Method for 3D atomic structure determination of multi-element nanoparticles with graphene liquid-cell TEM
Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting hi...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 1814 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-28492-5 |
Cover
Abstract | Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting high-resolution TEM images of single rotating nanoparticles in GLCs, 3D atomic structures of nanoparticles are reconstructed by a method called “Brownian one-particle reconstruction”. We here introduce a 3D atomic structure determination method for multi-element nanoparticle systems. The method, which is based on low-pass filtration and initial 3D model generation customized for different types of multi-element systems, enables reconstruction of high-resolution 3D Coulomb density maps for ordered and disordered multi-element systems and classification of the heteroatom type. Using high-resolution image datasets obtained from TEM simulations of PbSe, CdSe, and FePt nanoparticles that are structurally relaxed with first-principles calculations in the graphene liquid cell, we show that the types and positions of the constituent atoms are precisely determined with root mean square displacement values less than 24 pm. Our study suggests that it is possible to investigate the 3D atomic structures of synthesized multi-element nanoparticles in liquid phase. |
---|---|
AbstractList | Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting high-resolution TEM images of single rotating nanoparticles in GLCs, 3D atomic structures of nanoparticles are reconstructed by a method called “Brownian one-particle reconstruction”. We here introduce a 3D atomic structure determination method for multi-element nanoparticle systems. The method, which is based on low-pass filtration and initial 3D model generation customized for different types of multi-element systems, enables reconstruction of high-resolution 3D Coulomb density maps for ordered and disordered multi-element systems and classification of the heteroatom type. Using high-resolution image datasets obtained from TEM simulations of PbSe, CdSe, and FePt nanoparticles that are structurally relaxed with first-principles calculations in the graphene liquid cell, we show that the types and positions of the constituent atoms are precisely determined with root mean square displacement values less than 24 pm. Our study suggests that it is possible to investigate the 3D atomic structures of synthesized multi-element nanoparticles in liquid phase. Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting high-resolution TEM images of single rotating nanoparticles in GLCs, 3D atomic structures of nanoparticles are reconstructed by a method called “Brownian one-particle reconstruction”. We here introduce a 3D atomic structure determination method for multi-element nanoparticle systems. The method, which is based on low-pass filtration and initial 3D model generation customized for different types of multi-element systems, enables reconstruction of high-resolution 3D Coulomb density maps for ordered and disordered multi-element systems and classification of the heteroatom type. Using high-resolution image datasets obtained from TEM simulations of PbSe, CdSe, and FePt nanoparticles that are structurally relaxed with first-principles calculations in the graphene liquid cell, we show that the types and positions of the constituent atoms are precisely determined with root mean square displacement values less than 24 pm. Our study suggests that it is possible to investigate the 3D atomic structures of synthesized multi-element nanoparticles in liquid phase. Abstract Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting high-resolution TEM images of single rotating nanoparticles in GLCs, 3D atomic structures of nanoparticles are reconstructed by a method called “Brownian one-particle reconstruction”. We here introduce a 3D atomic structure determination method for multi-element nanoparticle systems. The method, which is based on low-pass filtration and initial 3D model generation customized for different types of multi-element systems, enables reconstruction of high-resolution 3D Coulomb density maps for ordered and disordered multi-element systems and classification of the heteroatom type. Using high-resolution image datasets obtained from TEM simulations of PbSe, CdSe, and FePt nanoparticles that are structurally relaxed with first-principles calculations in the graphene liquid cell, we show that the types and positions of the constituent atoms are precisely determined with root mean square displacement values less than 24 pm. Our study suggests that it is possible to investigate the 3D atomic structures of synthesized multi-element nanoparticles in liquid phase. Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting high-resolution TEM images of single rotating nanoparticles in GLCs, 3D atomic structures of nanoparticles are reconstructed by a method called "Brownian one-particle reconstruction". We here introduce a 3D atomic structure determination method for multi-element nanoparticle systems. The method, which is based on low-pass filtration and initial 3D model generation customized for different types of multi-element systems, enables reconstruction of high-resolution 3D Coulomb density maps for ordered and disordered multi-element systems and classification of the heteroatom type. Using high-resolution image datasets obtained from TEM simulations of PbSe, CdSe, and FePt nanoparticles that are structurally relaxed with first-principles calculations in the graphene liquid cell, we show that the types and positions of the constituent atoms are precisely determined with root mean square displacement values less than 24 pm. Our study suggests that it is possible to investigate the 3D atomic structures of synthesized multi-element nanoparticles in liquid phase.Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical properties. Graphene liquid cell (GLC) TEM offers a platform to directly investigate nanoparticles in their solution phase. Moreover, exploiting high-resolution TEM images of single rotating nanoparticles in GLCs, 3D atomic structures of nanoparticles are reconstructed by a method called "Brownian one-particle reconstruction". We here introduce a 3D atomic structure determination method for multi-element nanoparticle systems. The method, which is based on low-pass filtration and initial 3D model generation customized for different types of multi-element systems, enables reconstruction of high-resolution 3D Coulomb density maps for ordered and disordered multi-element systems and classification of the heteroatom type. Using high-resolution image datasets obtained from TEM simulations of PbSe, CdSe, and FePt nanoparticles that are structurally relaxed with first-principles calculations in the graphene liquid cell, we show that the types and positions of the constituent atoms are precisely determined with root mean square displacement values less than 24 pm. Our study suggests that it is possible to investigate the 3D atomic structures of synthesized multi-element nanoparticles in liquid phase. |
ArticleNumber | 1814 |
Author | Chun, Hoje Park, Younggil Kim, Sungin Reboul, Cyril F. Kim, Dongjun Heo, Junyoung Han, Byungchan Park, Jungwon Choi, Soonmi Elmlund, Hans Elmlund, Dominika Kim, Kihyun Choi, Hyesung Van, Cong T. S. |
Author_xml | – sequence: 1 givenname: Junyoung surname: Heo fullname: Heo, Junyoung organization: School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Center for Nanoparticle Research, Institute for Basic Science (IBS) – sequence: 2 givenname: Dongjun surname: Kim fullname: Kim, Dongjun organization: School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University – sequence: 3 givenname: Hyesung surname: Choi fullname: Choi, Hyesung organization: School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University – sequence: 4 givenname: Sungin surname: Kim fullname: Kim, Sungin organization: School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Center for Nanoparticle Research, Institute for Basic Science (IBS) – sequence: 5 givenname: Hoje surname: Chun fullname: Chun, Hoje organization: Department of Chemical and Biomolecular Engineering, Yonsei University – sequence: 6 givenname: Cyril F. surname: Reboul fullname: Reboul, Cyril F. organization: Center for Structural Biology, Center for Cancer Research, National Cancer Institute – sequence: 7 givenname: Cong T. S. surname: Van fullname: Van, Cong T. S. organization: Center for Structural Biology, Center for Cancer Research, National Cancer Institute – sequence: 8 givenname: Dominika surname: Elmlund fullname: Elmlund, Dominika organization: Center for Structural Biology, Center for Cancer Research, National Cancer Institute – sequence: 9 givenname: Soonmi surname: Choi fullname: Choi, Soonmi organization: Samsung Display Co. LTD – sequence: 10 givenname: Kihyun surname: Kim fullname: Kim, Kihyun organization: Samsung Display Co. LTD – sequence: 11 givenname: Younggil surname: Park fullname: Park, Younggil organization: Samsung Display Co. LTD – sequence: 12 givenname: Hans surname: Elmlund fullname: Elmlund, Hans email: hans.elmlund@nih.gov organization: Center for Structural Biology, Center for Cancer Research, National Cancer Institute – sequence: 13 givenname: Byungchan surname: Han fullname: Han, Byungchan email: bchan@yonsei.ac.kr organization: Department of Chemical and Biomolecular Engineering, Yonsei University – sequence: 14 givenname: Jungwon surname: Park fullname: Park, Jungwon email: jungwonpark@snu.ac.kr organization: School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Center for Nanoparticle Research, Institute for Basic Science (IBS), Institute of Engineering Research, College of Engineering, Seoul National University, Advanced Institutes of Convergence Technology, Seoul National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36725868$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vFSEUJabG1mf_gAtD4sbNKAPMDGxMTG21SRs3dU3uAPMeLzPwCkyN_768j2rbRdlA4JxzD_eet-jIB28Rel-TzzVh4kvidSNFRSirqOCSVs0rdEIJbyrKKD16dD5GpymtSVkNlbyWb9AxazvaiFacIHdt8yoYPISI2XcMOUxO45TjrPMcLTY22zg5D9kFj8OAp3nMrrKjnazP2IMPG4jZ6dEm_MflFV5G2Kyst3h0t7MzlbbjiG_Or9-h1wOMyZ4e9gX6fXF-c_azuvr14_Ls21WlG05yBcB6baCpBylBG04Ys8MgWUs0UGnboQM-mLY1rJNSdowSSURPa80ESGF6tkCXe10TYK020U0Q_6oATu0uQlyqg2HVAGEtt5pSIFx3taxNLwWpYaAdmI4Xra97rc3cT9bo8uUI4xPRpy_erdQy3CkpJOWyKQKfDgIx3M42ZTW5tO0IeBvmpGhXqpaZ0K5APz6DrsMcfWnVDtUUUOnFAn147OiflYeJFoDYA3QMKUU7KO3ybnrFoBtVTdQ2P2qfH1Xyo3b5UVuz9Bn1Qf1FEtuTUgH7pY3_bb_Augfy-dh7 |
CitedBy_id | crossref_primary_10_1002_smsc_202300092 crossref_primary_10_1002_inf2_12483 crossref_primary_10_1016_j_procs_2023_11_092 |
Cites_doi | 10.1002/adfm.202100982 10.1016/0927-0256(96)00008-0 10.1039/D0NR01673J 10.1039/C8EE00773J 10.1126/sciadv.abk1888 10.1021/acsnano.8b02170 10.1126/science.aab1343 10.1038/nature12009 10.1021/acs.jpclett.7b02193 10.1126/science.aah4434 10.1016/j.matchar.2019.02.009 10.1021/acs.chemmater.6b04648 10.1126/sciadv.aat7259 10.1002/smsc.202000045 10.1103/PhysRevB.50.17953 10.1021/jacs.8b07783 10.1021/acsnano.9b10173 10.1039/C9NR08352A 10.1021/acssuschemeng.7b01728 10.1103/PhysRevLett.77.3865 10.1016/j.matchemphys.2019.122021 10.1038/nature21042 10.1021/jp7110204 10.1126/science.aad8892 10.1126/science.1253149 10.1038/nchem.623 10.1002/smtd.202001234 10.1021/acsnano.9b00108 10.1007/978-1-4419-6533-2 10.1021/acs.nanolett.7b00963 10.1016/j.str.2013.07.002 10.1021/acsenergylett.0c02697 10.1016/j.ijhydene.2014.07.097 10.1126/sciadv.abe6679 10.1021/acsphotonics.0c00894 10.1038/nmeth.4193 10.1021/acs.nanolett.0c04873 10.1021/acscatal.9b05133 10.1126/science.aax3233 10.1021/ja4086758 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-28492-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_5a0364ec22a04c7191db9801af27ad74 PMC9892495 36725868 10_1038_s41598_023_28492_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877; NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877; NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877; NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877; 2013M3A6B1078882; 2013M3A6B1078882; NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877 funderid: http://dx.doi.org/10.13039/501100003725 – fundername: Intramural Research Program of the NIH – fundername: Samsung Display Co. Ltd. – fundername: Samsung Research Funding & Incubation Center grantid: SRFC-MA2002-03 – fundername: National Supercomputing Center, Korea Institute of Science and Technology Information grantid: KSC-2020-CRE-0310 funderid: http://dx.doi.org/10.13039/501100021520 – fundername: Institute for Basic Science grantid: IBS-R006-D1; IBS-R006-D1; IBS-R006-D1 funderid: http://dx.doi.org/10.13039/501100010446 – fundername: Institute for Basic Science grantid: IBS-R006-D1 – fundername: National Research Foundation of Korea grantid: NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877 – fundername: National Supercomputing Center, Korea Institute of Science and Technology Information grantid: KSC-2020-CRE-0310 – fundername: National Research Foundation of Korea grantid: 2013M3A6B1078882 – fundername: ; – fundername: ; grantid: SRFC-MA2002-03 – fundername: ; grantid: NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877; NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877; NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877; NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877; 2013M3A6B1078882; 2013M3A6B1078882; NRF-2020R1A2C2101871, NRF-2017R1A5A1015365, and NRF-2019M3E6A1064877 – fundername: ; grantid: IBS-R006-D1; IBS-R006-D1; IBS-R006-D1 – fundername: ; grantid: KSC-2020-CRE-0310 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-aa3bcda51f99acd4033eff9360ca29e6f7a4fd66d379997320908b21c38a98db3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:21:28 EDT 2025 Thu Aug 21 18:38:07 EDT 2025 Thu Sep 04 22:51:02 EDT 2025 Sat Aug 23 12:28:12 EDT 2025 Thu Jan 02 22:38:53 EST 2025 Tue Jul 01 00:55:51 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Fri Feb 21 02:39:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-aa3bcda51f99acd4033eff9360ca29e6f7a4fd66d379997320908b21c38a98db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-28492-5 |
PMID | 36725868 |
PQID | 2771519203 |
PQPubID | 2041939 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5a0364ec22a04c7191db9801af27ad74 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892495 proquest_miscellaneous_2771941927 proquest_journals_2771519203 pubmed_primary_36725868 crossref_citationtrail_10_1038_s41598_023_28492_5 crossref_primary_10_1038_s41598_023_28492_5 springer_journals_10_1038_s41598_023_28492_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Kim, Heo, Park (CR13) 2021; 1 Zheng (CR37) 2017; 14 Kong (CR27) 2020; 10 Blöchl (CR40) 1994; 50 Zheng (CR28) 2020; 12 Chen (CR8) 2013; 496 Castillo-Blas, Moreno, Romero-Muñiz, Platero-Prats (CR4) 2020; 12 Kim (CR14) 2020; 368 Strasser (CR25) 2010; 2 Perdew, Burke, Ernzerhof (CR41) 1996; 77 Eagle, Park, Cash, Cossairt (CR31) 2021; 6 Nath, Singh, Das (CR6) 2020; 239 Escudero-Escribano (CR24) 2016; 352 Jung, Popov (CR26) 2017; 5 Casar, McLellan, Siefe, Dionne (CR20) 2021; 8 Houtepen, Hens, Owen, Infante (CR32) 2017; 29 Elmlund, Elmlund, Bengio (CR34) 2013; 21 Ye (CR16) 2016; 1979 Zou, Hovmöller, Oleynikov (CR35) 2011 Albrecht (CR10) 2019; 13 Liao (CR18) 2014; 1979 Reboul (CR36) 2021; 7 Chen, Kim, Sun, Chen (CR23) 2008; 112 Koneti (CR12) 2019; 151 Xia (CR11) 2018; 12 Yan (CR5) 2018; 4 Park (CR15) 2015; 349 Giansante, Infante (CR33) 2017; 8 Kresse, Furthmüller (CR39) 1996; 6 Ma, Lin, Chen, Jin (CR17) 2020; 14 Anderson, Hendricks, Choi, Owen (CR29) 2013; 135 Song (CR7) 2018; 11 An (CR3) 2022; 8 Kirkwood (CR30) 2018; 140 Kim (CR19) 2021; 21 Kirkland (CR38) 2010 Chung (CR22) 2014; 39 Yang (CR9) 2017; 542 Lay (CR21) 2017; 17 Zhang (CR1) 2021; 5 Xiao (CR2) 2021; 31 S Koneti (28492_CR12) 2019; 151 J Zhang (28492_CR1) 2021; 5 P Strasser (28492_CR25) 2010; 2 X Ma (28492_CR17) 2020; 14 Y Yang (28492_CR9) 2017; 542 F Kong (28492_CR27) 2020; 10 CC Chen (28492_CR8) 2013; 496 FW Eagle (28492_CR31) 2021; 6 HG Liao (28492_CR18) 2014; 1979 YH Chung (28492_CR22) 2014; 39 A Lay (28492_CR21) 2017; 17 L Xiao (28492_CR2) 2021; 31 N Yan (28492_CR5) 2018; 4 S Song (28492_CR7) 2018; 11 WS Jung (28492_CR26) 2017; 5 JP Perdew (28492_CR41) 1996; 77 L Zheng (28492_CR28) 2020; 12 W Chen (28492_CR23) 2008; 112 NC Anderson (28492_CR29) 2013; 135 N Kirkwood (28492_CR30) 2018; 140 G Kresse (28492_CR39) 1996; 6 C Giansante (28492_CR33) 2017; 8 X Zou (28492_CR35) 2011 BH Kim (28492_CR13) 2021; 1 W Albrecht (28492_CR10) 2019; 13 M Escudero-Escribano (28492_CR24) 2016; 352 D Nath (28492_CR6) 2020; 239 H An (28492_CR3) 2022; 8 S Kim (28492_CR19) 2021; 21 W Xia (28492_CR11) 2018; 12 BH Kim (28492_CR14) 2020; 368 H Elmlund (28492_CR34) 2013; 21 CF Reboul (28492_CR36) 2021; 7 EJ Kirkland (28492_CR38) 2010 C Castillo-Blas (28492_CR4) 2020; 12 J Park (28492_CR15) 2015; 349 X Ye (28492_CR16) 2016; 1979 AJ Houtepen (28492_CR32) 2017; 29 PE Blöchl (28492_CR40) 1994; 50 JR Casar (28492_CR20) 2021; 8 SQ Zheng (28492_CR37) 2017; 14 |
References_xml | – volume: 31 start-page: 2100982 year: 2021 ident: CR2 article-title: Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100982 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR39 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 12 start-page: 15577 year: 2020 end-page: 15587 ident: CR4 article-title: Applications of pair distribution function analyses to the emerging field of non-ideal metal–organic framework materials publication-title: Nanoscale doi: 10.1039/D0NR01673J – volume: 11 start-page: 2945 year: 2018 end-page: 2953 ident: CR7 article-title: Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00773J – volume: 8 start-page: 1888 year: 2022 ident: CR3 article-title: Mechanism and performance relevance of nanomorphogenesis in polyamide films revealed by quantitative 3D imaging and machine learning publication-title: Sci. Adv. doi: 10.1126/sciadv.abk1888 – volume: 12 start-page: 7866 year: 2018 end-page: 7874 ident: CR11 article-title: Bimetallic nanoparticle oxidation in three dimensions by chemically sensitive electron tomography and in situ transmission electron microscopy publication-title: ACS Nano doi: 10.1021/acsnano.8b02170 – volume: 349 start-page: 290 year: 2015 end-page: 295 ident: CR15 article-title: 3D structure of individual nanocrystals in solution by electron microscopy publication-title: Science doi: 10.1126/science.aab1343 – volume: 496 start-page: 74 year: 2013 end-page: 77 ident: CR8 article-title: Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution publication-title: Nature doi: 10.1038/nature12009 – volume: 8 start-page: 5209 year: 2017 end-page: 5215 ident: CR33 article-title: Surface traps in colloidal quantum dots: A combined experimental and theoretical perspective publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02193 – volume: 1979 start-page: 874 issue: 354 year: 2016 end-page: 877 ident: CR16 article-title: Single-particle mapping of nonequilibrium nanocrystal transformations publication-title: Science doi: 10.1126/science.aah4434 – volume: 151 start-page: 480 year: 2019 end-page: 495 ident: CR12 article-title: Fast electron tomography: Applications to beam sensitive samples and in situ TEM or operando environmental TEM studies publication-title: Mater Charact. doi: 10.1016/j.matchar.2019.02.009 – volume: 29 start-page: 752 year: 2017 end-page: 761 ident: CR32 article-title: On the origin of surface traps in colloidal II–VI semiconductor nanocrystals publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04648 – volume: 4 start-page: 7259 year: 2018 end-page: 7271 ident: CR5 article-title: Unraveling the long-pursued Au144 structure by X-ray crystallography publication-title: Sci. Adv. doi: 10.1126/sciadv.aat7259 – volume: 1 start-page: 2000045 year: 2021 ident: CR13 article-title: Determination of the 3D atomic structures of nanoparticles publication-title: Small Sci. doi: 10.1002/smsc.202000045 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR40 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 140 start-page: 15712 year: 2018 end-page: 15723 ident: CR30 article-title: Finding and fixing traps in II–VI and III–V colloidal quantum dots: The importance of Z-type ligand passivation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07783 – volume: 14 start-page: 9594 year: 2020 end-page: 9604 ident: CR17 article-title: Unveiling growth pathways of multiply twinned gold nanoparticles by in situ liquid cell transmission electron microscopy publication-title: ACS Nano doi: 10.1021/acsnano.9b10173 – volume: 12 start-page: 1414 year: 2020 end-page: 1418 ident: CR28 article-title: A unique pathway of PtNi nanoparticle formation observed with liquid cell transmission electron microscopy publication-title: Nanoscale doi: 10.1039/C9NR08352A – volume: 5 start-page: 9809 year: 2017 end-page: 9817 ident: CR26 article-title: Effect of pretreatment on durability of fct-structured Pt-based alloy catalyst for the oxygen reduction reaction under operating conditions in polymer electrolyte membrane fuel cells publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01728 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR41 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 239 start-page: 122021 year: 2020 ident: CR6 article-title: X-ray diffraction analysis by Williamson–Hall, Halder–Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.122021 – volume: 542 start-page: 75 year: 2017 end-page: 79 ident: CR9 article-title: Deciphering chemical order/disorder and material properties at the single-atom level publication-title: Nature doi: 10.1038/nature21042 – volume: 112 start-page: 3891 year: 2008 end-page: 3898 ident: CR23 article-title: Electrocatalytic reduction of oxygen by FePt alloy nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/jp7110204 – volume: 352 start-page: 73 year: 2016 end-page: 76 ident: CR24 article-title: Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction publication-title: Science doi: 10.1126/science.aad8892 – volume: 1979 start-page: 916 issue: 345 year: 2014 end-page: 919 ident: CR18 article-title: Facet development during platinum nanocube growth publication-title: Science doi: 10.1126/science.1253149 – volume: 2 start-page: 454 year: 2010 end-page: 460 ident: CR25 article-title: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts publication-title: Nat. Chem. doi: 10.1038/nchem.623 – volume: 5 start-page: 2001234 year: 2021 ident: CR1 article-title: Atomic scale tracking of single layer oxide formation: Self-peeling and phase transition in solution publication-title: Small Methods doi: 10.1002/smtd.202001234 – volume: 13 start-page: 6522 year: 2019 end-page: 6530 ident: CR10 article-title: Thermal stability of gold/palladium octopods studied in situ in 3D: Understanding design rules for thermally stable metal nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.9b00108 – year: 2010 ident: CR38 publication-title: Advanced Computing in Electron Microscopy doi: 10.1007/978-1-4419-6533-2 – volume: 17 start-page: 4172 year: 2017 end-page: 4177 ident: CR21 article-title: Upconverting nanoparticles as optical sensors of nano- to micro-newton forces publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00963 – volume: 21 start-page: 1299 year: 2013 end-page: 1306 ident: CR34 article-title: PRIME: Probabilistic initial 3D model generation for single-particle cryo-electron microscopy publication-title: Structure doi: 10.1016/j.str.2013.07.002 – volume: 6 start-page: 977 year: 2021 end-page: 984 ident: CR31 article-title: Surface chemistry and quantum dot luminescence: Shell growth, atomistic modification, and beyond publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02697 – year: 2011 ident: CR35 publication-title: Electron Crystallography: Electron Microscopy and Electron Diffraction – volume: 39 start-page: 14751 year: 2014 end-page: 14759 ident: CR22 article-title: Effect of surface composition of Pt–Fe nanoparticles for oxygen reduction reactions publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.07.097 – volume: 7 start-page: eabe6679 year: 2021 ident: CR36 article-title: SINGLE: Atomic-resolution structure identification of nanocrystals by graphene liquid cell EM publication-title: Sci Adv doi: 10.1126/sciadv.abe6679 – volume: 8 start-page: 3 year: 2021 end-page: 17 ident: CR20 article-title: Lanthanide-based nanosensors: Refining nanoparticle responsiveness for single particle imaging of stimuli publication-title: ACS Photon. doi: 10.1021/acsphotonics.0c00894 – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: CR37 article-title: MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 21 start-page: 1175 year: 2021 end-page: 1183 ident: CR19 article-title: Correlating 3D surface atomic structure and catalytic activities of Pt nanocrystals publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04873 – volume: 10 start-page: 4205 year: 2020 end-page: 4214 ident: CR27 article-title: Active and stable Pt-Ni Alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering publication-title: ACS Catal. doi: 10.1021/acscatal.9b05133 – volume: 368 start-page: 60 year: 2020 end-page: 67 ident: CR14 article-title: Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution publication-title: Science doi: 10.1126/science.aax3233 – volume: 135 start-page: 18536 year: 2013 end-page: 18548 ident: CR29 article-title: Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4086758 – volume: 4 start-page: 7259 year: 2018 ident: 28492_CR5 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat7259 – volume: 7 start-page: eabe6679 year: 2021 ident: 28492_CR36 publication-title: Sci Adv doi: 10.1126/sciadv.abe6679 – volume: 21 start-page: 1175 year: 2021 ident: 28492_CR19 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04873 – volume: 17 start-page: 4172 year: 2017 ident: 28492_CR21 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00963 – volume: 8 start-page: 1888 year: 2022 ident: 28492_CR3 publication-title: Sci. Adv. doi: 10.1126/sciadv.abk1888 – volume: 14 start-page: 9594 year: 2020 ident: 28492_CR17 publication-title: ACS Nano doi: 10.1021/acsnano.9b10173 – volume: 140 start-page: 15712 year: 2018 ident: 28492_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07783 – volume: 542 start-page: 75 year: 2017 ident: 28492_CR9 publication-title: Nature doi: 10.1038/nature21042 – volume: 352 start-page: 73 year: 2016 ident: 28492_CR24 publication-title: Science doi: 10.1126/science.aad8892 – volume: 29 start-page: 752 year: 2017 ident: 28492_CR32 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04648 – volume: 12 start-page: 1414 year: 2020 ident: 28492_CR28 publication-title: Nanoscale doi: 10.1039/C9NR08352A – volume: 12 start-page: 15577 year: 2020 ident: 28492_CR4 publication-title: Nanoscale doi: 10.1039/D0NR01673J – volume: 21 start-page: 1299 year: 2013 ident: 28492_CR34 publication-title: Structure doi: 10.1016/j.str.2013.07.002 – volume: 6 start-page: 977 year: 2021 ident: 28492_CR31 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02697 – volume: 112 start-page: 3891 year: 2008 ident: 28492_CR23 publication-title: J. Phys. Chem. C doi: 10.1021/jp7110204 – volume: 5 start-page: 2001234 year: 2021 ident: 28492_CR1 publication-title: Small Methods doi: 10.1002/smtd.202001234 – volume: 13 start-page: 6522 year: 2019 ident: 28492_CR10 publication-title: ACS Nano doi: 10.1021/acsnano.9b00108 – volume-title: Advanced Computing in Electron Microscopy year: 2010 ident: 28492_CR38 doi: 10.1007/978-1-4419-6533-2 – volume: 349 start-page: 290 year: 2015 ident: 28492_CR15 publication-title: Science doi: 10.1126/science.aab1343 – volume-title: Electron Crystallography: Electron Microscopy and Electron Diffraction year: 2011 ident: 28492_CR35 – volume: 368 start-page: 60 year: 2020 ident: 28492_CR14 publication-title: Science doi: 10.1126/science.aax3233 – volume: 496 start-page: 74 year: 2013 ident: 28492_CR8 publication-title: Nature doi: 10.1038/nature12009 – volume: 1979 start-page: 916 issue: 345 year: 2014 ident: 28492_CR18 publication-title: Science doi: 10.1126/science.1253149 – volume: 12 start-page: 7866 year: 2018 ident: 28492_CR11 publication-title: ACS Nano doi: 10.1021/acsnano.8b02170 – volume: 5 start-page: 9809 year: 2017 ident: 28492_CR26 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01728 – volume: 239 start-page: 122021 year: 2020 ident: 28492_CR6 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.122021 – volume: 135 start-page: 18536 year: 2013 ident: 28492_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4086758 – volume: 77 start-page: 3865 year: 1996 ident: 28492_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 14 start-page: 331 year: 2017 ident: 28492_CR37 publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 1 start-page: 2000045 year: 2021 ident: 28492_CR13 publication-title: Small Sci. doi: 10.1002/smsc.202000045 – volume: 2 start-page: 454 year: 2010 ident: 28492_CR25 publication-title: Nat. Chem. doi: 10.1038/nchem.623 – volume: 11 start-page: 2945 year: 2018 ident: 28492_CR7 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00773J – volume: 39 start-page: 14751 year: 2014 ident: 28492_CR22 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.07.097 – volume: 50 start-page: 17953 year: 1994 ident: 28492_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 10 start-page: 4205 year: 2020 ident: 28492_CR27 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05133 – volume: 6 start-page: 15 year: 1996 ident: 28492_CR39 publication-title: Comput. Mater Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 8 start-page: 3 year: 2021 ident: 28492_CR20 publication-title: ACS Photon. doi: 10.1021/acsphotonics.0c00894 – volume: 31 start-page: 2100982 year: 2021 ident: 28492_CR2 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100982 – volume: 8 start-page: 5209 year: 2017 ident: 28492_CR33 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02193 – volume: 151 start-page: 480 year: 2019 ident: 28492_CR12 publication-title: Mater Charact. doi: 10.1016/j.matchar.2019.02.009 – volume: 1979 start-page: 874 issue: 354 year: 2016 ident: 28492_CR16 publication-title: Science doi: 10.1126/science.aah4434 |
SSID | ssj0000529419 |
Score | 2.4126186 |
Snippet | Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their physicochemical... Abstract Determining the 3D atomic structures of multi-element nanoparticles in their native liquid environment is crucial to understanding their... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1814 |
SubjectTerms | 639/301 639/925 Graphene Humanities and Social Sciences multidisciplinary Nanoparticles Physicochemical properties Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEFAeoQUZiRtYTWzHjo_Qhyqkcmql3iw_RaSSLbR74N93bGeXLs9Lr4kjTWbGM9_Ek28A3vYpOkSxkorYeSqw1KGZBJwilIiRuxB7VxpkP8vjM_HpvD-_Neor94RVeuCquL3e5pOy6BmzrfAKy4vgNIZVm5iyQRUm0Fa3t4qpyurNtOj0_JdMy4e9K8xU-W8yFAYjssYKbCMTFcL-P6HM35slfzkxLYno6BE8nBEk-VAlfwz34vQE7teZkj-2YTwpM6EJglHCDwjW1F9HTypN7PJ7JGHV_5ItQhaJlJZCGmsbOZnshGX03C1H8ldaUjitMSSSi_Hbcgw0f-snp4cnT-Hs6PB0_5jO8xSoR1x2Ta3lzgfbd0lr64NoOY8paS5bb5mOMikrUpAycIWwUfGs18GxzvPB6iE4_gy2psUUXwDxgoeuUxGjARMK81vqMRdivBBJuhRtA91Kt8bPZON55sWFKYfefDDVHgbtYYo9TN_Au_Uzl5Vq45-rP2aTrVdmmuxyAZ3HzGoy_3OeBnZXBjfz3r0yDN8HcS1reQNv1rdx12X12ikulnVNdjCmGnhe_WMtCZeK9YMcGlAbnrMh6uadafxSmL31kMthfLf3Kx_7KdbfVfHyLlSxAw9Y3hylIX0XttAt4yvEW9fuddlaN-pcJR4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCIkLYielICNxA6uJ7cT2CbG0qpDKqZXezfIKkUrS9vUd-PcdO06qx9Jr7Ei2ZzzzzeIZhN61MVhAsR3hoXGEg6lDUhFwAlAiBGZ9aG1OkP3eHZ3yb6t2VRxu65JWOcvELKj96JKPfJ8KAcpJ0Zp9PL8gqWtUiq6WFhp30b0GkEhq3SBWYvGxpCgWb1R5K1Mzub8GfZXelMGSQC4rsMO29FEu2_8vrPl3yuQfcdOsjg4foYcFR-JPE-EfoztheILuT50lfz9F_XHuDI0BkmL2FYNl_at3eCoWu7kM2M9ZMIkueIw4JxaSMCWT48EMYEyXnDmcfLU4V7YGwYjP-otN70ny-OOTg-Nn6PTw4OTLESldFYgDdHZFjGHWedM2USnjPK8ZCzEq1tXOUBW6KAyPvus8EwAeBaO1qqWljWPSKOkte452hnEILxF2nPmmEQFkAuVAHxlb0IggNXjsbAymQs18ttqVkuOp88WZzqFvJvVEDw300Jkeuq3Q--Wf86ngxq2zPyeSLTNTsez8Ybz8ocsx6dakYGtwlJqaOwEWqrcKNLOJVBgveIX2ZoLrcoPX-obfKvR2GYa7l47XDGHcTHMSg1FRoRcTfywrYZ2grexkhcQW52wtdXtk6H_m-t5KJqMY9vZh5rGbZf3_KHZv38Ur9IAmts8J53toBxguvAY8dWXf5EtzDdZQHPg priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrZC4VOUdKMhI3MAisZ04Pm5Lq2qlcqGVerP8hEglC30c-PeMnUe1UJC4Jk5kz4xnvrHHnwHe1jFYRLENFaFyVGCqQxMJOEUoEQK3PtQ2F8h-ao7PxOq8Pt8CNp2FyUX7mdIyu-mpOuzDFQaadBgM_4UOVWECdQ-2W4nudwHby-Xq82peWUl7V6JS4wmZkrd3fLwRhTJZ_10I889Cyd92S3MQOtqFnRE9kuXQ34ewFfpHcH-4T_LnY-hO8n3QBIEo4R8J5tPfOkcGilgcK_FT7UvSBllHkssJaRhKyElvekyhR1mQtEJLMp81ukNy0f246TxN6_zk9PDkCZwdHZ4eHNPxLgXqEJNdU2O4dd7UVVTKOC9KzkOMijelM0yFJkojom8azyVCRslZqcrWssrx1qjWW_4UFv26D8-BOMF9VcmAnoAJibEt1hgH0VeI2NgYTAHVJFvtRqLxdN_Fhc4b3rzVgz406kNnfei6gHfzN98Hmo1_tt5PKptbJors_GB9-UWPYtK1SVuswTFmSuEk5qXeKozHJjJpvBQF7E0K1-O8vdIMx4OYlpW8gDfza5xxSbymD-uboU0yMCYLeDbYx9wT3khWt01bgNywnI2ubr7pu6-Z1Vu1KRXGsb2fbOy2W38XxYv_a_4SHrA0DXLZ-R4s0ADDK0RV1_b1OI1-AQthHEM priority: 102 providerName: Springer Nature |
Title | Method for 3D atomic structure determination of multi-element nanoparticles with graphene liquid-cell TEM |
URI | https://link.springer.com/article/10.1038/s41598-023-28492-5 https://www.ncbi.nlm.nih.gov/pubmed/36725868 https://www.proquest.com/docview/2771519203 https://www.proquest.com/docview/2771941927 https://pubmed.ncbi.nlm.nih.gov/PMC9892495 https://doaj.org/article/5a0364ec22a04c7191db9801af27ad74 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7tQ0hcEG8CS2UkbhBIbCeODwh1S1erSrtCsJV6ixw_oFJJ2e5WYv89YzspKhROnColjurMjD3fZMbfALwsnG0QxZYpt7lOOYY6qScBTxFKWMsaY4smFMiel6dTPpkVsz3o2x11ArzaGdr5flLT1eLNj8ub97jg38Uj49XbK3RC_qAY_g9uthKDq304DPkiX8rXwf3I9U0lz2V3dmb3o1v-KdD478Kef5ZQ_pZHDe7p5C7c6XAlGUZDuAd7tr0Pt2KnyZsHMD8LnaIJQlTCPhCMtL_NNYnkseuVJaavivF6IktHQqFhamNxOWlVi8F1V0NH_LdbEpiucaMki_nlem5SnwEgF-OzhzA9GV-MTtOuy0KqEa1dp0qxRhtV5E5KpQ3PGLPOSVZmWlFpSycUd6YsDRMIJgWjmcyqhuaaVUpWpmGP4KBdtvYJEM2ZyXNhcY-gXKDXcwV6SNxFuCsbZ1UCeS_bWncU5L4TxqIOqXBW1VEfNeqjDvqoiwRebZ75Hgk4_jn62KtsM9KTZ4cLy9WXuhNTXSiffLWaUpVxLTBiNY1ET60cFcoInsBRr_C6N8ia4vsg2qUZS-DF5jauRS9e1drlOo7xBkZFAo-jfWxmwkpBi6qsEhBblrM11e077fxr4PuWlQ-S8d1e9zb2a1p_F8XT_yGKZ3Cb-sURytSP4ADN0j5HFHbdDGBfzMQADofDyecJ_h6Pzz9-wqujcjQIXzYGYfH9BBqdMuc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4ia2E4cHypE6VZb2l0htJV6M47tQKSSbbtdof45fhtjJ9lqefTWa-xEzszneXjGMwCvs8qVaMXmMXepiTm6OrEvAh6jKeEcK63LypAgO8lHh_zTUXa0Br_6uzA-rbKXiUFQ25nxZ-SbVAhUTpIm7P3Jaey7Rvnoat9CQ3etFexWKDHWXezYdxc_0YWbb-3tIL_fULo7nH4cxV2XgdigtXIea81KY3WWVlJqY3nCmKsqyfLEaCpdXgnNK5vnlgk0pgSjiUyKkqaGFVoWtmT43Ruwzv0BygDWt4eTz1-Wpzw-jsZT2d3WSVixOUeN6W-1IVFQM0j0BFc0Ymgc8C9r9--kzT8it0Eh7t6FO50lSz600LsHa665Dzfb3pYXD6Aeh97UBI1iwnYI-vY_akPacrWLM0dsn4fjkUFmFQmpjbFr09lJoxt057usPeJPi0morY2imRzXp4vaxj7mQKbD8UM4vBaKP4JBM2vcEyCGM5umwqFUohwRUlQZ6mSUW7zKy8rpCNKetsp0Rc99741jFYLvrFAtPxTyQwV-qCyCt8t3TtqSH1fO3vYsW8705brDg9nZN9WRSWXah3udoVQn3Aj0kW0p0TbQFRXaCh7BRs9w1cmQubpEfASvlsO4-z15deNmi3aOBxgVETxu8bFcCcsFzYq8iECsIGdlqasjTf09VBiXhXfL8d_e9Ri7XNb_SfH06r94CbdG0_GBOtib7D-D29RvgZD-vgEDBJ97jtbdefmi20IEvl73rv0NMhJhFA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1AviDeBAkaCE0Sb2E4cHypE2V21lK4q1Eq9GccPGqlk225XqH-RX8XYcbZaHr31GjuRM_N5Hp7xDEJvCmdrsGLLlNlcpwxcndQXAU_BlLCW1sYWdUiQnZTbh-zzUXG0gn71d2F8WmUvE4OgNlPtz8gHhHNQToJkdOBiWsT-cPzh9Cz1HaR8pLVvp6FimwWzGcqNxUseu_byJ7hzs82dIfD-LSHj0cGn7TR2HEg1WC4XqVK01kYVuRNCacMySq1zgpaZVkTY0nHFnClLQzkYVpySTGRVTXJNKyUqU1P47i20xkHrgyO4tjWa7H9dnPj4mBrLRby5k9FqMAPt6W-4AYFASwjwCpe0Y2gi8C_L9-8Ezj-iuEE5ju-hu9GqxR87GN5HK7Z9gG53fS4vH6JmL_SpxmAgYzrE4Of_aDTuStfOzy02fU6ORwmeOhzSHFPbpbbjVrXg2scMPuxPjnGosw1iGp80Z_PGpD7-gA9Ge4_Q4Y1Q_DFabaetfYqwZtTkObcgoQgDtFSuAP0MMoy5snZWJSjvaSt1LIDu-3CcyBCIp5Xs-CGBHzLwQxYJerd457Qr_3Ht7C3PssVMX7o7PJief5eRTLJQPvRrNSEqY5qDv2xqAXaCcoQrw1mCNnqGyyhPZvIK_Ql6vRgGSeDJq1o7nXdzPMAIT9CTDh-LldCSk6IqqwTxJeQsLXV5pG2OQ7VxUXkXHf7tfY-xq2X9nxTPrv-LV-gO7F75ZWey-xytE78DQib8BloF7NkXYOhd1C_jDsLo201v2t_x5WVY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+3D+atomic+structure+determination+of+multi-element+nanoparticles+with+graphene+liquid-cell+TEM&rft.jtitle=Scientific+reports&rft.au=Junyoung+Heo&rft.au=Dongjun+Kim&rft.au=Hyesung+Choi&rft.au=Sungin+Kim&rft.date=2023-02-01&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41598-023-28492-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5a0364ec22a04c7191db9801af27ad74 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |