:DC%2BC2MXht1WlurzP10.1038/nature14539
– reference: Song, S., Chaudhuri, K., & Sarwate, A.D. Stochastic gradient descent with differentially private updates. in 2013 IEEE Global Conference on Signal and Information Processing. 245–248 (IEEE, 2013).
– reference: EstevaAKuprelBNovoaRAKoJSwetterSMBlauHMThrunSDermatologist-level classification of skin cancer with deep neural networksNature201754276391151182017Natur.542..115E1:CAS:528:DC%2BC2sXhsFGltrY%3D10.1038/nature21056
– reference: TschandlPRosendahlCAkayBNArgenzianoGBlumABraunRPCaboHGourhantJ-YKreuschJLallasAExpert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networksJAMA Dermatol.20191551586510.1001/jamadermatol.2018.4378
– reference: AnandRMehrotraKGMohanCKRankaSAn improved algorithm for neural network classification of imbalanced training setsIEEE Trans. Neural Netw.1993469629691:STN:280:DC%2BD1c7hsl2htQ%3D%3D10.1109/72.286891
– reference: BrinkerTJHeklerAHauschildABerkingCSchillingBEnkAHHaferkampSKaroglanAvon KalleCWeichenthalMComparing artificial intelligence algorithms to 157 German dermatologists: The melanoma classification benchmarkEur. J. Cancer2019111303710.1016/j.ejca.2018.12.016
– reference: BrinkerTJHeklerAEnkAHKlodeJHauschildABerkingCSchillingBHaferkampSSchadendorfDHolland-LetzTDeep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification taskEur. J. Cancer2019113475410.1016/j.ejca.2019.04.001
– reference: Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., & Marchetti, M. et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019).
– reference: Domingos, P. Metacost: A general method for making classifiers cost-sensitive. in Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 155–164 (1999).
– reference: Pham, T.-C., Luong, C.-M., Visani, M., & Hoang, V.-D. Deep cnn and data augmentation for skin lesion classification. in Asian Conference on Intelligent Information and Database Systems. 573–582 (Springer, 2018).
– reference: GessertNSentkerTMadestaFSchmitzRKniepHBaltruschatIWernerRSchlaeferASkin lesion classification using cnns with patch-based attention and diagnosis-guided loss weightingIEEE Trans. Biomed. Eng.201967249550310.1109/TBME.2019.2915839
– reference: Maloof, M.A. Learning when data sets are imbalanced and when costs are unequal and unknown. in ICML-2003 Workshop on Learning from Imbalanced Data Sets II. Vol. 2. 2–1 (2003).
– reference: Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K.Q. Densely connected convolutional networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4700–4708 (2017).
– reference: YapJYollandWTschandlPMultimodal skin lesion classification using deep learningExp. Dermatol.201827111261126710.1111/exd.13777
– reference: TschandlPRosendahlCKittlerHThe ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesionsSci. Data2018518016110.1038/sdata.2018.161
– reference: Young, A. T. et al. Stress testing reveals gaps in clinic readiness of image-based diagnostic artificial intelligence models. npj Digit. Med.4, 10 (2021).
– reference: Krawczyk, B., & Woźniak, M. Cost-sensitive neural network with roc-based moving threshold for imbalanced classification. in International Conference on Intelligent Data Engineering and Automated Learning. 45–52 (Springer, 2015).
– reference: Combalia, M., Codella, N.C., Rotemberg, V., Helba, B., Vilaplana, V., Reiter, O., Carrera, C., Barreiro, A., Halpern, A.C., Puig, S. et al. Bcn20000: Dermoscopic lesions in the wild. arXiv preprint arXiv:1908.02288 (2019).
– reference: Codella, N. C. et al. International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 168–172 (IEEE, 2017).
– volume: 113
  start-page: 47
  year: 2019
  ident: 96707_CR26
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2019.04.001
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 96707_CR2
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 96707_CR10
  doi: 10.1109/IJCNN.2010.5596486
– volume: 67
  start-page: 495
  issue: 2
  year: 2019
  ident: 96707_CR9
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2915839
– ident: 96707_CR4
  doi: 10.1007/978-3-319-75420-8_54
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 96707_CR18
  publication-title: J. Mach. Learn. Res.
– ident: 96707_CR14
  doi: 10.1109/CVPR.2016.308
– ident: 96707_CR25
  doi: 10.1038/s41746-020-00380-6
– ident: 96707_CR19
– ident: 96707_CR22
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 96707_CR3
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: 96707_CR16
  doi: 10.1109/CVPR.2017.243
– volume: 5
  start-page: 180161
  year: 2018
  ident: 96707_CR20
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.161
– ident: 96707_CR13
– volume: 27
  start-page: 1261
  issue: 11
  year: 2018
  ident: 96707_CR5
  publication-title: Exp. Dermatol.
  doi: 10.1111/exd.13777
– ident: 96707_CR15
  doi: 10.1109/CVPR.2016.90
– ident: 96707_CR17
  doi: 10.1109/IJCNN.2016.7727770
– volume: 4
  start-page: 962
  issue: 6
  year: 1993
  ident: 96707_CR8
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.286891
– ident: 96707_CR12
  doi: 10.1007/978-3-319-24834-9_6
– ident: 96707_CR23
  doi: 10.1109/GlobalSIP.2013.6736861
– ident: 96707_CR24
  doi: 10.1109/WACV.2017.58
– ident: 96707_CR11
  doi: 10.1145/312129.312220
– volume: 111
  start-page: 30
  year: 2019
  ident: 96707_CR7
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2018.12.016
– ident: 96707_CR21
– ident: 96707_CR1
– volume: 155
  start-page: 58
  issue: 1
  year: 2019
  ident: 96707_CR6
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2018.4378
SSID ssj0000529419
Score 2.581717
Snippet Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for a...
Abstract Melanoma, one of the most dangerous types of skin cancer, results in a very high mortality rate. Early detection and resection are two key points for...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17485
SubjectTerms 639/705/117
692/4028/67/2322
Algorithms
Artificial Intelligence
Datasets
Deep Learning
Dermatologists - statistics & numerical data
Dermatology
Dermoscopy - methods
Diagnosis
Humanities and Social Sciences
Humans
Melanoma
Melanoma - diagnosis
multidisciplinary
Neural networks
Neural Networks, Computer
Nevus
ROC Curve
Science
Science (multidisciplinary)
Skin cancer
Skin Neoplasms - diagnosis
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQSgg4IL4JLMhI3Gi0ie3Y8XFZsVo49MRKe4sc22EjtUlFWqHyY_itzNhpaAVaOHCrErtyPW_GM_XMG0Le1oXSTBUKmR8tluRYVCmZ1pzpwjZaKhOyLeby4lJ8uiqu9lp9YU5YpAeOG3dimwwgZVxoQW05qxVjnnlnFTNGmQatb1bqvWAqsnozLXI9VslkvDwZ4KTCajLMSJAqA9N8cBIFwv4_eZm_J0tON6b3yJ1NtzLbb2ax2DuUzh-Q-6M3SU_jr3hIbvnuEbkd-0tuH5Mfpx9pv1mvYnGAd9QDcLfUoTUOfWtBxrTtwoMe61NaS5d-Ybp-aaiLSXjtMKOYHP-Fmo72YGCW7Xf4Juf9Kj2bz-n-TQTFf3Wp3YBDuaRIWpLWYOmvabCvMN_Bp2GgeJYiHp6Qy_MPn88u0rEhQ2rBsVunzmSeQ4RVc1dLZb0sHOh7KcBIaOGVb7QtFW8gQmHOsKZoJHg_lue-LFwjXMafkqOu7_xzQsEtY5rlsrDKCi9ULUCgQkmjtfWlLBOS74RT2ZGtHJtmLKpwa87LKgq0AoFWQaAVzHk3zVlFro4bR79HmU8jkWc7PAD0VSP6qr-hLyHHO8RUo_IPFQskb0xqlpA302tQW7yLMZ3vN3EMxHJcwJhnEWDTSpCEMYdIMSHqAHoHSz1807XXgRq8FBDOa5mQ2Q6kv5Z101bMJiD_w869-B8795LcZaiMIV3vmBytv278K_Dv1vXroMo_AahZS_0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVgg4IN5dKMhI3NioiePY8QGhtmpVOKwQolJvkWM77Uq7SehuVC0_ht_KjPNoV6AVtyixIyfz8Ixn5htCPuSJVEwmEpEfDZbkGBQpEeQxU4kplJDaZ1tMxdk5_3qRXOyQaV8Lg2mVvU70itpWBs_ID5hHzmJCsc_1zwC7RmF0tW-hobvWCvaThxi7R3YZImONyO7RyfTb9-HUBeNaPFJd9UwYpwdL2MGwygwzFYQMQWVv7FAeyP9f1uffSZRDJPURedCUtV7f6Pn8zmZ1-oQ87qxMetiyxVOy48pn5H7bd3L9nPw-_EKrZlW3RQPOUgcMvaYWtbTvZwu0p7PS36iwbmVm6MLNdVktNLVtct5sOaGYNH9JdUkrUDyL2S94k3WuDo6nU3o3QkHxtJeaBgzNBUUwkyCHHeCKer0L8y1cLZcU91jkkxfk_PTkx_FZ0DVqCAwYfKvA6tDF4Hnlsc2FNE4kFvRAykF5KO6kK5RJZVyA58KsZkVSCLCKTBy5NLEFt2H8kozKqnR7hIK5xhSLRGKk4Y7LnBvJuBRaKeNSkY5J1BMnMx2KOTbTmGc-mh6nWUvQDAiaeYJmMOfjMKduMTy2jj5Cmg8jEX_b36iuL7NOnDNThKDotPWN0U3McsmYY8AMkmktdTEm-z3HZJ1SWGa3LDwm74fHIM4Yo9Glq5p2DPh4MYcxr1oGG1aC4IwReJBjIjdYb2Opm0_K2ZWHDE85uPlKjMmkZ9LbZW37FZOBkf_jz73e_tFvyEOGYuYT9PbJaHXduLdg0a3yd52Y_gG8uklc
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbGEAIeEL8XGMhIvNFA4zh2_IDQmJgGEn2i0t4ix3a2SGnSNY2g_DH8rZztJKyimuCtSuzI8n13vqvvvkPodZ5wQXjCLfOjsiU5yqoUC_OYiEQVgnHpsi1m7HROv5wlZ3toaHfUb2C7M7Sz_aTmq-rtj8vNB1D4975kPH3XwiFkC8VssgHjU7C6N9BNOKmEbeXwtXf3Pdc3ETQSfe3M7qlb55Oj8d_le_6dQjneo95Ft7t6KTffZVVdOapO7qN7vY-JjzwoHqA9Uz9Et3zXyc0j9OvoM2669dKXDBiNDcB5g7W10a6bLUgel7V70NiqlVLhhalk3Swk1j41r2wn2KbMn2NZ4wbMzqL8CV_SxizD49kMX72fwPa_Xqw6cDMX2FKZhDnY_wvsrC7M1_CrbbE9YS1KHqP5yadvx6dh36YhVODurUMtpyaGuCuPdc64MizRYAVSCqZDUMNNIVTK4wLiFqIlKZKCgU-k4sikiS6onsZP0H7d1OYAYXDWiCARSxRX1FCeU8UJ5UwKoUzK0gBFg3Ay1XOY21YaVebu0uM08wLNQKCZE2gGc96Mc5aewePa0R-tzMeRln3bPWhW51mvzJkqpmDmpHZt0VVMck6IIQAGTqTksgjQ4YCYbEB0Rhz1G2GCBOjV-BqU2d7QyNo0nR8DEV5MYcxTD7BxJZaaMYL4MUB8C3pbS91-U5cXjjA8pRDkCxagyQDSP8u6bismI5D_Yeee_d_Xn6M7xKqdS9c7RPvrVWdegH-3zl86pf0NQJxKXQ
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44JtRGMhIvNF0qZ3YyWOZmAYPFQ9UjKfIsZ0tok2itdHU_TH8rZydD1aYJvZWJefKuZx_d47vfgfwPg1FTEUoLPOjsiU5yi4p7qWMxqHKYi6ky7aY8eN58OUkPNkB3tXCuKR9R2npYLrLDjtYoaOxxWA2oYALH5F1XOnsDuzyEGPwAezOZ1-nP2wnOYxRPAwTaFsh47PomsFbXsiR9V8XYf6bKNmflj6Ae3VRyc2FXCyuOKSjR_C9e5QmD-XnuF6nY3X5F8vj7Z_1MTxsY1QybSSfwI4pnsLdpmvl5hn8mn4mZb2umpIDo4nB5bAh2mK864aLlkPywl0obdVLrsjSLGRRLiXRTWpfvhoRm3J_SmRBSoStZX6J_6SNqbzD2YxcPd8g9lsxUTWGqUtiqVC8FP3HGXGojeM1_lqtiPXQ1sqew_zo07fDY69t8-ApDBfXnpa-YbhvS5lOuVCGhxpRJAoQeuLACJPFKhIsw30P1ZJmYcYxplJsYqJQZ4H22QsYFGVhXgLBYI_GdMJDJVRgApEGStBAcBnHykQ8GsKke-2JajnQbSuOReLO4lmUNLpPUPeJ032CYz70Y6qGAeRG6Y_WmnpJy97tLpTnp0n7hhOV-QiTUru26orRVFBqKJqZoFIKmQ1hv7PFpIWUVUIddRzlMR3Cu_42goE94ZGFKetGBneILECZvcZ0-5lYascJ7j-HILaMemuq23eK_MwRjkfBxBcxH8KoM_8_07pJFaN-ifyH5l7dTvw13Kd2hbh0v30YrM9r8wbjw3X6tgWD30FXYEM
  priority: 102
  providerName: Unpaywall
Title AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function
URI https://link.springer.com/article/10.1038/s41598-021-96707-8
https://www.ncbi.nlm.nih.gov/pubmed/34471174
https://www.proquest.com/docview/2568102692
https://www.proquest.com/docview/2568597342
https://pubmed.ncbi.nlm.nih.gov/PMC8410796
https://www.nature.com/articles/s41598-021-96707-8.pdf
https://doaj.org/article/cf0870ad10214c32b722e2edc72aa7af
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8LR1QsAD4nuBURmJNxrROo4dP3bVplGJaAIqlafIsR1WqU2qtRUqP4bfytlJw6qhCV6ayvZFVu7Dd74vgHd5LCQVsXCVH7VLydGOpXiYR1TGupBcKB9tkfKLCRtP4-kB9Ha5MHv-e1-6e4VHjEsDc6EEXPRRph7CUYKEmXTgaDgcfxm3dyrOa8UGssmNQfAPt4H3zh9fpv9vuuXtEMnWT_oQ7m_Kpdr-UPP5jaPo_DE8anRIMqyR_gQObPkU7tVdJbfP4NfwI6k262WdEmANsUiuW2KcDPbdahGzZFb6gcplpcw0Wdi5KquFIqYOvZutesSFxH8nqiQVipXF7Ce-yVi7DEdpSm76H4i7yyV6g2rkgrhSJWGO8v2KeKmK8Ab_rVbEnaCOCp7D5Pzs6-gibNowhBrVuXVoVN9GaFflkcm50JbHBrk8YSgaJLPCFlIjOgq0S6hRtIgLjjqPjgY2iU3BTD96AZ2yKu0xEFTGqKQDHmuhmWUiZ1pQJriSUtuEJwEMdsjJdFOj3LXKmGfeVx4lWY3QDBGaeYRmCPO-hVnWFTruXH3qcN6udNW1_QASXdYwa6aLPooxZXzbcx3RXFBqKRKDoEoJVQRwsqOYrGH5VUZ9aTfKJQ3gbTuNzOo8MKq01aZegxZcxHDNy5rA2p240osDtA8DEHukt7fV_ZlyduULgicMjXjJA-jtiPTPtu76FL2WkP_hy736v7e_hgfUsZ0PxzuBzvp6Y9-g_rbOu3AopqLbMC8-T8_Sy884OuKjrr8Twd9PLMGZSXo5_PYbvl5Ehg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjT2gLhTGGAkeKLREsex44cJbWNTy0aF0CbtLXNsZ6vUJt3Saio_hp_Cb-PYuWwVqOJlb1FiR07O53PxuSH0IY24IDzitvKjsik5ym4p5qUhEZHKBOPSRVsMWO-Efj2NTlfQ7yYXxoZVNjzRMWpdKHtGvkVc5SzCBPk8ufRs1yjrXW1aaMi6tYLediXG6sSOQzO_BhOu3O5_AXp_JORg_3iv59VdBjwF2srU09I3IZgNaahTxpVhkQYQxxSQL6jhJhMq5mEGajfRkmRRxkCkqzAwcaQzqv0Q3nsPrdGQCjD-1nb3B99_tKc81o9GA1Fn6_hhvFWCxLRZbTYygnEfRMSCRHSNA_6l7f4dtNl6bjfQ-iyfyPm1HI1uCceDR-hhrdXinQqGj9GKyZ-g-1Wfy_lT9Gunj4vZdFIlKRiNDWygOdZWKrj-uYA1PMzdjcLmyQwVHpuRzIuxxLoKBhyWXWyD9M-xzHEBjG48_Alv0sZMvL3BAN_2iGB7uozVDBTbMbbFU7wUJM4Fdnwe5mu4KktsZbrF5TN0cicke45W8yI3LxEG9ZAIErBIcUUN5SlVnFDOpBDKxCzuoKAhTqLqqum2eccocd77ME4qgiZA0MQRNIE5n9o5k6pmyNLRu5bm7Uhb79vdKK7Ok5p9JCrzgbFK7Rqxq5CknBBDAAycSMll1kGbDWKSmgmVyc2W6aD37WNgH9YnJHNTzKoxYFOGFMa8qADWrsQWgwzAYu0gvgC9haUuPsmHF65EeUwDnwvWQd0GpDfLWvYrui2Q_-PPvVr-0e_Qeu_421Fy1B8cvkYPiN1yLjhwE61Or2bmDWiT0_RtvWUxOrtrLvEHNbaGAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGELcHxJ3CACPBE42a2EkcPyA0NqqVoYoHJu0tOLazVWqTsrSayo_hh_DrOMe5bBWo4mVvUWJHTs53Lva5EfImi4RkIhJY-VFjSo5Gloq9jDMZ6VzGQrloi3F8cBR-Po6Ot8jvNhcGwypbmegEtSk1npEPmKucxWLJBnkTFvF1f_hh_sPDDlLoaW3badQQObSrc9i-Ve9H-0Drt4wNP33bO_CaDgOeBktl4RnlWw5bhoybLBbaxpEBACchoF6GVthc6kTwHExuZhTLozwGda55YJPI5KHxObz3GrkuOJcYTiiORXe-gx60MJBNno7Pk0EFuhLz2TAmIhY-KIc1XehaBvzLzv07XLPz2d4ht5bFXK3O1XR6SS0O75G7jT1Ld2sA3idbtnhAbtQdLlcPya_dES2Xi3mdnmANtcA6K2pQH7jOuYAyOincjRIzZCaazuxUFeVMUVOHAU6qPsXw_BOqClqCiJtNfsKbjLVzb288ppd9IRTPlalegkk7o1g2xctA15xSJ-FhvoGrqqKozRGRj8jRlRDsMdkuysI-JRQMQyZZEEda6NCGIgu1YKGIlZTaJnHSI0FLnFQ39dKxbcc0dX57nqQ1QVMgaOoImsKcd92ceV0tZOPoj0jzbiRW-nY3yrOTtBEcqc59EKnKuBbsmrNMMGYZgEEwpYTKe2SnRUzaiJ8qvWCWHnndPQbBgd4gVdhyWY-B3SQPYcyTGmDdSrAMZAB71R4Ra9BbW-r6k2Jy6oqTJ2HgCxn3SL8F6cWyNv2Kfgfk__hzzzZ_9CtyE2RD-mU0PnxObjPkOBcVuEO2F2dL-wLMyEX20vErJd-vWkD8AYdFg5w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44JtRGMhIvNF0qZ3YyWOZmAYPFQ9UjKfIsZ0tok2itdHU_TH8rZydD1aYJvZWJefKuZx_d47vfgfwPg1FTEUoLPOjsiU5yi4p7qWMxqHKYi6ky7aY8eN58OUkPNkB3tXCuKR9R2npYLrLDjtYoaOxxWA2oYALH5F1XOnsDuzyEGPwAezOZ1-nP2wnOYxRPAwTaFsh47PomsFbXsiR9V8XYf6bKNmflj6Ae3VRyc2FXCyuOKSjR_C9e5QmD-XnuF6nY3X5F8vj7Z_1MTxsY1QybSSfwI4pnsLdpmvl5hn8mn4mZb2umpIDo4nB5bAh2mK864aLlkPywl0obdVLrsjSLGRRLiXRTWpfvhoRm3J_SmRBSoStZX6J_6SNqbzD2YxcPd8g9lsxUTWGqUtiqVC8FP3HGXGojeM1_lqtiPXQ1sqew_zo07fDY69t8-ApDBfXnpa-YbhvS5lOuVCGhxpRJAoQeuLACJPFKhIsw30P1ZJmYcYxplJsYqJQZ4H22QsYFGVhXgLBYI_GdMJDJVRgApEGStBAcBnHykQ8GsKke-2JajnQbSuOReLO4lmUNLpPUPeJ032CYz70Y6qGAeRG6Y_WmnpJy97tLpTnp0n7hhOV-QiTUru26orRVFBqKJqZoFIKmQ1hv7PFpIWUVUIddRzlMR3Cu_42goE94ZGFKetGBneILECZvcZ0-5lYascJ7j-HILaMemuq23eK_MwRjkfBxBcxH8KoM_8_07pJFaN-ifyH5l7dTvw13Kd2hbh0v30YrM9r8wbjw3X6tgWD30FXYEM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+outperformed+every+dermatologist+in+dermoscopic+melanoma+diagnosis%2C+using+an+optimized+deep-CNN+architecture+with+custom+mini-batch+logic+and+loss+function&rft.jtitle=Scientific+reports&rft.au=Pham%2C+Tri-Cong&rft.au=Luong%2C+Chi-Mai&rft.au=Hoang%2C+Van-Dung&rft.au=Doucet%2C+Antoine&rft.date=2021-09-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-96707-8&rft.externalDocID=10_1038_s41598_021_96707_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon