Population pharmacokinetic model selection assisted by machine learning
A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pha...
        Saved in:
      
    
          | Published in | Journal of pharmacokinetics and pharmacodynamics Vol. 49; no. 2; pp. 257 - 270 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.04.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1567-567X 1573-8744 1573-8744  | 
| DOI | 10.1007/s10928-021-09793-6 | 
Cover
| Abstract | A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches. | 
    
|---|---|
| AbstractList | A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches. A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches.A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches.  | 
    
| Author | Sibieude, Emeric Terranova, Nadia Hesthaven, Jan S. Girard, Pascal Khandelwal, Akash  | 
    
| Author_xml | – sequence: 1 givenname: Emeric surname: Sibieude fullname: Sibieude, Emeric organization: School of Basic Sciences, EPFL, Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany) – sequence: 2 givenname: Akash surname: Khandelwal fullname: Khandelwal, Akash organization: Merck KGaA – sequence: 3 givenname: Pascal surname: Girard fullname: Girard, Pascal organization: Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany) – sequence: 4 givenname: Jan S. surname: Hesthaven fullname: Hesthaven, Jan S. organization: Chair of Computational Mathematics and Simulation Science (MCSS), Ecole Polytechnique Fédérale de Lausanne (EPFL) – sequence: 5 givenname: Nadia orcidid: 0000-0002-0033-3695 surname: Terranova fullname: Terranova, Nadia email: nadia.terranova@merckgroup.com organization: Merck Institute for Pharmacometrics (an affiliate of Merck KGaA, Darmstadt, Germany)  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34708337$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU2LFDEQhoOsuB_6BzxIgxcvrflO-iLI4q7Cgh4UvIV0unomazoZk25l_v1mZ0ZX97B4CAnU8xaVp07RUUwREHpO8GuCsXpTCO6objElLe5Ux1r5CJ0QoVirFedHt2-p2nq-HaPTUq4xJlJQ_AQdM66wZkydoMvPabMEO_sUm83a5sm69N1HmL1rpjRAaAoEcLu6LcWXGYam3zaVW1esCWBz9HH1FD0ebSjw7HCfoa8X77-cf2ivPl1-PH931TrB8dz2IGzHRmbZKDWlUvZC8kE5hznHw0i5dYS6oR-Zgl6PGpjlVPQCMyfcqICdIbbvu8SN3f6yIZhN9pPNW0OwudVi9lpM1WJ2Woysqbf71GbpJxgcxDnbu2Sy3vxbiX5tVumn0R3HmtDa4NWhQU4_FiizmXxxEIKNkJZiqNCqOu8EqejLe-h1WnKsUgyVnMiOa6kq9eLvif6M8nszFdB7wOVUSobROD_v9lQH9OHh39J70f9SdBBbKhxXkO_GfiB1A2jiw7g | 
    
| CitedBy_id | crossref_primary_10_1111_cts_70010 crossref_primary_10_1007_s40262_024_01425_9 crossref_primary_10_1007_s10928_023_09887_3 crossref_primary_10_1002_psp4_12944 crossref_primary_10_3389_fmed_2022_808969 crossref_primary_10_1002_psp4_13213 crossref_primary_10_1002_psp4_13068 crossref_primary_10_1007_s40265_024_02084_7 crossref_primary_10_1016_j_ifacsc_2024_100252 crossref_primary_10_1016_j_xphs_2023_01_010 crossref_primary_10_1002_cpt_3053 crossref_primary_10_1097_JS9_0000000000001734 crossref_primary_10_1016_j_fct_2024_114789 crossref_primary_10_1208_s12248_024_00934_6 crossref_primary_10_3390_biomedinformatics3040057 crossref_primary_10_1007_s10928_023_09875_7 crossref_primary_10_1002_jcph_2156 crossref_primary_10_3390_pharmaceutics14091814 crossref_primary_10_1007_s40262_023_01310_x crossref_primary_10_1007_s40262_025_01486_4 crossref_primary_10_3389_fphar_2024_1389271 crossref_primary_10_1007_s40262_022_01138_x crossref_primary_10_3390_pharmaceutics16030332 crossref_primary_10_1186_s12991_023_00483_w crossref_primary_10_3389_fphar_2022_975855 crossref_primary_10_1002_cpt_3165  | 
    
| Cites_doi | 10.1038/s41591-018-0335-9 10.1146/annurev.med.55.091902.105248 10.1021/tx800102e 10.1002/psp4.12418 10.1002/cpt.1771 10.1148/rg.2017170077 10.1186/s13073-014-0057-7 10.1177/147323000903700603 10.1109/TPAMI.2004.105 10.1002/psp4.12372 10.1208/s12248-021-00593-x 10.1002/psp4.12404 10.1007/s11095-007-9435-9 10.21917/ijsc.2015.0150 10.1016/j.coche.2019.02.009 10.1007/s10928-021-09757-w 10.1038/psp.2012.4 10.1016/S0169-409X(03)00079-6 10.1214/aos/1018031103 10.1038/psp.2013.26 10.1098/rsbl.2017.0660 10.1007/s10928-006-9004-6 10.1002/psp4.12049 10.1038/psp.2013.14 10.1007/s11701-007-0021-2 10.1023/A:1011907920641 10.1007/s10928-012-9258-0 10.1161/CIRCULATIONAHA.109.914820 10.1109/IEMBS.2011.6089917  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7U9 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH H94 K9. M0S M1P M7N PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s10928-021-09793-6 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE ProQuest One Academic Middle East (New) MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Pharmacy, Therapeutics, & Pharmacology | 
    
| EISSN | 1573-8744 | 
    
| EndPage | 270 | 
    
| ExternalDocumentID | 10.1007/s10928-021-09793-6 PMC8940812 34708337 10_1007_s10928_021_09793_6  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZFZN B-. BA0 BDATZ BENPR BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LLZTM LSO M1P M4Y MA- MK0 N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WJK WK8 YLTOR Z45 Z7U Z7V Z7W Z83 Z87 Z8O Z8P Z8Q Z91 ZMTXR ZOVNA AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 7U9 7XB 8FK H94 K9. M7N PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c540t-be5a93f3a3f682266b564d7cc0440df24ac12cdbf37eb8f8e3a425b503c5cf7e3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1567-567X 1573-8744  | 
    
| IngestDate | Sun Oct 26 03:51:01 EDT 2025 Tue Sep 30 16:32:24 EDT 2025 Sun Aug 24 02:57:59 EDT 2025 Tue Oct 07 05:36:42 EDT 2025 Wed Feb 19 02:27:18 EST 2025 Thu Apr 24 23:09:32 EDT 2025 Wed Oct 01 03:01:03 EDT 2025 Fri Feb 21 02:47:50 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Deep learning Pharmacometrics Neural network Genetic algorithm Model-informed drug discovery and development Population PK/PD  | 
    
| Language | English | 
    
| License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c540t-be5a93f3a3f682266b564d7cc0440df24ac12cdbf37eb8f8e3a425b503c5cf7e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-0033-3695 | 
    
| OpenAccessLink | https://doi.org/10.1007/s10928-021-09793-6 | 
    
| PMID | 34708337 | 
    
| PQID | 2641694867 | 
    
| PQPubID | 55470 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s10928_021_09793_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8940812 proquest_miscellaneous_2587744951 proquest_journals_2641694867 pubmed_primary_34708337 crossref_citationtrail_10_1007_s10928_021_09793_6 crossref_primary_10_1007_s10928_021_09793_6 springer_journals_10_1007_s10928_021_09793_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-04-01 | 
    
| PublicationDateYYYYMMDD | 2022-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: United States  | 
    
| PublicationTitle | Journal of pharmacokinetics and pharmacodynamics | 
    
| PublicationTitleAbbrev | J Pharmacokinet Pharmacodyn | 
    
| PublicationTitleAlternate | J Pharmacokinet Pharmacodyn | 
    
| PublicationYear | 2022 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Hockstein, Gourin, Faust, Terris (CR12) 2007; 1 Miller, Goldberg (CR28) 1995; 9 Chaturvedula, Calad-Thomson, Liu, Sale, Gattu, Goyal (CR33) 2019; 8 Oh, Lee, Moon (CR31) 2004; 26 Chartrand, Cheng, Vorontsov, Drozdzal, Turcotte, Pal (CR25) 2017; 37 Liu, Zhu, Liu, Jean, Huang, ElZarrad (CR19) 2020; 107 Sherer, Sale, Pollock, Belani, Egorin, Ivy (CR24) 2012; 39 CR10 Roden, Wilke, Kroemer, Stein (CR4) 2011; 123 Smyth (CR5) 2003; 55 Poynton, Choi, Kim, Park, Noh, Hong (CR34) 2009; 37 Mould, Upton (CR7) 2013; 2 Bauer (CR9) 2019; 8 Mould, Upton (CR6) 2012; 1 Delyon, Lavielle, Moulines (CR8) 1999; 27 Derendorf, Meibohm (CR3) 1999; 16 Liang, Tsui, Ni, Valentim, Baxter, Liu (CR13) 2019; 25 Darzi, Munz (CR11) 2004; 55 Khandelwal, Bahadduri, Chang, Polli, Swaan, Ekins (CR17) 2007; 24 Umbarkar, Sheth (CR29) 2015; 6 Khandelwal, Krasowski, Reschly, Sinz, Swaan, Ekins (CR18) 2008; 21 Baker, Pena, Jayamohan, Jerusalem (CR14) 2018; 14 (CR26) 2014 Haghighatlari, Hachmann (CR15) 2019; 23 Marshall, Madabushi, Manolis, Krudys, Staab, Dykstra (CR2) 2019; 8 CR20 Holland (CR22) 1975 Jeon, Nim, Teyra, Datti, Wrana, Sidhu (CR16) 2014; 6 Terranova, Venkatakrishnan, Benincosa (CR32) 2021 Byon, Smith, Chan, Tortorici, Riley, Dai (CR27) 2013; 2 Sibieude, Khandelwal, Girard, Hesthaven, Terranova (CR21) 2021; 48 Bies, Muldoon, Pollock, Manuck, Smith, Sale (CR23) 2006; 33 Marshall, Burghaus, Cosson, Cheung, Chenel, DellaPasqua (CR1) 2016; 5 El-mihoub, Hopgood, Nolle, Alan (CR30) 2006; 3 EA Sherer (9793_CR24) 2012; 39 DR Mould (9793_CR6) 2012; 1 DR Mould (9793_CR7) 2013; 2 RJ Bauer (9793_CR9) 2019; 8 H Liang (9793_CR13) 2019; 25 R Core Team (9793_CR26) 2014 AJ Umbarkar (9793_CR29) 2015; 6 Q Liu (9793_CR19) 2020; 107 RE Baker (9793_CR14) 2018; 14 A Chaturvedula (9793_CR33) 2019; 8 9793_CR20 HD Smyth (9793_CR5) 2003; 55 H Derendorf (9793_CR3) 1999; 16 T El-mihoub (9793_CR30) 2006; 3 SF Marshall (9793_CR1) 2016; 5 BL Miller (9793_CR28) 1995; 9 DM Roden (9793_CR4) 2011; 123 NG Hockstein (9793_CR12) 2007; 1 JH Holland (9793_CR22) 1975 N Terranova (9793_CR32) 2021 B Delyon (9793_CR8) 1999; 27 SA Darzi (9793_CR11) 2004; 55 A Khandelwal (9793_CR17) 2007; 24 W Byon (9793_CR27) 2013; 2 J Jeon (9793_CR16) 2014; 6 RJ Bies (9793_CR23) 2006; 33 M Haghighatlari (9793_CR15) 2019; 23 S Marshall (9793_CR2) 2019; 8 I-S Oh (9793_CR31) 2004; 26 9793_CR10 MR Poynton (9793_CR34) 2009; 37 A Khandelwal (9793_CR18) 2008; 21 G Chartrand (9793_CR25) 2017; 37 E Sibieude (9793_CR21) 2021; 48  | 
    
| References_xml | – volume: 25 start-page: 433 issue: 3 year: 2019 end-page: 438 ident: CR13 article-title: Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence publication-title: Nat Med doi: 10.1038/s41591-018-0335-9 – volume: 55 start-page: 223 year: 2004 end-page: 237 ident: CR11 article-title: The impact of minimally invasive surgical techniques publication-title: Annu Rev Med doi: 10.1146/annurev.med.55.091902.105248 – volume: 21 start-page: 1457 issue: 7 year: 2008 end-page: 1467 ident: CR18 article-title: Machine learning methods and docking for predicting human pregnane X receptor activation publication-title: Chem Res Toxicol doi: 10.1021/tx800102e – volume: 9 start-page: 193 year: 1995 end-page: 212 ident: CR28 article-title: Genetic algorithms, tournament selection, and the effects of noise publication-title: Complex Syst – volume: 8 start-page: 440 issue: 7 year: 2019 end-page: 443 ident: CR33 article-title: Artificial intelligence and pharmacometrics: time to embrace, capitalize, and advance? publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12418 – volume: 107 start-page: 726 issue: 4 year: 2020 end-page: 729 ident: CR19 article-title: Application of machine learning in drug development and regulation: current status and future potential publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.1771 – volume: 37 start-page: 2113 issue: 7 year: 2017 end-page: 2131 ident: CR25 article-title: Deep learning: a primer for radiologists publication-title: Radiographics doi: 10.1148/rg.2017170077 – volume: 6 start-page: 57 issue: 7 year: 2014 ident: CR16 article-title: A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening publication-title: Genome Med doi: 10.1186/s13073-014-0057-7 – volume: 37 start-page: 1680 issue: 6 year: 2009 end-page: 1691 ident: CR34 article-title: Machine learning methods applied to pharmacokinetic modelling of remifentanil in healthy volunteers: a multi-method comparison publication-title: J Int Med Res doi: 10.1177/147323000903700603 – volume: 26 start-page: 1424 issue: 11 year: 2004 end-page: 1437 ident: CR31 article-title: Hybrid genetic algorithms for feature selection publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.105 – volume: 8 start-page: 87 issue: 2 year: 2019 end-page: 96 ident: CR2 article-title: Model-informed drug discovery and development: current industry good practice and regulatory expectations and future perspectives publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12372 – year: 2021 ident: CR32 article-title: Application of machine learning in translational medicine: current status and future opportunities publication-title: AAPS J doi: 10.1208/s12248-021-00593-x – volume: 8 start-page: 525 issue: 8 year: 2019 end-page: 537 ident: CR9 article-title: NONMEM tutorial part i: description of commands and options, with simple examples of population analysis publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12404 – year: 2014 ident: CR26 publication-title: R: a language and environment for statistical computing – volume: 24 start-page: 2249 issue: 12 year: 2007 end-page: 2262 ident: CR17 article-title: Computational models to assign biopharmaceutics drug disposition classification from molecular structure publication-title: Pharm Res doi: 10.1007/s11095-007-9435-9 – volume: 6 start-page: 1083 issue: 1 year: 2015 end-page: 1092 ident: CR29 article-title: Crossover operators in genetic algorithms: a review publication-title: ICTACT J Soft Comput doi: 10.21917/ijsc.2015.0150 – ident: CR10 – volume: 23 start-page: 51 year: 2019 end-page: 57 ident: CR15 article-title: Advances of machine learning in molecular modeling and simulation publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2019.02.009 – volume: 48 start-page: 597 year: 2021 end-page: 609 ident: CR21 article-title: Fast screening of covariates in population models empowered by machine learning publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-021-09757-w – start-page: 100 year: 1975 ident: CR22 publication-title: Adaptation in natural and artificial systems – volume: 1 start-page: e6 year: 2012 ident: CR6 article-title: Basic concepts in population modeling, simulation, and model-based drug development publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1038/psp.2012.4 – volume: 55 start-page: 807 issue: 7 year: 2003 end-page: 828 ident: CR5 article-title: The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(03)00079-6 – volume: 27 start-page: 94 year: 1999 end-page: 128 ident: CR8 article-title: Convergence of a stochastic approximation version of EM algorithm publication-title: Ann Stat doi: 10.1214/aos/1018031103 – volume: 2 start-page: 1 year: 2013 end-page: 8 ident: CR27 article-title: Establishing best practices and guidance in population modeling: an experience with an internal population pharmacokinetic analysis guidance publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1038/psp.2013.26 – volume: 14 start-page: 20170660 issue: 5 year: 2018 ident: CR14 article-title: Mechanistic models versus machine learning, a fight worth fighting for the biological community? publication-title: Biol Lett doi: 10.1098/rsbl.2017.0660 – volume: 33 start-page: 195 issue: 2 year: 2006 end-page: 221 ident: CR23 article-title: A genetic algorithm-based, hybrid machine learning approach to model selection publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-006-9004-6 – volume: 5 start-page: 93 issue: 3 year: 2016 end-page: 122 ident: CR1 article-title: Good practices in model-informed drug discovery and development: practice, application, and documentation publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12049 – volume: 3 start-page: 124 issue: 2 year: 2006 end-page: 137 ident: CR30 article-title: Hybrid genetic algorithms: a review publication-title: Eng Lett – volume: 2 start-page: e38 year: 2013 ident: CR7 article-title: Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1038/psp.2013.14 – volume: 1 start-page: 113 issue: 2 year: 2007 end-page: 118 ident: CR12 article-title: A history of robots: from science fiction to surgical robotics publication-title: J Robot Surg doi: 10.1007/s11701-007-0021-2 – volume: 16 start-page: 176 issue: 2 year: 1999 end-page: 185 ident: CR3 article-title: Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives publication-title: Pharm Res doi: 10.1023/A:1011907920641 – volume: 39 start-page: 393 issue: 4 year: 2012 end-page: 414 ident: CR24 article-title: Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-012-9258-0 – volume: 123 start-page: 1661 issue: 15 year: 2011 end-page: 1670 ident: CR4 article-title: Pharmacogenomics: the genetics of variable drug responses publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.914820 – ident: CR20 – volume: 107 start-page: 726 issue: 4 year: 2020 ident: 9793_CR19 publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.1771 – volume: 2 start-page: e38 year: 2013 ident: 9793_CR7 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1038/psp.2013.14 – volume: 37 start-page: 2113 issue: 7 year: 2017 ident: 9793_CR25 publication-title: Radiographics doi: 10.1148/rg.2017170077 – volume: 1 start-page: e6 year: 2012 ident: 9793_CR6 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1038/psp.2012.4 – volume: 5 start-page: 93 issue: 3 year: 2016 ident: 9793_CR1 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12049 – volume: 37 start-page: 1680 issue: 6 year: 2009 ident: 9793_CR34 publication-title: J Int Med Res doi: 10.1177/147323000903700603 – volume: 16 start-page: 176 issue: 2 year: 1999 ident: 9793_CR3 publication-title: Pharm Res doi: 10.1023/A:1011907920641 – ident: 9793_CR20 doi: 10.1109/IEMBS.2011.6089917 – volume: 48 start-page: 597 year: 2021 ident: 9793_CR21 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-021-09757-w – ident: 9793_CR10 – volume: 6 start-page: 57 issue: 7 year: 2014 ident: 9793_CR16 publication-title: Genome Med doi: 10.1186/s13073-014-0057-7 – volume: 6 start-page: 1083 issue: 1 year: 2015 ident: 9793_CR29 publication-title: ICTACT J Soft Comput doi: 10.21917/ijsc.2015.0150 – start-page: 100 volume-title: Adaptation in natural and artificial systems year: 1975 ident: 9793_CR22 – volume: 55 start-page: 807 issue: 7 year: 2003 ident: 9793_CR5 publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(03)00079-6 – volume: 39 start-page: 393 issue: 4 year: 2012 ident: 9793_CR24 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-012-9258-0 – volume: 8 start-page: 87 issue: 2 year: 2019 ident: 9793_CR2 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12372 – volume: 123 start-page: 1661 issue: 15 year: 2011 ident: 9793_CR4 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.914820 – volume: 3 start-page: 124 issue: 2 year: 2006 ident: 9793_CR30 publication-title: Eng Lett – volume: 8 start-page: 440 issue: 7 year: 2019 ident: 9793_CR33 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12418 – volume: 26 start-page: 1424 issue: 11 year: 2004 ident: 9793_CR31 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.105 – year: 2021 ident: 9793_CR32 publication-title: AAPS J doi: 10.1208/s12248-021-00593-x – volume: 2 start-page: 1 year: 2013 ident: 9793_CR27 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1038/psp.2013.26 – volume: 55 start-page: 223 year: 2004 ident: 9793_CR11 publication-title: Annu Rev Med doi: 10.1146/annurev.med.55.091902.105248 – volume: 14 start-page: 20170660 issue: 5 year: 2018 ident: 9793_CR14 publication-title: Biol Lett doi: 10.1098/rsbl.2017.0660 – volume: 27 start-page: 94 year: 1999 ident: 9793_CR8 publication-title: Ann Stat doi: 10.1214/aos/1018031103 – volume: 23 start-page: 51 year: 2019 ident: 9793_CR15 publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2019.02.009 – volume: 21 start-page: 1457 issue: 7 year: 2008 ident: 9793_CR18 publication-title: Chem Res Toxicol doi: 10.1021/tx800102e – volume: 8 start-page: 525 issue: 8 year: 2019 ident: 9793_CR9 publication-title: CPT Pharmacomet Syst Pharmacol doi: 10.1002/psp4.12404 – volume: 25 start-page: 433 issue: 3 year: 2019 ident: 9793_CR13 publication-title: Nat Med doi: 10.1038/s41591-018-0335-9 – volume: 33 start-page: 195 issue: 2 year: 2006 ident: 9793_CR23 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-006-9004-6 – volume: 1 start-page: 113 issue: 2 year: 2007 ident: 9793_CR12 publication-title: J Robot Surg doi: 10.1007/s11701-007-0021-2 – volume: 24 start-page: 2249 issue: 12 year: 2007 ident: 9793_CR17 publication-title: Pharm Res doi: 10.1007/s11095-007-9435-9 – volume-title: R: a language and environment for statistical computing year: 2014 ident: 9793_CR26 – volume: 9 start-page: 193 year: 1995 ident: 9793_CR28 publication-title: Complex Syst  | 
    
| SSID | ssj0016520 | 
    
| Score | 2.46109 | 
    
| Snippet | A fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 257 | 
    
| SubjectTerms | Algorithms Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Classification Computer applications Entropy Genetic algorithms Learning algorithms Machine Learning Mathematical models Models, Statistical Neural networks Neural Networks, Computer Original Paper Pharmacokinetics Pharmacology/Toxicology Pharmacy Veterinary Medicine/Veterinary Science  | 
    
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSD-La-iCBe3MC2adPmKOIDQdmDwt5KmoeKa13cXWT_vZNst-uqiB56mknadGbIFybzDcCRSLVmKmLUNJuWxkJJKk0mqRLSJJGJMqtdofDNLb-6j6_bSbuiyXG1MF_y967ETTgO5QgPvQJ9ifJZmMdNivvELD-rMwY88RSMeBxJKT7tqkDm5zmmN6FvyPL7Bck6S7oEC4OyK4fvstP5tBFdrMByhSDJ6cjkqzBjyjU4bo0oqIcNcjepqOo1yDFpTciph-tw2ao7dpFuJXlGpInaxHfFIT3fGcfJEVc7J9CkGJIXf-nSkKrLxMMG3F-c351d0aqZAlUIyvq0MIkUzDLJLEdQwHmR8FinSrme09pGsVRhpHRhWWqKzGaGSQznImkylSibGrYJc-VrabaBoA2ZzoyJFU_xfKWE0SHD6ZmwocDDeQDh-O_mqmIadw0vOvmEI9lZJEeL5N4iOQ_gpB7THfFs_Kq9NzZaXsVcL0doF3LhGAQDOKzFGC0uBSJL8zpAnSRDvIsfHQawNbJx_ToWp4hHGY5Op6xfKzgm7mlJ-fToGbkzESO0igJojP1k8lm_raJR-9IfFr3zv9l3YTFypRr-ltEezPXfBmYfAVS_OPCR8wG7PhJU priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48H4ECjIS6oX1dhMnTnysgFIhUe2hKy2nyM-CuqQrNiu0_HrGzmO7FFUgDpEizdiJnc_JF3nmG4DXIjeG6YRROx47mgotqbSFpFpImyU2KZzxicKfTvjxNP04y2Y78K7LhQnR7t2WZJPT4FWaqvpgYdzBpcQ34ZWVE_wVFogwykdovgG7PENGPoDd6cnk8HOQSsX3AB6zcJ4z6tXe29yZP3e0_X26Qjqvxk72G6i34eaqWsj1DzmfX_pGHd0F242uCU05H61qNdI_fxN-_N_h34M7LYklhw3q7sOOrR7A_qRRwV4PyekmqWs5JPtkstHHXj-ED5O-aBhZtJZzJLvoTUJhHrIMxXm8Ham9x6Ehak2-hbhPS9pCF2ePYHr0_vTtMW3rOVCNvLCmymZSMMckcxx5Cecq46nJtfZlr41LUqnjRBvlWG5V4QrLJL5RVDZmOtMut-wxDKqLyj4FgjBiprA21TzHXzwtrIkZds-Ei4VVLIK4e4qlbsXOfc2NebmRafZzWOIclmEOSx7Bm77NopH6uNZ7rwNH2S77ZYnsMubCixhG8Ko344L1uzCyshcr9MkKpNx403EETxos9ZdjaY6UmGHrfAtlvYMXA9-2VF-_BFHwQqTI7pIIhh18Nrd13SiGPWb_YtDP_s39OdxKfLZICHTag0H9fWVfIIer1ct2if4CzXc-_w priority: 102 providerName: Unpaywall  | 
    
| Title | Population pharmacokinetic model selection assisted by machine learning | 
    
| URI | https://link.springer.com/article/10.1007/s10928-021-09793-6 https://www.ncbi.nlm.nih.gov/pubmed/34708337 https://www.proquest.com/docview/2641694867 https://www.proquest.com/docview/2587744951 https://pubmed.ncbi.nlm.nih.gov/PMC8940812 https://link.springer.com/content/pdf/10.1007/s10928-021-09793-6.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 49 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-8744 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016520 issn: 1573-8744 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-8744 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016520 issn: 1573-8744 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-8744 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016520 issn: 1573-8744 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3ttgfggPjewFIZCe2FRjRxYscHhNqq3RWIKEJbqXuKHNsBtCUttBXqv2ec5oNqpYpDEinjtHFmHD_HnvcA3gquNVU-dc1gkLuBUNKVJpKuEtKEvvGjXNtE4S8xu5oFn-bh_ATiOhfGLqus34nli1ovlf1G_h47bo8Jyw_3cfXLtapRdna1ltCQlbSC_lBSjJ1C17fMWB3ojiZx8rWZV2BhSdSIgxbu4jav0miqZDph2Zp9HF4LjFqXHXZVd_Dn3WWUzVzqA7i3LVZy90cuFv90V9NH8LDCmWS4D4zHcGKKJ3CR7Imqd31y3eZdrfvkgiQthfXuKVwmja4XWVWWW8SjWJqU2jlkXernWDuibxsqmmQ78rNcmmlIpUXx7RnMppPr8ZVbSS64CqHbxs1MKAXNqaQ5Q-jAWBayQHOlrDK1zv1AKs9XOsspN1mUR4ZKbPRZOKAqVDk39Dl0imVhzoCgp6mOjAkU4zgKU8Joj-LPU5F7AofwDnj1001VxUduZTEWacukbD2SokfS0iMpc-Bdc81qz8ZxtPR57bS0apnrtI0jB940ZmxTdqJEFma5xTJhhKgYb9pz4MXex83f0YAjaqV4NT_wflPA8nUfWoof30ve7kgECMB8B_p1nLS3dawW_SaW_qPSL49X-hXc920CR7n26Bw6m99b8xph1SbrwSmf8x50h9PRKLbHy5vPk17VgtA6ZmPcz_whnpvFyfDmL4mSJ38 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4a22FwQPymMMBIsAu1aOzEiQ8T4sdGx7aqQp3UW3BsBxAlLbTVlH-Ov43n1EmoJlVcdsjJdhLnPdvfi_2-D-CFjI3hmnFqe72chlIrqmyiqJbKRsyyJDcuUfhsIPrn4adxNN6CP3UujDtWWc-J1URtptr9I3-NC3cgpOOHezP7RZ1qlNtdrSU0lJdWMAcVxZhP7Dix5QWGcPOD4w9o75eMHR2O3vepVxmgGtHKgmY2UpLnXPFc4GopRBaJ0MRaOzFmk7NQ6YBpk-U8tlmSJ5Yr9PMs6nEd6Ty2HO97DXZCHkoM_nbeHQ6Gn5t9DBFVxJAYJMUUr7FP2_HJe9KxQzMM5yWOEirWl8ZLePfysc1m7_YG7C6LmSov1GTyz_J4dAtuelxL3q4c8TZs2eIO7A9XxNhll4zaPK95l-yTYUuZXd6Fj8NGR4zMfMkPxL9Ym1RaPWRe6fW4ckT7zjUNyUryszoKaonXvvh6D86v5OPfh-1iWtiHQNCzuEmsDbWIMerT0pqA4-25zANpM96BoP66qfb8506GY5K2zM3OIilaJK0skooOvGrazFbsHxtr79VGS_1MME9bv-3A86YYx7DbmFGFnS6xTpQgCseXDjrwYGXj5nE8jBElc2wdr1m_qeD4wddLiu_fKp7wRIYI-FgHurWftK-1qRfdxpf-o9OPNnf6Gez2R2en6enx4OQxXGcueaQ697QH24vfS_sEId0ie-rHDYEvVz1U_wKf5144 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4IN4EChgJemGtbuwkjg8IIcrSUqj20Ep7Sx0_ALFkF3ZXVf4av45xnqwqrbj0kJPtJM7M2N_EM98AvJTCGK4Zp3Y4dDSSWlFlU0W1VDZmlqXO-EThL8fJwWn0aRJPtuBPmwvjwyrbNbFaqM1M-3_ke7hxh4n0_HB7rgmLGO-P3s5_UV9Byp-0tuU0ahU5suU5um-LN4f7KOtXjI0-nLw_oE2FAaoRqSxpbmMlueOKuwR3yiTJ4yQyQmtfiNk4FikdMm1yx4XNU5darlDH83jIdaydsBzvewWuCs6lDycUk87ZC5O4ooRE90hQvCZNwk6Ttic9LzRDR16ifdBkfVO8gHQvBmx2p7Y34fqqmKvyXE2n_2yMo9twq0G05F2tgndgyxZ3YXdcU2KXA3LSZ3gtBmSXjHuy7PIefBx3FcTIvGn5gcgXe5OqSg9ZVJV6fDvifK-UhuQl-VkFgVrSVL34eh9OL-XTP4DtYlbYR0BQp7hJrY10ItDf09KakOPtuXShtDkPIGy_bqYb5nNfgGOa9ZzNXiIZSiSrJJIlAbzuxsxr3o-NvXdaoWXNGrDIeo0N4EXXjNbrj2RUYWcr7BOniL_xpcMAHtYy7h7HI4H4mONosSb9roNnBl9vKb5_qxjCUxkh1GMBDFo96V9r0ywGnS79x6Qfb570c7iGBpp9Pjw-egI3mM8aqQKedmB7-XtlnyKWW-bPKqMhcHbZVvoXA19b0g | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48H4ECjIS6oX1dhMnTnysgFIhUe2hKy2nyM-CuqQrNiu0_HrGzmO7FFUgDpEizdiJnc_JF3nmG4DXIjeG6YRROx47mgotqbSFpFpImyU2KZzxicKfTvjxNP04y2Y78K7LhQnR7t2WZJPT4FWaqvpgYdzBpcQ34ZWVE_wVFogwykdovgG7PENGPoDd6cnk8HOQSsX3AB6zcJ4z6tXe29yZP3e0_X26Qjqvxk72G6i34eaqWsj1DzmfX_pGHd0F242uCU05H61qNdI_fxN-_N_h34M7LYklhw3q7sOOrR7A_qRRwV4PyekmqWs5JPtkstHHXj-ED5O-aBhZtJZzJLvoTUJhHrIMxXm8Ham9x6Ehak2-hbhPS9pCF2ePYHr0_vTtMW3rOVCNvLCmymZSMMckcxx5Cecq46nJtfZlr41LUqnjRBvlWG5V4QrLJL5RVDZmOtMut-wxDKqLyj4FgjBiprA21TzHXzwtrIkZds-Ei4VVLIK4e4qlbsXOfc2NebmRafZzWOIclmEOSx7Bm77NopH6uNZ7rwNH2S77ZYnsMubCixhG8Ko344L1uzCyshcr9MkKpNx403EETxos9ZdjaY6UmGHrfAtlvYMXA9-2VF-_BFHwQqTI7pIIhh18Nrd13SiGPWb_YtDP_s39OdxKfLZICHTag0H9fWVfIIer1ct2if4CzXc-_w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+pharmacokinetic+model+selection+assisted+by+machine+learning&rft.jtitle=Journal+of+pharmacokinetics+and+pharmacodynamics&rft.au=Sibieude+Emeric&rft.au=Khandelwal+Akash&rft.au=Girard%2C+Pascal&rft.au=Hesthaven%2C+Jan+S&rft.date=2022-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1567-567X&rft.eissn=1573-8744&rft.volume=49&rft.issue=2&rft.spage=257&rft.epage=270&rft_id=info:doi/10.1007%2Fs10928-021-09793-6&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-567X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-567X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-567X&client=summon |