Genetically-biased fertilization in APOBEC1 complementation factor (A1cf) mutant mice

Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of gametes from both females and males. A key question is whether their non-random union results from factors intrinsic to oocytes and sperm, or fr...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 13599 - 14
Main Authors Hirose, Naoki, Blanchet, Genevieve, Yamauchi, Yasuhiro, Snow, Abigail C., Friedman, Robin, Khoo, Carmen Y., Lary, Christine W., Ward, Monika A., Nadeau, Joseph H.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.08.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-17948-9

Cover

Abstract Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of gametes from both females and males. A key question is whether their non-random union results from factors intrinsic to oocytes and sperm, or from their interactions with conditions in the reproductive tracts. To address this question, we used in vitro fertilization (IVF) with a mutant and wild-type allele of the A1cf (APOBEC1 complementation factor) gene in mice that are otherwise genetically identical. We observed strong distortion in favor of mutant heterozygotes showing that bias depends on the genetics of oocyte and sperm, and that any environmental input is modest. To search for the potential mechanism of the ‘biased fertilization’, we analyzed the existing transcriptome data and demonstrated that localization of A1cf transcripts and its candidate mRNA targets is restricted to the spermatids in which they originate, and that these transcripts are enriched for functions related to meiosis, fertilization, RNA stability, translation, and mitochondria. We propose that failure to sequester mRNA targets in A1cf mutant heterozygotes leads to functional differences among spermatids, thereby providing an opportunity for selection among haploid gametes. The study adds to the understanding of the gamete interaction at fertilization. Discovery that bias is evident with IVF provides a new venue for future explorations of preference among genetically distinct gametes at fertilization for A1cf and other genes that display significant departure of Mendelian inheritance.
AbstractList Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of gametes from both females and males. A key question is whether their non-random union results from factors intrinsic to oocytes and sperm, or from their interactions with conditions in the reproductive tracts. To address this question, we used in vitro fertilization (IVF) with a mutant and wild-type allele of the A1cf (APOBEC1 complementation factor) gene in mice that are otherwise genetically identical. We observed strong distortion in favor of mutant heterozygotes showing that bias depends on the genetics of oocyte and sperm, and that any environmental input is modest. To search for the potential mechanism of the ‘biased fertilization’, we analyzed the existing transcriptome data and demonstrated that localization of A1cf transcripts and its candidate mRNA targets is restricted to the spermatids in which they originate, and that these transcripts are enriched for functions related to meiosis, fertilization, RNA stability, translation, and mitochondria. We propose that failure to sequester mRNA targets in A1cf mutant heterozygotes leads to functional differences among spermatids, thereby providing an opportunity for selection among haploid gametes. The study adds to the understanding of the gamete interaction at fertilization. Discovery that bias is evident with IVF provides a new venue for future explorations of preference among genetically distinct gametes at fertilization for A1cf and other genes that display significant departure of Mendelian inheritance.
Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of gametes from both females and males. A key question is whether their non-random union results from factors intrinsic to oocytes and sperm, or from their interactions with conditions in the reproductive tracts. To address this question, we used in vitro fertilization (IVF) with a mutant and wild-type allele of the A1cf (APOBEC1 complementation factor) gene in mice that are otherwise genetically identical. We observed strong distortion in favor of mutant heterozygotes showing that bias depends on the genetics of oocyte and sperm, and that any environmental input is modest. To search for the potential mechanism of the ‘biased fertilization’, we analyzed the existing transcriptome data and demonstrated that localization of A1cf transcripts and its candidate mRNA targets is restricted to the spermatids in which they originate, and that these transcripts are enriched for functions related to meiosis, fertilization, RNA stability, translation, and mitochondria. We propose that failure to sequester mRNA targets in A1cf mutant heterozygotes leads to functional differences among spermatids, thereby providing an opportunity for selection among haploid gametes. The study adds to the understanding of the gamete interaction at fertilization. Discovery that bias is evident with IVF provides a new venue for future explorations of preference among genetically distinct gametes at fertilization for A1cf and other genes that display significant departure of Mendelian inheritance.
Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of gametes from both females and males. A key question is whether their non-random union results from factors intrinsic to oocytes and sperm, or from their interactions with conditions in the reproductive tracts. To address this question, we used in vitro fertilization (IVF) with a mutant and wild-type allele of the A1cf (APOBEC1 complementation factor) gene in mice that are otherwise genetically identical. We observed strong distortion in favor of mutant heterozygotes showing that bias depends on the genetics of oocyte and sperm, and that any environmental input is modest. To search for the potential mechanism of the 'biased fertilization', we analyzed the existing transcriptome data and demonstrated that localization of A1cf transcripts and its candidate mRNA targets is restricted to the spermatids in which they originate, and that these transcripts are enriched for functions related to meiosis, fertilization, RNA stability, translation, and mitochondria. We propose that failure to sequester mRNA targets in A1cf mutant heterozygotes leads to functional differences among spermatids, thereby providing an opportunity for selection among haploid gametes. The study adds to the understanding of the gamete interaction at fertilization. Discovery that bias is evident with IVF provides a new venue for future explorations of preference among genetically distinct gametes at fertilization for A1cf and other genes that display significant departure of Mendelian inheritance.Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of gametes from both females and males. A key question is whether their non-random union results from factors intrinsic to oocytes and sperm, or from their interactions with conditions in the reproductive tracts. To address this question, we used in vitro fertilization (IVF) with a mutant and wild-type allele of the A1cf (APOBEC1 complementation factor) gene in mice that are otherwise genetically identical. We observed strong distortion in favor of mutant heterozygotes showing that bias depends on the genetics of oocyte and sperm, and that any environmental input is modest. To search for the potential mechanism of the 'biased fertilization', we analyzed the existing transcriptome data and demonstrated that localization of A1cf transcripts and its candidate mRNA targets is restricted to the spermatids in which they originate, and that these transcripts are enriched for functions related to meiosis, fertilization, RNA stability, translation, and mitochondria. We propose that failure to sequester mRNA targets in A1cf mutant heterozygotes leads to functional differences among spermatids, thereby providing an opportunity for selection among haploid gametes. The study adds to the understanding of the gamete interaction at fertilization. Discovery that bias is evident with IVF provides a new venue for future explorations of preference among genetically distinct gametes at fertilization for A1cf and other genes that display significant departure of Mendelian inheritance.
Abstract Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of gametes from both females and males. A key question is whether their non-random union results from factors intrinsic to oocytes and sperm, or from their interactions with conditions in the reproductive tracts. To address this question, we used in vitro fertilization (IVF) with a mutant and wild-type allele of the A1cf (APOBEC1 complementation factor) gene in mice that are otherwise genetically identical. We observed strong distortion in favor of mutant heterozygotes showing that bias depends on the genetics of oocyte and sperm, and that any environmental input is modest. To search for the potential mechanism of the ‘biased fertilization’, we analyzed the existing transcriptome data and demonstrated that localization of A1cf transcripts and its candidate mRNA targets is restricted to the spermatids in which they originate, and that these transcripts are enriched for functions related to meiosis, fertilization, RNA stability, translation, and mitochondria. We propose that failure to sequester mRNA targets in A1cf mutant heterozygotes leads to functional differences among spermatids, thereby providing an opportunity for selection among haploid gametes. The study adds to the understanding of the gamete interaction at fertilization. Discovery that bias is evident with IVF provides a new venue for future explorations of preference among genetically distinct gametes at fertilization for A1cf and other genes that display significant departure of Mendelian inheritance.
ArticleNumber 13599
Author Blanchet, Genevieve
Lary, Christine W.
Nadeau, Joseph H.
Yamauchi, Yasuhiro
Snow, Abigail C.
Hirose, Naoki
Khoo, Carmen Y.
Friedman, Robin
Ward, Monika A.
Author_xml – sequence: 1
  givenname: Naoki
  surname: Hirose
  fullname: Hirose, Naoki
  organization: Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa
– sequence: 2
  givenname: Genevieve
  surname: Blanchet
  fullname: Blanchet, Genevieve
  organization: Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa
– sequence: 3
  givenname: Yasuhiro
  surname: Yamauchi
  fullname: Yamauchi, Yasuhiro
  organization: Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa
– sequence: 4
  givenname: Abigail C.
  surname: Snow
  fullname: Snow, Abigail C.
  organization: Center for Molecular Medicine, Maine Medical Center Research Institute
– sequence: 5
  givenname: Robin
  surname: Friedman
  fullname: Friedman, Robin
  organization: Ohana Biosciences, Dragonfly Therapeutics
– sequence: 6
  givenname: Carmen Y.
  surname: Khoo
  fullname: Khoo, Carmen Y.
  organization: Center for Outcomes Research, Maine Medical Center Research Institute
– sequence: 7
  givenname: Christine W.
  surname: Lary
  fullname: Lary, Christine W.
  organization: Center for Outcomes Research, Maine Medical Center Research Institute
– sequence: 8
  givenname: Monika A.
  surname: Ward
  fullname: Ward, Monika A.
  email: mward@hawaii.edu
  organization: Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa
– sequence: 9
  givenname: Joseph H.
  surname: Nadeau
  fullname: Nadeau, Joseph H.
  email: joseph.nadeau@mainehealth.org
  organization: Center for Molecular Medicine, Maine Medical Center Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35948620$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARLUv_AAcUiUs5BPyV2L4gLatSKlUqB3q2HOdl8cqxFztBKr8et2mh7aG-2HpvZjTPb16jgxADIPSW4I8EM_kpc9IoWWNKayIUl7V6gY4o5k1NGaUHD96H6DjnHS6noYoT9QodsqYwWoqP0NUZBJicNd5f150zGfpqgDQ57_6YycVQuVCtv19-Od2QysZx72GEMC2twdgppupkTezwoRrnyYSpGp2FN-jlYHyG47t7ha6-nv7YfKsvLs_ON-uL2jYcT3XfcC5lwzBnven5ICgjTScsabkBbLjEEgZhjCCG9bQTjPBBiQFzKToqO8ZW6HzR7aPZ6X1yo0nXOhqnbwsxbbUps1gPWinS4JYoxpji0LJOCQsdMaS1LZeGF63Pi9Z-7kbobZkyGf9I9HEnuJ96G39rxdpGtLIInNwJpPhrhjzp0WUL3psAcc6aCkywYK2kBfr-CXQX5xTKV92gyuIIJqSg3j109M_K_fYKQC4Am2LOCQZt3bKaYtB5TbC-yYpesqJLVvRtVorlFaJPqPfqz5LYQsoFHLaQ_tt-hvUXesXOWQ
CitedBy_id crossref_primary_10_1007_s12291_024_01252_6
crossref_primary_10_1177_10732748241284952
Cites_doi 10.1126/science.aab1768
10.1038/45970
10.3390/molecules25194554
10.1038/newbio243210a0
10.1111/andr.12886
10.1038/337373a0
10.1111/j.1439-0531.2007.00978.x
10.1186/1471-2105-11-165
10.1038/s41576-021-00412-1
10.1534/genetics.118.301319
10.1038/scientificamerican0279-134
10.1146/annurev-genet-112618-043905
10.1530/JOE-16-0302
10.1111/j.1469-185X.1924.tb00546.x
10.1017/s0016672300031190
10.3389/fcell.2019.00360
10.1101/cshperspect.a006064
10.1098/rstb.2020.0066
10.1126/science.1214680
10.1016/bs.ctdb.2019.10.005
10.1371/journal.pgen.1007700
10.1016/j.ajhg.2017.06.004
10.1101/gad.553009
10.1098/rstb.2014.0101
10.1016/j.celrep.2019.08.100
10.1128/MCB.25.16.7260-7269.2005
10.1086/698483
10.1016/j.tig.2018.09.006
10.1146/annurev-genet-121415-121834
10.1126/science.32.833.868
10.1016/j.cmet.2015.07.007
10.1371/journal.pbio.3000953
10.1098/rspb.2020.0805
10.1534/genetics.117.300109
10.1038/nrm1893
10.1038/ncomms6070
10.1002/wsbm.82
10.1095/biolreprod.106.053223
10.1016/j.devcel.2018.06.023
10.1073/pnas.1604773113
10.1073/pnas.0804422105
10.1038/nrm3154
10.1002/bies.950130609
10.5962/bhl.title.105342
10.1095/biolreprod64.6.1730
10.1126/science.abb1723
10.1016/j.tree.2019.11.004
10.1016/j.molcel.2019.08.002
10.1530/jrf.0.0860679
10.1111/evo.13141
10.1038/nprot.2016.075
10.1007/BF02211377
10.1038/nrm2081
10.1111/j.1939-165X.2012.00418.x
10.1016/j.cell.2007.11.034
10.1126/sciadv.abc6747
10.1186/1477-7827-3-32
10.1038/342955a0
10.1152/physrev.00013.2018
10.1093/humrep/15.8.1791
10.1530/jrf.0.0660161
10.1038/nrg2723
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-17948-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_9915061933394e63b97ceb1a16c648a4
PMC9365768
35948620
10_1038_s41598_022_17948_9
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01HD072380; R56HD098217
– fundername: Hawaii Community Foundation
  grantid: 20CON-106807
  funderid: http://dx.doi.org/10.13039/100001159
– fundername: NIH HHS
  grantid: R56HD098217
– fundername: NIMHD NIH HHS
  grantid: U54 MD007601
– fundername: NICHD NIH HHS
  grantid: R01 HD072380
– fundername: NICHD NIH HHS
  grantid: R03 HD106936
– fundername: NIH HHS
  grantid: R01HD072380
– fundername: NIGMS NIH HHS
  grantid: P30 GM131944
– fundername: ;
  grantid: R01HD072380; R56HD098217
– fundername: ;
  grantid: 20CON-106807
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-d5448853043dad4f72315b7c164ae0a4808ef7aa71a3d2b7314f97f0487b28b33
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:24:36 EDT 2025
Thu Aug 21 13:55:18 EDT 2025
Thu Sep 04 23:17:59 EDT 2025
Wed Aug 13 04:18:59 EDT 2025
Thu Jan 02 22:52:03 EST 2025
Thu Apr 24 23:00:36 EDT 2025
Tue Jul 01 04:17:03 EDT 2025
Fri Feb 21 02:39:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-d5448853043dad4f72315b7c164ae0a4808ef7aa71a3d2b7314f97f0487b28b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-17948-9
PMID 35948620
PQID 2700451011
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_9915061933394e63b97ceb1a16c648a4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9365768
proquest_miscellaneous_2701073682
proquest_journals_2700451011
pubmed_primary_35948620
crossref_citationtrail_10_1038_s41598_022_17948_9
crossref_primary_10_1038_s41598_022_17948_9
springer_journals_10_1038_s41598_022_17948_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-10
PublicationDateYYYYMMDD 2022-08-10
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ZhengYDengXMartin-DeLeonPALack of sharing of Spam1 (Ph-20) among mouse spermatids and transmission ratio distortionBiol. Reprod.200164173017381:CAS:528:DC%2BD3MXjvFGgt7w%3D10.1095/biolreprod64.6.173011369602
EisenbachMGiojalasLCSperm guidance in mammals—an unpaved road to the eggNat. Rev. Mol. Cell Biol.200672762851:CAS:528:DC%2BD28Xjt12qsLY%3D10.1038/nrm189316607290
NikolaouKCThe RNA-binding protein A1CF regulates hepatic fructose and glycerol metabolism via alternative RNA splicingCell Rep.201929283300 e2881:CAS:528:DC%2BC1MXhvFCmsLbK10.1016/j.celrep.2019.08.10031597092
KeddeMRNA-binding protein Dnd1 inhibits microRNA access to target mRNACell2007131127312861:CAS:528:DC%2BD1cXmt1CnsA%3D%3D10.1016/j.cell.2007.11.03418155131
KornbluthSFissoreRVertebrate reproductionCold Spring Harb. Perspect. Biol.20157a00606410.1101/cshperspect.a006064264302154588066
Martin-DeLeonPASpam1-associated transmission ratio distortion in mice: elucidating the mechanismReprod. Biol. Endocrinol.20053321:CAS:528:DC%2BD2MXhtVChur%2FN10.1186/1477-7827-3-32160929631201170
BianchiEWrightGJSperm meets egg: the genetics of mammalian fertilizationAnnu. Rev. Genet.201650931111:CAS:528:DC%2BC28XhsFensbfL10.1146/annurev-genet-121415-12183427617973
AjdukAYamauchiYWardMASperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilizationBiol. Reprod.2006754424511:CAS:528:DC%2BD28XovVWmuro%3D10.1095/biolreprod.106.05322316775225
OttoliniCSGeneration of meiomaps of genome-wide recombination and chromosome segregation in human oocytesNat. Protoc.201611122912431:CAS:528:DC%2BC28XpsFClsbs%3D10.1038/nprot.2016.07527310263
LiSWinuthayanonWOviduct: roles in fertilization and early embryo developmentJ. Endocrinol.2017232R1R261:CAS:528:DC%2BC2sXktl2mtL0%3D10.1530/JOE-16-030227875265
CabralGMarquesASchubertVPedrosa-HarandASchlogelhoferPChiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomesNat. Commun.2014550702014NatCo...5.5070C1:CAS:528:DC%2BC2MXksVelsr4%3D10.1038/ncomms607025295686
SchjenkenJERobertsonSAThe female response to seminal fluidPhysiol. Rev.2020100107711171:CAS:528:DC%2BB38XhsV2rtLjN10.1152/physrev.00013.201831999507
CastleWELittleCCOn a modified mendelian ratio among yellow miceScience1910328688701910Sci....32..868C1:STN:280:DC%2BC3cvltlygsA%3D%3D10.1126/science.32.833.86817830668
YinYHigh-throughput single-cell sequencing with linear amplificationMol. Cell201976676690 e6101:CAS:528:DC%2BC1MXhslensr7F10.1016/j.molcel.2019.08.002314955646874760
ConineCCRandoOJSoma-to-germline RNA communicationNat. Rev. Genet.20222373881:CAS:528:DC%2BB3MXitVOgs7jL10.1038/s41576-021-00412-134545247
BianchiEWrightGJCross-species fertilization: the hamster egg receptor, Juno, binds the human sperm ligand, Izumo1Philos. Trans. R. Soc. Lond. B Biol. Sci.2015370201401011:CAS:528:DC%2BC2MXjt1ClurY%3D10.1098/rstb.2014.0101255331034275915
BlancVDavidsonNOAPOBEC-1-mediated RNA editingWiley Interdiscip. Rev. Syst. Biol. Med.201025946021:CAS:528:DC%2BC3cXhtFOnsrnL10.1002/wsbm.82208360503086428
QuinnPEnhanced results in mouse and human embryo culture using a modified human tubal fluid medium lacking glucose and phosphateJ. Assist. Reprod. Genet.199512971051:STN:280:DyaK2MvgtVSquw%3D%3D10.1007/BF022113777670281
QuinnPBarrosCWhittinghamDGPreservation of hamster oocytes to assay the fertilizing capacity of human spermatozoaJ. Reprod. Fertil.1982661611681:STN:280:DyaL3s%2FgvF2jtA%3D%3D10.1530/jrf.0.06601617120180
BatesonWMendelGMendel’s Principles of Heredity1902Cambridge University Press10.5962/bhl.title.105342
NadeauJHDo gametes woo? Evidence for their nonrandom union at fertilizationGenetics20172073693871:CAS:528:DC%2BC1cXitVOrt73E10.1534/genetics.117.300109289787715629312
HaldaneJA mathematical theory of natural and artifical selection. Part II. The influence of partial self-fertilisation, inbreeding, and selective fertilisation of Mendelian populations, and natural selectionBiol. Rev.1924115816310.1111/j.1469-185X.1924.tb00546.x
GertKRPauliASpecies-specific mechanisms during fertilizationCurr. Top. Dev. Biol.20201401211441:CAS:528:DC%2BB3MXhsFaks7nI10.1016/bs.ctdb.2019.10.00532591072
BlancVTargeted deletion of the murine apobec-1 complementation factor (acf) gene results in embryonic lethalityMol. Cell Biol.200525726072691:CAS:528:DC%2BD2MXhtVejs7%2FP10.1128/MCB.25.16.7260-7269.2005160557341190267
RiordanJDNadeauJHFrom peas to disease: modifier genes, network resilience, and the genetics of healthAm. J. Hum. Genet.20171011771911:CAS:528:DC%2BC2sXht1ygur7P10.1016/j.ajhg.2017.06.004287779305544383
CrowJFWhy is Mendelian segregation so exact?BioEssays1991133053121:STN:280:DyaK3MzmvFeluw%3D%3D10.1002/bies.9501306091909864
McLeayRCBaileyTLMotif Enrichment Analysis: a unified framework and an evaluation on ChIP dataBMC Bioinform.2010111651:CAS:528:DC%2BC3cXksFegsr0%3D10.1186/1471-2105-11-165
BraunREBehringerRRPeschonJJBrinsterRLPalmiterRDGenetically haploid spermatids are phenotypically diploidNature19893373733761989Natur.337..373B1:STN:280:DyaL1M%2Fpsleisg%3D%3D10.1038/337373a02911388
Handel, M. A. & Eppig, J. J. in Meiosis and Gametogetonesis (eds Pedersen, R. & Schatten, G.) (Elsevier, 1997).
ImmlerSOttoSPThe evolutionary consequences of selection at the haploid gametic stageAm. Nat.201819224124910.1086/69848330016160
CarougeDParent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization biasProc. Natl. Acad. Sci. U. S. A.2016113E542554331:CAS:528:DC%2BC28XhsVegs73M10.1073/pnas.1604773113275824695027451
BhutaniKWidespread haploid-biased gene expression enables sperm-level natural selectionScience202110.1126/science.abb172333446482
AgrenJAClarkAGSelfish genetic elementsPLoS Genet201814e10077001:CAS:528:DC%2BC1MXjslygsb4%3D10.1371/journal.pgen.1007700304399396237296
PasquarielloRThe role of resveratrol in mammalian reproductionMolecules20202545541:CAS:528:DC%2BB3cXitFWnsr3E10.3390/molecules251945547582294
GoncalvesRFStarosALKillianGJOviductal fluid proteins associated with the bovine zona pellucida and the effect on in vitro sperm-egg binding, fertilization and embryo developmentReprod. Domest. Anim.2008437207291:STN:280:DC%2BD1cjpsFSqtg%3D%3D10.1111/j.1439-0531.2007.00978.x18484958
ChatotCLZiomekCABavisterBDLewisJLTorresIAn improved culture medium supports development of random-bred 1-cell mouse embryos in vitroJ. Reprod. Fertil.1989866796881:STN:280:DyaL1Mzkt1emtA%3D%3D10.1530/jrf.0.08606792760894
FarahaniLThe semen microbiome and its impact on sperm function and male fertility: a systematic review and meta-analysisAndrology202191151441:CAS:528:DC%2BB3MXit12kt7g%3D10.1111/andr.1288632794312
HandelMASchimentiJCGenetics of mammalian meiosis: regulation, dynamics and impact on fertilityNat. Rev. Genet.2010111241361:CAS:528:DC%2BC3cXnt1Crug%3D%3D10.1038/nrg272320051984
Laboratory, T. J. (ed Lambert, R.) (The Jackson Laboratory, 2009).
CrowJFGenes that violate Mendel's rulesSci. Am.19792401341431:STN:280:DyaE1M7hsl2nsA%3D%3D10.1038/scientificamerican0279-134105406
CoyPOviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermyProc. Natl. Acad. Sci. U. S. A.200810515809158142008PNAS..10515809C10.1073/pnas.0804422105188386862572915
GoldstrohmACHallTMTMcKenneyKMPost-transcriptional regulatory functions of mammalian pumilio proteinsTrends Genet.2018349729901:CAS:528:DC%2BC1cXhvVejs7vL10.1016/j.tig.2018.09.006303165806251728
FitzpatrickJLChemical signals from eggs facilitate cryptic female choice in humansProc. Biol. Sci.20202872020080510.1098/rspb.2020.0805325176157341926
VeronNRetention of gene products in syncytial spermatids promotes non-Mendelian inheritance as revealed by the t complex responderGenes Dev.200923270527101:CAS:528:DC%2BD1MXhsFGqtL7K10.1101/gad.553009199521052788329
StephanWSelective sweepsGenetics201921151310.1534/genetics.118.301319306266386325696
UssarSInteractions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndromeCell Metab.2015225165301:CAS:528:DC%2BC2MXhtlOmtbzL10.1016/j.cmet.2015.07.007262994534570502
HerrmannBGKoschorzBWertzKMcLaughlinKJKispertAA protein kinase encoded by the t complex responder gene causes non-mendelian inheritanceNature19994021411461999Natur.402..141H1:CAS:528:DyaK1MXnsVeksr8%3D10.1038/4597010647005
SoygurBIntercellular bridges coordinate the transition from pluripotency to meiosis in mouse fetal oocytesSci. Adv.202110.1126/sciadv.abc6747338278068026130
SharmaUSmall RNAs are trafficked from the epididymis to developing mammalian spermDev. Cell201846481494 e4861:CAS:528:DC%2BC1cXhsVSmsb%2FE10.1016/j.devcel.2018.06.023300572736103849
SutterAImmlerSWithin-ejaculate sperm competitionPhilos. Trans. R. Soc. Lond. B Biol. Sci.2020375202000661:CAS:528:DC%2BB3cXit1aisrfP10.1098/rstb.2020.0066330707377661457
KotajaNSassone-CorsiPThe chromatoid body: a germ-cell-specific RNA-processing centreNat. Rev. Mol. Cell Biol.2007885901:CAS:528:DC%2BD28XhtlCjt7bI10.1038/nrm208117183363
RoweMVeerusLTrosvikPBucklingAPizzariTThe reproductive microbiome: an emerging driver of sexual selection, sexual conflict, mating systems, and reproductive isolationTrends Ecol. Evol.20203522023410.1016/j.tree.2019.11.00431952837
Bronson, F. H., Dagg, C. P. & Snell, G. D. in Biology of the Laboratory Mouse (ed Green, E. L.) (Dover Publications, 1966).
SinghNDFruit flies diversify their offspring in response to parasite infectionScience20153497477501:CAS:528:DC%2BC2MXhtlSjtrnM10.1126/science.aab176826273057
BurtATriversRGenes in conflict: the biology of selfish genetic elements2009Harvard University Press
LinderPJankowskyEFrom unwinding to clamping—the DEAD box RNA helicase familyNat. Rev. Mol. Cell Biol.2011125055161:CAS:528:DC%2BC3MXpt1aqtL4%3D10.1038/nrm315421779027
KekalainenJEvansJPFemale-induced remote regulation of sperm physiology may provide opportunities for gamete-level mate choiceEvolution2017712382481:CAS:528:DC%2BC2sXitlKnsbw%3D10.1111/evo.1314127921298
Fish
MC Summers (17948_CR62) 2000; 15
U Sharma (17948_CR24) 2018; 46
S Kornbluth (17948_CR50) 2015; 7
A Ajduk (17948_CR63) 2006; 75
E Bianchi (17948_CR22) 2020; 18
N Kotaja (17948_CR53) 2007; 8
J Kekalainen (17948_CR52) 2017; 71
M Rowe (17948_CR33) 2020; 35
N Veron (17948_CR10) 2009; 23
JF Crow (17948_CR2) 1991; 13
AC Goldstrohm (17948_CR46) 2018; 34
M Kedde (17948_CR45) 2007; 131
YQ Su (17948_CR64) 2012; 335
P Quinn (17948_CR61) 1982; 66
RP Erickson (17948_CR6) 1973; 243
RE Braun (17948_CR5) 1989; 337
B Soygur (17948_CR7) 2021
M Muller (17948_CR43) 2019; 7
CL Chatot (17948_CR60) 1989; 86
L Farahani (17948_CR32) 2021; 9
17948_CR37
W Stephan (17948_CR47) 2019; 211
CC Conine (17948_CR23) 2022; 23
P Linder (17948_CR44) 2011; 12
A Burt (17948_CR13) 2009
17948_CR38
S Immler (17948_CR4) 2018; 192
RF Goncalves (17948_CR26) 2008; 43
JH Nadeau (17948_CR18) 2017; 207
Y Zheng (17948_CR11) 2001; 64
ND Singh (17948_CR57) 2015; 349
CS Ottolini (17948_CR27) 2016; 11
JD Riordan (17948_CR36) 2017; 101
V Blanc (17948_CR19) 2005; 25
M Eisenbach (17948_CR51) 2006; 7
J Haldane (17948_CR54) 1924; 1
17948_CR48
JF Crow (17948_CR14) 1979; 240
KR Gert (17948_CR55) 2020; 140
G Cabral (17948_CR56) 2014; 5
K Bhutani (17948_CR12) 2021
R Pasquariello (17948_CR35) 2020; 25
V Blanc (17948_CR40) 2010; 2
L Fishman (17948_CR15) 2019; 53
BG Herrmann (17948_CR8) 1999; 402
Y Yin (17948_CR28) 2019; 76
P Quinn (17948_CR59) 1995; 12
JL Fitzpatrick (17948_CR29) 2020; 287
KC Nikolaou (17948_CR41) 2019; 29
SI Agulnik (17948_CR16) 1993; 61
JE Schjenken (17948_CR31) 2020; 100
WE Castle (17948_CR66) 1910; 32
C Kilkenny (17948_CR58) 2012; 41
S Li (17948_CR30) 2017; 232
BA McClure (17948_CR17) 1989; 342
JA Agren (17948_CR3) 2018; 14
PA Martin-DeLeon (17948_CR9) 2005; 3
A Sutter (17948_CR39) 2020; 375
E Bianchi (17948_CR20) 2015; 370
RC McLeay (17948_CR65) 2010; 11
P Coy (17948_CR25) 2008; 105
W Bateson (17948_CR1) 1902
D Carouge (17948_CR42) 2016; 113
S Ussar (17948_CR34) 2015; 22
MA Handel (17948_CR49) 2010; 11
E Bianchi (17948_CR21) 2016; 50
References_xml – reference: AgrenJAClarkAGSelfish genetic elementsPLoS Genet201814e10077001:CAS:528:DC%2BC1MXjslygsb4%3D10.1371/journal.pgen.1007700304399396237296
– reference: CrowJFGenes that violate Mendel's rulesSci. Am.19792401341431:STN:280:DyaE1M7hsl2nsA%3D%3D10.1038/scientificamerican0279-134105406
– reference: ChatotCLZiomekCABavisterBDLewisJLTorresIAn improved culture medium supports development of random-bred 1-cell mouse embryos in vitroJ. Reprod. Fertil.1989866796881:STN:280:DyaL1Mzkt1emtA%3D%3D10.1530/jrf.0.08606792760894
– reference: Handel, M. A. & Eppig, J. J. in Meiosis and Gametogetonesis (eds Pedersen, R. & Schatten, G.) (Elsevier, 1997).
– reference: PasquarielloRThe role of resveratrol in mammalian reproductionMolecules20202545541:CAS:528:DC%2BB3cXitFWnsr3E10.3390/molecules251945547582294
– reference: HandelMASchimentiJCGenetics of mammalian meiosis: regulation, dynamics and impact on fertilityNat. Rev. Genet.2010111241361:CAS:528:DC%2BC3cXnt1Crug%3D%3D10.1038/nrg272320051984
– reference: CastleWELittleCCOn a modified mendelian ratio among yellow miceScience1910328688701910Sci....32..868C1:STN:280:DC%2BC3cvltlygsA%3D%3D10.1126/science.32.833.86817830668
– reference: QuinnPBarrosCWhittinghamDGPreservation of hamster oocytes to assay the fertilizing capacity of human spermatozoaJ. Reprod. Fertil.1982661611681:STN:280:DyaL3s%2FgvF2jtA%3D%3D10.1530/jrf.0.06601617120180
– reference: Laboratory, T. J. (ed Lambert, R.) (The Jackson Laboratory, 2009).
– reference: BurtATriversRGenes in conflict: the biology of selfish genetic elements2009Harvard University Press
– reference: AjdukAYamauchiYWardMASperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilizationBiol. Reprod.2006754424511:CAS:528:DC%2BD28XovVWmuro%3D10.1095/biolreprod.106.05322316775225
– reference: BatesonWMendelGMendel’s Principles of Heredity1902Cambridge University Press10.5962/bhl.title.105342
– reference: CrowJFWhy is Mendelian segregation so exact?BioEssays1991133053121:STN:280:DyaK3MzmvFeluw%3D%3D10.1002/bies.9501306091909864
– reference: BianchiEWrightGJSperm meets egg: the genetics of mammalian fertilizationAnnu. Rev. Genet.201650931111:CAS:528:DC%2BC28XhsFensbfL10.1146/annurev-genet-121415-12183427617973
– reference: SinghNDFruit flies diversify their offspring in response to parasite infectionScience20153497477501:CAS:528:DC%2BC2MXhtlSjtrnM10.1126/science.aab176826273057
– reference: EricksonRPHaploid gene expresion versus meiotic drive: the relevance of intercellular bridges during spermatogenesisNat. New Biol.19732432102121:STN:280:DyaE3s3gvVGisw%3D%3D10.1038/newbio243210a04514960
– reference: SoygurBIntercellular bridges coordinate the transition from pluripotency to meiosis in mouse fetal oocytesSci. Adv.202110.1126/sciadv.abc6747338278068026130
– reference: CabralGMarquesASchubertVPedrosa-HarandASchlogelhoferPChiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomesNat. Commun.2014550702014NatCo...5.5070C1:CAS:528:DC%2BC2MXksVelsr4%3D10.1038/ncomms607025295686
– reference: SuYQMARF1 regulates essential oogenic processes in miceScience2012335149614992012Sci...335.1496S1:CAS:528:DC%2BC38XktFWksbg%3D10.1126/science.1214680224424843612990
– reference: MullerMFaziFCiaudoCArgonaute proteins: from structure to function in development and pathological cell fate determinationFront. Cell Dev. Biol.2019736010.3389/fcell.2019.0036032039195
– reference: McLeayRCBaileyTLMotif Enrichment Analysis: a unified framework and an evaluation on ChIP dataBMC Bioinform.2010111651:CAS:528:DC%2BC3cXksFegsr0%3D10.1186/1471-2105-11-165
– reference: CarougeDParent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization biasProc. Natl. Acad. Sci. U. S. A.2016113E542554331:CAS:528:DC%2BC28XhsVegs73M10.1073/pnas.1604773113275824695027451
– reference: HaldaneJA mathematical theory of natural and artifical selection. Part II. The influence of partial self-fertilisation, inbreeding, and selective fertilisation of Mendelian populations, and natural selectionBiol. Rev.1924115816310.1111/j.1469-185X.1924.tb00546.x
– reference: VeronNRetention of gene products in syncytial spermatids promotes non-Mendelian inheritance as revealed by the t complex responderGenes Dev.200923270527101:CAS:528:DC%2BD1MXhsFGqtL7K10.1101/gad.553009199521052788329
– reference: KilkennyCBrowneWJCuthiIEmersonMAltmanDGImproving bioscience research reporting: the ARRIVE guidelines for reporting animal researchVet. Clin. Pathol.201241273110.1111/j.1939-165X.2012.00418.x22390425
– reference: LinderPJankowskyEFrom unwinding to clamping—the DEAD box RNA helicase familyNat. Rev. Mol. Cell Biol.2011125055161:CAS:528:DC%2BC3MXpt1aqtL4%3D10.1038/nrm315421779027
– reference: CoyPOviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermyProc. Natl. Acad. Sci. U. S. A.200810515809158142008PNAS..10515809C10.1073/pnas.0804422105188386862572915
– reference: RiordanJDNadeauJHFrom peas to disease: modifier genes, network resilience, and the genetics of healthAm. J. Hum. Genet.20171011771911:CAS:528:DC%2BC2sXht1ygur7P10.1016/j.ajhg.2017.06.004287779305544383
– reference: SharmaUSmall RNAs are trafficked from the epididymis to developing mammalian spermDev. Cell201846481494 e4861:CAS:528:DC%2BC1cXhsVSmsb%2FE10.1016/j.devcel.2018.06.023300572736103849
– reference: BraunREBehringerRRPeschonJJBrinsterRLPalmiterRDGenetically haploid spermatids are phenotypically diploidNature19893373733761989Natur.337..373B1:STN:280:DyaL1M%2Fpsleisg%3D%3D10.1038/337373a02911388
– reference: StephanWSelective sweepsGenetics201921151310.1534/genetics.118.301319306266386325696
– reference: ImmlerSOttoSPThe evolutionary consequences of selection at the haploid gametic stageAm. Nat.201819224124910.1086/69848330016160
– reference: McClureBAStyle self-incompatibility gene products of Nicotiana alata are ribonucleasesNature19893429559571989Natur.342..955M1:CAS:528:DyaK3cXntFCluw%3D%3D10.1038/342955a02594090
– reference: KekalainenJEvansJPFemale-induced remote regulation of sperm physiology may provide opportunities for gamete-level mate choiceEvolution2017712382481:CAS:528:DC%2BC2sXitlKnsbw%3D10.1111/evo.1314127921298
– reference: Martin-DeLeonPASpam1-associated transmission ratio distortion in mice: elucidating the mechanismReprod. Biol. Endocrinol.20053321:CAS:528:DC%2BD2MXhtVChur%2FN10.1186/1477-7827-3-32160929631201170
– reference: KotajaNSassone-CorsiPThe chromatoid body: a germ-cell-specific RNA-processing centreNat. Rev. Mol. Cell Biol.2007885901:CAS:528:DC%2BD28XhtlCjt7bI10.1038/nrm208117183363
– reference: NadeauJHDo gametes woo? Evidence for their nonrandom union at fertilizationGenetics20172073693871:CAS:528:DC%2BC1cXitVOrt73E10.1534/genetics.117.300109289787715629312
– reference: SummersMCMcGinnisLKLawittsJARaffinMBiggersJDIVF of mouse ova in a simplex optimized medium supplemented with amino acidsHum. Reprod.200015179118011:CAS:528:DC%2BD3cXmtFOnsrc%3D10.1093/humrep/15.8.179110920105
– reference: Bronson, F. H., Dagg, C. P. & Snell, G. D. in Biology of the Laboratory Mouse (ed Green, E. L.) (Dover Publications, 1966).
– reference: BianchiEWrightGJFind and fuse: unsolved mysteries in sperm-egg recognitionPLoS Biol.202018e30009531:CAS:528:DC%2BB3cXisVGgsrzF10.1371/journal.pbio.3000953331863587688107
– reference: HerrmannBGKoschorzBWertzKMcLaughlinKJKispertAA protein kinase encoded by the t complex responder gene causes non-mendelian inheritanceNature19994021411461999Natur.402..141H1:CAS:528:DyaK1MXnsVeksr8%3D10.1038/4597010647005
– reference: YinYHigh-throughput single-cell sequencing with linear amplificationMol. Cell201976676690 e6101:CAS:528:DC%2BC1MXhslensr7F10.1016/j.molcel.2019.08.002314955646874760
– reference: KornbluthSFissoreRVertebrate reproductionCold Spring Harb. Perspect. Biol.20157a00606410.1101/cshperspect.a006064264302154588066
– reference: AgulnikSISabantsevIDRuvinskyAOEffect of sperm genotype on chromatid segregation in female mice heterozygous for aberrant chromosome 1Genet. Res.199361971001:STN:280:DyaK3szgslKntQ%3D%3D10.1017/s00166723000311908319903
– reference: SchjenkenJERobertsonSAThe female response to seminal fluidPhysiol. Rev.2020100107711171:CAS:528:DC%2BB38XhsV2rtLjN10.1152/physrev.00013.201831999507
– reference: FarahaniLThe semen microbiome and its impact on sperm function and male fertility: a systematic review and meta-analysisAndrology202191151441:CAS:528:DC%2BB3MXit12kt7g%3D10.1111/andr.1288632794312
– reference: GoldstrohmACHallTMTMcKenneyKMPost-transcriptional regulatory functions of mammalian pumilio proteinsTrends Genet.2018349729901:CAS:528:DC%2BC1cXhvVejs7vL10.1016/j.tig.2018.09.006303165806251728
– reference: GertKRPauliASpecies-specific mechanisms during fertilizationCurr. Top. Dev. Biol.20201401211441:CAS:528:DC%2BB3MXhsFaks7nI10.1016/bs.ctdb.2019.10.00532591072
– reference: GoncalvesRFStarosALKillianGJOviductal fluid proteins associated with the bovine zona pellucida and the effect on in vitro sperm-egg binding, fertilization and embryo developmentReprod. Domest. Anim.2008437207291:STN:280:DC%2BD1cjpsFSqtg%3D%3D10.1111/j.1439-0531.2007.00978.x18484958
– reference: QuinnPEnhanced results in mouse and human embryo culture using a modified human tubal fluid medium lacking glucose and phosphateJ. Assist. Reprod. Genet.199512971051:STN:280:DyaK2MvgtVSquw%3D%3D10.1007/BF022113777670281
– reference: FishmanLMcIntoshMStandard deviations: the biological bases of transmission ratio distortionAnnu. Rev. Genet.2019533473721:CAS:528:DC%2BC1MXhslCgu7nM10.1146/annurev-genet-112618-04390531505133
– reference: BianchiEWrightGJCross-species fertilization: the hamster egg receptor, Juno, binds the human sperm ligand, Izumo1Philos. Trans. R. Soc. Lond. B Biol. Sci.2015370201401011:CAS:528:DC%2BC2MXjt1ClurY%3D10.1098/rstb.2014.0101255331034275915
– reference: BhutaniKWidespread haploid-biased gene expression enables sperm-level natural selectionScience202110.1126/science.abb172333446482
– reference: FitzpatrickJLChemical signals from eggs facilitate cryptic female choice in humansProc. Biol. Sci.20202872020080510.1098/rspb.2020.0805325176157341926
– reference: LiSWinuthayanonWOviduct: roles in fertilization and early embryo developmentJ. Endocrinol.2017232R1R261:CAS:528:DC%2BC2sXktl2mtL0%3D10.1530/JOE-16-030227875265
– reference: OttoliniCSGeneration of meiomaps of genome-wide recombination and chromosome segregation in human oocytesNat. Protoc.201611122912431:CAS:528:DC%2BC28XpsFClsbs%3D10.1038/nprot.2016.07527310263
– reference: SutterAImmlerSWithin-ejaculate sperm competitionPhilos. Trans. R. Soc. Lond. B Biol. Sci.2020375202000661:CAS:528:DC%2BB3cXit1aisrfP10.1098/rstb.2020.0066330707377661457
– reference: KeddeMRNA-binding protein Dnd1 inhibits microRNA access to target mRNACell2007131127312861:CAS:528:DC%2BD1cXmt1CnsA%3D%3D10.1016/j.cell.2007.11.03418155131
– reference: UssarSInteractions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndromeCell Metab.2015225165301:CAS:528:DC%2BC2MXhtlOmtbzL10.1016/j.cmet.2015.07.007262994534570502
– reference: BlancVDavidsonNOAPOBEC-1-mediated RNA editingWiley Interdiscip. Rev. Syst. Biol. Med.201025946021:CAS:528:DC%2BC3cXhtFOnsrnL10.1002/wsbm.82208360503086428
– reference: EisenbachMGiojalasLCSperm guidance in mammals—an unpaved road to the eggNat. Rev. Mol. Cell Biol.200672762851:CAS:528:DC%2BD28Xjt12qsLY%3D10.1038/nrm189316607290
– reference: ZhengYDengXMartin-DeLeonPALack of sharing of Spam1 (Ph-20) among mouse spermatids and transmission ratio distortionBiol. Reprod.200164173017381:CAS:528:DC%2BD3MXjvFGgt7w%3D10.1095/biolreprod64.6.173011369602
– reference: BlancVTargeted deletion of the murine apobec-1 complementation factor (acf) gene results in embryonic lethalityMol. Cell Biol.200525726072691:CAS:528:DC%2BD2MXhtVejs7%2FP10.1128/MCB.25.16.7260-7269.2005160557341190267
– reference: NikolaouKCThe RNA-binding protein A1CF regulates hepatic fructose and glycerol metabolism via alternative RNA splicingCell Rep.201929283300 e2881:CAS:528:DC%2BC1MXhvFCmsLbK10.1016/j.celrep.2019.08.10031597092
– reference: RoweMVeerusLTrosvikPBucklingAPizzariTThe reproductive microbiome: an emerging driver of sexual selection, sexual conflict, mating systems, and reproductive isolationTrends Ecol. Evol.20203522023410.1016/j.tree.2019.11.00431952837
– reference: ConineCCRandoOJSoma-to-germline RNA communicationNat. Rev. Genet.20222373881:CAS:528:DC%2BB3MXitVOgs7jL10.1038/s41576-021-00412-134545247
– volume: 349
  start-page: 747
  year: 2015
  ident: 17948_CR57
  publication-title: Science
  doi: 10.1126/science.aab1768
– volume: 402
  start-page: 141
  year: 1999
  ident: 17948_CR8
  publication-title: Nature
  doi: 10.1038/45970
– volume-title: Genes in conflict: the biology of selfish genetic elements
  year: 2009
  ident: 17948_CR13
– volume: 25
  start-page: 4554
  year: 2020
  ident: 17948_CR35
  publication-title: Molecules
  doi: 10.3390/molecules25194554
– volume: 243
  start-page: 210
  year: 1973
  ident: 17948_CR6
  publication-title: Nat. New Biol.
  doi: 10.1038/newbio243210a0
– volume: 9
  start-page: 115
  year: 2021
  ident: 17948_CR32
  publication-title: Andrology
  doi: 10.1111/andr.12886
– volume: 337
  start-page: 373
  year: 1989
  ident: 17948_CR5
  publication-title: Nature
  doi: 10.1038/337373a0
– volume: 43
  start-page: 720
  year: 2008
  ident: 17948_CR26
  publication-title: Reprod. Domest. Anim.
  doi: 10.1111/j.1439-0531.2007.00978.x
– volume: 11
  start-page: 165
  year: 2010
  ident: 17948_CR65
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-165
– volume: 23
  start-page: 73
  year: 2022
  ident: 17948_CR23
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-021-00412-1
– volume: 211
  start-page: 5
  year: 2019
  ident: 17948_CR47
  publication-title: Genetics
  doi: 10.1534/genetics.118.301319
– volume: 240
  start-page: 134
  year: 1979
  ident: 17948_CR14
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0279-134
– volume: 53
  start-page: 347
  year: 2019
  ident: 17948_CR15
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-112618-043905
– ident: 17948_CR48
– volume: 232
  start-page: R1
  year: 2017
  ident: 17948_CR30
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-16-0302
– volume: 1
  start-page: 158
  year: 1924
  ident: 17948_CR54
  publication-title: Biol. Rev.
  doi: 10.1111/j.1469-185X.1924.tb00546.x
– volume: 61
  start-page: 97
  year: 1993
  ident: 17948_CR16
  publication-title: Genet. Res.
  doi: 10.1017/s0016672300031190
– volume: 7
  start-page: 360
  year: 2019
  ident: 17948_CR43
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2019.00360
– volume: 7
  start-page: a006064
  year: 2015
  ident: 17948_CR50
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a006064
– volume: 375
  start-page: 20200066
  year: 2020
  ident: 17948_CR39
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2020.0066
– volume: 335
  start-page: 1496
  year: 2012
  ident: 17948_CR64
  publication-title: Science
  doi: 10.1126/science.1214680
– volume: 140
  start-page: 121
  year: 2020
  ident: 17948_CR55
  publication-title: Curr. Top. Dev. Biol.
  doi: 10.1016/bs.ctdb.2019.10.005
– volume: 14
  start-page: e1007700
  year: 2018
  ident: 17948_CR3
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1007700
– volume: 101
  start-page: 177
  year: 2017
  ident: 17948_CR36
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.06.004
– volume: 23
  start-page: 2705
  year: 2009
  ident: 17948_CR10
  publication-title: Genes Dev.
  doi: 10.1101/gad.553009
– ident: 17948_CR38
– volume: 370
  start-page: 20140101
  year: 2015
  ident: 17948_CR20
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2014.0101
– volume: 29
  start-page: 283
  year: 2019
  ident: 17948_CR41
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.100
– volume: 25
  start-page: 7260
  year: 2005
  ident: 17948_CR19
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.25.16.7260-7269.2005
– volume: 192
  start-page: 241
  year: 2018
  ident: 17948_CR4
  publication-title: Am. Nat.
  doi: 10.1086/698483
– volume: 34
  start-page: 972
  year: 2018
  ident: 17948_CR46
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2018.09.006
– volume: 50
  start-page: 93
  year: 2016
  ident: 17948_CR21
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-121415-121834
– volume: 32
  start-page: 868
  year: 1910
  ident: 17948_CR66
  publication-title: Science
  doi: 10.1126/science.32.833.868
– volume: 22
  start-page: 516
  year: 2015
  ident: 17948_CR34
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.07.007
– volume: 18
  start-page: e3000953
  year: 2020
  ident: 17948_CR22
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000953
– volume: 287
  start-page: 20200805
  year: 2020
  ident: 17948_CR29
  publication-title: Proc. Biol. Sci.
  doi: 10.1098/rspb.2020.0805
– volume: 207
  start-page: 369
  year: 2017
  ident: 17948_CR18
  publication-title: Genetics
  doi: 10.1534/genetics.117.300109
– ident: 17948_CR37
– volume: 7
  start-page: 276
  year: 2006
  ident: 17948_CR51
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1893
– volume: 5
  start-page: 5070
  year: 2014
  ident: 17948_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6070
– volume: 2
  start-page: 594
  year: 2010
  ident: 17948_CR40
  publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med.
  doi: 10.1002/wsbm.82
– volume: 75
  start-page: 442
  year: 2006
  ident: 17948_CR63
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.106.053223
– volume: 46
  start-page: 481
  year: 2018
  ident: 17948_CR24
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2018.06.023
– volume: 113
  start-page: E5425
  year: 2016
  ident: 17948_CR42
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1604773113
– volume: 105
  start-page: 15809
  year: 2008
  ident: 17948_CR25
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0804422105
– volume: 12
  start-page: 505
  year: 2011
  ident: 17948_CR44
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3154
– volume: 13
  start-page: 305
  year: 1991
  ident: 17948_CR2
  publication-title: BioEssays
  doi: 10.1002/bies.950130609
– volume-title: Mendel’s Principles of Heredity
  year: 1902
  ident: 17948_CR1
  doi: 10.5962/bhl.title.105342
– volume: 64
  start-page: 1730
  year: 2001
  ident: 17948_CR11
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod64.6.1730
– year: 2021
  ident: 17948_CR12
  publication-title: Science
  doi: 10.1126/science.abb1723
– volume: 35
  start-page: 220
  year: 2020
  ident: 17948_CR33
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2019.11.004
– volume: 76
  start-page: 676
  year: 2019
  ident: 17948_CR28
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.08.002
– volume: 86
  start-page: 679
  year: 1989
  ident: 17948_CR60
  publication-title: J. Reprod. Fertil.
  doi: 10.1530/jrf.0.0860679
– volume: 71
  start-page: 238
  year: 2017
  ident: 17948_CR52
  publication-title: Evolution
  doi: 10.1111/evo.13141
– volume: 11
  start-page: 1229
  year: 2016
  ident: 17948_CR27
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.075
– volume: 12
  start-page: 97
  year: 1995
  ident: 17948_CR59
  publication-title: J. Assist. Reprod. Genet.
  doi: 10.1007/BF02211377
– volume: 8
  start-page: 85
  year: 2007
  ident: 17948_CR53
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2081
– volume: 41
  start-page: 27
  year: 2012
  ident: 17948_CR58
  publication-title: Vet. Clin. Pathol.
  doi: 10.1111/j.1939-165X.2012.00418.x
– volume: 131
  start-page: 1273
  year: 2007
  ident: 17948_CR45
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.034
– year: 2021
  ident: 17948_CR7
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc6747
– volume: 3
  start-page: 32
  year: 2005
  ident: 17948_CR9
  publication-title: Reprod. Biol. Endocrinol.
  doi: 10.1186/1477-7827-3-32
– volume: 342
  start-page: 955
  year: 1989
  ident: 17948_CR17
  publication-title: Nature
  doi: 10.1038/342955a0
– volume: 100
  start-page: 1077
  year: 2020
  ident: 17948_CR31
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00013.2018
– volume: 15
  start-page: 1791
  year: 2000
  ident: 17948_CR62
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/15.8.1791
– volume: 66
  start-page: 161
  year: 1982
  ident: 17948_CR61
  publication-title: J. Reprod. Fertil.
  doi: 10.1530/jrf.0.0660161
– volume: 11
  start-page: 124
  year: 2010
  ident: 17948_CR49
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2723
SSID ssj0000529419
Score 2.3797567
Snippet Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of...
Abstract Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13599
SubjectTerms 631/208
631/208/135
Animals
APOBEC-1 Deaminase - genetics
Bias
Complementation
Female
Fertilization
Gametes
Gametogenesis
Genetics
Heredity
Heterozygotes
Humanities and Social Sciences
In vitro fertilization
Localization
Male
Meiosis
Mice
Mitochondria
multidisciplinary
Mutants
Oocytes
Recombination
RNA, Messenger - genetics
Science
Science (multidisciplinary)
Semen
Sperm
Sperm-Ovum Interactions
Spermatids
Spermatozoa
Transcriptomes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEFAeaQsyEgcQRI0f8eO4rVpVHIADK_Vm2Y4tKi0poruH_nvGdnbp8igXrvFEGk1mPPPF428AXnkWnBeFDM_LVjDFWiO1bL2ixg15soMrXb4f5NlcvD_vz2-M-so9YZUeuBruEOuXHnMO4m5uRJTcGxVwf3FUBim0K0ygnelugKnK6s2MoGa6JdNxfXiFmSrfJkPslX0Qo3wrExXC_j9Vmb83S_5yYloS0ekDuD9VkGRWNX8Id-L4CO7WmZLXuzDPRNLlB_XiGmEvJqmBpNw8vZhuXJKLkcw-fTw6OaakNJTX_vGyVKfvkNczGtIb8nWVRwyTPLD-McxPTz4fn7XT7IQ2YA22bIcecRem4k7wwQ0iKazjeq8CoiMXOyd0p2NSzinq-MC84lQkoxLGs_JMe86fwM54OcZnQBjlUaGccoJmvj6dQopYSKTg-tT7vgG6tqMNE7F4nm-xsOWAm2tbbW_R9rbY3poG3m7e-VZpNW6VPsqfZyOZKbHLA3QUOzmK_ZejNHCw_rh2itMrm4_dRd6WaAMvN8sYYfnYxI3xclVkECNzqVkDT6svbDThme1Gsq4BteUlW6pur4wXXwqLt-EyY70G3q396adafzfF3v8wxT7cYzkQCrPvAewsv6_ic6ytlv5FCaMfYi0aQg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXBOUVKFWQOIAgavyInZzQtmpVcQAOrLQ3y3ZiWmnJlu7uof-eGcebaqHtNXYkZzyTmfGMvw_gvePeOhnB8JwqJNe8aFStCqdZY1tidrCxy_ebOp3Kr7Nqlg7clqmtcvNPjD_qduHpjPyACqSSFIh9ufhTEGsUVVcThcZ9eMAwEiHqBj3T4xkLVbEka9JdmVLUB0v0V3SnDDMw0kS09S1_FGH7b4o1_2-Z_KduGt3RyRN4nOLIfDJs_FO41_W78HBglrx6BlOCk47H1PMrTH7RVbV5oBbqebp3mZ_3-eTH98PjI5bHtvKhizwODRw8-YcJ8-Fj_ntNRMM50dY_h-nJ8c-j0yIxKBQeI7FV0VaYfaFDLqVobSuDxmiuctpjjmS70sq6rLugrdXMipY7LZgMjQ5o1drx2gnxAnb6Rd-9gpwz0Wmcp61khNpXBx86DCeCt1WoXJUB28jR-AQvTiwXcxPL3KI2g-wNyt5E2Zsmg0_jOxcDuMadsw9pe8aZBIwdHywuf5lkZwbD3QpDlEYI0chOCddoj-7IMuWVrK3MYG-zuSZZ69Jc61YG78ZhtDMqnti-W6zjHMyUhap5Bi8HXRhXIgjzRvEyA72lJVtL3R7pz88ilncjFGV8GXze6NP1sm4Xxeu7v-INPOKk4hG5dw92Vpfr7i3GTiu3Hw3kL-ILEug
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_qFcEX8dvVWiL4oOji5mPz8bgtLeUeVNCDvoVkd2ML5560dw_9751kP-S0LfR1M4EwO5OZycz8BuCdZ7XzIoHheZkLplhupJa5V9S4Jk52cKnK94s8WYj5aXm6A2zshUlF-wnSMl3TY3XY50s0NLEZDEOnKEKopPdgVyu8fmewW1Xz7_PpZSXmrgQ1Q4dMwfU1m7esUALrv87D_L9Q8p9saTJCx4_g4eA9kqo_72PYabsncL-fJ3n1FBYRRDo9Ti-vMORFA9WQEAunl0O3JTnvSPXt68HRISWpmLyvHU9L_eQd8r6idfhAfm3ieGESh9U_g8Xx0Y_Dk3yYm5DX6H-t86bEmAvNcCF44xoRFPpwpVc1RkauLZzQhW6Dck5RxxvmFaciGBVQl5Vn2nP-HGbdqmtfAmGUtwrplBM0YvXpUIcWnYhQuzKUvsyAjny09QAqHmdbLG1KbnNte95b5L1NvLcmg4_Tnt89pMat1Afx90yUEQ47fVhd_LSDeFh0ckt0TAzn3IhWcm9UjUbIUVlLoZ3IYG_8uXbQ0UsbU-4iXkk0g7fTMmpXTJm4rl1tEg3Gx1xqlsGLXhamk_CIdCNZkYHakpKto26vdOdnCcHbcBnjvAw-jfL091g3s-LV3chfwwMWRT7h9-7BbH2xad-gB7X2-4PK_AEn8xJh
  priority: 102
  providerName: Springer Nature
Title Genetically-biased fertilization in APOBEC1 complementation factor (A1cf) mutant mice
URI https://link.springer.com/article/10.1038/s41598-022-17948-9
https://www.ncbi.nlm.nih.gov/pubmed/35948620
https://www.proquest.com/docview/2700451011
https://www.proquest.com/docview/2701073682
https://pubmed.ncbi.nlm.nih.gov/PMC9365768
https://doaj.org/article/9915061933394e63b97ceb1a16c648a4
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uA8EX8dvoWSL4oGi87kd2kweRtvQ4-nAeaqFvy26S1YOaaq8F-987s0kq1So-FbKbskxmMr_Jzv5-AM8dL6yTgQzPqURyzZNcZSpxmuW2JGUHG7p8L9T5VE5m6ewAOrmj1oDXe0s70pOaLudvfnzfvMOAf9scGc9OrzEJ0UExLKvIvTCAD-E47BdRK18L9xuub57LoPVBJOwJggnenqPZ_zc7uSpQ-u_DoX-2U_62pxpS1dltuNVizHjQOMUdOKjqu3CjUZ3c3IMpUU2HT9jzDRbGmMbK2FN79bw9kxlf1fHg8v1wPGJxaDlvOszDUKPPE78YsMK_jL-uSYQ4Jkn7-zA9G38anSetukJSIEpbJWWKlRkm674UpS2l14j0UqcLrJ9s1bcy62eV19ZqZkXJnRZM-lx7jHjteOaEeABH9aKuHkHMmag0ztNWMmL0y3zhK4QavrCpT10aAevsaIqWepwUMOYmbIGLzDS2N2h7E2xv8ghebe_51hBv_HP2kB7PdiaRZocLi-Vn08agQSicInzJhRC5rJRwuS4wVVmmCiUzKyM46R6u6RzR0Ma8pBcXi-DZdhhjkDZWbF0t1mEOVtFCZTyCh40vbFciiA9H8X4EesdLdpa6O1JffQk837lQVA1G8Lrzp1_L-rspHv_HMp_ATU5-Hqh9T-BotVxXTxFcrVwPDvVM9-B4MJh8nODvcHxx-QGvjtSoFz5Y9EJM_QRFTSAG
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB5VqRC8IG4MBYwEEgiseg977YcKJSVVSkuoUCP1bbvro62UOqVJhPLn-G3MrO1U4ehbX7NraTM7587xAbyxPDNWumF4Ng4kVzxI4yQOrGKpyQnZwbgq32E8GMkvR9HRGvxqe2GorLLViU5R55OM3sg3KUEqiYHYp4sfAaFGUXa1hdAwDbRCvuVGjDWNHXvF4ieGcNOt3c9432853-kfbg-CBmUgyNBbmQV5hBEKGq1QitzkslTo8URWZRhHmCI0MgmTolTGKGZEzq0STJapKpHzleWJpQdRNAHrkh5QOrDe6w8Pvi9feSiPJlnadOuEItmcosWkrjaMAUkWUNusWEQHHPAvb_fvos0_MrfOIO7cg7uNJ-t3a9a7D2tF9QBu1diWi4cwooHW7qF8vMDwG41l7pdUxD1uOj_9s8rvHnzr9beZ7wrb6zp2t1SjAPnvuiwr3_vnc4I69s9Rpz2C0Y1Q9zF0qklVPAWfM1Eo3KeMZDQ3MCmzskCHpsxMVEY28oC1dNRZM-CccDbG2iXaRaJr2mukvXa016kHH5bfXNTjPa7d3aPrWe6k0dzuh8nliW4kXaPDHaGTlAohUlnEwqYqQ4NoWJzFMjHSg432cnWjL6b6irs9eL1cRkmn9I2pisnc7cFYXcQJ9-BJzQvLkwiauhPz0AO1wiUrR11dqc5O3TTxVMQUc3rwseWnq2P9nxTPrv8Xr-D24PDrvt7fHe49hzuc2N3NEd6AzuxyXrxAT25mXzbi4sPxTUvob0w1VPY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH6qikBcEDuGAkYCCQRWPIs99gGhdIlaikoPRMptmLE9UCl1SpMI5a_x63hvvFRh6a3XzFiavHnrvOUDeGl5Yaz0w_BsGkmueJSnWRpZxXJTErKD8VW-R-n-WH6cJJMN-NX1wlBZZacTvaIuZwW9kQ8oQSqJgdjAtWURx7ujD2c_IkKQokxrB6fRsMhhtfqJ4dv8_cEu3vUrzkd7X3b2oxZhICrQU1lEZYLRCRqsWIrSlNIp9HYSqwqMIUwVG5nFWeWUMYoZUXKrBJMuVw65XlmeWXoMRfV_TQkpCTZCTVT_vkMZNMnytk8nFtlgjraS-tkw-iMpQD2zZgs9ZMC__Ny_yzX_yNl6Uzi6DbdaHzYcNkx3Bzaq-i5cb1AtV_dgTKOs_RP5dIWBN5rJMnRUvj1tez7DkzocHn_e3tthoS9pbyrY_VKD_xO-HrLCvQlPlwRyHJ6iNrsP4yuh7QPYrGd19QhCzkSlcJ8yktHEwMwVrkJXxhUmcYlNAmAdHXXRjjYnhI2p9il2kemG9hpprz3tdR7A2_6bs2awx6W7t-l6-p00lNv_MDv_plsZ1-hqJ-ge5UKIXFapsLkq0BQalhapzIwMYKu7XN1qirm-4OsAXvTLKOOUuDF1NVv6PRilizTjATxseKE_iaB5OymPA1BrXLJ21PWV-uS7nyOei5SizQDedfx0caz_k-Lx5f_iOdxAudSfDo4On8BNTtzuBwhvwebifFk9RRduYZ95WQnh61UL52_nW1KS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetically-biased+fertilization+in+APOBEC1+complementation+factor+%28A1cf%29+mutant+mice&rft.jtitle=Scientific+reports&rft.au=Hirose%2C+Naoki&rft.au=Blanchet%2C+Genevieve&rft.au=Yamauchi%2C+Yasuhiro&rft.au=Snow%2C+Abigail+C&rft.date=2022-08-10&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=13599&rft_id=info:doi/10.1038%2Fs41598-022-17948-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon