Validation of expert system enhanced deep learning algorithm for automated screening for COVID-Pneumonia on chest X-rays
SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in ex...
Saved in:
| Published in | Scientific reports Vol. 11; no. 1; pp. 23210 - 12 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
01.12.2021
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-021-02003-w |
Cover
| Abstract | SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66–0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral. |
|---|---|
| AbstractList | SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66–0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral. Abstract SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66–0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral. SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66-0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral.SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66-0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral. |
| ArticleNumber | 23210 |
| Author | Agrawal, Anjali Singh, Ajay Pratap Singh, Amritpal Gidde, Prashant Sadashiv Sardana, Viren Mahajan, Harsh Saurav, Sumeet Singh, Prateek Mahajan, Vidur Venugopal, Vasantha Kumar Singh, Sanjay Gupta, Salil Prakash, Satyartha Takhar, Rohit Prasad, Shyam Sunder Kalyanpur, Arjun Agrawal, Anurag Saboo, Aakash M. V., Raghunandanan Dash, Debasis Mandal, Atanendu Shekhar Bhatheja, Nitin |
| Author_xml | – sequence: 1 givenname: Prashant Sadashiv surname: Gidde fullname: Gidde, Prashant Sadashiv organization: CSIR-Central Electronics Engineering Research Institute – sequence: 2 givenname: Shyam Sunder surname: Prasad fullname: Prasad, Shyam Sunder organization: CSIR-Central Electronics Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR) – sequence: 3 givenname: Ajay Pratap surname: Singh fullname: Singh, Ajay Pratap organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR) – sequence: 4 givenname: Nitin surname: Bhatheja fullname: Bhatheja, Nitin organization: CSIR-Institute of Genomics and Integrative Biology – sequence: 5 givenname: Satyartha surname: Prakash fullname: Prakash, Satyartha organization: CSIR-Institute of Genomics and Integrative Biology – sequence: 6 givenname: Prateek surname: Singh fullname: Singh, Prateek organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR) – sequence: 7 givenname: Aakash surname: Saboo fullname: Saboo, Aakash organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING) – sequence: 8 givenname: Rohit surname: Takhar fullname: Takhar, Rohit organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING) – sequence: 9 givenname: Salil surname: Gupta fullname: Gupta, Salil organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING) – sequence: 10 givenname: Sumeet surname: Saurav fullname: Saurav, Sumeet organization: CSIR-Central Electronics Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR) – sequence: 11 givenname: Raghunandanan surname: M. V. fullname: M. V., Raghunandanan organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR) – sequence: 12 givenname: Amritpal surname: Singh fullname: Singh, Amritpal organization: Maulana Azad Medical College (MAMC) – sequence: 13 givenname: Viren surname: Sardana fullname: Sardana, Viren organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR) – sequence: 14 givenname: Harsh surname: Mahajan fullname: Mahajan, Harsh organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING) – sequence: 15 givenname: Arjun surname: Kalyanpur fullname: Kalyanpur, Arjun organization: Teleradiology Solutions – sequence: 16 givenname: Atanendu Shekhar surname: Mandal fullname: Mandal, Atanendu Shekhar organization: CSIR-Central Electronics Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR) – sequence: 17 givenname: Vidur surname: Mahajan fullname: Mahajan, Vidur organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING) – sequence: 18 givenname: Anurag surname: Agrawal fullname: Agrawal, Anurag organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR) – sequence: 19 givenname: Anjali surname: Agrawal fullname: Agrawal, Anjali email: anjali.agrawal@telradsol.com organization: Teleradiology Solutions – sequence: 20 givenname: Vasantha Kumar surname: Venugopal fullname: Venugopal, Vasantha Kumar email: drvasanth@mahajanimaging.com organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING) – sequence: 21 givenname: Sanjay surname: Singh fullname: Singh, Sanjay email: sanjay@ceeri.res.in organization: CSIR-Central Electronics Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR) – sequence: 22 givenname: Debasis surname: Dash fullname: Dash, Debasis email: ddash@igib.res.in organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34853342$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNUREvpH2CBLLFhE_Azk2yQ0PAaqVJZQMXOcuzrjEeJPdgJ0_n3eB6UtosKS7Ej57vHJ-f6eXHig4eieEnwW4JZ_S5xIpq6xJTkB2NWbp4UZxRzUVJG6cmd99PiIqUVzkPQhpPmWXHKeC0Y4_SsuLlWvTNqdMGjYBHcrCGOKG3TCAMCv1Reg0EGYI16UNE73yHVdyG6cTkgGyJS0xgGNWYq6QiwJ3b786vrxcfym4dpCN4plA_QS0gj-llGtU0viqdW9Qkujut58ePzp-_zr-Xl1ZfF_MNlqQXHY6mUYcIaYmAmmDGat6yaWQuqaVqKRYsJMNzQ1hoKRFEGDSa2sqY22LZVq9l5sTjomqBWch3doOJWBuXkfiPETqo4Ot2D1DMQwkJd84ZzPMOtYMQQy23VcqorlrXYQWvya7XdqL6_FSRY7toiD22RuS1y3xa5yVXvD1XrqR3AaPBjVP09K_e_eLeUXfgt64pVFRdZ4M1RIIZfU45QDi5p6HvlIUxJ0gqLCucUqoy-foCuwhR9DnhH8abeTZl6ddfRrZW_1yID9QHQMaQUwUrtxv0lyQZd__jf0gel_xXRMdiUYd9B_Gf7kao_9iLvXA |
| CitedBy_id | crossref_primary_10_1002_hsr2_1919 crossref_primary_10_1016_j_patcog_2022_108826 crossref_primary_10_3389_fmed_2022_861680 crossref_primary_10_1016_j_ejrad_2023_111159 crossref_primary_10_1016_j_cmpb_2022_107161 crossref_primary_10_1007_s10462_024_10822_2 crossref_primary_10_1038_s41598_023_44653_y crossref_primary_10_17749_2070_4909_farmakoekonomika_2021_109 crossref_primary_10_24113_ijoscience_v10i4_498 |
| Cites_doi | 10.1016/j.cmpb.2020.105608 10.1001/jama.2020.3786 10.1016/S0140-6736(20)30183-5 10.1016/j.patrec.2020.09.010 10.1038/s41598-020-76550-z 10.1007/978-3-319-24574-4_28 10.1109/ACCESS.2020.3044858 10.1016/j.chaos.2020.110190 10.1186/s43055-019-0116-6 10.1016/j.compbiomed.2020.103869 10.1109/CVPR.2017.243 10.1289/ehp.8377 10.1186/s12938-020-00831-x 10.1101/19013342 10.1016/j.compbiomed.2020.103792 10.1109/ICCV.2015.169 10.1101/2020.04.04.20052241 10.1038/s41598-018-37186-2 10.1609/aaai.v33i01.3301590 10.1016/j.media.2021.102046 10.1007/978-3-030-00946-5_17 10.1101/2020.04.12.20062661 10.1038/s42256-021-00307-0 10.1109/CVPR.2017.690 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2016.91 10.1148/radiol.2020201160 10.1109/BIBM49941.2020.9313304 10.1016/j.inffus.2021.04.008 10.1109/CVPR.2009.5206848 10.1016/j.clinimag.2020.04.001 10.1109/TMI.2020.3002417 10.1016/j.media.2021.102125 10.1109/access.2020.3010287 10.1109/TMI.1983.4307610 10.1016/j.cmpb.2020.105581 10.1109/CVPR.2016.90 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-021-02003-w |
| DatabaseName | Springer Nature Link OA Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link OA Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_c7e55fe884944070b531d1f4f6b42c63 10.1038/s41598-021-02003-w PMC8636645 34853342 10_1038_s41598_021_02003_w |
| Genre | Validation Study Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GrantInformation_xml | – fundername: DBT-BINC grantid: Fellowship – fundername: Council of Scientific and Industrial Research, India grantid: HCP-0013; MLP-2002 funderid: http://dx.doi.org/10.13039/501100001412 – fundername: Council of Scientific and Industrial Research, India grantid: HCP-0013 – fundername: Council of Scientific and Industrial Research, India grantid: MLP-2002 – fundername: ; grantid: Fellowship – fundername: ; grantid: HCP-0013; MLP-2002 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c540t-aad35fd1de753ddc4b367ffea99b205b01e3092bfd2e1a23e901f6fd8d0fb6bc3 |
| IEDL.DBID | UNPAY |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:09 EDT 2025 Sun Oct 26 04:16:01 EDT 2025 Tue Sep 30 16:51:56 EDT 2025 Thu Sep 04 17:58:39 EDT 2025 Tue Oct 07 07:41:09 EDT 2025 Thu Jan 02 22:45:21 EST 2025 Wed Oct 01 02:17:44 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Fri Feb 21 02:39:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-aad35fd1de753ddc4b367ffea99b205b01e3092bfd2e1a23e901f6fd8d0fb6bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-021-02003-w.pdf |
| PMID | 34853342 |
| PQID | 2604986049 |
| PQPubID | 2041939 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c7e55fe884944070b531d1f4f6b42c63 unpaywall_primary_10_1038_s41598_021_02003_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_8636645 proquest_miscellaneous_2605600926 proquest_journals_2604986049 pubmed_primary_34853342 crossref_citationtrail_10_1038_s41598_021_02003_w crossref_primary_10_1038_s41598_021_02003_w springer_journals_10_1038_s41598_021_02003_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | BruneseLMercaldoFReginelliASantoneAExplainable deep learning for pulmonary disease and coronavirus COVID-19 detection from x-raysComput. Methods Programs Biomed.202019610560810.1016/j.cmpb.2020.105608325993387831868 Maguolo, G. & Nanni, L. A critic evaluation of methods for COVID-19 automatic detection from X-ray images. arXiv e-prints arXiv: http://arxiv.org/abs/2004.12823 (2020) Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). SignoroniABs-net: Learning COVID-19 pneumonia severity on a large chest x-ray datasetMed. Image Anal.20217110204610.1016/j.media.2021.102046338623378010334 OzturkTAutomated detection of COVID-19 cases using deep neural networks with x-ray imagesComput. Biol. Med.20201211037921:CAS:528:DC%2BB3cXosVWru7k%3D10.1016/j.compbiomed.2020.103792325686757187882 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 (2016). WHO. Who Characterizes COVID-19 as a Pandemic (2020). Wang, L. & Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. arXiv e-prints arXiv: http://arxiv.org/abs/2003.09871 (2020) Karim, M. R. et al. DeepCOVIDexplainer: Explainable COVID-19 diagnosis based on chest x-ray images. arXiv: Image Video Process. (2020). Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, 3859–3869 (Curran Associates Inc., 2017). Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K. G., & Murphy, K. Deep learning for chest X-ray analysis: A survey. Med. Image Anal. 102125 (2021). JacobiAChungMBernheimAEberCPortable chest x-ray in coronavirus disease-19 (COVID-19): A pictorial reviewClin. Imaging202064354210.1016/j.clinimag.2020.04.001323029277141645 Redmon, J. & Farhadi, A. Yolo9000: Better, faster, stronger. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6517–6525 (2017). Arias-LondoñoJDGómez-GarcíaJAMoro-VelázquezLGodino-LlorenteJIArtificial intelligence applied to chest x-ray images for the automatic detection of COVID-19. A thoughtful evaluation approachIEEE Access2020822681122682710.1109/ACCESS.2020.304485834786299 Deng, J. et al. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09 (2009). Girshick, R. Fast r-cnn. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV, Vo;. 15, 1440–1448, https://doi.org/10.1109/ICCV.2015.169 (IEEE Computer Society, 2015). LiuLÖzsuMTMean Average Precision2009Springer US17031703 ParkerJAKenyonRVTroxelDEComparison of interpolating methods for image resamplingIEEE Trans. Med. Imaging1983231391:STN:280:DC%2BD1c%2FnslCktQ%3D%3D10.1109/TMI.1983.430761018234586 World Health Organization. Use of Chest Imaging in COVID-19: A Rapid Advice Guide: Web Annex A: Imaging for COVID-19: A Rapid Review. Technical documents, World Health Organization 76, https://apps.who.int/iris/handle/10665/332326 (2020). Afshar, P. et al. COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray Images. arXiv e-prints arXiv: http://arxiv.org/abs/2004.02696 (2020) Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations (2015). Irvin, J. et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In AAAI (2019). VenugopalVKA systematic meta-analysis of CT features of COVID-19: Lessons from radiologymedRxiv202010.1101/2020.04.04.20052241 AliTFTawabMElHaririMACt chest of COVID-19 patients: what should a radiologist know?Egypt. J. Radiol. Nucl. Med.2020511610.1186/s43055-020-00245-8 Lin, Z. et al. Do explanations reflect decisions? a machine-centric strategy to quantify the performance of explainability algorithms. ArXivhttp://arxiv.org/abs/abs/1910.07387 (2019). Ronneberger, O., P.Fischer & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vol. 9351 of LNCS, 234–241 (Springer, 2015) (available on arXiv: http://arxiv.org/abs/1505.04597 [cs.CV]). Calderón-GarcidueñasLLung radiology and pulmonary function of children chronically exposed to air pollutionEnviron. Health. Perspect.20061141432143710.1289/ehp.8377169661011570091 Cohen, J. P., Morrison, P. & Dao, L. COVID-19 image data collection. arXivhttp://arxiv.org/abs/2003.11597 (2020). Rsna pneumonia detection challenge. https://www.kaggle.com/c/rsna-pneumonia-detection-challenge (2018). ChowdhuryMEHCan ai help in screening viral and COVID-19 pneumonia?IEEE Access2020813266513267610.1109/access.2020.3010287 RobertsMCommon pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scansNat. Mach. Intell.2021319921710.1038/s42256-021-00307-0 De LaceyGMorleySBermanLThe Chest X-ray, a Survival Guide2008Saunders HussainLMachine-learning classification of texture features of portable chest x-ray accurately classifies COVID-19 lung infectionBioMed. Eng. OnLine20201911810.1186/s12938-020-00831-x HuangCClinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet2020395102234975061:CAS:528:DC%2BB3cXhs1Kqu7c%3D10.1016/S0140-6736(20)30183-5319862647159299 QinZZUsing artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systemsSci. Rep.201991102019NatSR...9....1D10.1038/s41598-019-51503-3 KhanAIShahJLBhatMMCoronet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray imagesComput. Methods Programs Biomed.202019610558110.1016/j.cmpb.2020.105581325343447274128 MeiXArtificial intelligence-enabled rapid diagnosis of COVID-19 patientsMedRxiv202010.1101/2020.04.12.20062661331068217587841 Haghanifar, A., Molahasani Majdabadi, M., Choi, Y., Deivalakshmi, S. & Ko, S. COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning. arXiv e-prints arXiv: http://arxiv.org/abs/2006.13807 (2020) MahmudTRahmanMAFattahSACovxnet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest x-ray images with transferable multi-receptive feature optimizationComput. Biol. Med.20201221038691:CAS:528:DC%2BB3cXht1ejtr3P10.1016/j.compbiomed.2020.103869326587407305745 Rajpurkar, P. et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. ArXivhttp://arxiv.org/abs/abs/1711.05225 (2017). WongHYFFrequency and distribution of chest radiographic findings in patients positive for COVID-19Radiology2020296E72E7810.1148/radiol.202020116032216717 RenSHeKGirshickRSunJFaster r-cnn: Towards real-time object detection with region proposal networksIEEE Trans. Pattern Anal. Mach. Intell.2017391137114910.1109/TPAMI.2016.257703127295650 WangWDetection of SARS-CoV-2 in different types of clinical specimensJAMA2020323184318441:CAS:528:DC%2BB3cXps1Srurs%3D10.1001/jama.2020.3786321597757066521 Khan, A. et al. Detection of chest x-ray abnormalities and tuberculosis using computer-aided detection vs interpretation by radiologists and a clinical officer. In 45th World Conf. on Lung Heal. (2014). Iglovikov, V., & Shvets, A.A. (2018). TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation. ArXivhttp://arxiv.org/abs/1801.05746. Pham, H. H., Le, T. T., Tran, D. Q., Ngo, D. T. & Nguyen, H. Q. Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. arXiv e-prints arXiv: http://arxiv.org/abs/1911.06475 (2019). Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788 (2016). Eelbode, T. et al. Optimization for medical image segmentation: Theory and practice when evaluating with dice score or Jaccard index. IEEE Trans. Med. Imaging 1–1 (2020). Frid-Adar, M., Ben-Cohen, A., Amer, R. & Greenspan, H. Improving the Segmentation of Anatomical Structures in Chest Radiographs Using U-Net with an ImageNet Pre-trained Encoder: Third International Workshop, RAMBO 2018, Fourth International Workshop, BIA 2018, and First International Workshop, TIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 and 20, 2018, Proceedings. https://doi.org/10.1007/978-3-030-00946-5_17 (2018). PanwarHA deep learning and grad-cam based color visualization approach for fast detection of COVID-19 cases using chest x-ray and CT-scan imagesChaos Solitons Fractals2020140110190415527210.1016/j.chaos.2020.110190328369187413068 HYF Wong (2003_CR5) 2020; 296 JA Parker (2003_CR41) 1983; 2 2003_CR20 2003_CR23 2003_CR24 2003_CR21 2003_CR22 2003_CR27 2003_CR28 A Signoroni (2003_CR30) 2021; 71 (2003_CR47) 2009 2003_CR25 2003_CR26 X Mei (2003_CR13) 2020 AI Khan (2003_CR32) 2020; 196 T Mahmud (2003_CR31) 2020; 122 JD Arias-Londoño (2003_CR29) 2020; 8 2003_CR50 2003_CR12 2003_CR1 2003_CR10 2003_CR17 C Huang (2003_CR44) 2020; 395 2003_CR14 G De Lacey (2003_CR43) 2008 2003_CR18 MEH Chowdhury (2003_CR15) 2020; 8 H Panwar (2003_CR9) 2020; 140 S Ren (2003_CR19) 2017; 39 2003_CR42 VK Venugopal (2003_CR4) 2020 2003_CR40 2003_CR45 L Hussain (2003_CR33) 2020; 19 2003_CR46 2003_CR49 L Calderón-Garcidueñas (2003_CR48) 2006; 114 TF Ali (2003_CR7) 2020; 51 M Roberts (2003_CR16) 2021; 3 L Brunese (2003_CR8) 2020; 196 T Ozturk (2003_CR11) 2020; 121 2003_CR34 2003_CR35 2003_CR38 2003_CR39 2003_CR36 2003_CR37 A Jacobi (2003_CR6) 2020; 64 W Wang (2003_CR2) 2020; 323 ZZ Qin (2003_CR3) 2019; 9 |
| References_xml | – reference: Rajpurkar, P. et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. ArXivhttp://arxiv.org/abs/abs/1711.05225 (2017). – reference: Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788 (2016). – reference: SignoroniABs-net: Learning COVID-19 pneumonia severity on a large chest x-ray datasetMed. Image Anal.20217110204610.1016/j.media.2021.102046338623378010334 – reference: Maguolo, G. & Nanni, L. A critic evaluation of methods for COVID-19 automatic detection from X-ray images. arXiv e-prints arXiv: http://arxiv.org/abs/2004.12823 (2020) – reference: Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). – reference: Ronneberger, O., P.Fischer & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vol. 9351 of LNCS, 234–241 (Springer, 2015) (available on arXiv: http://arxiv.org/abs/1505.04597 [cs.CV]). – reference: De LaceyGMorleySBermanLThe Chest X-ray, a Survival Guide2008Saunders – reference: QinZZUsing artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systemsSci. Rep.201991102019NatSR...9....1D10.1038/s41598-019-51503-3 – reference: Iglovikov, V., & Shvets, A.A. (2018). TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation. ArXivhttp://arxiv.org/abs/1801.05746. – reference: WangWDetection of SARS-CoV-2 in different types of clinical specimensJAMA2020323184318441:CAS:528:DC%2BB3cXps1Srurs%3D10.1001/jama.2020.3786321597757066521 – reference: ChowdhuryMEHCan ai help in screening viral and COVID-19 pneumonia?IEEE Access2020813266513267610.1109/access.2020.3010287 – reference: Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K. G., & Murphy, K. Deep learning for chest X-ray analysis: A survey. Med. Image Anal. 102125 (2021). – reference: Irvin, J. et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In AAAI (2019). – reference: AliTFTawabMElHaririMACt chest of COVID-19 patients: what should a radiologist know?Egypt. J. Radiol. Nucl. Med.2020511610.1186/s43055-020-00245-8 – reference: Girshick, R. Fast r-cnn. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV, Vo;. 15, 1440–1448, https://doi.org/10.1109/ICCV.2015.169 (IEEE Computer Society, 2015). – reference: HuangCClinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet2020395102234975061:CAS:528:DC%2BB3cXhs1Kqu7c%3D10.1016/S0140-6736(20)30183-5319862647159299 – reference: RenSHeKGirshickRSunJFaster r-cnn: Towards real-time object detection with region proposal networksIEEE Trans. Pattern Anal. Mach. Intell.2017391137114910.1109/TPAMI.2016.257703127295650 – reference: Frid-Adar, M., Ben-Cohen, A., Amer, R. & Greenspan, H. Improving the Segmentation of Anatomical Structures in Chest Radiographs Using U-Net with an ImageNet Pre-trained Encoder: Third International Workshop, RAMBO 2018, Fourth International Workshop, BIA 2018, and First International Workshop, TIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 and 20, 2018, Proceedings. https://doi.org/10.1007/978-3-030-00946-5_17 (2018). – reference: Deng, J. et al. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09 (2009). – reference: OzturkTAutomated detection of COVID-19 cases using deep neural networks with x-ray imagesComput. Biol. Med.20201211037921:CAS:528:DC%2BB3cXosVWru7k%3D10.1016/j.compbiomed.2020.103792325686757187882 – reference: World Health Organization. Use of Chest Imaging in COVID-19: A Rapid Advice Guide: Web Annex A: Imaging for COVID-19: A Rapid Review. Technical documents, World Health Organization 76, https://apps.who.int/iris/handle/10665/332326 (2020). – reference: KhanAIShahJLBhatMMCoronet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray imagesComput. Methods Programs Biomed.202019610558110.1016/j.cmpb.2020.105581325343447274128 – reference: Wang, L. & Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. arXiv e-prints arXiv: http://arxiv.org/abs/2003.09871 (2020) – reference: VenugopalVKA systematic meta-analysis of CT features of COVID-19: Lessons from radiologymedRxiv202010.1101/2020.04.04.20052241 – reference: WongHYFFrequency and distribution of chest radiographic findings in patients positive for COVID-19Radiology2020296E72E7810.1148/radiol.202020116032216717 – reference: WHO. Who Characterizes COVID-19 as a Pandemic (2020). – reference: Cohen, J. P., Morrison, P. & Dao, L. COVID-19 image data collection. arXivhttp://arxiv.org/abs/2003.11597 (2020). – reference: Calderón-GarcidueñasLLung radiology and pulmonary function of children chronically exposed to air pollutionEnviron. Health. Perspect.20061141432143710.1289/ehp.8377169661011570091 – reference: Redmon, J. & Farhadi, A. Yolo9000: Better, faster, stronger. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6517–6525 (2017). – reference: JacobiAChungMBernheimAEberCPortable chest x-ray in coronavirus disease-19 (COVID-19): A pictorial reviewClin. Imaging202064354210.1016/j.clinimag.2020.04.001323029277141645 – reference: Lin, Z. et al. Do explanations reflect decisions? a machine-centric strategy to quantify the performance of explainability algorithms. ArXivhttp://arxiv.org/abs/abs/1910.07387 (2019). – reference: Pham, H. H., Le, T. T., Tran, D. Q., Ngo, D. T. & Nguyen, H. Q. Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. arXiv e-prints arXiv: http://arxiv.org/abs/1911.06475 (2019). – reference: Khan, A. et al. Detection of chest x-ray abnormalities and tuberculosis using computer-aided detection vs interpretation by radiologists and a clinical officer. In 45th World Conf. on Lung Heal. (2014). – reference: HussainLMachine-learning classification of texture features of portable chest x-ray accurately classifies COVID-19 lung infectionBioMed. Eng. OnLine20201911810.1186/s12938-020-00831-x – reference: Karim, M. R. et al. DeepCOVIDexplainer: Explainable COVID-19 diagnosis based on chest x-ray images. arXiv: Image Video Process. (2020). – reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 (2016). – reference: MahmudTRahmanMAFattahSACovxnet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest x-ray images with transferable multi-receptive feature optimizationComput. Biol. Med.20201221038691:CAS:528:DC%2BB3cXht1ejtr3P10.1016/j.compbiomed.2020.103869326587407305745 – reference: PanwarHA deep learning and grad-cam based color visualization approach for fast detection of COVID-19 cases using chest x-ray and CT-scan imagesChaos Solitons Fractals2020140110190415527210.1016/j.chaos.2020.110190328369187413068 – reference: ParkerJAKenyonRVTroxelDEComparison of interpolating methods for image resamplingIEEE Trans. Med. Imaging1983231391:STN:280:DC%2BD1c%2FnslCktQ%3D%3D10.1109/TMI.1983.430761018234586 – reference: Afshar, P. et al. COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray Images. arXiv e-prints arXiv: http://arxiv.org/abs/2004.02696 (2020) – reference: RobertsMCommon pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scansNat. Mach. Intell.2021319921710.1038/s42256-021-00307-0 – reference: Haghanifar, A., Molahasani Majdabadi, M., Choi, Y., Deivalakshmi, S. & Ko, S. COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning. arXiv e-prints arXiv: http://arxiv.org/abs/2006.13807 (2020) – reference: Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations (2015). – reference: Rsna pneumonia detection challenge. https://www.kaggle.com/c/rsna-pneumonia-detection-challenge (2018). – reference: MeiXArtificial intelligence-enabled rapid diagnosis of COVID-19 patientsMedRxiv202010.1101/2020.04.12.20062661331068217587841 – reference: Arias-LondoñoJDGómez-GarcíaJAMoro-VelázquezLGodino-LlorenteJIArtificial intelligence applied to chest x-ray images for the automatic detection of COVID-19. A thoughtful evaluation approachIEEE Access2020822681122682710.1109/ACCESS.2020.304485834786299 – reference: Eelbode, T. et al. Optimization for medical image segmentation: Theory and practice when evaluating with dice score or Jaccard index. IEEE Trans. Med. Imaging 1–1 (2020). – reference: LiuLÖzsuMTMean Average Precision2009Springer US17031703 – reference: BruneseLMercaldoFReginelliASantoneAExplainable deep learning for pulmonary disease and coronavirus COVID-19 detection from x-raysComput. Methods Programs Biomed.202019610560810.1016/j.cmpb.2020.105608325993387831868 – reference: Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, 3859–3869 (Curran Associates Inc., 2017). – volume: 196 start-page: 105608 year: 2020 ident: 2003_CR8 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105608 – volume: 323 start-page: 1843 year: 2020 ident: 2003_CR2 publication-title: JAMA doi: 10.1001/jama.2020.3786 – ident: 2003_CR36 – volume: 395 start-page: 497 issue: 10223 year: 2020 ident: 2003_CR44 publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – ident: 2003_CR12 doi: 10.1016/j.patrec.2020.09.010 – ident: 2003_CR23 – ident: 2003_CR22 doi: 10.1038/s41598-020-76550-z – ident: 2003_CR35 doi: 10.1007/978-3-319-24574-4_28 – volume: 8 start-page: 226811 year: 2020 ident: 2003_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3044858 – ident: 2003_CR27 – volume: 140 start-page: 110190 year: 2020 ident: 2003_CR9 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110190 – volume: 51 start-page: 1 year: 2020 ident: 2003_CR7 publication-title: Egypt. J. Radiol. Nucl. Med. doi: 10.1186/s43055-019-0116-6 – volume: 122 start-page: 103869 year: 2020 ident: 2003_CR31 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103869 – ident: 2003_CR17 doi: 10.1109/CVPR.2017.243 – volume-title: The Chest X-ray, a Survival Guide year: 2008 ident: 2003_CR43 – volume: 114 start-page: 1432 year: 2006 ident: 2003_CR48 publication-title: Environ. Health. Perspect. doi: 10.1289/ehp.8377 – volume: 19 start-page: 1 year: 2020 ident: 2003_CR33 publication-title: BioMed. Eng. OnLine doi: 10.1186/s12938-020-00831-x – ident: 2003_CR42 doi: 10.1101/19013342 – volume: 121 start-page: 103792 year: 2020 ident: 2003_CR11 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103792 – ident: 2003_CR40 doi: 10.1109/ICCV.2015.169 – ident: 2003_CR1 – year: 2020 ident: 2003_CR4 publication-title: medRxiv doi: 10.1101/2020.04.04.20052241 – volume: 9 start-page: 1 year: 2019 ident: 2003_CR3 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37186-2 – ident: 2003_CR34 doi: 10.1609/aaai.v33i01.3301590 – ident: 2003_CR38 – start-page: 1703 volume-title: Mean Average Precision year: 2009 ident: 2003_CR47 – volume: 71 start-page: 102046 year: 2021 ident: 2003_CR30 publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102046 – ident: 2003_CR39 doi: 10.1007/978-3-030-00946-5_17 – year: 2020 ident: 2003_CR13 publication-title: MedRxiv doi: 10.1101/2020.04.12.20062661 – volume: 3 start-page: 199 year: 2021 ident: 2003_CR16 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00307-0 – ident: 2003_CR25 – ident: 2003_CR50 – ident: 2003_CR26 doi: 10.1109/CVPR.2017.690 – volume: 39 start-page: 1137 year: 2017 ident: 2003_CR19 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: 2003_CR20 doi: 10.1109/CVPR.2016.91 – volume: 296 start-page: E72 year: 2020 ident: 2003_CR5 publication-title: Radiology doi: 10.1148/radiol.2020201160 – ident: 2003_CR14 doi: 10.1109/BIBM49941.2020.9313304 – ident: 2003_CR28 doi: 10.1016/j.inffus.2021.04.008 – ident: 2003_CR37 doi: 10.1109/CVPR.2009.5206848 – volume: 64 start-page: 35 year: 2020 ident: 2003_CR6 publication-title: Clin. Imaging doi: 10.1016/j.clinimag.2020.04.001 – ident: 2003_CR46 doi: 10.1109/TMI.2020.3002417 – ident: 2003_CR21 doi: 10.1016/j.media.2021.102125 – ident: 2003_CR10 – ident: 2003_CR24 – ident: 2003_CR45 – volume: 8 start-page: 132665 year: 2020 ident: 2003_CR15 publication-title: IEEE Access doi: 10.1109/access.2020.3010287 – volume: 2 start-page: 31 year: 1983 ident: 2003_CR41 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.1983.4307610 – ident: 2003_CR49 – volume: 196 start-page: 105581 year: 2020 ident: 2003_CR32 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105581 – ident: 2003_CR18 doi: 10.1109/CVPR.2016.90 |
| SSID | ssj0000529419 |
| Score | 2.4165034 |
| Snippet | SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient... Abstract SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 23210 |
| SubjectTerms | 639/166/985 692/308/575 Algorithms Artificial intelligence Coronaviruses COVID-19 COVID-19 - complications COVID-19 - virology Deep Learning Diagnosis Expert Systems Humanities and Social Sciences Humans Image Processing, Computer-Assisted - methods Incidence India - epidemiology multidisciplinary Neural Networks, Computer Pandemics Performance assessment Pneumonia Pneumonia - diagnosis Pneumonia - diagnostic imaging Pneumonia - epidemiology Pneumonia - virology Polymerase chain reaction Quarantine Radiography, Thoracic - methods Retrospective Studies SARS-CoV-2 - isolation & purification Science Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 Tomography, X-Ray Computed - methods X-rays |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQSgg4IL43sCAjcWOjTWzHsY-wsFqQ-Diwq94sO7a3lUpStYlK_z1jJw2tQAsHLj0kE9WZeY7faOw3CL2iVVAZK2TqhZMpM6VJpc10yo1hThY-pz5UdD995ucX7OOkmOy0-gp7wnp54N5xJ1XpisI7IZhkkHxkBkBjc888N4xUPOp8ZkLuJFO9qjeRLJfDKZmMipMVrFThNBmB7DluyFrvrURRsP9PLPP3zZJjxfQOutXVC71Z6_l8Z1E6u4fuDmwSv-nf4j664eoH6GbfX3LzEP24BJbdN03CjcdRzb_FvXgzdvU0Vv-xdW6Bh-4RV1jPr5rlrJ1-x0Bnse7aBjgtWMHnBVLeYBGun365_PAu_Vq7DmA80xj-IHbewpN0qTerR-ji7P230_N0aLWQVkDZ2lRrSwtvc-sgfbG2Yoby0nunpTQkK0yWO5pJYrwlLteEOqARnnsrbOYNNxV9jA7qpnaHCDOheW5K64GasMLlQnDrIHZOi3DytUpQvnW7qgYd8tAOY65iPZwK1YdKQahUDJVaJ-j1-MyiV-G41vptiOZoGRS04wXAlRpwpf6GqwQdbbGghmm9UpD8MSnCT4JejrdhQoYqi65d00WbwCIl4Ql60kNnHAllIhx9Jgkq90C1N9T9O_VsGkW_BaecsyJBx1v4_RrWda44HiH6D557-j889wzdJmGaxT0_R-igXXbuOTC31ryIk_QnoPI-lg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTgh4QHwNAgMZiTcWLYkd13lAiI1NA4kyITbtLbJju51UktKmKv3vOTsfowJVvOQhcRX3fHf-OXf3O4A3tHAsY2kWWmGykKmhCjMdyZArxUyW2phaF9H9MuJnF-zzVXq1A6OuFsalVXY-0TtqXRXuG_kh4m6WCXd5P_sZuq5RLrratdCQbWsF_c5TjN2C3cQxYw1g9-hkdP6t_-ri4losztrqmYiKwwXuYK7KLMFTtU_UWm3sUJ7I_1_o8-8kyj6Seg_uLMuZXK_kdPrHZnX6AO63KJN8aNTiIeyY8hHcbvpOrh_Dr0tE300zJVJZ4ln-a9KQOhNTTnxWANHGzEjbVWJM5HSM4qgnPwjCXCKXdYVYF0eh28GjsBvh7h9_vfz0MTwvzRLldS0JvsB35CJX4VyuF0_g4vTk-_FZ2LZgCAuEcnUopaap1bE2eKzRumCK8qG1RmaZSqJURbGhUZYoqxMTy4QahBeWWy10ZBVXBd2DQVmV5hkQJiSP1VBbhCwsNbEQXJuMMSOFq4gtAog7sedFy0_u2mRMcx8npyJvlirHpcr9UuWrAN72v5k17BxbRx-51exHOmZtf6Oaj_PWUPNiaNLUGiEYzg39oUInpWPLLFcsKTgNYL_Thbw190V-o5wBvO4fo6G66IssTbX0Yxy6zBIewNNGdfqZUCZcSXQSwHBDqTamuvmkvJ54MnDBKecsDeCgU7-baW0TxUGvov8huefb__QLuJs4A_JZPvswqOdL8xKxWq1etQb4G3iOPTs priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbGEII9IH4vMJCREC_M0NiOaz8gBINpIA14oFPfIju220kl7dpEXf97zk4aqKimvfQhuaTO-c7-Tr67D6FXrAhdxjJFvHSKcNM3RNmeJsIY7lTmU-bDie7pd3Ey4N-G2XAHrdNtWwUutoZ2gU9qMJ-8vbxYfQCHf9-UjMt3C9iEQqEYhcA45lotX88uSCCWCgewLcvGDXQTNi8V2B1O2wigaf9NFY_0H6EvOwF8QdvSmu1v3ti-Ypf_bdD0_wzL7ph1D92uy5leLfVk8s9OdnwP3W0hKP7Y2Mx9tOPKB-hWQ0q5eoguzwCaN0xLeOpxpACocNPxGbtyHFMGsHVuhlvKiRHWkxEoohr_xoCBsa6rKQBhkII1CeLkIBGuH_04-_qZ_CxdDZo61xj-INJ14SGZ69XiERocf_l1dEJafgZSAM6riNaWZd6m1kHMY23BDRN9751WytBeZnqpYz1FjbfUpZoyB9jDC2-l7XkjTMEeo91yWrp9hLnUIjV96wHP8MylUgrrFOdOy1AuWyQoXas9L9rm5YFDY5LHQ3Qm82aqcpiqPE5VvkzQm-6ZWdO640rpT2E2O8nQdjtemM5HeevFedF3WeadlBzGBoulgRXMpp57YTgtBEvQwdoW8rUp5xAxciXDT4JedrfBi8PRjC7dtI4yAXoqKhL0pDGdbiSMy1AvTRPU3zCqjaFu3inPx7FTuBRMCJ4l6HBtfn-HdZUqDjsTvYbmnl7jq56hOzR4UcwDOkC71bx2zwHNVeZF9Mc_TWdFaA priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgj2gPheYCAj8UYjkthx7ccymEYlPiTY1LfIju21UkmrNlXpf8_ZSQPV0AQveUjOieW7s3_O-X4H8JqWnmUsl7ETVsZMD3QsTaJirjWzMncpdT6i--kzP79go3E-PoD-LhdmL34fqLtXuMT4NLAMt73hJNXmFhwKNEzRg8PhcPRt1P1T8VErlso2Nwabv73eeG_9CTT9f8OW149IdnHSI7izrhZqu1Gz2R9L0dl9uNdiSDJslP4ADmz1EG43VSW3j-DnJWLrplQSmTsSOPxr0lA2E1tNQsyfGGsXpK0ZcUXU7Gq-nNaTHwRBLFHreo5IFqVwUsGNrpfw90-_XH58H3-t7BqNd6oIfiDU2yLjeKm2q8dwcfbh--l53BZYiEsEanWslKG5M6mxuGkxpmSa8oFzVkmpsyTXSWppIjPtTGZTlVGL4MFxZ4RJnOa6pE-gV80rewyECcVTPTAOAQnLbSoEN1YyZpXw-a5lBOlu2IuyZR_3RTBmRYiCU1E0qipQVUVQVbGJ4E3XZtFwb9wo_c5rs5P0vNnhBppT0bphUQ5snjsrBMO-4WyncQoyqWOOa5aVnEZwsrOFonXmVYFbPiaFv0TwqnuMbuhjK6qy83WQ8dhRZjyCp43pdD2hTPiE5yyCwZ5R7XV1_0k1nQSqb8Ep5yyPoL8zv9_dumko-p2J_sPIPfu_tz-Hu5l3qHCm5wR69XJtXyAyq_XL1iF_AUgnMcg priority: 102 providerName: Springer Nature |
| Title | Validation of expert system enhanced deep learning algorithm for automated screening for COVID-Pneumonia on chest X-rays |
| URI | https://link.springer.com/article/10.1038/s41598-021-02003-w https://www.ncbi.nlm.nih.gov/pubmed/34853342 https://www.proquest.com/docview/2604986049 https://www.proquest.com/docview/2605600926 https://pubmed.ncbi.nlm.nih.gov/PMC8636645 https://www.nature.com/articles/s41598-021-02003-w.pdf https://doaj.org/article/c7e55fe884944070b531d1f4f6b42c63 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Link OA Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQwh44PsjMCoj8cYymsRxnMeubBqTNiZgo3uK7NheK0pSdalK-es5O2mgME3sJZGci2JfLuef47vfAbyJcssyFqe-4Tr1qUykn6qu8JmUVKexCSJjd3SPjtnBKT0cxIM1YMtcGBe07ygtnZteRoe9u8SJxiaDhbj4dfFU852JMuuwyWLE4BuweXp80ju3leQQo_gIE8ImQ6Yb8StuXpmFHFn_VQjz30DJdrf0LtyeFROxmIvx-I8Jaf8-fF0OpY5D-bYzq-RO_vMvlsebj_UB3GswKunVkg9hTReP4FZdtXLxGH6cIXavSzGR0hBXI6AiNSU00cXQxRQQpfWENDUpLogYX5TTUTX8ThAkEzGrSkTKKIVOCxfSVsK29z-efXjvnxR6hh_HSBB8gKvnRQb-VCwun8Dp_t6X_oHfFHDwcwSClS-EimKjAqVxUaRUTmXEEmO0SFMZdmPZDXTUTUNpVKgDEUYawYlhRnHVNZLJPHoKG0VZ6OdAKBcskIkyCHhorAPOmdIppVpwm0-bexAsX2iWN-zmtsjGOHO77BHPaq1mqNXMaTWbe_C2vWdSc3tcK71r7aSVtLzcrqGcXmTNu8vyRMex0ZxT7Bt6U4kuTgWGGiZpmLPIg62llWWNs7jMcElJU24PHrxuL-NnbvduRKHLmZOx2DQNmQfPaqNsexJRbhOqQw-SFXNd6erqlWI0dFTinEWM0diD7aVh_-7WdarYbo3_PzT34mbiL-FOaG3fxQxtwUY1nelXiPwq2YH1ZJB0YLPXO_x8iOfdveOTT9jaZ_2O-5uCxyPKO407-AVy4FtC |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwJDDASPLFoSey4zsOE2E0t28qEtqlvmR3b7aSSlF5U-uf4bRw7l1GBKl720ofktHV8jo8_51w-hN6TzHYZixPfcJ34VLakn6hA-ExKqpPYhMTYiO5pl7Uv6Jde3FtDv-paGJtWWftE56hVkdl35DuAu2nC7cen0Q_fskbZ6GpNoSEqagW161qMVYUdx3oxhyPcZLdzAPr-EEVHh-f7bb9iGfAzQCtTXwhFYqNCpQG5K5VRSVjLGC2SREZBLINQkyCJpFGRDkVENOyghhnFVWAkkxmB372DNiihCRz-NvYOu2ffmrc8No5Gw6Sq1gkI35nAjmmr2iI4xbvEsPnSjuiIA_6Fdv9O2mwit_fR5iwficVcDId_bI5HD9GDCtXiz6UZPkJrOn-M7pY8l4sn6OcloP2SvAkXBjtWgSkum0hjnQ9cFgJWWo9wxWLRx2LYh-mfDr5jgNVYzKYFYGuQAjcHR28rYa_vf73sHPhnuZ6Bfq4Fhj9wDGC454_FYvIUXdyKMp6h9bzI9QuEKRcslC1lACLRWIecM6UTSrXgtgI381BYT3uaVf3QLS3HMHVxecLTUlUpqCp1qkrnHvrYfGdUdgNZKb1ntdlI2k7e7kIx7qeVY0izlo5jozmnMDbwvxKcogoNNUzSKGPEQ1u1LaSVe5mkN4vBQ--a2-AYbLRH5LqYORmLZpOIeeh5aTrNSAjltgQ78lBryaiWhrp8J78euObjnBHGaOyh7dr8boa1aiq2GxP9j5l7ufqh36LN9vnpSXrS6R6_Qvciu5hchtEWWp-OZ_o14MSpfFMtRoyubnv9_wat63zP |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGELcHxJ3AACPBE4uaxI7jPCAEK9PKYOyBTX3L7NhuJ5WktKlK_xq_jmPnMipQxcte-pCcto7PxZ9zjs-H0CuS2y5jceobrlOfykT6qQqEz6SkOo1NSIzN6H45Ygcn9NMwHm6hX-1ZGFtW2cZEF6hVmdt35D3A3TTl9qNnmrKI4_7-u-kP3zJI2UxrS6dRm8ihXi1h-zZ_O-iDrl9H0f7Hb3sHfsMw4OeAVCpfCEVio0KlAbUrlVNJWGKMFmkqoyCWQahJkEbSqEiHIiIaVk_DjOIqMJLJnMDvXkFXE0JSW06YDJPu_Y7NoNEwbc7pBIT35rBW2vNsEezfXUnYcm0tdJQB_8K5f5drdjnbW-jGopiK1VJMJn8si_t30O0Gz-L3tQHeRVu6uIeu1QyXq_vo5yng_Jq2CZcGOz6BCtfto7Euxq7-ACutp7jhrxhhMRnBZFfj7xgANRaLqgRUDVIQ4GDTbSXs9b2vp4O-f1zoBWjjXGD4A8f9hYf-TKzmD9DJpajiIdouykI_RphywUKZKAPgiMY65JwpnVKqBbdnb3MPhe20Z3nTCd0Sckwyl5EnPKtVlYGqMqeqbOmhN913pnUfkI3SH6w2O0nbw9tdKGejrAkJWZ7oODaacwpjg8grIRyq0FDDJI1yRjy009pC1gSWeXbhBh562d2GkGDzPKLQ5cLJWBybRsxDj2rT6UZCKLeHryMPJWtGtTbU9TvF-di1HeeMMEZjD-225ncxrE1TsduZ6H_M3JPND_0CXQevzz4Pjg6fopuR9SVXWrSDtqvZQj8DgFjJ584TMTq7bNf_DUllemk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQ88P0RGMhIvLF0Sew4zuMYTAOJsQc6ylNkx3ZbUZKqTVTKX8_Z-YDCNLGXPCRnxT6fzz_Ld79D6BXJLctYnPqG69SnMpF-qgLhMympTmMTEmNvdD-espMR_TCOxzuIdbkwLmjfUVo6N91Fhx2sYKOxyWARHH5dPNV6uFDmGtplMWDwAdodnZ4dfrWV5ACj-AATojZDJiD8gsZbu5Aj678IYf4bKNnflt5CN-piITZrMZ__sSEd30FfuqE0cSjfhnUlh_nPv1gerz7Wu-h2i1HxYSN5D-3o4j663lSt3DxAP84BuzelmHBpsKsRUOGGEhrrYupiCrDSeoHbmhQTLOaTcjmrpt8xgGQs6qoEpAxS4LTgIG0l7PujT-fv3_pnha5hccwEhh-4el547C_FZvUQjY7ffT468dsCDn4OQLDyhVAkNipUGg5FSuVUEpYYo0WayiiIZRBqEqSRNCrSoYiIBnBimFFcBUYymZNHaFCUhX6CMOWChTJRBgAPjXXIOVM6pVQLbvNpcw-F3YRmectubotszDN3y0541mg1A61mTqvZ2kOv-zaLhtvjUuk31k56ScvL7V6Uy0nWzl2WJzqOjeacQt_Am0pwcSo01DBJo5wRD-11Vpa1zmKVwZGSptw-PPSy_wzL3N7diEKXtZOx2DSNmIceN0bZ94RQbhOqIw8lW-a61dXtL8Vs6qjEOSOM0dhD-51h_-7WZarY743_PzT39Griz9DNyNq-ixnaQ4NqWevngPwq-aJd5r8AwudUiQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+expert+system+enhanced+deep+learning+algorithm+for+automated+screening+for+COVID-Pneumonia+on+chest+X-rays&rft.jtitle=Scientific+reports&rft.au=Gidde%2C+Prashant+Sadashiv&rft.au=Prasad%2C+Shyam+Sunder&rft.au=Singh%2C+Ajay+Pratap&rft.au=Bhatheja%2C+Nitin&rft.date=2021-12-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=23210&rft_id=info:doi/10.1038%2Fs41598-021-02003-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |