Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation
Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds ap...
Saved in:
Published in | Nature communications Vol. 9; no. 1; pp. 221 - 11 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.01.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-017-02472-6 |
Cover
Abstract | Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from
π
–
π
interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions.
Hydrosilylation of alkenes poses substantial challenges in terms of regioselectivity. Here, the authors report iron complexes with 1,10-phenantroline ligand scaffolds which display benzylic selectivity in the hydrosilylation of internal alkenes and Markovnikov selectivity with terminal styrenes and 1,3-dienes. |
---|---|
AbstractList | Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from π-π interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions.Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from π-π interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions. Hydrosilylation of alkenes poses substantial challenges in terms of regioselectivity. Here, the authors report iron complexes with 1,10-phenantroline ligand scaffolds which display benzylic selectivity in the hydrosilylation of internal alkenes and Markovnikov selectivity with terminal styrenes and 1,3-dienes. Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from π–π interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions. Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from π – π interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions. Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base metals, especially iron, as catalysts for this transformation is a growing area of research. However, the limited number of ligand scaffolds applicable for base-metal-catalyzed alkene hydrosilylation has seriously hindered advances in this area. Herein, we report the use of 1,10-phenanthroline ligands in base-metal catalysts for alkene hydrosilylation. In particular, iron catalysts with 2,9-diaryl-1,10-phenanthroline ligands exhibit unexpected reactivity and selectivity for hydrosilylation of alkenes, including unique benzylic selectivity with internal alkenes, Markovnikov selectivity with terminal styrenes and 1,3-dienes, and excellent activity toward aliphatic terminal alkenes. According to the mechanistic studies, the unusual benzylic selectivity of this hydrosilylation initiates from π – π interaction between the phenyl of the alkene and the phenanthroline of the ligand. This ligand scaffold and its unique catalytic model will open possibilities for base-metal-catalyzed hydrosilylation reactions. Hydrosilylation of alkenes poses substantial challenges in terms of regioselectivity. Here, the authors report iron complexes with 1,10-phenantroline ligand scaffolds which display benzylic selectivity in the hydrosilylation of internal alkenes and Markovnikov selectivity with terminal styrenes and 1,3-dienes. |
ArticleNumber | 221 |
Author | Peng, Qian Hu, Meng-Yang Fan, Song-Jie Liu, Luo-Yan Zhu, Shou-Fei Mu, Yi-Jiang Wang, Zi-Chen He, Qiao |
Author_xml | – sequence: 1 givenname: Meng-Yang surname: Hu fullname: Hu, Meng-Yang organization: State Key Laboratory and Institute of Elemento-Organic Chemistry – sequence: 2 givenname: Qiao surname: He fullname: He, Qiao organization: State Key Laboratory and Institute of Elemento-Organic Chemistry – sequence: 3 givenname: Song-Jie surname: Fan fullname: Fan, Song-Jie organization: State Key Laboratory and Institute of Elemento-Organic Chemistry – sequence: 4 givenname: Zi-Chen surname: Wang fullname: Wang, Zi-Chen organization: State Key Laboratory and Institute of Elemento-Organic Chemistry – sequence: 5 givenname: Luo-Yan surname: Liu fullname: Liu, Luo-Yan organization: State Key Laboratory and Institute of Elemento-Organic Chemistry – sequence: 6 givenname: Yi-Jiang surname: Mu fullname: Mu, Yi-Jiang organization: State Key Laboratory and Institute of Elemento-Organic Chemistry – sequence: 7 givenname: Qian orcidid: 0000-0002-1218-5976 surname: Peng fullname: Peng, Qian email: qpeng@nankai.edu.cn organization: State Key Laboratory and Institute of Elemento-Organic Chemistry – sequence: 8 givenname: Shou-Fei orcidid: 0000-0002-6055-3139 surname: Zhu fullname: Zhu, Shou-Fei email: sfzhu@nankai.edu.cn organization: State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29335560$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ul1rFDEUDVKxde0f8EEGfPHB0WTyOS9CKX4UFnzR55DN3JnJmk3WZLay_nqzO61sC3oh5JKcczjce56jsxADIPSS4HcEU_U-M8KErDEpp2GyqcUTdNFgRmoiG3p20p-jy5zXuBRtiWLsGTpvWko5F_gCuaUbTOhy9ctNY0XeElxvRwgmTGOK3gWosjV9H31X9TFVoxtGv68SDC5m8GAndwuVSzHU1kzG739DVxn_Awpx3HcpZuf33kwuhhfoaW98hsu7e4G-f_r47fpLvfz6-eb6allbzvBUW8IBemi4VZQz0pju0BkLLbFCUSFsy0xnOFhJVSkjbcGurLCisbyjdIFuZt0umrXeJrcxaa-jcfr4ENOgTZqc9aBZQ6USWGHOV6VnK9rLjjKKG1pMqFXR-jBrbXerDXQWwpSMfyD68Ce4UQ_xVnMplCyzX6A3dwIp_txBnvTGZQvemwBxlzVpVcsVP-xjgV4_gq7jLoUyqgNKStwqzgvq1amjv1buN1oAagbYMvycoNfWTccFFIPOa4L1IT96zo8u-dHH_GhRqM0j6r36f0l0JuUCDgOkE9v_Zv0B5TPYUw |
CitedBy_id | crossref_primary_10_1021_acscatal_1c05870 crossref_primary_10_1093_chemle_upae134 crossref_primary_10_1021_acs_joc_1c00409 crossref_primary_10_1039_C9CS00508K crossref_primary_10_1021_acs_inorgchem_4c00247 crossref_primary_10_1021_acs_inorgchem_4c00521 crossref_primary_10_1016_j_tetlet_2023_154798 crossref_primary_10_1021_acscatal_8b00010 crossref_primary_10_1021_acs_orglett_0c00633 crossref_primary_10_1002_adsc_202401239 crossref_primary_10_1021_acs_orglett_9b02873 crossref_primary_10_1016_j_jcat_2023_115197 crossref_primary_10_1039_D1SC06727C crossref_primary_10_1002_ange_202100049 crossref_primary_10_1039_D2QO01653B crossref_primary_10_1002_ange_202215703 crossref_primary_10_1038_s41929_025_01293_x crossref_primary_10_1021_acs_joc_8b02455 crossref_primary_10_1039_D1QO00839K crossref_primary_10_1021_acs_orglett_1c00677 crossref_primary_10_1246_bcsj_20180197 crossref_primary_10_1002_chem_202403437 crossref_primary_10_1021_acs_joc_1c03125 crossref_primary_10_1021_acs_orglett_0c00809 crossref_primary_10_1039_D3QO01725G crossref_primary_10_1002_chem_202003814 crossref_primary_10_1002_ange_202303853 crossref_primary_10_1002_anie_201913835 crossref_primary_10_1021_acs_orglett_3c02907 crossref_primary_10_1039_C8DT03477J crossref_primary_10_1039_C8DT04608E crossref_primary_10_1021_acs_orglett_0c02751 crossref_primary_10_1080_10406638_2019_1689515 crossref_primary_10_1016_j_isci_2020_100985 crossref_primary_10_1021_acs_inorgchem_0c03451 crossref_primary_10_1021_acs_orglett_9b02254 crossref_primary_10_1021_acs_chemrev_8b00372 crossref_primary_10_1016_j_xcrp_2022_100995 crossref_primary_10_1021_jacs_3c14032 crossref_primary_10_1021_acscatal_8b04481 crossref_primary_10_1002_aoc_7493 crossref_primary_10_1039_D2SC02160A crossref_primary_10_1002_chem_201803692 crossref_primary_10_1002_cctc_202201105 crossref_primary_10_1021_acs_organomet_0c00597 crossref_primary_10_1016_j_jcat_2025_115977 crossref_primary_10_1021_jacs_8b01638 crossref_primary_10_1002_chem_202401440 crossref_primary_10_1021_acs_organomet_9b00524 crossref_primary_10_1021_acscatal_3c00353 crossref_primary_10_1002_ange_201913835 crossref_primary_10_1002_anie_202007930 crossref_primary_10_1002_asia_202100003 crossref_primary_10_1016_j_xcrp_2021_100461 crossref_primary_10_1039_D3GC03473A crossref_primary_10_1055_a_1605_9572 crossref_primary_10_1021_jacs_9b07795 crossref_primary_10_1021_acs_orglett_3c02453 crossref_primary_10_1038_s41467_022_34901_6 crossref_primary_10_1002_cjoc_202300356 crossref_primary_10_1021_acscatal_8b04230 crossref_primary_10_1070_RCR4916 crossref_primary_10_1002_anie_202100049 crossref_primary_10_1016_j_ica_2023_121518 crossref_primary_10_1002_cjoc_201800314 crossref_primary_10_1002_cjoc_202100449 crossref_primary_10_1039_D4RA08380F crossref_primary_10_1039_D0CS00688B crossref_primary_10_1093_nsr_nwad324 crossref_primary_10_1021_acs_orglett_0c00072 crossref_primary_10_1021_acs_orglett_1c01455 crossref_primary_10_3390_photochem1020010 crossref_primary_10_1016_j_mcat_2021_111489 crossref_primary_10_1039_D1NJ06133J crossref_primary_10_1002_ange_202315473 crossref_primary_10_1039_C8CC06768F crossref_primary_10_1021_acscatal_2c03580 crossref_primary_10_1002_ange_202402044 crossref_primary_10_1021_acscatal_8b02513 crossref_primary_10_1002_anie_202208473 crossref_primary_10_1021_acs_organomet_0c00251 crossref_primary_10_1021_acs_orglett_3c02044 crossref_primary_10_1002_cjoc_202300407 crossref_primary_10_1016_j_polymer_2022_124817 crossref_primary_10_1021_jacs_1c11072 crossref_primary_10_1038_s41557_020_00589_8 crossref_primary_10_1002_jctb_7787 crossref_primary_10_1016_j_ica_2019_119397 crossref_primary_10_1002_anie_202303853 crossref_primary_10_1016_j_jorganchem_2020_121436 crossref_primary_10_1039_D4CC00288A crossref_primary_10_1021_acs_orglett_1c00111 crossref_primary_10_1021_acs_orglett_2c01558 crossref_primary_10_1002_pol_20190276 crossref_primary_10_1016_j_tetlet_2019_151513 crossref_primary_10_3389_fchem_2024_1411140 crossref_primary_10_1021_acs_inorgchem_2c03488 crossref_primary_10_1016_j_jcat_2021_03_004 crossref_primary_10_1039_D2DT03471A crossref_primary_10_1002_anie_202008729 crossref_primary_10_1039_C8SC02768D crossref_primary_10_1021_acs_orglett_1c01967 crossref_primary_10_1021_acscatal_8b02624 crossref_primary_10_1002_anie_202202379 crossref_primary_10_1021_acs_inorgchem_1c02925 crossref_primary_10_1039_C9NJ04333K crossref_primary_10_1055_a_2443_5060 crossref_primary_10_1021_acs_inorgchem_4c02881 crossref_primary_10_1021_acs_organomet_1c00613 crossref_primary_10_1002_ange_202007930 crossref_primary_10_1016_j_jelechem_2020_113945 crossref_primary_10_1021_acscatal_4c00034 crossref_primary_10_1021_acs_joc_9b00625 crossref_primary_10_1039_D2QO01266A crossref_primary_10_1021_acsami_4c02810 crossref_primary_10_1016_j_flatc_2022_100348 crossref_primary_10_1021_jacs_9b02127 crossref_primary_10_1021_jacs_0c09083 crossref_primary_10_1016_j_cclet_2022_03_070 crossref_primary_10_1002_slct_202400105 crossref_primary_10_1021_acscatal_9b02623 crossref_primary_10_1021_acs_jmedchem_4c02836 crossref_primary_10_1039_C8DT02134A crossref_primary_10_1021_acscatal_8b03104 crossref_primary_10_1039_D4QO01698J crossref_primary_10_3390_molecules28176360 crossref_primary_10_1055_a_2388_9630 crossref_primary_10_6023_cjoc202305016 crossref_primary_10_1039_D1RA07238B crossref_primary_10_1002_ange_202202379 crossref_primary_10_1002_anie_202402044 crossref_primary_10_1007_s11426_020_9939_1 crossref_primary_10_1039_C9TA03807H crossref_primary_10_1039_D1QO00018G crossref_primary_10_1002_anie_202315473 crossref_primary_10_1021_acs_joc_3c00127 crossref_primary_10_1039_D0SC01749C crossref_primary_10_1070_RCR4968 crossref_primary_10_1021_acs_organomet_0c00551 crossref_primary_10_1002_adma_202304144 crossref_primary_10_1039_D2QO01930B crossref_primary_10_1021_acs_orglett_4c00450 crossref_primary_10_1039_D3QO00041A crossref_primary_10_1002_cjoc_201800367 crossref_primary_10_1039_D2CC04232K crossref_primary_10_1021_acs_organomet_1c00200 crossref_primary_10_1039_C9GC01981B crossref_primary_10_1039_C9NJ04488D crossref_primary_10_1021_acs_inorgchem_0c03483 crossref_primary_10_3390_molecules27103114 crossref_primary_10_1016_j_jorganchem_2018_07_021 crossref_primary_10_1002_ajoc_202100361 crossref_primary_10_1002_anie_202215703 crossref_primary_10_1002_ange_202008729 crossref_primary_10_1002_ange_202208473 crossref_primary_10_1055_a_1286_5934 crossref_primary_10_1016_j_jcat_2021_01_003 crossref_primary_10_1038_s41467_023_40703_1 crossref_primary_10_1002_cplu_201900366 |
Cites_doi | 10.1021/acscatal.6b02518 10.1039/c39950001533 10.1021/acscatal.6b01134 10.1021/ja404963f 10.1002/9783527635207 10.1021/jacs.5b11311 10.1002/anie.201605501 10.1021/ja106853y 10.1021/cs501639r 10.1002/anie.201406853 10.1139/v08-132 10.1021/ja046753t 10.1038/nchem.651 10.1021/om0494420 10.1002/ejoc.200390168 10.1002/anie.201601197 10.1002/chem.201602818 10.1021/ja048911m 10.1126/science.1083622 10.1039/C7CC01085K 10.1021/acs.accounts.5b00042 10.1002/adsc.201300827 10.1002/anie.201411884 10.1021/jacs.5b06648 10.1007/978-1-4020-8172-9 10.1021/acs.orglett.5b01135 10.1021/ic201803c 10.1126/science.1214451 10.1002/anie.201507829 10.1021/om200937d 10.1021/acscatal.6b02990 10.1021/jacs.5b08611 10.1126/science.1073338 10.1021/ja5060884 10.1021/acs.organomet.6b00474 10.1039/C5QO00064E 10.1038/nchem.2697 10.1021/acscatal.6b02281 10.1021/acs.orglett.7b00227 10.1002/9781118839621 10.1038/nchem.1669 10.1038/nchem.2417 10.1021/ja025617q 10.1021/acs.organomet.7b00087 10.1021/jacs.7b04137 10.1021/ja801466t |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-017-02472-6 |
DatabaseName | SpringerLink Journals Open Access CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_42378608055b4234b3f7d3430235ee8b PMC5768772 29335560 10_1038_s41467_017_02472_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-c15eefe25c835412ad5c83ace91c68366c94ada5ec738888a7c25cbc6c62c5d33 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:12:57 EDT 2025 Thu Aug 21 13:58:52 EDT 2025 Thu Sep 04 16:55:34 EDT 2025 Wed Aug 13 04:34:08 EDT 2025 Thu Apr 03 07:04:40 EDT 2025 Thu Apr 24 23:44:04 EDT 2025 Tue Jul 01 02:21:09 EDT 2025 Fri Feb 21 02:39:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-c15eefe25c835412ad5c83ace91c68366c94ada5ec738888a7c25cbc6c62c5d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6055-3139 0000-0002-1218-5976 |
OpenAccessLink | https://www.proquest.com/docview/1987709855?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 29335560 |
PQID | 1987709855 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_42378608055b4234b3f7d3430235ee8b pubmedcentral_primary_oai_pubmedcentral_nih_gov_5768772 proquest_miscellaneous_1989585293 proquest_journals_1987709855 pubmed_primary_29335560 crossref_citationtrail_10_1038_s41467_017_02472_6 crossref_primary_10_1038_s41467_017_02472_6 springer_journals_10_1038_s41467_017_02472_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-15 |
PublicationDateYYYYMMDD | 2018-01-15 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | PappasITreacySChirikPJAlkene hydrosilylation using tertiary silanes with α‑diimine nickel catalysts. Redox-active ligands promote a distinct mechanistic pathway from platinum catalystsACS Catal.20166410541091:CAS:528:DC%2BC28XosFSmtLc%3D10.1021/acscatal.6b01134 WuJYStanzlBNRitterTA strategy for the synthesis of well-defined iron catalysts and application to regioselective diene hydrosilylationJ. Am. Chem. Soc.201013213214132161:CAS:528:DC%2BC3cXhtFSnsrfK10.1021/ja106853y20809631 GuoJLuZHighly chemo-, regio-, and stereoselective cobalt-catalyzed Markovnikov hydrosilylation of alkynesAngew. Chem. Int. Ed.20165510835108381:CAS:528:DC%2BC28Xht1Wmt7%2FE10.1002/anie.201605501 DuXHuangZAdvances in base-metal-catalyzed alkene hydrosilylationACS Catal.20177122712431:CAS:528:DC%2BC2sXmvVaisw%3D%3D10.1021/acscatal.6b02990 SchoffersEReinventing phenanthroline ligands‒chiral derivatives for asymmetric catalysisEur. J. Org. Chem.200320031145115210.1002/ejoc.200390168 GuoNHuMYFengYZhuSFHighly efficient and practical hydrogenation of olefins catalyzed by in situ generated iron complex catalystsOrg. Chem. Front.201526926961:CAS:528:DC%2BC2MXmsVWku7Y%3D10.1039/C5QO00064E DochertyJHPengJDomineyAPThomasSPActivation and discovery of earth-abundant metal catalysts using sodium tert–butoxideNat. Chem.201795956001:CAS:528:DC%2BC2sXpsVKrsQ%3D%3D10.1038/nchem.269728537588 JunqueraLBPuertaMCValergaPR-allyl nickel(II) complexes with chelating N-heterocyclic carbenes: synthesis, structural characterization, and catalytic cctivityOrganometallics201231217521831:CAS:528:DC%2BC38XjtFyjtL8%3D10.1021/om200937d BartSCLobkovskyEChirikPJPreparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilationJ. Am. Chem. Soc.200412613794138071:CAS:528:DC%2BD2cXotVOlur0%3D10.1021/ja046753t15493939 Kitayama, K., Uozumi, Y. & Hayashi, T. Palladium-catalysed asymmetric hydrosilylation of styrenes with a new chiral monodentate phosphine ligand. J. Chem. Soc. Chem. Commun. 1533‒1534 (1995). Espinal-ViguriMWoofCRWebsterRLIron-catalyzed hydroboration: unlocking reactivity through ligand modulationChem. Eur. J.20162211605116081:CAS:528:DC%2BC28XhtFWjsLjK10.1002/chem.20160281827321704 TondreauAMIron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanesScience20123355675702012Sci...335..567T1:CAS:528:DC%2BC38XhsVequrw%3D10.1126/science.121445122301315 WangCTeoWJGeSCobalt-catalyzed regiodivergent hydrosilylation of vinylarenes and aliphatic alkenes: ligand- and silane-dependent regioselectivitiesACS Catal.201778558631:CAS:528:DC%2BC28XhvFCjtrjO10.1021/acscatal.6b02518 Stradiotto, M. & Lundgren, R. (eds) Ligand Design in Metal Chemistry (Wiley-VCH, 2016). NodaDTaharaASunadaYNagashimaHNon-precious-metal catalytic systems involving iron or cobalt carboxylates and alkyl isocyanides for hydrosilylation of alkenes with hydrosiloxanesJ. Am. Chem. Soc.2016138248024831:CAS:528:DC%2BC28XhtVKhsLY%3D10.1021/jacs.5b1131126760915 ToyaYHayasakaKNakazawaHHydrosilylation of olefins catalyzed by iron complexes bearing ketimine-type iminobipyridine ligandsOrganometallics201736172717351:CAS:528:DC%2BC2sXmt1Kqt7g%3D10.1021/acs.organomet.7b00087 ChenYSui-SengCBoucherSZargarianDInfluence of SiMe3 substituents on structures and hydrosilylation activities of ((SiMe3)1or2-indenyl)Ni(PPh3)ClOrganometallics2005241491551:CAS:528:DC%2BD2cXhtVGhs7rP10.1021/om0494420 ChenJChengBCaoMLuZIron-catalyzed asymmetric hydrosilylation of 1,1-disubstituted alkenesAngew. Chem. Int. Ed.201554466146641:CAS:528:DC%2BC2MXkvF2msrg%3D10.1002/anie.201411884 CollinsKDGloriusFA robustness screen for the rapid assessment of chemical reactionsNat. Chem.201355976011:CAS:528:DC%2BC3sXptVansL4%3D10.1038/nchem.166923787750 Marciniec, B. (ed.) Hydrosilylation, A Comprehensive Review on Recent Advances (Spring, 2009). JensenJFSvendsenBYla CourTVPedersenHLJohannsenMHighly enantioselective hydrosilylation of aromatic alkenesJ. Am. Chem. Soc.2002124455845591:CAS:528:DC%2BD38XisFSgt7k%3D10.1021/ja025617q11971692 ScheuermannMLJohnsonEJChirikPJAlkene isomerization-hydroboration promoted by phosphine-ligated cobalt catalystsOrg. Lett.201517271627191:CAS:528:DC%2BC2MXptVGlsrw%3D10.1021/acs.orglett.5b0113526010715 ChenCRapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalystJ. Am. Chem. Soc.201513713244132471:CAS:528:DC%2BC2MXhs1Ggt7fI10.1021/jacs.5b0861126444496 GreenhalghMDFrankDJThomasSPIron-catalysed chemo-, regio-, and stereoselective hydrosilylation of alkenes and alkynes using a bench-stable iron(II) pre-catalystAdv. Synth. Catal.20143565845901:CAS:528:DC%2BC2cXhs12isrs%3D10.1002/adsc.201300827 YoonTPJacobsenENPrivileged chiral catalystsScience2003299169116932003Sci...299.1691Y1:CAS:528:DC%2BD3sXitVSjtLg%3D10.1126/science.108362212637734 ChenXChengZLuZIron-catalyzed, Markovnikov-selective hydroboration of styrenesOrg. Lett.2017199699711:CAS:528:DC%2BC2sXivFeqt70%3D10.1021/acs.orglett.7b0022728221805 PalmerWNDiaoTPappasIChirikPJHigh-activity cobalt catalysts for alkene hydroboration with electronically responsive terpyridine and α‑diimine ligandsACS Catal.201556226261:CAS:528:DC%2BC2cXitFOgs7vK10.1021/cs501639r DaifukuSLKneeboneJLSnyderBERNeidigMLIron(II) active species in iron-bisphosphine catalyzed Kumada and Suzuki-Miyaura cross-couplings of phenyl nucleophiles and secondary alkyl halidesJ. Am. Chem. Soc.201513711432114441:CAS:528:DC%2BC2MXhtlWiu7rF10.1021/jacs.5b06648262666984887939 JiaXHuangZConversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylationNat. Chem.201681571611:CAS:528:DC%2BC2MXitVygurzF10.1038/nchem.241726791899 FontaineFGZargarianDMe2AlCH2PMe2: a new, bifunctional cocatalyst for the Ni(II)-catalyzed oligomerization of PhSiH3J. Am. Chem. Soc.2004126878687941:CAS:528:DC%2BD2cXltFWhurs%3D10.1021/ja048911m15250732 MacNairAJMilletCRPNicholGSIronmongerAThomasSPMarkovnikov-selective, activator-free iron-catalyzed vinylarene hydroborationACS Catal.20166721772211:CAS:528:DC%2BC28XhsFGhtr%2FM10.1021/acscatal.6b02281 BedfordRBHow low does iron go? Chasing the active species in Fe-catalyzed cross-coupling reactionsAcc. Chem. Res.201548148514931:CAS:528:DC%2BC2MXntlClt78%3D10.1021/acs.accounts.5b0004225916260 PengDPhosphinite-iminopyridine iron catalysts for chemoselective alkene hydrosilylationJ. Am. Chem. Soc.201313519154191661:CAS:528:DC%2BC3sXhvFWltrbF10.1021/ja404963f24304467 AtienzaCCHBis(imino)pyridine cobalt-catalyzed dehydrogenative silylation of alkenes: scope, mechanism, and origins of selective allylsilane formationJ. Am. Chem. Soc.201413612108121181:CAS:528:DC%2BC2cXht1ansrjK10.1021/ja506088425068530 ChenYZargarianDPhenylsilane dehydrocoupling and addition to styrene catalyzed by (R-indenyl)Ni(phosphine)(methyl) complexesCan. J. Chem.2009872802871:CAS:528:DC%2BD1cXhsFagsbrM10.1139/v08-132 DuXZhangYPengDHuangZBase metal-catalyzed regiodivergent alkene hydrosilylationsAngew. Chem. Int. Ed.201655667166751:CAS:528:DC%2BC28Xms1Ois7o%3D10.1002/anie.201601197 FürstnerAPreparation, structure, and reactivity of nonstabilized organoiron compounds. Implications for iron-catalyzed cross coupling reactionsJ. Am. Chem. Soc.20081308773878710.1021/ja801466t18597432 ChengBLuPZhangHYChengXPLuZHighly enantioselective cobalt-catalyzed hydrosilylation of alkenesJ. Am. Chem. Soc.2017139943994421:CAS:528:DC%2BC2sXhtVOntrbI10.1021/jacs.7b0413728654260 LeeHMechanistic insight into high-spin iron(I)-catalyzed butadiene dimerizationOrganometallics201635292329291:CAS:528:DC%2BC28XhtlKmtLnO10.1021/acs.organomet.6b00474 ZhuSFCaiYMaoHXXieJHZhouQLEnantioselective iron-catalysed O–H bond InsertionsNat. Chem.201025465511:CAS:528:DC%2BC3cXnvVSiu7o%3D10.1038/nchem.65120571572 KuritaniMTashiroSShionoyaMHeterodinuclear metal arrangement in a flat macrocycle with two chemically-equivalent metal chelating sitesInorg. Chem.201251150815151:CAS:528:DC%2BC38XlvVSktg%3D%3D10.1021/ic201803c22233424 PengJDochertyJHDomineyAPThomasSPCobalt-catalysed Markovnikov selective hydroboration of vinylarenesChem. Commun.201753472647291:CAS:528:DC%2BC2sXmtVSisLY%3D10.1039/C7CC01085K Zhou, Q.-L. (ed.) Privileged Chiral Ligands and Catalysts (Wiley-VCH, 2011). ShenJJEnantioselective iron-catalyzed intramolecular cyclopropanation reactionsAngew. Chem. Int. Ed.20145313188131911:CAS:528:DC%2BC2cXhvFGit7zP10.1002/anie.201406853 MarkóIESelective and efficient platinum(0)-carbene complexes as hydrosilylation catalystsScience20022982042062002Sci...298..204M10.1126/science.107333812364803 BuslovIBecouseJMazzaSMontandon-ClercMHuXChemoselective alkene hydrosilylation catalyzed by nickel pincer complexesAngew. Chem. Int. Ed.20155414523145261:CAS:528:DC%2BC2MXhsF2ktLfP10.1002/anie.201507829 J Guo (2472_CR43) 2016; 55 SF Zhu (2472_CR17) 2010; 2 SC Bart (2472_CR8) 2004; 126 2472_CR3 2472_CR4 2472_CR1 JH Docherty (2472_CR27) 2017; 9 J Chen (2472_CR11) 2015; 54 E Schoffers (2472_CR16) 2003; 2003 TP Yoon (2472_CR2) 2003; 299 Y Toya (2472_CR15) 2017; 36 JF Jensen (2472_CR22) 2002; 124 Y Chen (2472_CR35) 2005; 24 KD Collins (2472_CR31) 2013; 5 B Cheng (2472_CR33) 2017; 139 AJ MacNair (2472_CR39) 2016; 6 D Noda (2472_CR25) 2016; 138 CCH Atienza (2472_CR24) 2014; 136 JY Wu (2472_CR9) 2010; 132 C Wang (2472_CR32) 2017; 7 I Pappas (2472_CR14) 2016; 6 SL Daifuku (2472_CR30) 2015; 137 AM Tondreau (2472_CR6) 2012; 335 JJ Shen (2472_CR18) 2014; 53 X Jia (2472_CR23) 2016; 8 MD Greenhalgh (2472_CR45) 2014; 356 M Kuritani (2472_CR20) 2012; 51 J Peng (2472_CR44) 2017; 53 I Buslov (2472_CR26) 2015; 54 C Chen (2472_CR12) 2015; 137 A Fürstner (2472_CR28) 2008; 130 2472_CR21 M Espinal-Viguri (2472_CR38) 2016; 22 RB Bedford (2472_CR29) 2015; 48 WN Palmer (2472_CR41) 2015; 5 H Lee (2472_CR46) 2016; 35 X Du (2472_CR7) 2017; 7 X Chen (2472_CR40) 2017; 19 IE Markó (2472_CR5) 2002; 298 FG Fontaine (2472_CR34) 2004; 126 LB Junquera (2472_CR37) 2012; 31 D Peng (2472_CR10) 2013; 135 X Du (2472_CR13) 2016; 55 Y Chen (2472_CR36) 2009; 87 ML Scheuermann (2472_CR42) 2015; 17 N Guo (2472_CR19) 2015; 2 |
References_xml | – reference: Kitayama, K., Uozumi, Y. & Hayashi, T. Palladium-catalysed asymmetric hydrosilylation of styrenes with a new chiral monodentate phosphine ligand. J. Chem. Soc. Chem. Commun. 1533‒1534 (1995). – reference: BuslovIBecouseJMazzaSMontandon-ClercMHuXChemoselective alkene hydrosilylation catalyzed by nickel pincer complexesAngew. Chem. Int. Ed.20155414523145261:CAS:528:DC%2BC2MXhsF2ktLfP10.1002/anie.201507829 – reference: LeeHMechanistic insight into high-spin iron(I)-catalyzed butadiene dimerizationOrganometallics201635292329291:CAS:528:DC%2BC28XhtlKmtLnO10.1021/acs.organomet.6b00474 – reference: BartSCLobkovskyEChirikPJPreparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilationJ. Am. Chem. Soc.200412613794138071:CAS:528:DC%2BD2cXotVOlur0%3D10.1021/ja046753t15493939 – reference: KuritaniMTashiroSShionoyaMHeterodinuclear metal arrangement in a flat macrocycle with two chemically-equivalent metal chelating sitesInorg. Chem.201251150815151:CAS:528:DC%2BC38XlvVSktg%3D%3D10.1021/ic201803c22233424 – reference: DochertyJHPengJDomineyAPThomasSPActivation and discovery of earth-abundant metal catalysts using sodium tert–butoxideNat. Chem.201795956001:CAS:528:DC%2BC2sXpsVKrsQ%3D%3D10.1038/nchem.269728537588 – reference: Stradiotto, M. & Lundgren, R. (eds) Ligand Design in Metal Chemistry (Wiley-VCH, 2016). – reference: ChenXChengZLuZIron-catalyzed, Markovnikov-selective hydroboration of styrenesOrg. Lett.2017199699711:CAS:528:DC%2BC2sXivFeqt70%3D10.1021/acs.orglett.7b0022728221805 – reference: AtienzaCCHBis(imino)pyridine cobalt-catalyzed dehydrogenative silylation of alkenes: scope, mechanism, and origins of selective allylsilane formationJ. Am. Chem. Soc.201413612108121181:CAS:528:DC%2BC2cXht1ansrjK10.1021/ja506088425068530 – reference: ToyaYHayasakaKNakazawaHHydrosilylation of olefins catalyzed by iron complexes bearing ketimine-type iminobipyridine ligandsOrganometallics201736172717351:CAS:528:DC%2BC2sXmt1Kqt7g%3D10.1021/acs.organomet.7b00087 – reference: FontaineFGZargarianDMe2AlCH2PMe2: a new, bifunctional cocatalyst for the Ni(II)-catalyzed oligomerization of PhSiH3J. Am. Chem. Soc.2004126878687941:CAS:528:DC%2BD2cXltFWhurs%3D10.1021/ja048911m15250732 – reference: MarkóIESelective and efficient platinum(0)-carbene complexes as hydrosilylation catalystsScience20022982042062002Sci...298..204M10.1126/science.107333812364803 – reference: ShenJJEnantioselective iron-catalyzed intramolecular cyclopropanation reactionsAngew. Chem. Int. Ed.20145313188131911:CAS:528:DC%2BC2cXhvFGit7zP10.1002/anie.201406853 – reference: GuoNHuMYFengYZhuSFHighly efficient and practical hydrogenation of olefins catalyzed by in situ generated iron complex catalystsOrg. Chem. Front.201526926961:CAS:528:DC%2BC2MXmsVWku7Y%3D10.1039/C5QO00064E – reference: YoonTPJacobsenENPrivileged chiral catalystsScience2003299169116932003Sci...299.1691Y1:CAS:528:DC%2BD3sXitVSjtLg%3D10.1126/science.108362212637734 – reference: BedfordRBHow low does iron go? Chasing the active species in Fe-catalyzed cross-coupling reactionsAcc. Chem. Res.201548148514931:CAS:528:DC%2BC2MXntlClt78%3D10.1021/acs.accounts.5b0004225916260 – reference: WuJYStanzlBNRitterTA strategy for the synthesis of well-defined iron catalysts and application to regioselective diene hydrosilylationJ. Am. Chem. Soc.201013213214132161:CAS:528:DC%2BC3cXhtFSnsrfK10.1021/ja106853y20809631 – reference: PappasITreacySChirikPJAlkene hydrosilylation using tertiary silanes with α‑diimine nickel catalysts. Redox-active ligands promote a distinct mechanistic pathway from platinum catalystsACS Catal.20166410541091:CAS:528:DC%2BC28XosFSmtLc%3D10.1021/acscatal.6b01134 – reference: GreenhalghMDFrankDJThomasSPIron-catalysed chemo-, regio-, and stereoselective hydrosilylation of alkenes and alkynes using a bench-stable iron(II) pre-catalystAdv. Synth. Catal.20143565845901:CAS:528:DC%2BC2cXhs12isrs%3D10.1002/adsc.201300827 – reference: Marciniec, B. (ed.) Hydrosilylation, A Comprehensive Review on Recent Advances (Spring, 2009). – reference: CollinsKDGloriusFA robustness screen for the rapid assessment of chemical reactionsNat. Chem.201355976011:CAS:528:DC%2BC3sXptVansL4%3D10.1038/nchem.166923787750 – reference: ChenYSui-SengCBoucherSZargarianDInfluence of SiMe3 substituents on structures and hydrosilylation activities of ((SiMe3)1or2-indenyl)Ni(PPh3)ClOrganometallics2005241491551:CAS:528:DC%2BD2cXhtVGhs7rP10.1021/om0494420 – reference: Espinal-ViguriMWoofCRWebsterRLIron-catalyzed hydroboration: unlocking reactivity through ligand modulationChem. Eur. J.20162211605116081:CAS:528:DC%2BC28XhtFWjsLjK10.1002/chem.20160281827321704 – reference: ChengBLuPZhangHYChengXPLuZHighly enantioselective cobalt-catalyzed hydrosilylation of alkenesJ. Am. Chem. Soc.2017139943994421:CAS:528:DC%2BC2sXhtVOntrbI10.1021/jacs.7b0413728654260 – reference: JiaXHuangZConversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylationNat. Chem.201681571611:CAS:528:DC%2BC2MXitVygurzF10.1038/nchem.241726791899 – reference: GuoJLuZHighly chemo-, regio-, and stereoselective cobalt-catalyzed Markovnikov hydrosilylation of alkynesAngew. Chem. Int. Ed.20165510835108381:CAS:528:DC%2BC28Xht1Wmt7%2FE10.1002/anie.201605501 – reference: ChenJChengBCaoMLuZIron-catalyzed asymmetric hydrosilylation of 1,1-disubstituted alkenesAngew. Chem. Int. Ed.201554466146641:CAS:528:DC%2BC2MXkvF2msrg%3D10.1002/anie.201411884 – reference: SchoffersEReinventing phenanthroline ligands‒chiral derivatives for asymmetric catalysisEur. J. Org. Chem.200320031145115210.1002/ejoc.200390168 – reference: DaifukuSLKneeboneJLSnyderBERNeidigMLIron(II) active species in iron-bisphosphine catalyzed Kumada and Suzuki-Miyaura cross-couplings of phenyl nucleophiles and secondary alkyl halidesJ. Am. Chem. Soc.201513711432114441:CAS:528:DC%2BC2MXhtlWiu7rF10.1021/jacs.5b06648262666984887939 – reference: Zhou, Q.-L. (ed.) Privileged Chiral Ligands and Catalysts (Wiley-VCH, 2011). – reference: DuXHuangZAdvances in base-metal-catalyzed alkene hydrosilylationACS Catal.20177122712431:CAS:528:DC%2BC2sXmvVaisw%3D%3D10.1021/acscatal.6b02990 – reference: JensenJFSvendsenBYla CourTVPedersenHLJohannsenMHighly enantioselective hydrosilylation of aromatic alkenesJ. Am. Chem. Soc.2002124455845591:CAS:528:DC%2BD38XisFSgt7k%3D10.1021/ja025617q11971692 – reference: JunqueraLBPuertaMCValergaPR-allyl nickel(II) complexes with chelating N-heterocyclic carbenes: synthesis, structural characterization, and catalytic cctivityOrganometallics201231217521831:CAS:528:DC%2BC38XjtFyjtL8%3D10.1021/om200937d – reference: DuXZhangYPengDHuangZBase metal-catalyzed regiodivergent alkene hydrosilylationsAngew. Chem. Int. Ed.201655667166751:CAS:528:DC%2BC28Xms1Ois7o%3D10.1002/anie.201601197 – reference: NodaDTaharaASunadaYNagashimaHNon-precious-metal catalytic systems involving iron or cobalt carboxylates and alkyl isocyanides for hydrosilylation of alkenes with hydrosiloxanesJ. Am. Chem. Soc.2016138248024831:CAS:528:DC%2BC28XhtVKhsLY%3D10.1021/jacs.5b1131126760915 – reference: ZhuSFCaiYMaoHXXieJHZhouQLEnantioselective iron-catalysed O–H bond InsertionsNat. Chem.201025465511:CAS:528:DC%2BC3cXnvVSiu7o%3D10.1038/nchem.65120571572 – reference: ChenCRapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalystJ. Am. Chem. Soc.201513713244132471:CAS:528:DC%2BC2MXhs1Ggt7fI10.1021/jacs.5b0861126444496 – reference: PalmerWNDiaoTPappasIChirikPJHigh-activity cobalt catalysts for alkene hydroboration with electronically responsive terpyridine and α‑diimine ligandsACS Catal.201556226261:CAS:528:DC%2BC2cXitFOgs7vK10.1021/cs501639r – reference: TondreauAMIron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanesScience20123355675702012Sci...335..567T1:CAS:528:DC%2BC38XhsVequrw%3D10.1126/science.121445122301315 – reference: WangCTeoWJGeSCobalt-catalyzed regiodivergent hydrosilylation of vinylarenes and aliphatic alkenes: ligand- and silane-dependent regioselectivitiesACS Catal.201778558631:CAS:528:DC%2BC28XhvFCjtrjO10.1021/acscatal.6b02518 – reference: ChenYZargarianDPhenylsilane dehydrocoupling and addition to styrene catalyzed by (R-indenyl)Ni(phosphine)(methyl) complexesCan. J. Chem.2009872802871:CAS:528:DC%2BD1cXhsFagsbrM10.1139/v08-132 – reference: ScheuermannMLJohnsonEJChirikPJAlkene isomerization-hydroboration promoted by phosphine-ligated cobalt catalystsOrg. Lett.201517271627191:CAS:528:DC%2BC2MXptVGlsrw%3D10.1021/acs.orglett.5b0113526010715 – reference: PengDPhosphinite-iminopyridine iron catalysts for chemoselective alkene hydrosilylationJ. Am. Chem. Soc.201313519154191661:CAS:528:DC%2BC3sXhvFWltrbF10.1021/ja404963f24304467 – reference: PengJDochertyJHDomineyAPThomasSPCobalt-catalysed Markovnikov selective hydroboration of vinylarenesChem. Commun.201753472647291:CAS:528:DC%2BC2sXmtVSisLY%3D10.1039/C7CC01085K – reference: FürstnerAPreparation, structure, and reactivity of nonstabilized organoiron compounds. Implications for iron-catalyzed cross coupling reactionsJ. Am. Chem. Soc.20081308773878710.1021/ja801466t18597432 – reference: MacNairAJMilletCRPNicholGSIronmongerAThomasSPMarkovnikov-selective, activator-free iron-catalyzed vinylarene hydroborationACS Catal.20166721772211:CAS:528:DC%2BC28XhsFGhtr%2FM10.1021/acscatal.6b02281 – volume: 7 start-page: 855 year: 2017 ident: 2472_CR32 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02518 – ident: 2472_CR21 doi: 10.1039/c39950001533 – volume: 6 start-page: 4105 year: 2016 ident: 2472_CR14 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01134 – volume: 135 start-page: 19154 year: 2013 ident: 2472_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404963f – ident: 2472_CR3 doi: 10.1002/9783527635207 – volume: 138 start-page: 2480 year: 2016 ident: 2472_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11311 – volume: 55 start-page: 10835 year: 2016 ident: 2472_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605501 – volume: 132 start-page: 13214 year: 2010 ident: 2472_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106853y – volume: 5 start-page: 622 year: 2015 ident: 2472_CR41 publication-title: ACS Catal. doi: 10.1021/cs501639r – volume: 53 start-page: 13188 year: 2014 ident: 2472_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201406853 – volume: 87 start-page: 280 year: 2009 ident: 2472_CR36 publication-title: Can. J. Chem. doi: 10.1139/v08-132 – volume: 126 start-page: 13794 year: 2004 ident: 2472_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046753t – volume: 2 start-page: 546 year: 2010 ident: 2472_CR17 publication-title: Nat. Chem. doi: 10.1038/nchem.651 – volume: 24 start-page: 149 year: 2005 ident: 2472_CR35 publication-title: Organometallics doi: 10.1021/om0494420 – volume: 2003 start-page: 1145 year: 2003 ident: 2472_CR16 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.200390168 – volume: 55 start-page: 6671 year: 2016 ident: 2472_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601197 – volume: 22 start-page: 11605 year: 2016 ident: 2472_CR38 publication-title: Chem. Eur. J. doi: 10.1002/chem.201602818 – volume: 126 start-page: 8786 year: 2004 ident: 2472_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja048911m – volume: 299 start-page: 1691 year: 2003 ident: 2472_CR2 publication-title: Science doi: 10.1126/science.1083622 – volume: 53 start-page: 4726 year: 2017 ident: 2472_CR44 publication-title: Chem. Commun. doi: 10.1039/C7CC01085K – volume: 48 start-page: 1485 year: 2015 ident: 2472_CR29 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00042 – volume: 356 start-page: 584 year: 2014 ident: 2472_CR45 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201300827 – volume: 54 start-page: 4661 year: 2015 ident: 2472_CR11 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411884 – volume: 137 start-page: 11432 year: 2015 ident: 2472_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06648 – ident: 2472_CR4 doi: 10.1007/978-1-4020-8172-9 – volume: 17 start-page: 2716 year: 2015 ident: 2472_CR42 publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b01135 – volume: 51 start-page: 1508 year: 2012 ident: 2472_CR20 publication-title: Inorg. Chem. doi: 10.1021/ic201803c – volume: 335 start-page: 567 year: 2012 ident: 2472_CR6 publication-title: Science doi: 10.1126/science.1214451 – volume: 54 start-page: 14523 year: 2015 ident: 2472_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201507829 – volume: 31 start-page: 2175 year: 2012 ident: 2472_CR37 publication-title: Organometallics doi: 10.1021/om200937d – volume: 7 start-page: 1227 year: 2017 ident: 2472_CR7 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02990 – volume: 137 start-page: 13244 year: 2015 ident: 2472_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08611 – volume: 298 start-page: 204 year: 2002 ident: 2472_CR5 publication-title: Science doi: 10.1126/science.1073338 – volume: 136 start-page: 12108 year: 2014 ident: 2472_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5060884 – volume: 35 start-page: 2923 year: 2016 ident: 2472_CR46 publication-title: Organometallics doi: 10.1021/acs.organomet.6b00474 – volume: 2 start-page: 692 year: 2015 ident: 2472_CR19 publication-title: Org. Chem. Front. doi: 10.1039/C5QO00064E – volume: 9 start-page: 595 year: 2017 ident: 2472_CR27 publication-title: Nat. Chem. doi: 10.1038/nchem.2697 – volume: 6 start-page: 7217 year: 2016 ident: 2472_CR39 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02281 – volume: 19 start-page: 969 year: 2017 ident: 2472_CR40 publication-title: Org. Lett. doi: 10.1021/acs.orglett.7b00227 – ident: 2472_CR1 doi: 10.1002/9781118839621 – volume: 5 start-page: 597 year: 2013 ident: 2472_CR31 publication-title: Nat. Chem. doi: 10.1038/nchem.1669 – volume: 8 start-page: 157 year: 2016 ident: 2472_CR23 publication-title: Nat. Chem. doi: 10.1038/nchem.2417 – volume: 124 start-page: 4558 year: 2002 ident: 2472_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja025617q – volume: 36 start-page: 1727 year: 2017 ident: 2472_CR15 publication-title: Organometallics doi: 10.1021/acs.organomet.7b00087 – volume: 139 start-page: 9439 year: 2017 ident: 2472_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04137 – volume: 130 start-page: 8773 year: 2008 ident: 2472_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801466t |
SSID | ssj0000391844 |
Score | 2.6016228 |
Snippet | Transition-metal-catalyzed alkene hydrosilylation is one of the most important homogeneous catalytic reactions, and the development of methods that use base... Hydrosilylation of alkenes poses substantial challenges in terms of regioselectivity. Here, the authors report iron complexes with 1,10-phenantroline ligand... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 221 |
SubjectTerms | 119/118 140/131 140/58 639/638/224/685 639/638/549/933 639/638/77/888 Aliphatic compounds Alkenes Catalysis Catalysts Chemical reactions Dienes Heavy metals Humanities and Social Sciences Hydrosilylation Iron Ligands Metals multidisciplinary Regioselectivity Scaffolds Science Science (multidisciplinary) Selectivity Styrenes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbjRqHD9iHwFRVQg4Uak3yxk7dEWUrdjtIfz6zjjZ1S7PC7fIcSRnZjz-xh5_w9grYsGCpoYyUFqNAtmV1ppYqmShBlu7IOmC86fP5uxcfbjQFzulvignbKIHngR3Qmkb1iCu0brFZ9XKrolSUa0bnZJtyftWrtoJprIPlg5DFzXfkqmkPVmp7BPIKeOy1NSl2VuJMmH_71Dmr8mSP52Y5oXo9B67OyNI_mYa-SG7lYb77PZUU3J8wBYfF1_p-i6nHVYujtEBUhpXyAURCFPyFYSuW_aRI17lRFfcj5zqMyxXuSYOuj9Od9_KvLMz_kiRh_4bukR-OUb8k0U_TvlzD9n56fsv787KuZ5CCYjL1iUIlFiXag202yPqEOkpQHICjJXGgFMhBp2gkRgY29AA9m3BgKlBRykfsYNhOaQnjMcaku2cFQkBTGqti9q0Qgnit0uNdAUTG9l6mMnGqeZF7_Oht7R-0odHffisD28K9nr7zdVEtfHX3m9JZdueRJOdG9B4_Gw8_l_GU7CjjcL9PHdXnrZhmspZrQv2cvsaZx0dpYQhLa9zH4eBFmKlgj2e7GM7EmxEEGeqgjV7lrM31P03w-IyM3tT8IfhTsGONza2M6w_iuLp_xDFM3YHsSAlNpZCH7GD9ffr9Bzx1rp9kafWDUevI_s priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrZC4IN4ECjISN2p1E8eOc0CIolYVghVCVOotcmynXTVKSnd7SH99Z5wHLI_eIseRHM94_Hk88w3AW2LBslliuaGwmtSKimutHE-9tonVSW4EJTh_Xaij4_TziTzZgsWYC0NhlaNNDIbatZZ85Ht0OM7muZbyw8VPTlWj6HZ1LKFhhtIK7n2gGLsD22iS5XwG2_sHi2_fJ68L8aHrNB2yZ-ZC763SYCvIWON2lSVcbexQgcj_X-jz7yDKP25SwwZ1-ADuD8iSfexV4SFs-eYR3O1rTXaPYflleUppvYw8ryzeRcNI4V0mFEogrMlW1lRVWzuGOJYRjXHdMarb0K5CrRw0i4xy4njw-HTX3jFTn6OpZGedwz9Z1l0fV_cEjg8Pfnw64kOdBW4Rr625jaX3lU-kJS9QnBhHT8b6PLZKC6VsnhpnpLeZwAOzNpnFvqVVViVWOiGewqxpG_8cmEus11WuY4_Axpc6d1KVcRoT753PRB5BPM5tYQcScqqFURfhMlzoopdHgfIogjwKFcG76ZuLnoLj1t77JLKpJ9Fnh4b28rQYVmNBsUBaIViWssTntBRV5kRKBZRwKnQZwc4o8GJY06vilwZG8GZ6jauRrlhM49ur0CfHAxhiqAie9foxjQQbEdypeQTZhuZsDHXzTbM8C4zfdCjEY1AEu6OO_Tas_07Fi9v_4iXcQ_RHoYw8ljswW19e-VeIsNbl62HZ3AA2oyP8 priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals Open Access dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuqOWZPpCRuNGITfyIcywrqgoBJyr1Zjm2066Ikqq7PYRfz4zzEAsFiVuUjCXHMx5_Ho-_AXhLLFiuyF1qKa1GOF6nWiufiqBd7nReWk4XnL98VecX4tOlvNyBfLoLE5P2I6VldNNTdtj7tYhTmnwqripFnqoH8FAXXJJVL9VyjqsQ47kWYrwfs-D6nqZba1Ck6r8PX_6ZJvnbWWlcgs724MmIHdnp0Nt92AntU3g0VJPsn8Hq8-qKLu4yiq2y7ARdHyVw2VgKgdAkWztb113jGSJVRkTFTc-oMkO3jtVw0PExuvWWxphO_yN4Zpvv6AzZde_xT1ZNP2TOPYeLs4_flufpWEkhdYjINqnLZAh1yKWjOE-WW09P1oUyc0pzpVwprLcyuILjlljbwqFs5ZRTuZOe8xew23ZteAXM5y7outRZQOgSKl16qapMZMRsFwpeJpBNY2vcSDNO1S4aE4-7uTaDPgzqw0R9GJXAu7nNzUCy8U_pD6SyWZIIsuOL7vbKjAZjKNtHK4TDUlb4LCpeF54LKpGEQ6GrBI4mhZtx1q4NBWCKRamlTODN_BnnGx2i2DZ0d1GmxC0WoqQEXg72MfcEXyJ8U4sEii3L2erq9pd2dR05vWnbhxudBE4mG_ulW38dioP_Ez-Ex4j3KHkxzeQR7G5u78IxYqpN9TpOop8zABsX priority: 102 providerName: Springer Nature |
Title | Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalyzed alkene hydrosilylation |
URI | https://link.springer.com/article/10.1038/s41467-017-02472-6 https://www.ncbi.nlm.nih.gov/pubmed/29335560 https://www.proquest.com/docview/1987709855 https://www.proquest.com/docview/1989585293 https://pubmed.ncbi.nlm.nih.gov/PMC5768772 https://doaj.org/article/42378608055b4234b3f7d3430235ee8b |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tQ0hcEG8CS2UkbmyAxLHjHBDqVltWFawQUKm3yLGd3YqogbYrEX49M05SKHS5tFHiSI7n4W_G8wB4TlWwTBqbUFNYTWJ4GSolbZg4ZWKj4kxzSnD-cC7PpslkJmZ70Lc76hZwtdO0o35S02X18sf35i0K_Js2ZVy9WiVe3Enf4o6TxqHch0N_XkShfB3c95qZZ2jQJF3uzO5XqTowGvlC-KKVv7cqX9F_Fwz9N5ryryNVv1ONb8OtDmKyYcsTd2DPLe7CjbbpZHMP5u_nF5Tfy8gFy6Jj1JAU56V9xwQCnWxldFnWlWUIaBnVM64aRg0c6pVvmoP6kVFyXOhdP81PZ5muvqLOZJeNxS-ZV00bYHcfpuPTL6OzsGu4EBoEbuvQRMK50sXCkDsoirWlK21cFhmpuJQmS7TVwpmUo-WsdGpwbGGkkbERlvMHcLCoF-4RMBsbp8pMRQ4RjitUZoUsoiSiAngu5VkAUb-2uemqkVNTjCr3p-Jc5S1pciRN7kmTywBebN751tbi-O_oEyLZZiTV0fY36uVF3ollTkFBSiJqFqLA66TgZWp5Qp2UcClUEcBRT_C8582c_DTp60wJEcCzzWMUSzpr0QtXX_kxGVpiyEoBPGz5YzOTnr8CSLc4Z2uq208W80tf-pusQ7SHAjjueeyPaV27FI-vncITuIkIkMIZw0gcwcF6eeWeIspaFwPYT2cp_qrxuwEcDoeTzxP8Pzk9__gJ747kaOD9FwMvYr8A6-QnDw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN5NKWAkONGom8RxnEOFKLTa0u0KoVbqzTi2065YbdruVij8OH4bM06ysDx66y1yHMnx2ONvxjPzAbyiKlgmi02oKayGm6QMpRQ25E6a2Mg41wklOB-OxOCYfzxJT1bgR5cLQ2GVnU70itpWhnzkW2QcZ_1cpunb84uQWKPodrWj0NAttYLd9iXG2sSOA1d_QxNutr3_AeX9Oo73do_eD8KWZSA0iFbmoYlS50oXp4Z8IFGsLT1p4_LICJkIYXKurU6dyRI0F6XODPYtjDAiNqklhygeAaucHCg9WN3ZHX36vPDyUP11yXmbrdNP5NaMe91EhwMej1kciqUT0RMH_Avt_h20-cfNrT8Q9-7B3RbJsnfN0rsPK276AG413Jb1QxgPx6eURszI08uiTVTEFE6mPTEDYVs2M7osq4lliJsZlU2e1Ix4IqqZ5-ZBNcwoBy_0Hqb6u7NMT76iamZntcU_GU_qJo7vERzfyIw_ht60mro1YDY2Tpa5jBwCKVfI3KaiiHhEdfZcluQBRN3cKtMWPSfujYnyl--JVI08FMpDeXkoEcCbxTfnTcmPa3vvkMgWPalct2-oLk9Vu_sVxR5JgeA8TQt85kVSZjbhRNiEUyGLADY6gatWh8zUrxUfwMvFa9z9dKWjp6668n1yNPgQswXwpFkfi5FgI4JJ0Q8gW1o5S0NdfjMdn_kK42SEotkVwGa3xn4b1n-nYv36v3gBtwdHh0M13B8dPIU7iDwpjDKM0g3ozS-v3DNEd_PiebuFGHy56V37EzNrYd0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxLspBYwEJxrtJvErB4SAsmppqThQaW_GsZ12xWrTNluh8NP4dcw4D1gevfUWOY7keMbjb8bj-Qh5jlWwrExtbDCthtmsjJUSLmZe2dSqNDcZXnD-eCh2j9iHKZ-ukR_9XRhMq-xtYjDUrrIYIx-hcyzHueJ8VHZpEZ92Jq9Pz2JkkMKT1p5Oo1WRfd98A_etfrW3A7J-kaaT95_f7cYdw0BsAaksY5tw70ufcovxjyQ1Dp-M9XlihcqEsDkzznBvZQauojLSQt_CCitSyx0GQ8H8X5MZY0gbIadyiO9g5XXFWHdPZ5ypUc2CVcJtATZGmcZiZS8MlAH_wrl_p2v-cWYbtsLJbXKrw7D0Tat0d8iaX9wl11tWy-YemR3MjvECMcUYL022wQRjIpkJlAyIamltTVlWc0cBMVMsmDxvKDJEVHVg5QEDTPH2XRxiS81376iZfwWjTE8aB38ymzdtBt99cnQl8_2ArC-qhd8g1KXWqzJXiQcI5QuVOy6KhCVYYc_LLI9I0s-ttl25c2TdmOtw7J4p3cpDgzx0kIcWEXk5fHPaFvu4tPdbFNnQEwt1h4bq_Fh3615j1pESAMs5L-CZFVkpXcaQqgmmQhUR2eoFrjvrUetfuh6RZ8NrWPd4mGMWvroIfXJw9QCtReRhqx_DSKARYKQYR0SuaM7KUFffLGYnobY4up_gcEVku9ex34b136nYvPwvnpIbsFb1wd7h_iNyEyAn5k_GCd8i68vzC_8YYN2yeBLWDyVfrnrB_gSKzF95 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ligands+with+1%2C10-phenanthroline+scaffold+for+highly+regioselective+iron-catalyzed+alkene+hydrosilylation&rft.jtitle=Nature+communications&rft.au=Hu%2C+Meng-Yang&rft.au=He%2C+Qiao&rft.au=Fan%2C+Song-Jie&rft.au=Wang%2C+Zi-Chen&rft.date=2018-01-15&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=221&rft_id=info:doi/10.1038%2Fs41467-017-02472-6&rft_id=info%3Apmid%2F29335560&rft.externalDocID=29335560 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |