Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation

Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds ap...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 221 - 11
Main Authors Hu, Meng-Yang, He, Qiao, Fan, Song-Jie, Wang, Zi-Chen, Liu, Luo-Yan, Mu, Yi-Jiang, Peng, Qian, Zhu, Shou-Fei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.01.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-017-02472-6

Cover

Abstract Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from π – π interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions. Hydrosilylation of alkenes poses substantial challenges in terms of regioselectivity. Here, the authors report iron complexes with 1,10-phenantroline ligand scaffolds which  display benzylic selectivity in the hydrosilylation of internal alkenes and Markovnikov selectivity with terminal styrenes and 1,3-dienes.
AbstractList Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from π-π interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions.Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from π-π interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions.
Hydrosilylation of alkenes poses substantial challenges in terms of regioselectivity. Here, the authors report iron complexes with 1,10-phenantroline ligand scaffolds which  display benzylic selectivity in the hydrosilylation of internal alkenes and Markovnikov selectivity with terminal styrenes and 1,3-dienes.
Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from π–π interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions.
Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from π – π interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions.
Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from π – π interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions. Hydrosilylation of alkenes poses substantial challenges in terms of regioselectivity. Here, the authors report iron complexes with 1,10-phenantroline ligand scaffolds which  display benzylic selectivity in the hydrosilylation of internal alkenes and Markovnikov selectivity with terminal styrenes and 1,3-dienes.
ArticleNumber 221
Author Peng, Qian
Hu, Meng-Yang
Fan, Song-Jie
Liu, Luo-Yan
Zhu, Shou-Fei
Mu, Yi-Jiang
Wang, Zi-Chen
He, Qiao
Author_xml – sequence: 1
  givenname: Meng-Yang
  surname: Hu
  fullname: Hu, Meng-Yang
  organization: State Key Laboratory and Institute of Elemento-Organic Chemistry
– sequence: 2
  givenname: Qiao
  surname: He
  fullname: He, Qiao
  organization: State Key Laboratory and Institute of Elemento-Organic Chemistry
– sequence: 3
  givenname: Song-Jie
  surname: Fan
  fullname: Fan, Song-Jie
  organization: State Key Laboratory and Institute of Elemento-Organic Chemistry
– sequence: 4
  givenname: Zi-Chen
  surname: Wang
  fullname: Wang, Zi-Chen
  organization: State Key Laboratory and Institute of Elemento-Organic Chemistry
– sequence: 5
  givenname: Luo-Yan
  surname: Liu
  fullname: Liu, Luo-Yan
  organization: State Key Laboratory and Institute of Elemento-Organic Chemistry
– sequence: 6
  givenname: Yi-Jiang
  surname: Mu
  fullname: Mu, Yi-Jiang
  organization: State Key Laboratory and Institute of Elemento-Organic Chemistry
– sequence: 7
  givenname: Qian
  orcidid: 0000-0002-1218-5976
  surname: Peng
  fullname: Peng, Qian
  email: qpeng@nankai.edu.cn
  organization: State Key Laboratory and Institute of Elemento-Organic Chemistry
– sequence: 8
  givenname: Shou-Fei
  orcidid: 0000-0002-6055-3139
  surname: Zhu
  fullname: Zhu, Shou-Fei
  email: sfzhu@nankai.edu.cn
  organization: State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29335560$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1rFDEUDVKxde0f8EEGfPHB0WTyOS9CKX4UFnzR55DN3JnJmk3WZLay_nqzO61sC3oh5JKcczjce56jsxADIPSS4HcEU_U-M8KErDEpp2GyqcUTdNFgRmoiG3p20p-jy5zXuBRtiWLsGTpvWko5F_gCuaUbTOhy9ctNY0XeElxvRwgmTGOK3gWosjV9H31X9TFVoxtGv68SDC5m8GAndwuVSzHU1kzG739DVxn_Awpx3HcpZuf33kwuhhfoaW98hsu7e4G-f_r47fpLvfz6-eb6allbzvBUW8IBemi4VZQz0pju0BkLLbFCUSFsy0xnOFhJVSkjbcGurLCisbyjdIFuZt0umrXeJrcxaa-jcfr4ENOgTZqc9aBZQ6USWGHOV6VnK9rLjjKKG1pMqFXR-jBrbXerDXQWwpSMfyD68Ce4UQ_xVnMplCyzX6A3dwIp_txBnvTGZQvemwBxlzVpVcsVP-xjgV4_gq7jLoUyqgNKStwqzgvq1amjv1buN1oAagbYMvycoNfWTccFFIPOa4L1IT96zo8u-dHH_GhRqM0j6r36f0l0JuUCDgOkE9v_Zv0B5TPYUw
CitedBy_id crossref_primary_10_1021_acscatal_1c05870
crossref_primary_10_1093_chemle_upae134
crossref_primary_10_1021_acs_joc_1c00409
crossref_primary_10_1039_C9CS00508K
crossref_primary_10_1021_acs_inorgchem_4c00247
crossref_primary_10_1021_acs_inorgchem_4c00521
crossref_primary_10_1016_j_tetlet_2023_154798
crossref_primary_10_1021_acscatal_8b00010
crossref_primary_10_1021_acs_orglett_0c00633
crossref_primary_10_1002_adsc_202401239
crossref_primary_10_1021_acs_orglett_9b02873
crossref_primary_10_1016_j_jcat_2023_115197
crossref_primary_10_1039_D1SC06727C
crossref_primary_10_1002_ange_202100049
crossref_primary_10_1039_D2QO01653B
crossref_primary_10_1002_ange_202215703
crossref_primary_10_1038_s41929_025_01293_x
crossref_primary_10_1021_acs_joc_8b02455
crossref_primary_10_1039_D1QO00839K
crossref_primary_10_1021_acs_orglett_1c00677
crossref_primary_10_1246_bcsj_20180197
crossref_primary_10_1002_chem_202403437
crossref_primary_10_1021_acs_joc_1c03125
crossref_primary_10_1021_acs_orglett_0c00809
crossref_primary_10_1039_D3QO01725G
crossref_primary_10_1002_chem_202003814
crossref_primary_10_1002_ange_202303853
crossref_primary_10_1002_anie_201913835
crossref_primary_10_1021_acs_orglett_3c02907
crossref_primary_10_1039_C8DT03477J
crossref_primary_10_1039_C8DT04608E
crossref_primary_10_1021_acs_orglett_0c02751
crossref_primary_10_1080_10406638_2019_1689515
crossref_primary_10_1016_j_isci_2020_100985
crossref_primary_10_1021_acs_inorgchem_0c03451
crossref_primary_10_1021_acs_orglett_9b02254
crossref_primary_10_1021_acs_chemrev_8b00372
crossref_primary_10_1016_j_xcrp_2022_100995
crossref_primary_10_1021_jacs_3c14032
crossref_primary_10_1021_acscatal_8b04481
crossref_primary_10_1002_aoc_7493
crossref_primary_10_1039_D2SC02160A
crossref_primary_10_1002_chem_201803692
crossref_primary_10_1002_cctc_202201105
crossref_primary_10_1021_acs_organomet_0c00597
crossref_primary_10_1016_j_jcat_2025_115977
crossref_primary_10_1021_jacs_8b01638
crossref_primary_10_1002_chem_202401440
crossref_primary_10_1021_acs_organomet_9b00524
crossref_primary_10_1021_acscatal_3c00353
crossref_primary_10_1002_ange_201913835
crossref_primary_10_1002_anie_202007930
crossref_primary_10_1002_asia_202100003
crossref_primary_10_1016_j_xcrp_2021_100461
crossref_primary_10_1039_D3GC03473A
crossref_primary_10_1055_a_1605_9572
crossref_primary_10_1021_jacs_9b07795
crossref_primary_10_1021_acs_orglett_3c02453
crossref_primary_10_1038_s41467_022_34901_6
crossref_primary_10_1002_cjoc_202300356
crossref_primary_10_1021_acscatal_8b04230
crossref_primary_10_1070_RCR4916
crossref_primary_10_1002_anie_202100049
crossref_primary_10_1016_j_ica_2023_121518
crossref_primary_10_1002_cjoc_201800314
crossref_primary_10_1002_cjoc_202100449
crossref_primary_10_1039_D4RA08380F
crossref_primary_10_1039_D0CS00688B
crossref_primary_10_1093_nsr_nwad324
crossref_primary_10_1021_acs_orglett_0c00072
crossref_primary_10_1021_acs_orglett_1c01455
crossref_primary_10_3390_photochem1020010
crossref_primary_10_1016_j_mcat_2021_111489
crossref_primary_10_1039_D1NJ06133J
crossref_primary_10_1002_ange_202315473
crossref_primary_10_1039_C8CC06768F
crossref_primary_10_1021_acscatal_2c03580
crossref_primary_10_1002_ange_202402044
crossref_primary_10_1021_acscatal_8b02513
crossref_primary_10_1002_anie_202208473
crossref_primary_10_1021_acs_organomet_0c00251
crossref_primary_10_1021_acs_orglett_3c02044
crossref_primary_10_1002_cjoc_202300407
crossref_primary_10_1016_j_polymer_2022_124817
crossref_primary_10_1021_jacs_1c11072
crossref_primary_10_1038_s41557_020_00589_8
crossref_primary_10_1002_jctb_7787
crossref_primary_10_1016_j_ica_2019_119397
crossref_primary_10_1002_anie_202303853
crossref_primary_10_1016_j_jorganchem_2020_121436
crossref_primary_10_1039_D4CC00288A
crossref_primary_10_1021_acs_orglett_1c00111
crossref_primary_10_1021_acs_orglett_2c01558
crossref_primary_10_1002_pol_20190276
crossref_primary_10_1016_j_tetlet_2019_151513
crossref_primary_10_3389_fchem_2024_1411140
crossref_primary_10_1021_acs_inorgchem_2c03488
crossref_primary_10_1016_j_jcat_2021_03_004
crossref_primary_10_1039_D2DT03471A
crossref_primary_10_1002_anie_202008729
crossref_primary_10_1039_C8SC02768D
crossref_primary_10_1021_acs_orglett_1c01967
crossref_primary_10_1021_acscatal_8b02624
crossref_primary_10_1002_anie_202202379
crossref_primary_10_1021_acs_inorgchem_1c02925
crossref_primary_10_1039_C9NJ04333K
crossref_primary_10_1055_a_2443_5060
crossref_primary_10_1021_acs_inorgchem_4c02881
crossref_primary_10_1021_acs_organomet_1c00613
crossref_primary_10_1002_ange_202007930
crossref_primary_10_1016_j_jelechem_2020_113945
crossref_primary_10_1021_acscatal_4c00034
crossref_primary_10_1021_acs_joc_9b00625
crossref_primary_10_1039_D2QO01266A
crossref_primary_10_1021_acsami_4c02810
crossref_primary_10_1016_j_flatc_2022_100348
crossref_primary_10_1021_jacs_9b02127
crossref_primary_10_1021_jacs_0c09083
crossref_primary_10_1016_j_cclet_2022_03_070
crossref_primary_10_1002_slct_202400105
crossref_primary_10_1021_acscatal_9b02623
crossref_primary_10_1021_acs_jmedchem_4c02836
crossref_primary_10_1039_C8DT02134A
crossref_primary_10_1021_acscatal_8b03104
crossref_primary_10_1039_D4QO01698J
crossref_primary_10_3390_molecules28176360
crossref_primary_10_1055_a_2388_9630
crossref_primary_10_6023_cjoc202305016
crossref_primary_10_1039_D1RA07238B
crossref_primary_10_1002_ange_202202379
crossref_primary_10_1002_anie_202402044
crossref_primary_10_1007_s11426_020_9939_1
crossref_primary_10_1039_C9TA03807H
crossref_primary_10_1039_D1QO00018G
crossref_primary_10_1002_anie_202315473
crossref_primary_10_1021_acs_joc_3c00127
crossref_primary_10_1039_D0SC01749C
crossref_primary_10_1070_RCR4968
crossref_primary_10_1021_acs_organomet_0c00551
crossref_primary_10_1002_adma_202304144
crossref_primary_10_1039_D2QO01930B
crossref_primary_10_1021_acs_orglett_4c00450
crossref_primary_10_1039_D3QO00041A
crossref_primary_10_1002_cjoc_201800367
crossref_primary_10_1039_D2CC04232K
crossref_primary_10_1021_acs_organomet_1c00200
crossref_primary_10_1039_C9GC01981B
crossref_primary_10_1039_C9NJ04488D
crossref_primary_10_1021_acs_inorgchem_0c03483
crossref_primary_10_3390_molecules27103114
crossref_primary_10_1016_j_jorganchem_2018_07_021
crossref_primary_10_1002_ajoc_202100361
crossref_primary_10_1002_anie_202215703
crossref_primary_10_1002_ange_202008729
crossref_primary_10_1002_ange_202208473
crossref_primary_10_1055_a_1286_5934
crossref_primary_10_1016_j_jcat_2021_01_003
crossref_primary_10_1038_s41467_023_40703_1
crossref_primary_10_1002_cplu_201900366
Cites_doi 10.1021/acscatal.6b02518
10.1039/c39950001533
10.1021/acscatal.6b01134
10.1021/ja404963f
10.1002/9783527635207
10.1021/jacs.5b11311
10.1002/anie.201605501
10.1021/ja106853y
10.1021/cs501639r
10.1002/anie.201406853
10.1139/v08-132
10.1021/ja046753t
10.1038/nchem.651
10.1021/om0494420
10.1002/ejoc.200390168
10.1002/anie.201601197
10.1002/chem.201602818
10.1021/ja048911m
10.1126/science.1083622
10.1039/C7CC01085K
10.1021/acs.accounts.5b00042
10.1002/adsc.201300827
10.1002/anie.201411884
10.1021/jacs.5b06648
10.1007/978-1-4020-8172-9
10.1021/acs.orglett.5b01135
10.1021/ic201803c
10.1126/science.1214451
10.1002/anie.201507829
10.1021/om200937d
10.1021/acscatal.6b02990
10.1021/jacs.5b08611
10.1126/science.1073338
10.1021/ja5060884
10.1021/acs.organomet.6b00474
10.1039/C5QO00064E
10.1038/nchem.2697
10.1021/acscatal.6b02281
10.1021/acs.orglett.7b00227
10.1002/9781118839621
10.1038/nchem.1669
10.1038/nchem.2417
10.1021/ja025617q
10.1021/acs.organomet.7b00087
10.1021/jacs.7b04137
10.1021/ja801466t
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-017-02472-6
DatabaseName SpringerLink Journals Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef
PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_42378608055b4234b3f7d3430235ee8b
PMC5768772
29335560
10_1038_s41467_017_02472_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-c15eefe25c835412ad5c83ace91c68366c94ada5ec738888a7c25cbc6c62c5d33
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:12:57 EDT 2025
Thu Aug 21 13:58:52 EDT 2025
Thu Sep 04 16:55:34 EDT 2025
Wed Aug 13 04:34:08 EDT 2025
Thu Apr 03 07:04:40 EDT 2025
Thu Apr 24 23:44:04 EDT 2025
Tue Jul 01 02:21:09 EDT 2025
Fri Feb 21 02:39:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-c15eefe25c835412ad5c83ace91c68366c94ada5ec738888a7c25cbc6c62c5d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6055-3139
0000-0002-1218-5976
OpenAccessLink https://www.proquest.com/docview/1987709855?pq-origsite=%requestingapplication%&accountid=15518
PMID 29335560
PQID 1987709855
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_42378608055b4234b3f7d3430235ee8b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5768772
proquest_miscellaneous_1989585293
proquest_journals_1987709855
pubmed_primary_29335560
crossref_citationtrail_10_1038_s41467_017_02472_6
crossref_primary_10_1038_s41467_017_02472_6
springer_journals_10_1038_s41467_017_02472_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-15
PublicationDateYYYYMMDD 2018-01-15
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-15
  day: 15
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References PappasITreacySChirikPJAlkene hydrosilylation using tertiary silanes with α‑diimine nickel catalysts. Redox-active ligands promote a distinct mechanistic pathway from platinum catalystsACS Catal.20166410541091:CAS:528:DC%2BC28XosFSmtLc%3D10.1021/acscatal.6b01134
WuJYStanzlBNRitterTA strategy for the synthesis of well-defined iron catalysts and application to regioselective diene hydrosilylationJ. Am. Chem. Soc.201013213214132161:CAS:528:DC%2BC3cXhtFSnsrfK10.1021/ja106853y20809631
GuoJLuZHighly chemo-, regio-, and stereoselective cobalt-catalyzed Markovnikov hydrosilylation of alkynesAngew. Chem. Int. Ed.20165510835108381:CAS:528:DC%2BC28Xht1Wmt7%2FE10.1002/anie.201605501
DuXHuangZAdvances in base-metal-catalyzed alkene hydrosilylationACS Catal.20177122712431:CAS:528:DC%2BC2sXmvVaisw%3D%3D10.1021/acscatal.6b02990
SchoffersEReinventing phenanthroline ligands‒chiral derivatives for asymmetric catalysisEur. J. Org. Chem.200320031145115210.1002/ejoc.200390168
GuoNHuMYFengYZhuSFHighly efficient and practical hydrogenation of olefins catalyzed by in situ generated iron complex catalystsOrg. Chem. Front.201526926961:CAS:528:DC%2BC2MXmsVWku7Y%3D10.1039/C5QO00064E
DochertyJHPengJDomineyAPThomasSPActivation and discovery of earth-abundant metal catalysts using sodium tert–butoxideNat. Chem.201795956001:CAS:528:DC%2BC2sXpsVKrsQ%3D%3D10.1038/nchem.269728537588
JunqueraLBPuertaMCValergaPR-allyl nickel(II) complexes with chelating N-heterocyclic carbenes: synthesis, structural characterization, and catalytic cctivityOrganometallics201231217521831:CAS:528:DC%2BC38XjtFyjtL8%3D10.1021/om200937d
BartSCLobkovskyEChirikPJPreparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilationJ. Am. Chem. Soc.200412613794138071:CAS:528:DC%2BD2cXotVOlur0%3D10.1021/ja046753t15493939
Kitayama, K., Uozumi, Y. & Hayashi, T. Palladium-catalysed asymmetric hydrosilylation of styrenes with a new chiral monodentate phosphine ligand. J. Chem. Soc. Chem. Commun. 1533‒1534 (1995).
Espinal-ViguriMWoofCRWebsterRLIron-catalyzed hydroboration: unlocking reactivity through ligand modulationChem. Eur. J.20162211605116081:CAS:528:DC%2BC28XhtFWjsLjK10.1002/chem.20160281827321704
TondreauAMIron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanesScience20123355675702012Sci...335..567T1:CAS:528:DC%2BC38XhsVequrw%3D10.1126/science.121445122301315
WangCTeoWJGeSCobalt-catalyzed regiodivergent hydrosilylation of vinylarenes and aliphatic alkenes: ligand- and silane-dependent regioselectivitiesACS Catal.201778558631:CAS:528:DC%2BC28XhvFCjtrjO10.1021/acscatal.6b02518
Stradiotto, M. & Lundgren, R. (eds) Ligand Design in Metal Chemistry (Wiley-VCH, 2016).
NodaDTaharaASunadaYNagashimaHNon-precious-metal catalytic systems involving iron or cobalt carboxylates and alkyl isocyanides for hydrosilylation of alkenes with hydrosiloxanesJ. Am. Chem. Soc.2016138248024831:CAS:528:DC%2BC28XhtVKhsLY%3D10.1021/jacs.5b1131126760915
ToyaYHayasakaKNakazawaHHydrosilylation of olefins catalyzed by iron complexes bearing ketimine-type iminobipyridine ligandsOrganometallics201736172717351:CAS:528:DC%2BC2sXmt1Kqt7g%3D10.1021/acs.organomet.7b00087
ChenYSui-SengCBoucherSZargarianDInfluence of SiMe3 substituents on structures and hydrosilylation activities of ((SiMe3)1or2-indenyl)Ni(PPh3)ClOrganometallics2005241491551:CAS:528:DC%2BD2cXhtVGhs7rP10.1021/om0494420
ChenJChengBCaoMLuZIron-catalyzed asymmetric hydrosilylation of 1,1-disubstituted alkenesAngew. Chem. Int. Ed.201554466146641:CAS:528:DC%2BC2MXkvF2msrg%3D10.1002/anie.201411884
CollinsKDGloriusFA robustness screen for the rapid assessment of chemical reactionsNat. Chem.201355976011:CAS:528:DC%2BC3sXptVansL4%3D10.1038/nchem.166923787750
Marciniec, B. (ed.) Hydrosilylation, A Comprehensive Review on Recent Advances (Spring, 2009).
JensenJFSvendsenBYla CourTVPedersenHLJohannsenMHighly enantioselective hydrosilylation of aromatic alkenesJ. Am. Chem. Soc.2002124455845591:CAS:528:DC%2BD38XisFSgt7k%3D10.1021/ja025617q11971692
ScheuermannMLJohnsonEJChirikPJAlkene isomerization-hydroboration promoted by phosphine-ligated cobalt catalystsOrg. Lett.201517271627191:CAS:528:DC%2BC2MXptVGlsrw%3D10.1021/acs.orglett.5b0113526010715
ChenCRapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalystJ. Am. Chem. Soc.201513713244132471:CAS:528:DC%2BC2MXhs1Ggt7fI10.1021/jacs.5b0861126444496
GreenhalghMDFrankDJThomasSPIron-catalysed chemo-, regio-, and stereoselective hydrosilylation of alkenes and alkynes using a bench-stable iron(II) pre-catalystAdv. Synth. Catal.20143565845901:CAS:528:DC%2BC2cXhs12isrs%3D10.1002/adsc.201300827
YoonTPJacobsenENPrivileged chiral catalystsScience2003299169116932003Sci...299.1691Y1:CAS:528:DC%2BD3sXitVSjtLg%3D10.1126/science.108362212637734
ChenXChengZLuZIron-catalyzed, Markovnikov-selective hydroboration of styrenesOrg. Lett.2017199699711:CAS:528:DC%2BC2sXivFeqt70%3D10.1021/acs.orglett.7b0022728221805
PalmerWNDiaoTPappasIChirikPJHigh-activity cobalt catalysts for alkene hydroboration with electronically responsive terpyridine and α‑diimine ligandsACS Catal.201556226261:CAS:528:DC%2BC2cXitFOgs7vK10.1021/cs501639r
DaifukuSLKneeboneJLSnyderBERNeidigMLIron(II) active species in iron-bisphosphine catalyzed Kumada and Suzuki-Miyaura cross-couplings of phenyl nucleophiles and secondary alkyl halidesJ. Am. Chem. Soc.201513711432114441:CAS:528:DC%2BC2MXhtlWiu7rF10.1021/jacs.5b06648262666984887939
JiaXHuangZConversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylationNat. Chem.201681571611:CAS:528:DC%2BC2MXitVygurzF10.1038/nchem.241726791899
FontaineFGZargarianDMe2AlCH2PMe2: a new, bifunctional cocatalyst for the Ni(II)-catalyzed oligomerization of PhSiH3J. Am. Chem. Soc.2004126878687941:CAS:528:DC%2BD2cXltFWhurs%3D10.1021/ja048911m15250732
MacNairAJMilletCRPNicholGSIronmongerAThomasSPMarkovnikov-selective, activator-free iron-catalyzed vinylarene hydroborationACS Catal.20166721772211:CAS:528:DC%2BC28XhsFGhtr%2FM10.1021/acscatal.6b02281
BedfordRBHow low does iron go? Chasing the active species in Fe-catalyzed cross-coupling reactionsAcc. Chem. Res.201548148514931:CAS:528:DC%2BC2MXntlClt78%3D10.1021/acs.accounts.5b0004225916260
PengDPhosphinite-iminopyridine iron catalysts for chemoselective alkene hydrosilylationJ. Am. Chem. Soc.201313519154191661:CAS:528:DC%2BC3sXhvFWltrbF10.1021/ja404963f24304467
AtienzaCCHBis(imino)pyridine cobalt-catalyzed dehydrogenative silylation of alkenes: scope, mechanism, and origins of selective allylsilane formationJ. Am. Chem. Soc.201413612108121181:CAS:528:DC%2BC2cXht1ansrjK10.1021/ja506088425068530
ChenYZargarianDPhenylsilane dehydrocoupling and addition to styrene catalyzed by (R-indenyl)Ni(phosphine)(methyl) complexesCan. J. Chem.2009872802871:CAS:528:DC%2BD1cXhsFagsbrM10.1139/v08-132
DuXZhangYPengDHuangZBase metal-catalyzed regiodivergent alkene hydrosilylationsAngew. Chem. Int. Ed.201655667166751:CAS:528:DC%2BC28Xms1Ois7o%3D10.1002/anie.201601197
FürstnerAPreparation, structure, and reactivity of nonstabilized organoiron compounds. Implications for iron-catalyzed cross coupling reactionsJ. Am. Chem. Soc.20081308773878710.1021/ja801466t18597432
ChengBLuPZhangHYChengXPLuZHighly enantioselective cobalt-catalyzed hydrosilylation of alkenesJ. Am. Chem. Soc.2017139943994421:CAS:528:DC%2BC2sXhtVOntrbI10.1021/jacs.7b0413728654260
LeeHMechanistic insight into high-spin iron(I)-catalyzed butadiene dimerizationOrganometallics201635292329291:CAS:528:DC%2BC28XhtlKmtLnO10.1021/acs.organomet.6b00474
ZhuSFCaiYMaoHXXieJHZhouQLEnantioselective iron-catalysed O–H bond InsertionsNat. Chem.201025465511:CAS:528:DC%2BC3cXnvVSiu7o%3D10.1038/nchem.65120571572
KuritaniMTashiroSShionoyaMHeterodinuclear metal arrangement in a flat macrocycle with two chemically-equivalent metal chelating sitesInorg. Chem.201251150815151:CAS:528:DC%2BC38XlvVSktg%3D%3D10.1021/ic201803c22233424
PengJDochertyJHDomineyAPThomasSPCobalt-catalysed Markovnikov selective hydroboration of vinylarenesChem. Commun.201753472647291:CAS:528:DC%2BC2sXmtVSisLY%3D10.1039/C7CC01085K
Zhou, Q.-L. (ed.) Privileged Chiral Ligands and Catalysts (Wiley-VCH, 2011).
ShenJJEnantioselective iron-catalyzed intramolecular cyclopropanation reactionsAngew. Chem. Int. Ed.20145313188131911:CAS:528:DC%2BC2cXhvFGit7zP10.1002/anie.201406853
MarkóIESelective and efficient platinum(0)-carbene complexes as hydrosilylation catalystsScience20022982042062002Sci...298..204M10.1126/science.107333812364803
BuslovIBecouseJMazzaSMontandon-ClercMHuXChemoselective alkene hydrosilylation catalyzed by nickel pincer complexesAngew. Chem. Int. Ed.20155414523145261:CAS:528:DC%2BC2MXhsF2ktLfP10.1002/anie.201507829
J Guo (2472_CR43) 2016; 55
SF Zhu (2472_CR17) 2010; 2
SC Bart (2472_CR8) 2004; 126
2472_CR3
2472_CR4
2472_CR1
JH Docherty (2472_CR27) 2017; 9
J Chen (2472_CR11) 2015; 54
E Schoffers (2472_CR16) 2003; 2003
TP Yoon (2472_CR2) 2003; 299
Y Toya (2472_CR15) 2017; 36
JF Jensen (2472_CR22) 2002; 124
Y Chen (2472_CR35) 2005; 24
KD Collins (2472_CR31) 2013; 5
B Cheng (2472_CR33) 2017; 139
AJ MacNair (2472_CR39) 2016; 6
D Noda (2472_CR25) 2016; 138
CCH Atienza (2472_CR24) 2014; 136
JY Wu (2472_CR9) 2010; 132
C Wang (2472_CR32) 2017; 7
I Pappas (2472_CR14) 2016; 6
SL Daifuku (2472_CR30) 2015; 137
AM Tondreau (2472_CR6) 2012; 335
JJ Shen (2472_CR18) 2014; 53
X Jia (2472_CR23) 2016; 8
MD Greenhalgh (2472_CR45) 2014; 356
M Kuritani (2472_CR20) 2012; 51
J Peng (2472_CR44) 2017; 53
I Buslov (2472_CR26) 2015; 54
C Chen (2472_CR12) 2015; 137
A Fürstner (2472_CR28) 2008; 130
2472_CR21
M Espinal-Viguri (2472_CR38) 2016; 22
RB Bedford (2472_CR29) 2015; 48
WN Palmer (2472_CR41) 2015; 5
H Lee (2472_CR46) 2016; 35
X Du (2472_CR7) 2017; 7
X Chen (2472_CR40) 2017; 19
IE Markó (2472_CR5) 2002; 298
FG Fontaine (2472_CR34) 2004; 126
LB Junquera (2472_CR37) 2012; 31
D Peng (2472_CR10) 2013; 135
X Du (2472_CR13) 2016; 55
Y Chen (2472_CR36) 2009; 87
ML Scheuermann (2472_CR42) 2015; 17
N Guo (2472_CR19) 2015; 2
References_xml – reference: Kitayama, K., Uozumi, Y. & Hayashi, T. Palladium-catalysed asymmetric hydrosilylation of styrenes with a new chiral monodentate phosphine ligand. J. Chem. Soc. Chem. Commun. 1533‒1534 (1995).
– reference: BuslovIBecouseJMazzaSMontandon-ClercMHuXChemoselective alkene hydrosilylation catalyzed by nickel pincer complexesAngew. Chem. Int. Ed.20155414523145261:CAS:528:DC%2BC2MXhsF2ktLfP10.1002/anie.201507829
– reference: LeeHMechanistic insight into high-spin iron(I)-catalyzed butadiene dimerizationOrganometallics201635292329291:CAS:528:DC%2BC28XhtlKmtLnO10.1021/acs.organomet.6b00474
– reference: BartSCLobkovskyEChirikPJPreparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilationJ. Am. Chem. Soc.200412613794138071:CAS:528:DC%2BD2cXotVOlur0%3D10.1021/ja046753t15493939
– reference: KuritaniMTashiroSShionoyaMHeterodinuclear metal arrangement in a flat macrocycle with two chemically-equivalent metal chelating sitesInorg. Chem.201251150815151:CAS:528:DC%2BC38XlvVSktg%3D%3D10.1021/ic201803c22233424
– reference: DochertyJHPengJDomineyAPThomasSPActivation and discovery of earth-abundant metal catalysts using sodium tert–butoxideNat. Chem.201795956001:CAS:528:DC%2BC2sXpsVKrsQ%3D%3D10.1038/nchem.269728537588
– reference: Stradiotto, M. & Lundgren, R. (eds) Ligand Design in Metal Chemistry (Wiley-VCH, 2016).
– reference: ChenXChengZLuZIron-catalyzed, Markovnikov-selective hydroboration of styrenesOrg. Lett.2017199699711:CAS:528:DC%2BC2sXivFeqt70%3D10.1021/acs.orglett.7b0022728221805
– reference: AtienzaCCHBis(imino)pyridine cobalt-catalyzed dehydrogenative silylation of alkenes: scope, mechanism, and origins of selective allylsilane formationJ. Am. Chem. Soc.201413612108121181:CAS:528:DC%2BC2cXht1ansrjK10.1021/ja506088425068530
– reference: ToyaYHayasakaKNakazawaHHydrosilylation of olefins catalyzed by iron complexes bearing ketimine-type iminobipyridine ligandsOrganometallics201736172717351:CAS:528:DC%2BC2sXmt1Kqt7g%3D10.1021/acs.organomet.7b00087
– reference: FontaineFGZargarianDMe2AlCH2PMe2: a new, bifunctional cocatalyst for the Ni(II)-catalyzed oligomerization of PhSiH3J. Am. Chem. Soc.2004126878687941:CAS:528:DC%2BD2cXltFWhurs%3D10.1021/ja048911m15250732
– reference: MarkóIESelective and efficient platinum(0)-carbene complexes as hydrosilylation catalystsScience20022982042062002Sci...298..204M10.1126/science.107333812364803
– reference: ShenJJEnantioselective iron-catalyzed intramolecular cyclopropanation reactionsAngew. Chem. Int. Ed.20145313188131911:CAS:528:DC%2BC2cXhvFGit7zP10.1002/anie.201406853
– reference: GuoNHuMYFengYZhuSFHighly efficient and practical hydrogenation of olefins catalyzed by in situ generated iron complex catalystsOrg. Chem. Front.201526926961:CAS:528:DC%2BC2MXmsVWku7Y%3D10.1039/C5QO00064E
– reference: YoonTPJacobsenENPrivileged chiral catalystsScience2003299169116932003Sci...299.1691Y1:CAS:528:DC%2BD3sXitVSjtLg%3D10.1126/science.108362212637734
– reference: BedfordRBHow low does iron go? Chasing the active species in Fe-catalyzed cross-coupling reactionsAcc. Chem. Res.201548148514931:CAS:528:DC%2BC2MXntlClt78%3D10.1021/acs.accounts.5b0004225916260
– reference: WuJYStanzlBNRitterTA strategy for the synthesis of well-defined iron catalysts and application to regioselective diene hydrosilylationJ. Am. Chem. Soc.201013213214132161:CAS:528:DC%2BC3cXhtFSnsrfK10.1021/ja106853y20809631
– reference: PappasITreacySChirikPJAlkene hydrosilylation using tertiary silanes with α‑diimine nickel catalysts. Redox-active ligands promote a distinct mechanistic pathway from platinum catalystsACS Catal.20166410541091:CAS:528:DC%2BC28XosFSmtLc%3D10.1021/acscatal.6b01134
– reference: GreenhalghMDFrankDJThomasSPIron-catalysed chemo-, regio-, and stereoselective hydrosilylation of alkenes and alkynes using a bench-stable iron(II) pre-catalystAdv. Synth. Catal.20143565845901:CAS:528:DC%2BC2cXhs12isrs%3D10.1002/adsc.201300827
– reference: Marciniec, B. (ed.) Hydrosilylation, A Comprehensive Review on Recent Advances (Spring, 2009).
– reference: CollinsKDGloriusFA robustness screen for the rapid assessment of chemical reactionsNat. Chem.201355976011:CAS:528:DC%2BC3sXptVansL4%3D10.1038/nchem.166923787750
– reference: ChenYSui-SengCBoucherSZargarianDInfluence of SiMe3 substituents on structures and hydrosilylation activities of ((SiMe3)1or2-indenyl)Ni(PPh3)ClOrganometallics2005241491551:CAS:528:DC%2BD2cXhtVGhs7rP10.1021/om0494420
– reference: Espinal-ViguriMWoofCRWebsterRLIron-catalyzed hydroboration: unlocking reactivity through ligand modulationChem. Eur. J.20162211605116081:CAS:528:DC%2BC28XhtFWjsLjK10.1002/chem.20160281827321704
– reference: ChengBLuPZhangHYChengXPLuZHighly enantioselective cobalt-catalyzed hydrosilylation of alkenesJ. Am. Chem. Soc.2017139943994421:CAS:528:DC%2BC2sXhtVOntrbI10.1021/jacs.7b0413728654260
– reference: JiaXHuangZConversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylationNat. Chem.201681571611:CAS:528:DC%2BC2MXitVygurzF10.1038/nchem.241726791899
– reference: GuoJLuZHighly chemo-, regio-, and stereoselective cobalt-catalyzed Markovnikov hydrosilylation of alkynesAngew. Chem. Int. Ed.20165510835108381:CAS:528:DC%2BC28Xht1Wmt7%2FE10.1002/anie.201605501
– reference: ChenJChengBCaoMLuZIron-catalyzed asymmetric hydrosilylation of 1,1-disubstituted alkenesAngew. Chem. Int. Ed.201554466146641:CAS:528:DC%2BC2MXkvF2msrg%3D10.1002/anie.201411884
– reference: SchoffersEReinventing phenanthroline ligands‒chiral derivatives for asymmetric catalysisEur. J. Org. Chem.200320031145115210.1002/ejoc.200390168
– reference: DaifukuSLKneeboneJLSnyderBERNeidigMLIron(II) active species in iron-bisphosphine catalyzed Kumada and Suzuki-Miyaura cross-couplings of phenyl nucleophiles and secondary alkyl halidesJ. Am. Chem. Soc.201513711432114441:CAS:528:DC%2BC2MXhtlWiu7rF10.1021/jacs.5b06648262666984887939
– reference: Zhou, Q.-L. (ed.) Privileged Chiral Ligands and Catalysts (Wiley-VCH, 2011).
– reference: DuXHuangZAdvances in base-metal-catalyzed alkene hydrosilylationACS Catal.20177122712431:CAS:528:DC%2BC2sXmvVaisw%3D%3D10.1021/acscatal.6b02990
– reference: JensenJFSvendsenBYla CourTVPedersenHLJohannsenMHighly enantioselective hydrosilylation of aromatic alkenesJ. Am. Chem. Soc.2002124455845591:CAS:528:DC%2BD38XisFSgt7k%3D10.1021/ja025617q11971692
– reference: JunqueraLBPuertaMCValergaPR-allyl nickel(II) complexes with chelating N-heterocyclic carbenes: synthesis, structural characterization, and catalytic cctivityOrganometallics201231217521831:CAS:528:DC%2BC38XjtFyjtL8%3D10.1021/om200937d
– reference: DuXZhangYPengDHuangZBase metal-catalyzed regiodivergent alkene hydrosilylationsAngew. Chem. Int. Ed.201655667166751:CAS:528:DC%2BC28Xms1Ois7o%3D10.1002/anie.201601197
– reference: NodaDTaharaASunadaYNagashimaHNon-precious-metal catalytic systems involving iron or cobalt carboxylates and alkyl isocyanides for hydrosilylation of alkenes with hydrosiloxanesJ. Am. Chem. Soc.2016138248024831:CAS:528:DC%2BC28XhtVKhsLY%3D10.1021/jacs.5b1131126760915
– reference: ZhuSFCaiYMaoHXXieJHZhouQLEnantioselective iron-catalysed O–H bond InsertionsNat. Chem.201025465511:CAS:528:DC%2BC3cXnvVSiu7o%3D10.1038/nchem.65120571572
– reference: ChenCRapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalystJ. Am. Chem. Soc.201513713244132471:CAS:528:DC%2BC2MXhs1Ggt7fI10.1021/jacs.5b0861126444496
– reference: PalmerWNDiaoTPappasIChirikPJHigh-activity cobalt catalysts for alkene hydroboration with electronically responsive terpyridine and α‑diimine ligandsACS Catal.201556226261:CAS:528:DC%2BC2cXitFOgs7vK10.1021/cs501639r
– reference: TondreauAMIron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanesScience20123355675702012Sci...335..567T1:CAS:528:DC%2BC38XhsVequrw%3D10.1126/science.121445122301315
– reference: WangCTeoWJGeSCobalt-catalyzed regiodivergent hydrosilylation of vinylarenes and aliphatic alkenes: ligand- and silane-dependent regioselectivitiesACS Catal.201778558631:CAS:528:DC%2BC28XhvFCjtrjO10.1021/acscatal.6b02518
– reference: ChenYZargarianDPhenylsilane dehydrocoupling and addition to styrene catalyzed by (R-indenyl)Ni(phosphine)(methyl) complexesCan. J. Chem.2009872802871:CAS:528:DC%2BD1cXhsFagsbrM10.1139/v08-132
– reference: ScheuermannMLJohnsonEJChirikPJAlkene isomerization-hydroboration promoted by phosphine-ligated cobalt catalystsOrg. Lett.201517271627191:CAS:528:DC%2BC2MXptVGlsrw%3D10.1021/acs.orglett.5b0113526010715
– reference: PengDPhosphinite-iminopyridine iron catalysts for chemoselective alkene hydrosilylationJ. Am. Chem. Soc.201313519154191661:CAS:528:DC%2BC3sXhvFWltrbF10.1021/ja404963f24304467
– reference: PengJDochertyJHDomineyAPThomasSPCobalt-catalysed Markovnikov selective hydroboration of vinylarenesChem. Commun.201753472647291:CAS:528:DC%2BC2sXmtVSisLY%3D10.1039/C7CC01085K
– reference: FürstnerAPreparation, structure, and reactivity of nonstabilized organoiron compounds. Implications for iron-catalyzed cross coupling reactionsJ. Am. Chem. Soc.20081308773878710.1021/ja801466t18597432
– reference: MacNairAJMilletCRPNicholGSIronmongerAThomasSPMarkovnikov-selective, activator-free iron-catalyzed vinylarene hydroborationACS Catal.20166721772211:CAS:528:DC%2BC28XhsFGhtr%2FM10.1021/acscatal.6b02281
– volume: 7
  start-page: 855
  year: 2017
  ident: 2472_CR32
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02518
– ident: 2472_CR21
  doi: 10.1039/c39950001533
– volume: 6
  start-page: 4105
  year: 2016
  ident: 2472_CR14
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01134
– volume: 135
  start-page: 19154
  year: 2013
  ident: 2472_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja404963f
– ident: 2472_CR3
  doi: 10.1002/9783527635207
– volume: 138
  start-page: 2480
  year: 2016
  ident: 2472_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11311
– volume: 55
  start-page: 10835
  year: 2016
  ident: 2472_CR43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605501
– volume: 132
  start-page: 13214
  year: 2010
  ident: 2472_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106853y
– volume: 5
  start-page: 622
  year: 2015
  ident: 2472_CR41
  publication-title: ACS Catal.
  doi: 10.1021/cs501639r
– volume: 53
  start-page: 13188
  year: 2014
  ident: 2472_CR18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201406853
– volume: 87
  start-page: 280
  year: 2009
  ident: 2472_CR36
  publication-title: Can. J. Chem.
  doi: 10.1139/v08-132
– volume: 126
  start-page: 13794
  year: 2004
  ident: 2472_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja046753t
– volume: 2
  start-page: 546
  year: 2010
  ident: 2472_CR17
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.651
– volume: 24
  start-page: 149
  year: 2005
  ident: 2472_CR35
  publication-title: Organometallics
  doi: 10.1021/om0494420
– volume: 2003
  start-page: 1145
  year: 2003
  ident: 2472_CR16
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.200390168
– volume: 55
  start-page: 6671
  year: 2016
  ident: 2472_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201601197
– volume: 22
  start-page: 11605
  year: 2016
  ident: 2472_CR38
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201602818
– volume: 126
  start-page: 8786
  year: 2004
  ident: 2472_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja048911m
– volume: 299
  start-page: 1691
  year: 2003
  ident: 2472_CR2
  publication-title: Science
  doi: 10.1126/science.1083622
– volume: 53
  start-page: 4726
  year: 2017
  ident: 2472_CR44
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01085K
– volume: 48
  start-page: 1485
  year: 2015
  ident: 2472_CR29
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00042
– volume: 356
  start-page: 584
  year: 2014
  ident: 2472_CR45
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201300827
– volume: 54
  start-page: 4661
  year: 2015
  ident: 2472_CR11
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411884
– volume: 137
  start-page: 11432
  year: 2015
  ident: 2472_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06648
– ident: 2472_CR4
  doi: 10.1007/978-1-4020-8172-9
– volume: 17
  start-page: 2716
  year: 2015
  ident: 2472_CR42
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b01135
– volume: 51
  start-page: 1508
  year: 2012
  ident: 2472_CR20
  publication-title: Inorg. Chem.
  doi: 10.1021/ic201803c
– volume: 335
  start-page: 567
  year: 2012
  ident: 2472_CR6
  publication-title: Science
  doi: 10.1126/science.1214451
– volume: 54
  start-page: 14523
  year: 2015
  ident: 2472_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201507829
– volume: 31
  start-page: 2175
  year: 2012
  ident: 2472_CR37
  publication-title: Organometallics
  doi: 10.1021/om200937d
– volume: 7
  start-page: 1227
  year: 2017
  ident: 2472_CR7
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02990
– volume: 137
  start-page: 13244
  year: 2015
  ident: 2472_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08611
– volume: 298
  start-page: 204
  year: 2002
  ident: 2472_CR5
  publication-title: Science
  doi: 10.1126/science.1073338
– volume: 136
  start-page: 12108
  year: 2014
  ident: 2472_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5060884
– volume: 35
  start-page: 2923
  year: 2016
  ident: 2472_CR46
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.6b00474
– volume: 2
  start-page: 692
  year: 2015
  ident: 2472_CR19
  publication-title: Org. Chem. Front.
  doi: 10.1039/C5QO00064E
– volume: 9
  start-page: 595
  year: 2017
  ident: 2472_CR27
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2697
– volume: 6
  start-page: 7217
  year: 2016
  ident: 2472_CR39
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02281
– volume: 19
  start-page: 969
  year: 2017
  ident: 2472_CR40
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.7b00227
– ident: 2472_CR1
  doi: 10.1002/9781118839621
– volume: 5
  start-page: 597
  year: 2013
  ident: 2472_CR31
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1669
– volume: 8
  start-page: 157
  year: 2016
  ident: 2472_CR23
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2417
– volume: 124
  start-page: 4558
  year: 2002
  ident: 2472_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja025617q
– volume: 36
  start-page: 1727
  year: 2017
  ident: 2472_CR15
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.7b00087
– volume: 139
  start-page: 9439
  year: 2017
  ident: 2472_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04137
– volume: 130
  start-page: 8773
  year: 2008
  ident: 2472_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801466t
SSID ssj0000391844
Score 2.6016228
Snippet Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base...
Hydrosilylation of alkenes poses substantial challenges in terms of regioselectivity. Here, the authors report iron complexes with 1,10-phenantroline ligand...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 221
SubjectTerms 119/118
140/131
140/58
639/638/224/685
639/638/549/933
639/638/77/888
Aliphatic compounds
Alkenes
Catalysis
Catalysts
Chemical reactions
Dienes
Heavy metals
Humanities and Social Sciences
Hydrosilylation
Iron
Ligands
Metals
multidisciplinary
Regioselectivity
Scaffolds
Science
Science (multidisciplinary)
Selectivity
Styrenes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbjRqHD9iHwFRVQg4Uak3yxk7dEWUrdjtIfz6zjjZ1S7PC7fIcSRnZjz-xh5_w9grYsGCpoYyUFqNAtmV1ppYqmShBlu7IOmC86fP5uxcfbjQFzulvignbKIHngR3Qmkb1iCu0brFZ9XKrolSUa0bnZJtyftWrtoJprIPlg5DFzXfkqmkPVmp7BPIKeOy1NSl2VuJMmH_71Dmr8mSP52Y5oXo9B67OyNI_mYa-SG7lYb77PZUU3J8wBYfF1_p-i6nHVYujtEBUhpXyAURCFPyFYSuW_aRI17lRFfcj5zqMyxXuSYOuj9Od9_KvLMz_kiRh_4bukR-OUb8k0U_TvlzD9n56fsv787KuZ5CCYjL1iUIlFiXag202yPqEOkpQHICjJXGgFMhBp2gkRgY29AA9m3BgKlBRykfsYNhOaQnjMcaku2cFQkBTGqti9q0Qgnit0uNdAUTG9l6mMnGqeZF7_Oht7R-0odHffisD28K9nr7zdVEtfHX3m9JZdueRJOdG9B4_Gw8_l_GU7CjjcL9PHdXnrZhmspZrQv2cvsaZx0dpYQhLa9zH4eBFmKlgj2e7GM7EmxEEGeqgjV7lrM31P03w-IyM3tT8IfhTsGONza2M6w_iuLp_xDFM3YHsSAlNpZCH7GD9ffr9Bzx1rp9kafWDUevI_s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrZC4IN4ECjISN2p1E8eOc0CIolYVghVCVOotcmynXTVKSnd7SH99Z5wHLI_eIseRHM94_Hk88w3AW2LBslliuaGwmtSKimutHE-9tonVSW4EJTh_Xaij4_TziTzZgsWYC0NhlaNNDIbatZZ85Ht0OM7muZbyw8VPTlWj6HZ1LKFhhtIK7n2gGLsD22iS5XwG2_sHi2_fJ68L8aHrNB2yZ-ZC763SYCvIWON2lSVcbexQgcj_X-jz7yDKP25SwwZ1-ADuD8iSfexV4SFs-eYR3O1rTXaPYflleUppvYw8ryzeRcNI4V0mFEogrMlW1lRVWzuGOJYRjXHdMarb0K5CrRw0i4xy4njw-HTX3jFTn6OpZGedwz9Z1l0fV_cEjg8Pfnw64kOdBW4Rr625jaX3lU-kJS9QnBhHT8b6PLZKC6VsnhpnpLeZwAOzNpnFvqVVViVWOiGewqxpG_8cmEus11WuY4_Axpc6d1KVcRoT753PRB5BPM5tYQcScqqFURfhMlzoopdHgfIogjwKFcG76ZuLnoLj1t77JLKpJ9Fnh4b28rQYVmNBsUBaIViWssTntBRV5kRKBZRwKnQZwc4o8GJY06vilwZG8GZ6jauRrlhM49ur0CfHAxhiqAie9foxjQQbEdypeQTZhuZsDHXzTbM8C4zfdCjEY1AEu6OO_Tas_07Fi9v_4iXcQ_RHoYw8ljswW19e-VeIsNbl62HZ3AA2oyP8
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals Open Access
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuqOWZPpCRuNGITfyIcywrqgoBJyr1Zjm2066Ikqq7PYRfz4zzEAsFiVuUjCXHMx5_Ho-_AXhLLFiuyF1qKa1GOF6nWiufiqBd7nReWk4XnL98VecX4tOlvNyBfLoLE5P2I6VldNNTdtj7tYhTmnwqripFnqoH8FAXXJJVL9VyjqsQ47kWYrwfs-D6nqZba1Ck6r8PX_6ZJvnbWWlcgs724MmIHdnp0Nt92AntU3g0VJPsn8Hq8-qKLu4yiq2y7ARdHyVw2VgKgdAkWztb113jGSJVRkTFTc-oMkO3jtVw0PExuvWWxphO_yN4Zpvv6AzZde_xT1ZNP2TOPYeLs4_flufpWEkhdYjINqnLZAh1yKWjOE-WW09P1oUyc0pzpVwprLcyuILjlljbwqFs5ZRTuZOe8xew23ZteAXM5y7outRZQOgSKl16qapMZMRsFwpeJpBNY2vcSDNO1S4aE4-7uTaDPgzqw0R9GJXAu7nNzUCy8U_pD6SyWZIIsuOL7vbKjAZjKNtHK4TDUlb4LCpeF54LKpGEQ6GrBI4mhZtx1q4NBWCKRamlTODN_BnnGx2i2DZ0d1GmxC0WoqQEXg72MfcEXyJ8U4sEii3L2erq9pd2dR05vWnbhxudBE4mG_ulW38dioP_Ez-Ex4j3KHkxzeQR7G5u78IxYqpN9TpOop8zABsX
  priority: 102
  providerName: Springer Nature
Title Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation
URI https://link.springer.com/article/10.1038/s41467-017-02472-6
https://www.ncbi.nlm.nih.gov/pubmed/29335560
https://www.proquest.com/docview/1987709855
https://www.proquest.com/docview/1989585293
https://pubmed.ncbi.nlm.nih.gov/PMC5768772
https://doaj.org/article/42378608055b4234b3f7d3430235ee8b
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tQ0hcEG8CS2UkbmyAxLHjHBDqVltWFawQUKm3yLGd3YqogbYrEX49M05SKHS5tFHiSI7n4W_G8wB4TlWwTBqbUFNYTWJ4GSolbZg4ZWKj4kxzSnD-cC7PpslkJmZ70Lc76hZwtdO0o35S02X18sf35i0K_Js2ZVy9WiVe3Enf4o6TxqHch0N_XkShfB3c95qZZ2jQJF3uzO5XqTowGvlC-KKVv7cqX9F_Fwz9N5ryryNVv1ONb8OtDmKyYcsTd2DPLe7CjbbpZHMP5u_nF5Tfy8gFy6Jj1JAU56V9xwQCnWxldFnWlWUIaBnVM64aRg0c6pVvmoP6kVFyXOhdP81PZ5muvqLOZJeNxS-ZV00bYHcfpuPTL6OzsGu4EBoEbuvQRMK50sXCkDsoirWlK21cFhmpuJQmS7TVwpmUo-WsdGpwbGGkkbERlvMHcLCoF-4RMBsbp8pMRQ4RjitUZoUsoiSiAngu5VkAUb-2uemqkVNTjCr3p-Jc5S1pciRN7kmTywBebN751tbi-O_oEyLZZiTV0fY36uVF3ollTkFBSiJqFqLA66TgZWp5Qp2UcClUEcBRT_C8582c_DTp60wJEcCzzWMUSzpr0QtXX_kxGVpiyEoBPGz5YzOTnr8CSLc4Z2uq208W80tf-pusQ7SHAjjueeyPaV27FI-vncITuIkIkMIZw0gcwcF6eeWeIspaFwPYT2cp_qrxuwEcDoeTzxP8Pzk9__gJ747kaOD9FwMvYr8A6-QnDw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN5NKWAkONGom8RxnEOFKLTa0u0KoVbqzTi2065YbdruVij8OH4bM06ysDx66y1yHMnx2ONvxjPzAbyiKlgmi02oKayGm6QMpRQ25E6a2Mg41wklOB-OxOCYfzxJT1bgR5cLQ2GVnU70itpWhnzkW2QcZ_1cpunb84uQWKPodrWj0NAttYLd9iXG2sSOA1d_QxNutr3_AeX9Oo73do_eD8KWZSA0iFbmoYlS50oXp4Z8IFGsLT1p4_LICJkIYXKurU6dyRI0F6XODPYtjDAiNqklhygeAaucHCg9WN3ZHX36vPDyUP11yXmbrdNP5NaMe91EhwMej1kciqUT0RMH_Avt_h20-cfNrT8Q9-7B3RbJsnfN0rsPK276AG413Jb1QxgPx6eURszI08uiTVTEFE6mPTEDYVs2M7osq4lliJsZlU2e1Ix4IqqZ5-ZBNcwoBy_0Hqb6u7NMT76iamZntcU_GU_qJo7vERzfyIw_ht60mro1YDY2Tpa5jBwCKVfI3KaiiHhEdfZcluQBRN3cKtMWPSfujYnyl--JVI08FMpDeXkoEcCbxTfnTcmPa3vvkMgWPalct2-oLk9Vu_sVxR5JgeA8TQt85kVSZjbhRNiEUyGLADY6gatWh8zUrxUfwMvFa9z9dKWjp6668n1yNPgQswXwpFkfi5FgI4JJ0Q8gW1o5S0NdfjMdn_kK42SEotkVwGa3xn4b1n-nYv36v3gBtwdHh0M13B8dPIU7iDwpjDKM0g3ozS-v3DNEd_PiebuFGHy56V37EzNrYd0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxLspBYwEJxrtJvErB4SAsmppqThQaW_GsZ12xWrTNluh8NP4dcw4D1gevfUWOY7keMbjb8bj-Qh5jlWwrExtbDCthtmsjJUSLmZe2dSqNDcZXnD-eCh2j9iHKZ-ukR_9XRhMq-xtYjDUrrIYIx-hcyzHueJ8VHZpEZ92Jq9Pz2JkkMKT1p5Oo1WRfd98A_etfrW3A7J-kaaT95_f7cYdw0BsAaksY5tw70ufcovxjyQ1Dp-M9XlihcqEsDkzznBvZQauojLSQt_CCitSyx0GQ8H8X5MZY0gbIadyiO9g5XXFWHdPZ5ypUc2CVcJtATZGmcZiZS8MlAH_wrl_p2v-cWYbtsLJbXKrw7D0Tat0d8iaX9wl11tWy-YemR3MjvECMcUYL022wQRjIpkJlAyIamltTVlWc0cBMVMsmDxvKDJEVHVg5QEDTPH2XRxiS81376iZfwWjTE8aB38ymzdtBt99cnQl8_2ArC-qhd8g1KXWqzJXiQcI5QuVOy6KhCVYYc_LLI9I0s-ttl25c2TdmOtw7J4p3cpDgzx0kIcWEXk5fHPaFvu4tPdbFNnQEwt1h4bq_Fh3615j1pESAMs5L-CZFVkpXcaQqgmmQhUR2eoFrjvrUetfuh6RZ8NrWPd4mGMWvroIfXJw9QCtReRhqx_DSKARYKQYR0SuaM7KUFffLGYnobY4up_gcEVku9ex34b136nYvPwvnpIbsFb1wd7h_iNyEyAn5k_GCd8i68vzC_8YYN2yeBLWDyVfrnrB_gSKzF95
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ligands+with+1%2C10-phenanthroline+scaffold+for+highly+regioselective+iron-catalyzed+alkene+hydrosilylation&rft.jtitle=Nature+communications&rft.au=Hu%2C+Meng-Yang&rft.au=He%2C+Qiao&rft.au=Fan%2C+Song-Jie&rft.au=Wang%2C+Zi-Chen&rft.date=2018-01-15&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=221&rft_id=info:doi/10.1038%2Fs41467-017-02472-6&rft_id=info%3Apmid%2F29335560&rft.externalDocID=29335560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon