Population pharmacokinetic model selection assisted by machine learning

A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pha...

Full description

Saved in:
Bibliographic Details
Published inJournal of pharmacokinetics and pharmacodynamics Vol. 49; no. 2; pp. 257 - 270
Main Authors Sibieude, Emeric, Khandelwal, Akash, Girard, Pascal, Hesthaven, Jan S., Terranova, Nadia
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1567-567X
1573-8744
1573-8744
DOI10.1007/s10928-021-09793-6

Cover

Abstract A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches.
AbstractList A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches.
A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches.A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches.
Author Sibieude, Emeric
Terranova, Nadia
Hesthaven, Jan S.
Girard, Pascal
Khandelwal, Akash
Author_xml – sequence: 1
  givenname: Emeric
  surname: Sibieude
  fullname: Sibieude, Emeric
  organization: School of Basic Sciences, EPFL, Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany)
– sequence: 2
  givenname: Akash
  surname: Khandelwal
  fullname: Khandelwal, Akash
  organization: Merck KGaA
– sequence: 3
  givenname: Pascal
  surname: Girard
  fullname: Girard, Pascal
  organization: Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany)
– sequence: 4
  givenname: Jan S.
  surname: Hesthaven
  fullname: Hesthaven, Jan S.
  organization: Chair of Computational Mathematics and Simulation Science (MCSS), Ecole Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 5
  givenname: Nadia
  orcidid: 0000-0002-0033-3695
  surname: Terranova
  fullname: Terranova, Nadia
  email: nadia.terranova@merckgroup.com
  organization: Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34708337$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2LFDEQhoOsuB_6BzxIgxcvrflO-iLI4q7Cgh4UvIV0unomazoZk25l_v1mZ0ZX97B4CAnU8xaVp07RUUwREHpO8GuCsXpTCO6objElLe5Ux1r5CJ0QoVirFedHt2-p2nq-HaPTUq4xJlJQ_AQdM66wZkydoMvPabMEO_sUm83a5sm69N1HmL1rpjRAaAoEcLu6LcWXGYam3zaVW1esCWBz9HH1FD0ebSjw7HCfoa8X77-cf2ivPl1-PH931TrB8dz2IGzHRmbZKDWlUvZC8kE5hznHw0i5dYS6oR-Zgl6PGpjlVPQCMyfcqICdIbbvu8SN3f6yIZhN9pPNW0OwudVi9lpM1WJ2Woysqbf71GbpJxgcxDnbu2Sy3vxbiX5tVumn0R3HmtDa4NWhQU4_FiizmXxxEIKNkJZiqNCqOu8EqejLe-h1WnKsUgyVnMiOa6kq9eLvif6M8nszFdB7wOVUSobROD_v9lQH9OHh39J70f9SdBBbKhxXkO_GfiB1A2jiw7g
CitedBy_id crossref_primary_10_1111_cts_70010
crossref_primary_10_1007_s40262_024_01425_9
crossref_primary_10_1007_s10928_023_09887_3
crossref_primary_10_1002_psp4_12944
crossref_primary_10_3389_fmed_2022_808969
crossref_primary_10_1002_psp4_13213
crossref_primary_10_1002_psp4_13068
crossref_primary_10_1007_s40265_024_02084_7
crossref_primary_10_1016_j_ifacsc_2024_100252
crossref_primary_10_1016_j_xphs_2023_01_010
crossref_primary_10_1002_cpt_3053
crossref_primary_10_1097_JS9_0000000000001734
crossref_primary_10_1016_j_fct_2024_114789
crossref_primary_10_1208_s12248_024_00934_6
crossref_primary_10_3390_biomedinformatics3040057
crossref_primary_10_1007_s10928_023_09875_7
crossref_primary_10_1002_jcph_2156
crossref_primary_10_3390_pharmaceutics14091814
crossref_primary_10_1007_s40262_023_01310_x
crossref_primary_10_1007_s40262_025_01486_4
crossref_primary_10_3389_fphar_2024_1389271
crossref_primary_10_1007_s40262_022_01138_x
crossref_primary_10_3390_pharmaceutics16030332
crossref_primary_10_1186_s12991_023_00483_w
crossref_primary_10_3389_fphar_2022_975855
crossref_primary_10_1002_cpt_3165
Cites_doi 10.1038/s41591-018-0335-9
10.1146/annurev.med.55.091902.105248
10.1021/tx800102e
10.1002/psp4.12418
10.1002/cpt.1771
10.1148/rg.2017170077
10.1186/s13073-014-0057-7
10.1177/147323000903700603
10.1109/TPAMI.2004.105
10.1002/psp4.12372
10.1208/s12248-021-00593-x
10.1002/psp4.12404
10.1007/s11095-007-9435-9
10.21917/ijsc.2015.0150
10.1016/j.coche.2019.02.009
10.1007/s10928-021-09757-w
10.1038/psp.2012.4
10.1016/S0169-409X(03)00079-6
10.1214/aos/1018031103
10.1038/psp.2013.26
10.1098/rsbl.2017.0660
10.1007/s10928-006-9004-6
10.1002/psp4.12049
10.1038/psp.2013.14
10.1007/s11701-007-0021-2
10.1023/A:1011907920641
10.1007/s10928-012-9258-0
10.1161/CIRCULATIONAHA.109.914820
10.1109/IEMBS.2011.6089917
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7U9
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
H94
K9.
M0S
M1P
M7N
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10928-021-09793-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE
ProQuest One Academic Middle East (New)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1573-8744
EndPage 270
ExternalDocumentID 10.1007/s10928-021-09793-6
PMC8940812
34708337
10_1007_s10928_021_09793_6
Genre Journal Article
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LLZTM
LSO
M1P
M4Y
MA-
MK0
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z83
Z87
Z8O
Z8P
Z8Q
Z91
ZMTXR
ZOVNA
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7U9
7XB
8FK
H94
K9.
M7N
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c540t-be5a93f3a3f682266b564d7cc0440df24ac12cdbf37eb8f8e3a425b503c5cf7e3
IEDL.DBID BENPR
ISSN 1567-567X
1573-8744
IngestDate Sun Oct 26 03:51:01 EDT 2025
Tue Sep 30 16:32:24 EDT 2025
Sun Aug 24 02:57:59 EDT 2025
Tue Oct 07 05:36:42 EDT 2025
Wed Feb 19 02:27:18 EST 2025
Thu Apr 24 23:09:32 EDT 2025
Wed Oct 01 03:01:03 EDT 2025
Fri Feb 21 02:47:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Pharmacometrics
Neural network
Genetic algorithm
Model-informed drug discovery and development
Population PK/PD
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-be5a93f3a3f682266b564d7cc0440df24ac12cdbf37eb8f8e3a425b503c5cf7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0033-3695
OpenAccessLink https://doi.org/10.1007/s10928-021-09793-6
PMID 34708337
PQID 2641694867
PQPubID 55470
PageCount 14
ParticipantIDs unpaywall_primary_10_1007_s10928_021_09793_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8940812
proquest_miscellaneous_2587744951
proquest_journals_2641694867
pubmed_primary_34708337
crossref_citationtrail_10_1007_s10928_021_09793_6
crossref_primary_10_1007_s10928_021_09793_6
springer_journals_10_1007_s10928_021_09793_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of pharmacokinetics and pharmacodynamics
PublicationTitleAbbrev J Pharmacokinet Pharmacodyn
PublicationTitleAlternate J Pharmacokinet Pharmacodyn
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hockstein, Gourin, Faust, Terris (CR12) 2007; 1
Miller, Goldberg (CR28) 1995; 9
Chaturvedula, Calad-Thomson, Liu, Sale, Gattu, Goyal (CR33) 2019; 8
Oh, Lee, Moon (CR31) 2004; 26
Chartrand, Cheng, Vorontsov, Drozdzal, Turcotte, Pal (CR25) 2017; 37
Liu, Zhu, Liu, Jean, Huang, ElZarrad (CR19) 2020; 107
Sherer, Sale, Pollock, Belani, Egorin, Ivy (CR24) 2012; 39
CR10
Roden, Wilke, Kroemer, Stein (CR4) 2011; 123
Smyth (CR5) 2003; 55
Poynton, Choi, Kim, Park, Noh, Hong (CR34) 2009; 37
Mould, Upton (CR7) 2013; 2
Bauer (CR9) 2019; 8
Mould, Upton (CR6) 2012; 1
Delyon, Lavielle, Moulines (CR8) 1999; 27
Derendorf, Meibohm (CR3) 1999; 16
Liang, Tsui, Ni, Valentim, Baxter, Liu (CR13) 2019; 25
Darzi, Munz (CR11) 2004; 55
Khandelwal, Bahadduri, Chang, Polli, Swaan, Ekins (CR17) 2007; 24
Umbarkar, Sheth (CR29) 2015; 6
Khandelwal, Krasowski, Reschly, Sinz, Swaan, Ekins (CR18) 2008; 21
Baker, Pena, Jayamohan, Jerusalem (CR14) 2018; 14
(CR26) 2014
Haghighatlari, Hachmann (CR15) 2019; 23
Marshall, Madabushi, Manolis, Krudys, Staab, Dykstra (CR2) 2019; 8
CR20
Holland (CR22) 1975
Jeon, Nim, Teyra, Datti, Wrana, Sidhu (CR16) 2014; 6
Terranova, Venkatakrishnan, Benincosa (CR32) 2021
Byon, Smith, Chan, Tortorici, Riley, Dai (CR27) 2013; 2
Sibieude, Khandelwal, Girard, Hesthaven, Terranova (CR21) 2021; 48
Bies, Muldoon, Pollock, Manuck, Smith, Sale (CR23) 2006; 33
Marshall, Burghaus, Cosson, Cheung, Chenel, DellaPasqua (CR1) 2016; 5
El-mihoub, Hopgood, Nolle, Alan (CR30) 2006; 3
EA Sherer (9793_CR24) 2012; 39
DR Mould (9793_CR6) 2012; 1
DR Mould (9793_CR7) 2013; 2
RJ Bauer (9793_CR9) 2019; 8
H Liang (9793_CR13) 2019; 25
R Core Team (9793_CR26) 2014
AJ Umbarkar (9793_CR29) 2015; 6
Q Liu (9793_CR19) 2020; 107
RE Baker (9793_CR14) 2018; 14
A Chaturvedula (9793_CR33) 2019; 8
9793_CR20
HD Smyth (9793_CR5) 2003; 55
H Derendorf (9793_CR3) 1999; 16
T El-mihoub (9793_CR30) 2006; 3
SF Marshall (9793_CR1) 2016; 5
BL Miller (9793_CR28) 1995; 9
DM Roden (9793_CR4) 2011; 123
NG Hockstein (9793_CR12) 2007; 1
JH Holland (9793_CR22) 1975
N Terranova (9793_CR32) 2021
B Delyon (9793_CR8) 1999; 27
SA Darzi (9793_CR11) 2004; 55
A Khandelwal (9793_CR17) 2007; 24
W Byon (9793_CR27) 2013; 2
J Jeon (9793_CR16) 2014; 6
RJ Bies (9793_CR23) 2006; 33
M Haghighatlari (9793_CR15) 2019; 23
S Marshall (9793_CR2) 2019; 8
I-S Oh (9793_CR31) 2004; 26
9793_CR10
MR Poynton (9793_CR34) 2009; 37
A Khandelwal (9793_CR18) 2008; 21
G Chartrand (9793_CR25) 2017; 37
E Sibieude (9793_CR21) 2021; 48
References_xml – volume: 25
  start-page: 433
  issue: 3
  year: 2019
  end-page: 438
  ident: CR13
  article-title: Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0335-9
– volume: 55
  start-page: 223
  year: 2004
  end-page: 237
  ident: CR11
  article-title: The impact of minimally invasive surgical techniques
  publication-title: Annu Rev Med
  doi: 10.1146/annurev.med.55.091902.105248
– volume: 21
  start-page: 1457
  issue: 7
  year: 2008
  end-page: 1467
  ident: CR18
  article-title: Machine learning methods and docking for predicting human pregnane X receptor activation
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx800102e
– volume: 9
  start-page: 193
  year: 1995
  end-page: 212
  ident: CR28
  article-title: Genetic algorithms, tournament selection, and the effects of noise
  publication-title: Complex Syst
– volume: 8
  start-page: 440
  issue: 7
  year: 2019
  end-page: 443
  ident: CR33
  article-title: Artificial intelligence and pharmacometrics: time to embrace, capitalize, and advance?
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12418
– volume: 107
  start-page: 726
  issue: 4
  year: 2020
  end-page: 729
  ident: CR19
  article-title: Application of machine learning in drug development and regulation: current status and future potential
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.1771
– volume: 37
  start-page: 2113
  issue: 7
  year: 2017
  end-page: 2131
  ident: CR25
  article-title: Deep learning: a primer for radiologists
  publication-title: Radiographics
  doi: 10.1148/rg.2017170077
– volume: 6
  start-page: 57
  issue: 7
  year: 2014
  ident: CR16
  article-title: A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening
  publication-title: Genome Med
  doi: 10.1186/s13073-014-0057-7
– volume: 37
  start-page: 1680
  issue: 6
  year: 2009
  end-page: 1691
  ident: CR34
  article-title: Machine learning methods applied to pharmacokinetic modelling of remifentanil in healthy volunteers: a multi-method comparison
  publication-title: J Int Med Res
  doi: 10.1177/147323000903700603
– volume: 26
  start-page: 1424
  issue: 11
  year: 2004
  end-page: 1437
  ident: CR31
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.105
– volume: 8
  start-page: 87
  issue: 2
  year: 2019
  end-page: 96
  ident: CR2
  article-title: Model-informed drug discovery and development: current industry good practice and regulatory expectations and future perspectives
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12372
– year: 2021
  ident: CR32
  article-title: Application of machine learning in translational medicine: current status and future opportunities
  publication-title: AAPS J
  doi: 10.1208/s12248-021-00593-x
– volume: 8
  start-page: 525
  issue: 8
  year: 2019
  end-page: 537
  ident: CR9
  article-title: NONMEM tutorial part i: description of commands and options, with simple examples of population analysis
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12404
– year: 2014
  ident: CR26
  publication-title: R: a language and environment for statistical computing
– volume: 24
  start-page: 2249
  issue: 12
  year: 2007
  end-page: 2262
  ident: CR17
  article-title: Computational models to assign biopharmaceutics drug disposition classification from molecular structure
  publication-title: Pharm Res
  doi: 10.1007/s11095-007-9435-9
– volume: 6
  start-page: 1083
  issue: 1
  year: 2015
  end-page: 1092
  ident: CR29
  article-title: Crossover operators in genetic algorithms: a review
  publication-title: ICTACT J Soft Comput
  doi: 10.21917/ijsc.2015.0150
– ident: CR10
– volume: 23
  start-page: 51
  year: 2019
  end-page: 57
  ident: CR15
  article-title: Advances of machine learning in molecular modeling and simulation
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2019.02.009
– volume: 48
  start-page: 597
  year: 2021
  end-page: 609
  ident: CR21
  article-title: Fast screening of covariates in population models empowered by machine learning
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-021-09757-w
– start-page: 100
  year: 1975
  ident: CR22
  publication-title: Adaptation in natural and artificial systems
– volume: 1
  start-page: e6
  year: 2012
  ident: CR6
  article-title: Basic concepts in population modeling, simulation, and model-based drug development
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1038/psp.2012.4
– volume: 55
  start-page: 807
  issue: 7
  year: 2003
  end-page: 828
  ident: CR5
  article-title: The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(03)00079-6
– volume: 27
  start-page: 94
  year: 1999
  end-page: 128
  ident: CR8
  article-title: Convergence of a stochastic approximation version of EM algorithm
  publication-title: Ann Stat
  doi: 10.1214/aos/1018031103
– volume: 2
  start-page: 1
  year: 2013
  end-page: 8
  ident: CR27
  article-title: Establishing best practices and guidance in population modeling: an experience with an internal population pharmacokinetic analysis guidance
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1038/psp.2013.26
– volume: 14
  start-page: 20170660
  issue: 5
  year: 2018
  ident: CR14
  article-title: Mechanistic models versus machine learning, a fight worth fighting for the biological community?
  publication-title: Biol Lett
  doi: 10.1098/rsbl.2017.0660
– volume: 33
  start-page: 195
  issue: 2
  year: 2006
  end-page: 221
  ident: CR23
  article-title: A genetic algorithm-based, hybrid machine learning approach to model selection
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-006-9004-6
– volume: 5
  start-page: 93
  issue: 3
  year: 2016
  end-page: 122
  ident: CR1
  article-title: Good practices in model-informed drug discovery and development: practice, application, and documentation
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12049
– volume: 3
  start-page: 124
  issue: 2
  year: 2006
  end-page: 137
  ident: CR30
  article-title: Hybrid genetic algorithms: a review
  publication-title: Eng Lett
– volume: 2
  start-page: e38
  year: 2013
  ident: CR7
  article-title: Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1038/psp.2013.14
– volume: 1
  start-page: 113
  issue: 2
  year: 2007
  end-page: 118
  ident: CR12
  article-title: A history of robots: from science fiction to surgical robotics
  publication-title: J Robot Surg
  doi: 10.1007/s11701-007-0021-2
– volume: 16
  start-page: 176
  issue: 2
  year: 1999
  end-page: 185
  ident: CR3
  article-title: Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives
  publication-title: Pharm Res
  doi: 10.1023/A:1011907920641
– volume: 39
  start-page: 393
  issue: 4
  year: 2012
  end-page: 414
  ident: CR24
  article-title: Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-012-9258-0
– volume: 123
  start-page: 1661
  issue: 15
  year: 2011
  end-page: 1670
  ident: CR4
  article-title: Pharmacogenomics: the genetics of variable drug responses
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.914820
– ident: CR20
– volume: 107
  start-page: 726
  issue: 4
  year: 2020
  ident: 9793_CR19
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt.1771
– volume: 2
  start-page: e38
  year: 2013
  ident: 9793_CR7
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1038/psp.2013.14
– volume: 37
  start-page: 2113
  issue: 7
  year: 2017
  ident: 9793_CR25
  publication-title: Radiographics
  doi: 10.1148/rg.2017170077
– volume: 1
  start-page: e6
  year: 2012
  ident: 9793_CR6
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1038/psp.2012.4
– volume: 5
  start-page: 93
  issue: 3
  year: 2016
  ident: 9793_CR1
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12049
– volume: 37
  start-page: 1680
  issue: 6
  year: 2009
  ident: 9793_CR34
  publication-title: J Int Med Res
  doi: 10.1177/147323000903700603
– volume: 16
  start-page: 176
  issue: 2
  year: 1999
  ident: 9793_CR3
  publication-title: Pharm Res
  doi: 10.1023/A:1011907920641
– ident: 9793_CR20
  doi: 10.1109/IEMBS.2011.6089917
– volume: 48
  start-page: 597
  year: 2021
  ident: 9793_CR21
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-021-09757-w
– ident: 9793_CR10
– volume: 6
  start-page: 57
  issue: 7
  year: 2014
  ident: 9793_CR16
  publication-title: Genome Med
  doi: 10.1186/s13073-014-0057-7
– volume: 6
  start-page: 1083
  issue: 1
  year: 2015
  ident: 9793_CR29
  publication-title: ICTACT J Soft Comput
  doi: 10.21917/ijsc.2015.0150
– start-page: 100
  volume-title: Adaptation in natural and artificial systems
  year: 1975
  ident: 9793_CR22
– volume: 55
  start-page: 807
  issue: 7
  year: 2003
  ident: 9793_CR5
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(03)00079-6
– volume: 39
  start-page: 393
  issue: 4
  year: 2012
  ident: 9793_CR24
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-012-9258-0
– volume: 8
  start-page: 87
  issue: 2
  year: 2019
  ident: 9793_CR2
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12372
– volume: 123
  start-page: 1661
  issue: 15
  year: 2011
  ident: 9793_CR4
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.914820
– volume: 3
  start-page: 124
  issue: 2
  year: 2006
  ident: 9793_CR30
  publication-title: Eng Lett
– volume: 8
  start-page: 440
  issue: 7
  year: 2019
  ident: 9793_CR33
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12418
– volume: 26
  start-page: 1424
  issue: 11
  year: 2004
  ident: 9793_CR31
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.105
– year: 2021
  ident: 9793_CR32
  publication-title: AAPS J
  doi: 10.1208/s12248-021-00593-x
– volume: 2
  start-page: 1
  year: 2013
  ident: 9793_CR27
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1038/psp.2013.26
– volume: 55
  start-page: 223
  year: 2004
  ident: 9793_CR11
  publication-title: Annu Rev Med
  doi: 10.1146/annurev.med.55.091902.105248
– volume: 14
  start-page: 20170660
  issue: 5
  year: 2018
  ident: 9793_CR14
  publication-title: Biol Lett
  doi: 10.1098/rsbl.2017.0660
– volume: 27
  start-page: 94
  year: 1999
  ident: 9793_CR8
  publication-title: Ann Stat
  doi: 10.1214/aos/1018031103
– volume: 23
  start-page: 51
  year: 2019
  ident: 9793_CR15
  publication-title: Curr Opin Chem Eng
  doi: 10.1016/j.coche.2019.02.009
– volume: 21
  start-page: 1457
  issue: 7
  year: 2008
  ident: 9793_CR18
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx800102e
– volume: 8
  start-page: 525
  issue: 8
  year: 2019
  ident: 9793_CR9
  publication-title: CPT Pharmacomet Syst Pharmacol
  doi: 10.1002/psp4.12404
– volume: 25
  start-page: 433
  issue: 3
  year: 2019
  ident: 9793_CR13
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0335-9
– volume: 33
  start-page: 195
  issue: 2
  year: 2006
  ident: 9793_CR23
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-006-9004-6
– volume: 1
  start-page: 113
  issue: 2
  year: 2007
  ident: 9793_CR12
  publication-title: J Robot Surg
  doi: 10.1007/s11701-007-0021-2
– volume: 24
  start-page: 2249
  issue: 12
  year: 2007
  ident: 9793_CR17
  publication-title: Pharm Res
  doi: 10.1007/s11095-007-9435-9
– volume-title: R: a language and environment for statistical computing
  year: 2014
  ident: 9793_CR26
– volume: 9
  start-page: 193
  year: 1995
  ident: 9793_CR28
  publication-title: Complex Syst
SSID ssj0016520
Score 2.46109
Snippet A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 257
SubjectTerms Algorithms
Biochemistry
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Classification
Computer applications
Entropy
Genetic algorithms
Learning algorithms
Machine Learning
Mathematical models
Models, Statistical
Neural networks
Neural Networks, Computer
Original Paper
Pharmacokinetics
Pharmacology/Toxicology
Pharmacy
Veterinary Medicine/Veterinary Science
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSD-La-iCBe3MC2adPmKOIDQdmDwt5KmoeKa13cXWT_vZNst-uqiB56mknadGbIFybzDcCRSLVmKmLUNJuWxkJJKk0mqRLSJJGJMqtdofDNLb-6j6_bSbuiyXG1MF_y967ETTgO5QgPvQJ9ifJZmMdNivvELD-rMwY88RSMeBxJKT7tqkDm5zmmN6FvyPL7Bck6S7oEC4OyK4fvstP5tBFdrMByhSDJ6cjkqzBjyjU4bo0oqIcNcjepqOo1yDFpTciph-tw2ao7dpFuJXlGpInaxHfFIT3fGcfJEVc7J9CkGJIXf-nSkKrLxMMG3F-c351d0aqZAlUIyvq0MIkUzDLJLEdQwHmR8FinSrme09pGsVRhpHRhWWqKzGaGSQznImkylSibGrYJc-VrabaBoA2ZzoyJFU_xfKWE0SHD6ZmwocDDeQDh-O_mqmIadw0vOvmEI9lZJEeL5N4iOQ_gpB7THfFs_Kq9NzZaXsVcL0doF3LhGAQDOKzFGC0uBSJL8zpAnSRDvIsfHQawNbJx_ToWp4hHGY5Op6xfKzgm7mlJ-fToGbkzESO0igJojP1k8lm_raJR-9IfFr3zv9l3YTFypRr-ltEezPXfBmYfAVS_OPCR8wG7PhJU
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48H4ECjIS6oX1dhMnTnysgFIhUe2hKy2nyM-CuqQrNiu0_HrGzmO7FFUgDpEizdiJnc_JF3nmG4DXIjeG6YRROx47mgotqbSFpFpImyU2KZzxicKfTvjxNP04y2Y78K7LhQnR7t2WZJPT4FWaqvpgYdzBpcQ34ZWVE_wVFogwykdovgG7PENGPoDd6cnk8HOQSsX3AB6zcJ4z6tXe29yZP3e0_X26Qjqvxk72G6i34eaqWsj1DzmfX_pGHd0F242uCU05H61qNdI_fxN-_N_h34M7LYklhw3q7sOOrR7A_qRRwV4PyekmqWs5JPtkstHHXj-ED5O-aBhZtJZzJLvoTUJhHrIMxXm8Ham9x6Ehak2-hbhPS9pCF2ePYHr0_vTtMW3rOVCNvLCmymZSMMckcxx5Cecq46nJtfZlr41LUqnjRBvlWG5V4QrLJL5RVDZmOtMut-wxDKqLyj4FgjBiprA21TzHXzwtrIkZds-Ei4VVLIK4e4qlbsXOfc2NebmRafZzWOIclmEOSx7Bm77NopH6uNZ7rwNH2S77ZYnsMubCixhG8Ko344L1uzCyshcr9MkKpNx403EETxos9ZdjaY6UmGHrfAtlvYMXA9-2VF-_BFHwQqTI7pIIhh18Nrd13SiGPWb_YtDP_s39OdxKfLZICHTag0H9fWVfIIer1ct2if4CzXc-_w
  priority: 102
  providerName: Unpaywall
Title Population pharmacokinetic model selection assisted by machine learning
URI https://link.springer.com/article/10.1007/s10928-021-09793-6
https://www.ncbi.nlm.nih.gov/pubmed/34708337
https://www.proquest.com/docview/2641694867
https://www.proquest.com/docview/2587744951
https://pubmed.ncbi.nlm.nih.gov/PMC8940812
https://link.springer.com/content/pdf/10.1007/s10928-021-09793-6.pdf
UnpaywallVersion publishedVersion
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-8744
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016520
  issn: 1573-8744
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-8744
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016520
  issn: 1573-8744
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-8744
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016520
  issn: 1573-8744
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3ttgfggPjewFIZCe2FRjRxYscHhNqq3RWIKEJbqXuKHNsBtCUttBXqv2ec5oNqpYpDEinjtHFmHD_HnvcA3gquNVU-dc1gkLuBUNKVJpKuEtKEvvGjXNtE4S8xu5oFn-bh_ATiOhfGLqus34nli1ovlf1G_h47bo8Jyw_3cfXLtapRdna1ltCQlbSC_lBSjJ1C17fMWB3ojiZx8rWZV2BhSdSIgxbu4jav0miqZDph2Zp9HF4LjFqXHXZVd_Dn3WWUzVzqA7i3LVZy90cuFv90V9NH8LDCmWS4D4zHcGKKJ3CR7Imqd31y3eZdrfvkgiQthfXuKVwmja4XWVWWW8SjWJqU2jlkXernWDuibxsqmmQ78rNcmmlIpUXx7RnMppPr8ZVbSS64CqHbxs1MKAXNqaQ5Q-jAWBayQHOlrDK1zv1AKs9XOsspN1mUR4ZKbPRZOKAqVDk39Dl0imVhzoCgp6mOjAkU4zgKU8Joj-LPU5F7AofwDnj1001VxUduZTEWacukbD2SokfS0iMpc-Bdc81qz8ZxtPR57bS0apnrtI0jB940ZmxTdqJEFma5xTJhhKgYb9pz4MXex83f0YAjaqV4NT_wflPA8nUfWoof30ve7kgECMB8B_p1nLS3dawW_SaW_qPSL49X-hXc920CR7n26Bw6m99b8xph1SbrwSmf8x50h9PRKLbHy5vPk17VgtA6ZmPcz_whnpvFyfDmL4mSJ38
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4a22FwQPymMMBIsAu1aOzEiQ8T4sdGx7aqQp3UW3BsBxAlLbTVlH-Ov43n1EmoJlVcdsjJdhLnPdvfi_2-D-CFjI3hmnFqe72chlIrqmyiqJbKRsyyJDcuUfhsIPrn4adxNN6CP3UujDtWWc-J1URtptr9I3-NC3cgpOOHezP7RZ1qlNtdrSU0lJdWMAcVxZhP7Dix5QWGcPOD4w9o75eMHR2O3vepVxmgGtHKgmY2UpLnXPFc4GopRBaJ0MRaOzFmk7NQ6YBpk-U8tlmSJ5Yr9PMs6nEd6Ty2HO97DXZCHkoM_nbeHQ6Gn5t9DBFVxJAYJMUUr7FP2_HJe9KxQzMM5yWOEirWl8ZLePfysc1m7_YG7C6LmSov1GTyz_J4dAtuelxL3q4c8TZs2eIO7A9XxNhll4zaPK95l-yTYUuZXd6Fj8NGR4zMfMkPxL9Ym1RaPWRe6fW4ckT7zjUNyUryszoKaonXvvh6D86v5OPfh-1iWtiHQNCzuEmsDbWIMerT0pqA4-25zANpM96BoP66qfb8506GY5K2zM3OIilaJK0skooOvGrazFbsHxtr79VGS_1MME9bv-3A86YYx7DbmFGFnS6xTpQgCseXDjrwYGXj5nE8jBElc2wdr1m_qeD4wddLiu_fKp7wRIYI-FgHurWftK-1qRfdxpf-o9OPNnf6Gez2R2en6enx4OQxXGcueaQ697QH24vfS_sEId0ie-rHDYEvVz1U_wKf5144
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IN4EChgJemGtbuwkjg8IIcrSUqj20Ep7Sx0_ALFkF3ZXVf4av45xnqwqrbj0kJPtJM7M2N_EM98AvJTCGK4Zp3Y4dDSSWlFlU0W1VDZmlqXO-EThL8fJwWn0aRJPtuBPmwvjwyrbNbFaqM1M-3_ke7hxh4n0_HB7rgmLGO-P3s5_UV9Byp-0tuU0ahU5suU5um-LN4f7KOtXjI0-nLw_oE2FAaoRqSxpbmMlueOKuwR3yiTJ4yQyQmtfiNk4FikdMm1yx4XNU5darlDH83jIdaydsBzvewWuCs6lDycUk87ZC5O4ooRE90hQvCZNwk6Ttic9LzRDR16ifdBkfVO8gHQvBmx2p7Y34fqqmKvyXE2n_2yMo9twq0G05F2tgndgyxZ3YXdcU2KXA3LSZ3gtBmSXjHuy7PIefBx3FcTIvGn5gcgXe5OqSg9ZVJV6fDvifK-UhuQl-VkFgVrSVL34eh9OL-XTP4DtYlbYR0BQp7hJrY10ItDf09KakOPtuXShtDkPIGy_bqYb5nNfgGOa9ZzNXiIZSiSrJJIlAbzuxsxr3o-NvXdaoWXNGrDIeo0N4EXXjNbrj2RUYWcr7BOniL_xpcMAHtYy7h7HI4H4mONosSb9roNnBl9vKb5_qxjCUxkh1GMBDFo96V9r0ywGnS79x6Qfb570c7iGBpp9Pjw-egI3mM8aqQKedmB7-XtlnyKWW-bPKqMhcHbZVvoXA19b0g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48H4ECjIS6oX1dhMnTnysgFIhUe2hKy2nyM-CuqQrNiu0_HrGzmO7FFUgDpEizdiJnc_JF3nmG4DXIjeG6YRROx47mgotqbSFpFpImyU2KZzxicKfTvjxNP04y2Y78K7LhQnR7t2WZJPT4FWaqvpgYdzBpcQ34ZWVE_wVFogwykdovgG7PENGPoDd6cnk8HOQSsX3AB6zcJ4z6tXe29yZP3e0_X26Qjqvxk72G6i34eaqWsj1DzmfX_pGHd0F242uCU05H61qNdI_fxN-_N_h34M7LYklhw3q7sOOrR7A_qRRwV4PyekmqWs5JPtkstHHXj-ED5O-aBhZtJZzJLvoTUJhHrIMxXm8Ham9x6Ehak2-hbhPS9pCF2ePYHr0_vTtMW3rOVCNvLCmymZSMMckcxx5Cecq46nJtfZlr41LUqnjRBvlWG5V4QrLJL5RVDZmOtMut-wxDKqLyj4FgjBiprA21TzHXzwtrIkZds-Ei4VVLIK4e4qlbsXOfc2NebmRafZzWOIclmEOSx7Bm77NopH6uNZ7rwNH2S77ZYnsMubCixhG8Ko344L1uzCyshcr9MkKpNx403EETxos9ZdjaY6UmGHrfAtlvYMXA9-2VF-_BFHwQqTI7pIIhh18Nrd13SiGPWb_YtDP_s39OdxKfLZICHTag0H9fWVfIIer1ct2if4CzXc-_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+pharmacokinetic+model+selection+assisted+by+machine+learning&rft.jtitle=Journal+of+pharmacokinetics+and+pharmacodynamics&rft.au=Sibieude+Emeric&rft.au=Khandelwal+Akash&rft.au=Girard%2C+Pascal&rft.au=Hesthaven%2C+Jan+S&rft.date=2022-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1567-567X&rft.eissn=1573-8744&rft.volume=49&rft.issue=2&rft.spage=257&rft.epage=270&rft_id=info:doi/10.1007%2Fs10928-021-09793-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-567X&client=summon