Validation of expert system enhanced deep learning algorithm for automated screening for COVID-Pneumonia on chest X-rays

SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in ex...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 23210 - 12
Main Authors Gidde, Prashant Sadashiv, Prasad, Shyam Sunder, Singh, Ajay Pratap, Bhatheja, Nitin, Prakash, Satyartha, Singh, Prateek, Saboo, Aakash, Takhar, Rohit, Gupta, Salil, Saurav, Sumeet, M. V., Raghunandanan, Singh, Amritpal, Sardana, Viren, Mahajan, Harsh, Kalyanpur, Arjun, Mandal, Atanendu Shekhar, Mahajan, Vidur, Agrawal, Anurag, Agrawal, Anjali, Venugopal, Vasantha Kumar, Singh, Sanjay, Dash, Debasis
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-02003-w

Cover

Abstract SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66–0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral.
AbstractList SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66–0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral.
Abstract SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66–0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral.
SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66-0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral.SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66-0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral.
ArticleNumber 23210
Author Agrawal, Anjali
Singh, Ajay Pratap
Singh, Amritpal
Gidde, Prashant Sadashiv
Sardana, Viren
Mahajan, Harsh
Saurav, Sumeet
Singh, Prateek
Mahajan, Vidur
Venugopal, Vasantha Kumar
Singh, Sanjay
Gupta, Salil
Prakash, Satyartha
Takhar, Rohit
Prasad, Shyam Sunder
Kalyanpur, Arjun
Agrawal, Anurag
Saboo, Aakash
M. V., Raghunandanan
Dash, Debasis
Mandal, Atanendu Shekhar
Bhatheja, Nitin
Author_xml – sequence: 1
  givenname: Prashant Sadashiv
  surname: Gidde
  fullname: Gidde, Prashant Sadashiv
  organization: CSIR-Central Electronics Engineering Research Institute
– sequence: 2
  givenname: Shyam Sunder
  surname: Prasad
  fullname: Prasad, Shyam Sunder
  organization: CSIR-Central Electronics Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR)
– sequence: 3
  givenname: Ajay Pratap
  surname: Singh
  fullname: Singh, Ajay Pratap
  organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR)
– sequence: 4
  givenname: Nitin
  surname: Bhatheja
  fullname: Bhatheja, Nitin
  organization: CSIR-Institute of Genomics and Integrative Biology
– sequence: 5
  givenname: Satyartha
  surname: Prakash
  fullname: Prakash, Satyartha
  organization: CSIR-Institute of Genomics and Integrative Biology
– sequence: 6
  givenname: Prateek
  surname: Singh
  fullname: Singh, Prateek
  organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR)
– sequence: 7
  givenname: Aakash
  surname: Saboo
  fullname: Saboo, Aakash
  organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING)
– sequence: 8
  givenname: Rohit
  surname: Takhar
  fullname: Takhar, Rohit
  organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING)
– sequence: 9
  givenname: Salil
  surname: Gupta
  fullname: Gupta, Salil
  organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING)
– sequence: 10
  givenname: Sumeet
  surname: Saurav
  fullname: Saurav, Sumeet
  organization: CSIR-Central Electronics Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR)
– sequence: 11
  givenname: Raghunandanan
  surname: M. V.
  fullname: M. V., Raghunandanan
  organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR)
– sequence: 12
  givenname: Amritpal
  surname: Singh
  fullname: Singh, Amritpal
  organization: Maulana Azad Medical College (MAMC)
– sequence: 13
  givenname: Viren
  surname: Sardana
  fullname: Sardana, Viren
  organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR)
– sequence: 14
  givenname: Harsh
  surname: Mahajan
  fullname: Mahajan, Harsh
  organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING)
– sequence: 15
  givenname: Arjun
  surname: Kalyanpur
  fullname: Kalyanpur, Arjun
  organization: Teleradiology Solutions
– sequence: 16
  givenname: Atanendu Shekhar
  surname: Mandal
  fullname: Mandal, Atanendu Shekhar
  organization: CSIR-Central Electronics Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR)
– sequence: 17
  givenname: Vidur
  surname: Mahajan
  fullname: Mahajan, Vidur
  organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING)
– sequence: 18
  givenname: Anurag
  surname: Agrawal
  fullname: Agrawal, Anurag
  organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR)
– sequence: 19
  givenname: Anjali
  surname: Agrawal
  fullname: Agrawal, Anjali
  email: anjali.agrawal@telradsol.com
  organization: Teleradiology Solutions
– sequence: 20
  givenname: Vasantha Kumar
  surname: Venugopal
  fullname: Venugopal, Vasantha Kumar
  email: drvasanth@mahajanimaging.com
  organization: Centre for Advanced Research in Imaging, Neurosciences Genomics (CARING)
– sequence: 21
  givenname: Sanjay
  surname: Singh
  fullname: Singh, Sanjay
  email: sanjay@ceeri.res.in
  organization: CSIR-Central Electronics Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR)
– sequence: 22
  givenname: Debasis
  surname: Dash
  fullname: Dash, Debasis
  email: ddash@igib.res.in
  organization: CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research (AcSIR)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34853342$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNUREvpH2CBLLFhE_Azk2yQ0PAaqVJZQMXOcuzrjEeJPdgJ0_n3eB6UtosKS7Ej57vHJ-f6eXHig4eieEnwW4JZ_S5xIpq6xJTkB2NWbp4UZxRzUVJG6cmd99PiIqUVzkPQhpPmWXHKeC0Y4_SsuLlWvTNqdMGjYBHcrCGOKG3TCAMCv1Reg0EGYI16UNE73yHVdyG6cTkgGyJS0xgGNWYq6QiwJ3b786vrxcfym4dpCN4plA_QS0gj-llGtU0viqdW9Qkujut58ePzp-_zr-Xl1ZfF_MNlqQXHY6mUYcIaYmAmmDGat6yaWQuqaVqKRYsJMNzQ1hoKRFEGDSa2sqY22LZVq9l5sTjomqBWch3doOJWBuXkfiPETqo4Ot2D1DMQwkJd84ZzPMOtYMQQy23VcqorlrXYQWvya7XdqL6_FSRY7toiD22RuS1y3xa5yVXvD1XrqR3AaPBjVP09K_e_eLeUXfgt64pVFRdZ4M1RIIZfU45QDi5p6HvlIUxJ0gqLCucUqoy-foCuwhR9DnhH8abeTZl6ddfRrZW_1yID9QHQMaQUwUrtxv0lyQZd__jf0gel_xXRMdiUYd9B_Gf7kao_9iLvXA
CitedBy_id crossref_primary_10_1002_hsr2_1919
crossref_primary_10_1016_j_patcog_2022_108826
crossref_primary_10_3389_fmed_2022_861680
crossref_primary_10_1016_j_ejrad_2023_111159
crossref_primary_10_1016_j_cmpb_2022_107161
crossref_primary_10_1007_s10462_024_10822_2
crossref_primary_10_1038_s41598_023_44653_y
crossref_primary_10_17749_2070_4909_farmakoekonomika_2021_109
crossref_primary_10_24113_ijoscience_v10i4_498
Cites_doi 10.1016/j.cmpb.2020.105608
10.1001/jama.2020.3786
10.1016/S0140-6736(20)30183-5
10.1016/j.patrec.2020.09.010
10.1038/s41598-020-76550-z
10.1007/978-3-319-24574-4_28
10.1109/ACCESS.2020.3044858
10.1016/j.chaos.2020.110190
10.1186/s43055-019-0116-6
10.1016/j.compbiomed.2020.103869
10.1109/CVPR.2017.243
10.1289/ehp.8377
10.1186/s12938-020-00831-x
10.1101/19013342
10.1016/j.compbiomed.2020.103792
10.1109/ICCV.2015.169
10.1101/2020.04.04.20052241
10.1038/s41598-018-37186-2
10.1609/aaai.v33i01.3301590
10.1016/j.media.2021.102046
10.1007/978-3-030-00946-5_17
10.1101/2020.04.12.20062661
10.1038/s42256-021-00307-0
10.1109/CVPR.2017.690
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2016.91
10.1148/radiol.2020201160
10.1109/BIBM49941.2020.9313304
10.1016/j.inffus.2021.04.008
10.1109/CVPR.2009.5206848
10.1016/j.clinimag.2020.04.001
10.1109/TMI.2020.3002417
10.1016/j.media.2021.102125
10.1109/access.2020.3010287
10.1109/TMI.1983.4307610
10.1016/j.cmpb.2020.105581
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-021-02003-w
DatabaseName Springer Nature Link OA Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link OA Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_c7e55fe884944070b531d1f4f6b42c63
10.1038/s41598-021-02003-w
PMC8636645
34853342
10_1038_s41598_021_02003_w
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GrantInformation_xml – fundername: DBT-BINC
  grantid: Fellowship
– fundername: Council of Scientific and Industrial Research, India
  grantid: HCP-0013; MLP-2002
  funderid: http://dx.doi.org/10.13039/501100001412
– fundername: Council of Scientific and Industrial Research, India
  grantid: HCP-0013
– fundername: Council of Scientific and Industrial Research, India
  grantid: MLP-2002
– fundername: ;
  grantid: Fellowship
– fundername: ;
  grantid: HCP-0013; MLP-2002
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c540t-aad35fd1de753ddc4b367ffea99b205b01e3092bfd2e1a23e901f6fd8d0fb6bc3
IEDL.DBID UNPAY
ISSN 2045-2322
IngestDate Fri Oct 03 12:53:09 EDT 2025
Sun Oct 26 04:16:01 EDT 2025
Tue Sep 30 16:51:56 EDT 2025
Thu Sep 04 17:58:39 EDT 2025
Tue Oct 07 07:41:09 EDT 2025
Thu Jan 02 22:45:21 EST 2025
Wed Oct 01 02:17:44 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Fri Feb 21 02:39:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-aad35fd1de753ddc4b367ffea99b205b01e3092bfd2e1a23e901f6fd8d0fb6bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-021-02003-w.pdf
PMID 34853342
PQID 2604986049
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_c7e55fe884944070b531d1f4f6b42c63
unpaywall_primary_10_1038_s41598_021_02003_w
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8636645
proquest_miscellaneous_2605600926
proquest_journals_2604986049
pubmed_primary_34853342
crossref_citationtrail_10_1038_s41598_021_02003_w
crossref_primary_10_1038_s41598_021_02003_w
springer_journals_10_1038_s41598_021_02003_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References BruneseLMercaldoFReginelliASantoneAExplainable deep learning for pulmonary disease and coronavirus COVID-19 detection from x-raysComput. Methods Programs Biomed.202019610560810.1016/j.cmpb.2020.105608325993387831868
Maguolo, G. & Nanni, L. A critic evaluation of methods for COVID-19 automatic detection from X-ray images. arXiv e-prints arXiv: http://arxiv.org/abs/2004.12823 (2020)
Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).
SignoroniABs-net: Learning COVID-19 pneumonia severity on a large chest x-ray datasetMed. Image Anal.20217110204610.1016/j.media.2021.102046338623378010334
OzturkTAutomated detection of COVID-19 cases using deep neural networks with x-ray imagesComput. Biol. Med.20201211037921:CAS:528:DC%2BB3cXosVWru7k%3D10.1016/j.compbiomed.2020.103792325686757187882
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 (2016).
WHO. Who Characterizes COVID-19 as a Pandemic (2020).
Wang, L. & Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. arXiv e-prints arXiv: http://arxiv.org/abs/2003.09871 (2020)
Karim, M. R. et al. DeepCOVIDexplainer: Explainable COVID-19 diagnosis based on chest x-ray images. arXiv: Image Video Process. (2020).
Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, 3859–3869 (Curran Associates Inc., 2017).
Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K. G., & Murphy, K. Deep learning for chest X-ray analysis: A survey. Med. Image Anal. 102125 (2021).
JacobiAChungMBernheimAEberCPortable chest x-ray in coronavirus disease-19 (COVID-19): A pictorial reviewClin. Imaging202064354210.1016/j.clinimag.2020.04.001323029277141645
Redmon, J. & Farhadi, A. Yolo9000: Better, faster, stronger. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6517–6525 (2017).
Arias-LondoñoJDGómez-GarcíaJAMoro-VelázquezLGodino-LlorenteJIArtificial intelligence applied to chest x-ray images for the automatic detection of COVID-19. A thoughtful evaluation approachIEEE Access2020822681122682710.1109/ACCESS.2020.304485834786299
Deng, J. et al. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09 (2009).
Girshick, R. Fast r-cnn. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV, Vo;. 15, 1440–1448, https://doi.org/10.1109/ICCV.2015.169 (IEEE Computer Society, 2015).
LiuLÖzsuMTMean Average Precision2009Springer US17031703
ParkerJAKenyonRVTroxelDEComparison of interpolating methods for image resamplingIEEE Trans. Med. Imaging1983231391:STN:280:DC%2BD1c%2FnslCktQ%3D%3D10.1109/TMI.1983.430761018234586
World Health Organization. Use of Chest Imaging in COVID-19: A Rapid Advice Guide: Web Annex A: Imaging for COVID-19: A Rapid Review. Technical documents, World Health Organization 76, https://apps.who.int/iris/handle/10665/332326 (2020).
Afshar, P. et al. COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray Images. arXiv e-prints arXiv: http://arxiv.org/abs/2004.02696 (2020)
Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations (2015).
Irvin, J. et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In AAAI (2019).
VenugopalVKA systematic meta-analysis of CT features of COVID-19: Lessons from radiologymedRxiv202010.1101/2020.04.04.20052241
AliTFTawabMElHaririMACt chest of COVID-19 patients: what should a radiologist know?Egypt. J. Radiol. Nucl. Med.2020511610.1186/s43055-020-00245-8
Lin, Z. et al. Do explanations reflect decisions? a machine-centric strategy to quantify the performance of explainability algorithms. ArXivhttp://arxiv.org/abs/abs/1910.07387 (2019).
Ronneberger, O., P.Fischer & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vol. 9351 of LNCS, 234–241 (Springer, 2015) (available on arXiv: http://arxiv.org/abs/1505.04597 [cs.CV]).
Calderón-GarcidueñasLLung radiology and pulmonary function of children chronically exposed to air pollutionEnviron. Health. Perspect.20061141432143710.1289/ehp.8377169661011570091
Cohen, J. P., Morrison, P. & Dao, L. COVID-19 image data collection. arXivhttp://arxiv.org/abs/2003.11597 (2020).
Rsna pneumonia detection challenge. https://www.kaggle.com/c/rsna-pneumonia-detection-challenge (2018).
ChowdhuryMEHCan ai help in screening viral and COVID-19 pneumonia?IEEE Access2020813266513267610.1109/access.2020.3010287
RobertsMCommon pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scansNat. Mach. Intell.2021319921710.1038/s42256-021-00307-0
De LaceyGMorleySBermanLThe Chest X-ray, a Survival Guide2008Saunders
HussainLMachine-learning classification of texture features of portable chest x-ray accurately classifies COVID-19 lung infectionBioMed. Eng. OnLine20201911810.1186/s12938-020-00831-x
HuangCClinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet2020395102234975061:CAS:528:DC%2BB3cXhs1Kqu7c%3D10.1016/S0140-6736(20)30183-5319862647159299
QinZZUsing artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systemsSci. Rep.201991102019NatSR...9....1D10.1038/s41598-019-51503-3
KhanAIShahJLBhatMMCoronet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray imagesComput. Methods Programs Biomed.202019610558110.1016/j.cmpb.2020.105581325343447274128
MeiXArtificial intelligence-enabled rapid diagnosis of COVID-19 patientsMedRxiv202010.1101/2020.04.12.20062661331068217587841
Haghanifar, A., Molahasani Majdabadi, M., Choi, Y., Deivalakshmi, S. & Ko, S. COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning. arXiv e-prints arXiv: http://arxiv.org/abs/2006.13807 (2020)
MahmudTRahmanMAFattahSACovxnet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest x-ray images with transferable multi-receptive feature optimizationComput. Biol. Med.20201221038691:CAS:528:DC%2BB3cXht1ejtr3P10.1016/j.compbiomed.2020.103869326587407305745
Rajpurkar, P. et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. ArXivhttp://arxiv.org/abs/abs/1711.05225 (2017).
WongHYFFrequency and distribution of chest radiographic findings in patients positive for COVID-19Radiology2020296E72E7810.1148/radiol.202020116032216717
RenSHeKGirshickRSunJFaster r-cnn: Towards real-time object detection with region proposal networksIEEE Trans. Pattern Anal. Mach. Intell.2017391137114910.1109/TPAMI.2016.257703127295650
WangWDetection of SARS-CoV-2 in different types of clinical specimensJAMA2020323184318441:CAS:528:DC%2BB3cXps1Srurs%3D10.1001/jama.2020.3786321597757066521
Khan, A. et al. Detection of chest x-ray abnormalities and tuberculosis using computer-aided detection vs interpretation by radiologists and a clinical officer. In 45th World Conf. on Lung Heal. (2014).
Iglovikov, V., & Shvets, A.A. (2018). TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation. ArXivhttp://arxiv.org/abs/1801.05746.
Pham, H. H., Le, T. T., Tran, D. Q., Ngo, D. T. & Nguyen, H. Q. Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. arXiv e-prints arXiv: http://arxiv.org/abs/1911.06475 (2019).
Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788 (2016).
Eelbode, T. et al. Optimization for medical image segmentation: Theory and practice when evaluating with dice score or Jaccard index. IEEE Trans. Med. Imaging 1–1 (2020).
Frid-Adar, M., Ben-Cohen, A., Amer, R. & Greenspan, H. Improving the Segmentation of Anatomical Structures in Chest Radiographs Using U-Net with an ImageNet Pre-trained Encoder: Third International Workshop, RAMBO 2018, Fourth International Workshop, BIA 2018, and First International Workshop, TIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 and 20, 2018, Proceedings. https://doi.org/10.1007/978-3-030-00946-5_17 (2018).
PanwarHA deep learning and grad-cam based color visualization approach for fast detection of COVID-19 cases using chest x-ray and CT-scan imagesChaos Solitons Fractals2020140110190415527210.1016/j.chaos.2020.110190328369187413068
HYF Wong (2003_CR5) 2020; 296
JA Parker (2003_CR41) 1983; 2
2003_CR20
2003_CR23
2003_CR24
2003_CR21
2003_CR22
2003_CR27
2003_CR28
A Signoroni (2003_CR30) 2021; 71
(2003_CR47) 2009
2003_CR25
2003_CR26
X Mei (2003_CR13) 2020
AI Khan (2003_CR32) 2020; 196
T Mahmud (2003_CR31) 2020; 122
JD Arias-Londoño (2003_CR29) 2020; 8
2003_CR50
2003_CR12
2003_CR1
2003_CR10
2003_CR17
C Huang (2003_CR44) 2020; 395
2003_CR14
G De Lacey (2003_CR43) 2008
2003_CR18
MEH Chowdhury (2003_CR15) 2020; 8
H Panwar (2003_CR9) 2020; 140
S Ren (2003_CR19) 2017; 39
2003_CR42
VK Venugopal (2003_CR4) 2020
2003_CR40
2003_CR45
L Hussain (2003_CR33) 2020; 19
2003_CR46
2003_CR49
L Calderón-Garcidueñas (2003_CR48) 2006; 114
TF Ali (2003_CR7) 2020; 51
M Roberts (2003_CR16) 2021; 3
L Brunese (2003_CR8) 2020; 196
T Ozturk (2003_CR11) 2020; 121
2003_CR34
2003_CR35
2003_CR38
2003_CR39
2003_CR36
2003_CR37
A Jacobi (2003_CR6) 2020; 64
W Wang (2003_CR2) 2020; 323
ZZ Qin (2003_CR3) 2019; 9
References_xml – reference: Rajpurkar, P. et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. ArXivhttp://arxiv.org/abs/abs/1711.05225 (2017).
– reference: Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788 (2016).
– reference: SignoroniABs-net: Learning COVID-19 pneumonia severity on a large chest x-ray datasetMed. Image Anal.20217110204610.1016/j.media.2021.102046338623378010334
– reference: Maguolo, G. & Nanni, L. A critic evaluation of methods for COVID-19 automatic detection from X-ray images. arXiv e-prints arXiv: http://arxiv.org/abs/2004.12823 (2020)
– reference: Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).
– reference: Ronneberger, O., P.Fischer & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vol. 9351 of LNCS, 234–241 (Springer, 2015) (available on arXiv: http://arxiv.org/abs/1505.04597 [cs.CV]).
– reference: De LaceyGMorleySBermanLThe Chest X-ray, a Survival Guide2008Saunders
– reference: QinZZUsing artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systemsSci. Rep.201991102019NatSR...9....1D10.1038/s41598-019-51503-3
– reference: Iglovikov, V., & Shvets, A.A. (2018). TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation. ArXivhttp://arxiv.org/abs/1801.05746.
– reference: WangWDetection of SARS-CoV-2 in different types of clinical specimensJAMA2020323184318441:CAS:528:DC%2BB3cXps1Srurs%3D10.1001/jama.2020.3786321597757066521
– reference: ChowdhuryMEHCan ai help in screening viral and COVID-19 pneumonia?IEEE Access2020813266513267610.1109/access.2020.3010287
– reference: Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K. G., & Murphy, K. Deep learning for chest X-ray analysis: A survey. Med. Image Anal. 102125 (2021).
– reference: Irvin, J. et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In AAAI (2019).
– reference: AliTFTawabMElHaririMACt chest of COVID-19 patients: what should a radiologist know?Egypt. J. Radiol. Nucl. Med.2020511610.1186/s43055-020-00245-8
– reference: Girshick, R. Fast r-cnn. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV, Vo;. 15, 1440–1448, https://doi.org/10.1109/ICCV.2015.169 (IEEE Computer Society, 2015).
– reference: HuangCClinical features of patients infected with 2019 novel coronavirus in Wuhan, ChinaLancet2020395102234975061:CAS:528:DC%2BB3cXhs1Kqu7c%3D10.1016/S0140-6736(20)30183-5319862647159299
– reference: RenSHeKGirshickRSunJFaster r-cnn: Towards real-time object detection with region proposal networksIEEE Trans. Pattern Anal. Mach. Intell.2017391137114910.1109/TPAMI.2016.257703127295650
– reference: Frid-Adar, M., Ben-Cohen, A., Amer, R. & Greenspan, H. Improving the Segmentation of Anatomical Structures in Chest Radiographs Using U-Net with an ImageNet Pre-trained Encoder: Third International Workshop, RAMBO 2018, Fourth International Workshop, BIA 2018, and First International Workshop, TIA 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16 and 20, 2018, Proceedings. https://doi.org/10.1007/978-3-030-00946-5_17 (2018).
– reference: Deng, J. et al. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09 (2009).
– reference: OzturkTAutomated detection of COVID-19 cases using deep neural networks with x-ray imagesComput. Biol. Med.20201211037921:CAS:528:DC%2BB3cXosVWru7k%3D10.1016/j.compbiomed.2020.103792325686757187882
– reference: World Health Organization. Use of Chest Imaging in COVID-19: A Rapid Advice Guide: Web Annex A: Imaging for COVID-19: A Rapid Review. Technical documents, World Health Organization 76, https://apps.who.int/iris/handle/10665/332326 (2020).
– reference: KhanAIShahJLBhatMMCoronet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray imagesComput. Methods Programs Biomed.202019610558110.1016/j.cmpb.2020.105581325343447274128
– reference: Wang, L. & Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. arXiv e-prints arXiv: http://arxiv.org/abs/2003.09871 (2020)
– reference: VenugopalVKA systematic meta-analysis of CT features of COVID-19: Lessons from radiologymedRxiv202010.1101/2020.04.04.20052241
– reference: WongHYFFrequency and distribution of chest radiographic findings in patients positive for COVID-19Radiology2020296E72E7810.1148/radiol.202020116032216717
– reference: WHO. Who Characterizes COVID-19 as a Pandemic (2020).
– reference: Cohen, J. P., Morrison, P. & Dao, L. COVID-19 image data collection. arXivhttp://arxiv.org/abs/2003.11597 (2020).
– reference: Calderón-GarcidueñasLLung radiology and pulmonary function of children chronically exposed to air pollutionEnviron. Health. Perspect.20061141432143710.1289/ehp.8377169661011570091
– reference: Redmon, J. & Farhadi, A. Yolo9000: Better, faster, stronger. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6517–6525 (2017).
– reference: JacobiAChungMBernheimAEberCPortable chest x-ray in coronavirus disease-19 (COVID-19): A pictorial reviewClin. Imaging202064354210.1016/j.clinimag.2020.04.001323029277141645
– reference: Lin, Z. et al. Do explanations reflect decisions? a machine-centric strategy to quantify the performance of explainability algorithms. ArXivhttp://arxiv.org/abs/abs/1910.07387 (2019).
– reference: Pham, H. H., Le, T. T., Tran, D. Q., Ngo, D. T. & Nguyen, H. Q. Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. arXiv e-prints arXiv: http://arxiv.org/abs/1911.06475 (2019).
– reference: Khan, A. et al. Detection of chest x-ray abnormalities and tuberculosis using computer-aided detection vs interpretation by radiologists and a clinical officer. In 45th World Conf. on Lung Heal. (2014).
– reference: HussainLMachine-learning classification of texture features of portable chest x-ray accurately classifies COVID-19 lung infectionBioMed. Eng. OnLine20201911810.1186/s12938-020-00831-x
– reference: Karim, M. R. et al. DeepCOVIDexplainer: Explainable COVID-19 diagnosis based on chest x-ray images. arXiv: Image Video Process. (2020).
– reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 (2016).
– reference: MahmudTRahmanMAFattahSACovxnet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest x-ray images with transferable multi-receptive feature optimizationComput. Biol. Med.20201221038691:CAS:528:DC%2BB3cXht1ejtr3P10.1016/j.compbiomed.2020.103869326587407305745
– reference: PanwarHA deep learning and grad-cam based color visualization approach for fast detection of COVID-19 cases using chest x-ray and CT-scan imagesChaos Solitons Fractals2020140110190415527210.1016/j.chaos.2020.110190328369187413068
– reference: ParkerJAKenyonRVTroxelDEComparison of interpolating methods for image resamplingIEEE Trans. Med. Imaging1983231391:STN:280:DC%2BD1c%2FnslCktQ%3D%3D10.1109/TMI.1983.430761018234586
– reference: Afshar, P. et al. COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray Images. arXiv e-prints arXiv: http://arxiv.org/abs/2004.02696 (2020)
– reference: RobertsMCommon pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scansNat. Mach. Intell.2021319921710.1038/s42256-021-00307-0
– reference: Haghanifar, A., Molahasani Majdabadi, M., Choi, Y., Deivalakshmi, S. & Ko, S. COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning. arXiv e-prints arXiv: http://arxiv.org/abs/2006.13807 (2020)
– reference: Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In International Conference on Learning Representations (2015).
– reference: Rsna pneumonia detection challenge. https://www.kaggle.com/c/rsna-pneumonia-detection-challenge (2018).
– reference: MeiXArtificial intelligence-enabled rapid diagnosis of COVID-19 patientsMedRxiv202010.1101/2020.04.12.20062661331068217587841
– reference: Arias-LondoñoJDGómez-GarcíaJAMoro-VelázquezLGodino-LlorenteJIArtificial intelligence applied to chest x-ray images for the automatic detection of COVID-19. A thoughtful evaluation approachIEEE Access2020822681122682710.1109/ACCESS.2020.304485834786299
– reference: Eelbode, T. et al. Optimization for medical image segmentation: Theory and practice when evaluating with dice score or Jaccard index. IEEE Trans. Med. Imaging 1–1 (2020).
– reference: LiuLÖzsuMTMean Average Precision2009Springer US17031703
– reference: BruneseLMercaldoFReginelliASantoneAExplainable deep learning for pulmonary disease and coronavirus COVID-19 detection from x-raysComput. Methods Programs Biomed.202019610560810.1016/j.cmpb.2020.105608325993387831868
– reference: Sabour, S., Frosst, N. & Hinton, G. E. Dynamic routing between capsules. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, 3859–3869 (Curran Associates Inc., 2017).
– volume: 196
  start-page: 105608
  year: 2020
  ident: 2003_CR8
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105608
– volume: 323
  start-page: 1843
  year: 2020
  ident: 2003_CR2
  publication-title: JAMA
  doi: 10.1001/jama.2020.3786
– ident: 2003_CR36
– volume: 395
  start-page: 497
  issue: 10223
  year: 2020
  ident: 2003_CR44
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– ident: 2003_CR12
  doi: 10.1016/j.patrec.2020.09.010
– ident: 2003_CR23
– ident: 2003_CR22
  doi: 10.1038/s41598-020-76550-z
– ident: 2003_CR35
  doi: 10.1007/978-3-319-24574-4_28
– volume: 8
  start-page: 226811
  year: 2020
  ident: 2003_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3044858
– ident: 2003_CR27
– volume: 140
  start-page: 110190
  year: 2020
  ident: 2003_CR9
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110190
– volume: 51
  start-page: 1
  year: 2020
  ident: 2003_CR7
  publication-title: Egypt. J. Radiol. Nucl. Med.
  doi: 10.1186/s43055-019-0116-6
– volume: 122
  start-page: 103869
  year: 2020
  ident: 2003_CR31
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103869
– ident: 2003_CR17
  doi: 10.1109/CVPR.2017.243
– volume-title: The Chest X-ray, a Survival Guide
  year: 2008
  ident: 2003_CR43
– volume: 114
  start-page: 1432
  year: 2006
  ident: 2003_CR48
  publication-title: Environ. Health. Perspect.
  doi: 10.1289/ehp.8377
– volume: 19
  start-page: 1
  year: 2020
  ident: 2003_CR33
  publication-title: BioMed. Eng. OnLine
  doi: 10.1186/s12938-020-00831-x
– ident: 2003_CR42
  doi: 10.1101/19013342
– volume: 121
  start-page: 103792
  year: 2020
  ident: 2003_CR11
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103792
– ident: 2003_CR40
  doi: 10.1109/ICCV.2015.169
– ident: 2003_CR1
– year: 2020
  ident: 2003_CR4
  publication-title: medRxiv
  doi: 10.1101/2020.04.04.20052241
– volume: 9
  start-page: 1
  year: 2019
  ident: 2003_CR3
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37186-2
– ident: 2003_CR34
  doi: 10.1609/aaai.v33i01.3301590
– ident: 2003_CR38
– start-page: 1703
  volume-title: Mean Average Precision
  year: 2009
  ident: 2003_CR47
– volume: 71
  start-page: 102046
  year: 2021
  ident: 2003_CR30
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102046
– ident: 2003_CR39
  doi: 10.1007/978-3-030-00946-5_17
– year: 2020
  ident: 2003_CR13
  publication-title: MedRxiv
  doi: 10.1101/2020.04.12.20062661
– volume: 3
  start-page: 199
  year: 2021
  ident: 2003_CR16
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00307-0
– ident: 2003_CR25
– ident: 2003_CR50
– ident: 2003_CR26
  doi: 10.1109/CVPR.2017.690
– volume: 39
  start-page: 1137
  year: 2017
  ident: 2003_CR19
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: 2003_CR20
  doi: 10.1109/CVPR.2016.91
– volume: 296
  start-page: E72
  year: 2020
  ident: 2003_CR5
  publication-title: Radiology
  doi: 10.1148/radiol.2020201160
– ident: 2003_CR14
  doi: 10.1109/BIBM49941.2020.9313304
– ident: 2003_CR28
  doi: 10.1016/j.inffus.2021.04.008
– ident: 2003_CR37
  doi: 10.1109/CVPR.2009.5206848
– volume: 64
  start-page: 35
  year: 2020
  ident: 2003_CR6
  publication-title: Clin. Imaging
  doi: 10.1016/j.clinimag.2020.04.001
– ident: 2003_CR46
  doi: 10.1109/TMI.2020.3002417
– ident: 2003_CR21
  doi: 10.1016/j.media.2021.102125
– ident: 2003_CR10
– ident: 2003_CR24
– ident: 2003_CR45
– volume: 8
  start-page: 132665
  year: 2020
  ident: 2003_CR15
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3010287
– volume: 2
  start-page: 31
  year: 1983
  ident: 2003_CR41
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.1983.4307610
– ident: 2003_CR49
– volume: 196
  start-page: 105581
  year: 2020
  ident: 2003_CR32
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105581
– ident: 2003_CR18
  doi: 10.1109/CVPR.2016.90
SSID ssj0000529419
Score 2.4165034
Snippet SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient...
Abstract SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23210
SubjectTerms 639/166/985
692/308/575
Algorithms
Artificial intelligence
Coronaviruses
COVID-19
COVID-19 - complications
COVID-19 - virology
Deep Learning
Diagnosis
Expert Systems
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Incidence
India - epidemiology
multidisciplinary
Neural Networks, Computer
Pandemics
Performance assessment
Pneumonia
Pneumonia - diagnosis
Pneumonia - diagnostic imaging
Pneumonia - epidemiology
Pneumonia - virology
Polymerase chain reaction
Quarantine
Radiography, Thoracic - methods
Retrospective Studies
SARS-CoV-2 - isolation & purification
Science
Science (multidisciplinary)
Severe acute respiratory syndrome coronavirus 2
Tomography, X-Ray Computed - methods
X-rays
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQSgg4IL43sCAjcWOjTWzHsY-wsFqQ-Diwq94sO7a3lUpStYlK_z1jJw2tQAsHLj0kE9WZeY7faOw3CL2iVVAZK2TqhZMpM6VJpc10yo1hThY-pz5UdD995ucX7OOkmOy0-gp7wnp54N5xJ1XpisI7IZhkkHxkBkBjc888N4xUPOp8ZkLuJFO9qjeRLJfDKZmMipMVrFThNBmB7DluyFrvrURRsP9PLPP3zZJjxfQOutXVC71Z6_l8Z1E6u4fuDmwSv-nf4j664eoH6GbfX3LzEP24BJbdN03CjcdRzb_FvXgzdvU0Vv-xdW6Bh-4RV1jPr5rlrJ1-x0Bnse7aBjgtWMHnBVLeYBGun365_PAu_Vq7DmA80xj-IHbewpN0qTerR-ji7P230_N0aLWQVkDZ2lRrSwtvc-sgfbG2Yoby0nunpTQkK0yWO5pJYrwlLteEOqARnnsrbOYNNxV9jA7qpnaHCDOheW5K64GasMLlQnDrIHZOi3DytUpQvnW7qgYd8tAOY65iPZwK1YdKQahUDJVaJ-j1-MyiV-G41vptiOZoGRS04wXAlRpwpf6GqwQdbbGghmm9UpD8MSnCT4JejrdhQoYqi65d00WbwCIl4Ql60kNnHAllIhx9Jgkq90C1N9T9O_VsGkW_BaecsyJBx1v4_RrWda44HiH6D557-j889wzdJmGaxT0_R-igXXbuOTC31ryIk_QnoPI-lg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTgh4QHwNAgMZiTcWLYkd13lAiI1NA4kyITbtLbJju51UktKmKv3vOTsfowJVvOQhcRX3fHf-OXf3O4A3tHAsY2kWWmGykKmhCjMdyZArxUyW2phaF9H9MuJnF-zzVXq1A6OuFsalVXY-0TtqXRXuG_kh4m6WCXd5P_sZuq5RLrratdCQbWsF_c5TjN2C3cQxYw1g9-hkdP6t_-ri4losztrqmYiKwwXuYK7KLMFTtU_UWm3sUJ7I_1_o8-8kyj6Seg_uLMuZXK_kdPrHZnX6AO63KJN8aNTiIeyY8hHcbvpOrh_Dr0tE300zJVJZ4ln-a9KQOhNTTnxWANHGzEjbVWJM5HSM4qgnPwjCXCKXdYVYF0eh28GjsBvh7h9_vfz0MTwvzRLldS0JvsB35CJX4VyuF0_g4vTk-_FZ2LZgCAuEcnUopaap1bE2eKzRumCK8qG1RmaZSqJURbGhUZYoqxMTy4QahBeWWy10ZBVXBd2DQVmV5hkQJiSP1VBbhCwsNbEQXJuMMSOFq4gtAog7sedFy0_u2mRMcx8npyJvlirHpcr9UuWrAN72v5k17BxbRx-51exHOmZtf6Oaj_PWUPNiaNLUGiEYzg39oUInpWPLLFcsKTgNYL_Thbw190V-o5wBvO4fo6G66IssTbX0Yxy6zBIewNNGdfqZUCZcSXQSwHBDqTamuvmkvJ54MnDBKecsDeCgU7-baW0TxUGvov8huefb__QLuJs4A_JZPvswqOdL8xKxWq1etQb4G3iOPTs
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbGEII9IH4vMJCREC_M0NiOaz8gBINpIA14oFPfIju220kl7dpEXf97zk4aqKimvfQhuaTO-c7-Tr67D6FXrAhdxjJFvHSKcNM3RNmeJsIY7lTmU-bDie7pd3Ey4N-G2XAHrdNtWwUutoZ2gU9qMJ-8vbxYfQCHf9-UjMt3C9iEQqEYhcA45lotX88uSCCWCgewLcvGDXQTNi8V2B1O2wigaf9NFY_0H6EvOwF8QdvSmu1v3ti-Ypf_bdD0_wzL7ph1D92uy5leLfVk8s9OdnwP3W0hKP7Y2Mx9tOPKB-hWQ0q5eoguzwCaN0xLeOpxpACocNPxGbtyHFMGsHVuhlvKiRHWkxEoohr_xoCBsa6rKQBhkII1CeLkIBGuH_04-_qZ_CxdDZo61xj-INJ14SGZ69XiERocf_l1dEJafgZSAM6riNaWZd6m1kHMY23BDRN9751WytBeZnqpYz1FjbfUpZoyB9jDC2-l7XkjTMEeo91yWrp9hLnUIjV96wHP8MylUgrrFOdOy1AuWyQoXas9L9rm5YFDY5LHQ3Qm82aqcpiqPE5VvkzQm-6ZWdO640rpT2E2O8nQdjtemM5HeevFedF3WeadlBzGBoulgRXMpp57YTgtBEvQwdoW8rUp5xAxciXDT4JedrfBi8PRjC7dtI4yAXoqKhL0pDGdbiSMy1AvTRPU3zCqjaFu3inPx7FTuBRMCJ4l6HBtfn-HdZUqDjsTvYbmnl7jq56hOzR4UcwDOkC71bx2zwHNVeZF9Mc_TWdFaA
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgj2gPheYCAj8UYjkthx7ccymEYlPiTY1LfIju21UkmrNlXpf8_ZSQPV0AQveUjOieW7s3_O-X4H8JqWnmUsl7ETVsZMD3QsTaJirjWzMncpdT6i--kzP79go3E-PoD-LhdmL34fqLtXuMT4NLAMt73hJNXmFhwKNEzRg8PhcPRt1P1T8VErlso2Nwabv73eeG_9CTT9f8OW149IdnHSI7izrhZqu1Gz2R9L0dl9uNdiSDJslP4ADmz1EG43VSW3j-DnJWLrplQSmTsSOPxr0lA2E1tNQsyfGGsXpK0ZcUXU7Gq-nNaTHwRBLFHreo5IFqVwUsGNrpfw90-_XH58H3-t7BqNd6oIfiDU2yLjeKm2q8dwcfbh--l53BZYiEsEanWslKG5M6mxuGkxpmSa8oFzVkmpsyTXSWppIjPtTGZTlVGL4MFxZ4RJnOa6pE-gV80rewyECcVTPTAOAQnLbSoEN1YyZpXw-a5lBOlu2IuyZR_3RTBmRYiCU1E0qipQVUVQVbGJ4E3XZtFwb9wo_c5rs5P0vNnhBppT0bphUQ5snjsrBMO-4WyncQoyqWOOa5aVnEZwsrOFonXmVYFbPiaFv0TwqnuMbuhjK6qy83WQ8dhRZjyCp43pdD2hTPiE5yyCwZ5R7XV1_0k1nQSqb8Ep5yyPoL8zv9_dumko-p2J_sPIPfu_tz-Hu5l3qHCm5wR69XJtXyAyq_XL1iF_AUgnMcg
  priority: 102
  providerName: Springer Nature
Title Validation of expert system enhanced deep learning algorithm for automated screening for COVID-Pneumonia on chest X-rays
URI https://link.springer.com/article/10.1038/s41598-021-02003-w
https://www.ncbi.nlm.nih.gov/pubmed/34853342
https://www.proquest.com/docview/2604986049
https://www.proquest.com/docview/2605600926
https://pubmed.ncbi.nlm.nih.gov/PMC8636645
https://www.nature.com/articles/s41598-021-02003-w.pdf
https://doaj.org/article/c7e55fe884944070b531d1f4f6b42c63
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Link OA Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQwh44PsjMCoj8cYymsRxnMeubBqTNiZgo3uK7NheK0pSdalK-es5O2mgME3sJZGci2JfLuef47vfAbyJcssyFqe-4Tr1qUykn6qu8JmUVKexCSJjd3SPjtnBKT0cxIM1YMtcGBe07ygtnZteRoe9u8SJxiaDhbj4dfFU852JMuuwyWLE4BuweXp80ju3leQQo_gIE8ImQ6Yb8StuXpmFHFn_VQjz30DJdrf0LtyeFROxmIvx-I8Jaf8-fF0OpY5D-bYzq-RO_vMvlsebj_UB3GswKunVkg9hTReP4FZdtXLxGH6cIXavSzGR0hBXI6AiNSU00cXQxRQQpfWENDUpLogYX5TTUTX8ThAkEzGrSkTKKIVOCxfSVsK29z-efXjvnxR6hh_HSBB8gKvnRQb-VCwun8Dp_t6X_oHfFHDwcwSClS-EimKjAqVxUaRUTmXEEmO0SFMZdmPZDXTUTUNpVKgDEUYawYlhRnHVNZLJPHoKG0VZ6OdAKBcskIkyCHhorAPOmdIppVpwm0-bexAsX2iWN-zmtsjGOHO77BHPaq1mqNXMaTWbe_C2vWdSc3tcK71r7aSVtLzcrqGcXmTNu8vyRMex0ZxT7Bt6U4kuTgWGGiZpmLPIg62llWWNs7jMcElJU24PHrxuL-NnbvduRKHLmZOx2DQNmQfPaqNsexJRbhOqQw-SFXNd6erqlWI0dFTinEWM0diD7aVh_-7WdarYbo3_PzT34mbiL-FOaG3fxQxtwUY1nelXiPwq2YH1ZJB0YLPXO_x8iOfdveOTT9jaZ_2O-5uCxyPKO407-AVy4FtC
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwJDDASPLFoSey4zsOE2E0t28qEtqlvmR3b7aSSlF5U-uf4bRw7l1GBKl720ofktHV8jo8_51w-hN6TzHYZixPfcJ34VLakn6hA-ExKqpPYhMTYiO5pl7Uv6Jde3FtDv-paGJtWWftE56hVkdl35DuAu2nC7cen0Q_fskbZ6GpNoSEqagW161qMVYUdx3oxhyPcZLdzAPr-EEVHh-f7bb9iGfAzQCtTXwhFYqNCpQG5K5VRSVjLGC2SREZBLINQkyCJpFGRDkVENOyghhnFVWAkkxmB372DNiihCRz-NvYOu2ffmrc8No5Gw6Sq1gkI35nAjmmr2iI4xbvEsPnSjuiIA_6Fdv9O2mwit_fR5iwficVcDId_bI5HD9GDCtXiz6UZPkJrOn-M7pY8l4sn6OcloP2SvAkXBjtWgSkum0hjnQ9cFgJWWo9wxWLRx2LYh-mfDr5jgNVYzKYFYGuQAjcHR28rYa_vf73sHPhnuZ6Bfq4Fhj9wDGC454_FYvIUXdyKMp6h9bzI9QuEKRcslC1lACLRWIecM6UTSrXgtgI381BYT3uaVf3QLS3HMHVxecLTUlUpqCp1qkrnHvrYfGdUdgNZKb1ntdlI2k7e7kIx7qeVY0izlo5jozmnMDbwvxKcogoNNUzSKGPEQ1u1LaSVe5mkN4vBQ--a2-AYbLRH5LqYORmLZpOIeeh5aTrNSAjltgQ78lBryaiWhrp8J78euObjnBHGaOyh7dr8boa1aiq2GxP9j5l7ufqh36LN9vnpSXrS6R6_Qvciu5hchtEWWp-OZ_o14MSpfFMtRoyubnv9_wat63zP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGELcHxJ3AACPBE4uaxI7jPCAEK9PKYOyBTX3L7NhuJ5WktKlK_xq_jmPnMipQxcte-pCcto7PxZ9zjs-H0CuS2y5jceobrlOfykT6qQqEz6SkOo1NSIzN6H45Ygcn9NMwHm6hX-1ZGFtW2cZEF6hVmdt35D3A3TTl9qNnmrKI4_7-u-kP3zJI2UxrS6dRm8ihXi1h-zZ_O-iDrl9H0f7Hb3sHfsMw4OeAVCpfCEVio0KlAbUrlVNJWGKMFmkqoyCWQahJkEbSqEiHIiIaVk_DjOIqMJLJnMDvXkFXE0JSW06YDJPu_Y7NoNEwbc7pBIT35rBW2vNsEezfXUnYcm0tdJQB_8K5f5drdjnbW-jGopiK1VJMJn8si_t30O0Gz-L3tQHeRVu6uIeu1QyXq_vo5yng_Jq2CZcGOz6BCtfto7Euxq7-ACutp7jhrxhhMRnBZFfj7xgANRaLqgRUDVIQ4GDTbSXs9b2vp4O-f1zoBWjjXGD4A8f9hYf-TKzmD9DJpajiIdouykI_RphywUKZKAPgiMY65JwpnVKqBbdnb3MPhe20Z3nTCd0Sckwyl5EnPKtVlYGqMqeqbOmhN913pnUfkI3SH6w2O0nbw9tdKGejrAkJWZ7oODaacwpjg8grIRyq0FDDJI1yRjy009pC1gSWeXbhBh562d2GkGDzPKLQ5cLJWBybRsxDj2rT6UZCKLeHryMPJWtGtTbU9TvF-di1HeeMMEZjD-225ncxrE1TsduZ6H_M3JPND_0CXQevzz4Pjg6fopuR9SVXWrSDtqvZQj8DgFjJ584TMTq7bNf_DUllemk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQ88P0RGMhIvLF0Sew4zuMYTAOJsQc6ylNkx3ZbUZKqTVTKX8_Z-YDCNLGXPCRnxT6fzz_Ld79D6BXJLctYnPqG69SnMpF-qgLhMympTmMTEmNvdD-espMR_TCOxzuIdbkwLmjfUVo6N91Fhx2sYKOxyWARHH5dPNV6uFDmGtplMWDwAdodnZ4dfrWV5ACj-AATojZDJiD8gsZbu5Aj678IYf4bKNnflt5CN-piITZrMZ__sSEd30FfuqE0cSjfhnUlh_nPv1gerz7Wu-h2i1HxYSN5D-3o4j663lSt3DxAP84BuzelmHBpsKsRUOGGEhrrYupiCrDSeoHbmhQTLOaTcjmrpt8xgGQs6qoEpAxS4LTgIG0l7PujT-fv3_pnha5hccwEhh-4el547C_FZvUQjY7ffT468dsCDn4OQLDyhVAkNipUGg5FSuVUEpYYo0WayiiIZRBqEqSRNCrSoYiIBnBimFFcBUYymZNHaFCUhX6CMOWChTJRBgAPjXXIOVM6pVQLbvNpcw-F3YRmectubotszDN3y0541mg1A61mTqvZ2kOv-zaLhtvjUuk31k56ScvL7V6Uy0nWzl2WJzqOjeacQt_Am0pwcSo01DBJo5wRD-11Vpa1zmKVwZGSptw-PPSy_wzL3N7diEKXtZOx2DSNmIceN0bZ94RQbhOqIw8lW-a61dXtL8Vs6qjEOSOM0dhD-51h_-7WZarY743_PzT39Griz9DNyNq-ixnaQ4NqWevngPwq-aJd5r8AwudUiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+expert+system+enhanced+deep+learning+algorithm+for+automated+screening+for+COVID-Pneumonia+on+chest+X-rays&rft.jtitle=Scientific+reports&rft.au=Gidde%2C+Prashant+Sadashiv&rft.au=Prasad%2C+Shyam+Sunder&rft.au=Singh%2C+Ajay+Pratap&rft.au=Bhatheja%2C+Nitin&rft.date=2021-12-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=23210&rft_id=info:doi/10.1038%2Fs41598-021-02003-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon