Neural network-based clustering model of ischemic stroke patients with a maximally distinct distribution of 1-year vascular outcomes
Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 9420 - 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.06.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-022-13636-w |
Cover
Abstract | Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke. |
---|---|
AbstractList | Abstract Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke. Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke. Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke.Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke. Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke. |
ArticleNumber | 9420 |
Author | Oh, Seungwon Kim, Min Soo Lee, Seung-Han Kim, Joon-Tae Choi, Su Hoon Kim, Byeong C. Kim, Nu Ri Park, Man-Seok Choi, Jonghyun |
Author_xml | – sequence: 1 givenname: Joon-Tae surname: Kim fullname: Kim, Joon-Tae email: alldelight2@jnu.ac.kr organization: Department of Neurology, Gwangju-Jeonnam Regional Cerebrovascular Center, Chonnam National University Medical School, Chonnam National University Hospital – sequence: 2 givenname: Nu Ri surname: Kim fullname: Kim, Nu Ri organization: Department of Neurology, Gwangju-Jeonnam Regional Cerebrovascular Center, Chonnam National University Medical School, Chonnam National University Hospital – sequence: 3 givenname: Su Hoon surname: Choi fullname: Choi, Su Hoon organization: Department of Mathematics and Statistics, Chonnam National University – sequence: 4 givenname: Seungwon surname: Oh fullname: Oh, Seungwon organization: Department of Mathematics and Statistics, Chonnam National University – sequence: 5 givenname: Man-Seok surname: Park fullname: Park, Man-Seok organization: Department of Neurology, Gwangju-Jeonnam Regional Cerebrovascular Center, Chonnam National University Medical School, Chonnam National University Hospital – sequence: 6 givenname: Seung-Han surname: Lee fullname: Lee, Seung-Han organization: Department of Neurology, Gwangju-Jeonnam Regional Cerebrovascular Center, Chonnam National University Medical School, Chonnam National University Hospital – sequence: 7 givenname: Byeong C. surname: Kim fullname: Kim, Byeong C. organization: Department of Neurology, Gwangju-Jeonnam Regional Cerebrovascular Center, Chonnam National University Medical School, Chonnam National University Hospital – sequence: 8 givenname: Jonghyun surname: Choi fullname: Choi, Jonghyun organization: AI Graduate School, Gwangju Institute of Science and Technology – sequence: 9 givenname: Min Soo surname: Kim fullname: Kim, Min Soo email: kimms@chonnam.ac.kr organization: Department of Mathematics and Statistics, Chonnam National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35676413$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOyxIVLwF-x4wsSqvioVMEFzpbtvOx6m8SL7XS7d3443t0W2h7qi5_smfG853lZHU1hgqp6TfB7gln7IXHSqLbGlNaECSbqzbPqhGLe1JRRenSvPq7OUlrhshqqOFEvqmPWCCk4YSfVn-8wRzOgCfImxKvamgQdcsOcMkQ_LdAYOhhQ6JFPbgmjdyjlGK4ArU32MOWENj4vkUGjufGjGYYt6nzKfnJ5X0Rv5-zDtJMg9RZMRNcmuXkoRZizCyOkV9Xz3gwJzm730-rXl88_z7_Vlz--Xpx_uqxdw3GulZXQdFyalkkKtlNS0bZVjrrSPyntYIJN29Ne2d6xFgshZOsUp0pYQQCz0-rioNsFs9LrWPzGrQ7G6_1BiAttYvZuAC2M5bY3yoHj3JZXhKFNbwTjlAvZ2aL18aC1nu0InSujKHN8IPrwZvJLvQjXWhEpBRFF4N2tQAy_Z0hZj2XEMAxmgjAnTYXksuGSyAJ9-wi6CnOcyqj2KMJaodqCenPf0T8rd59dAO0B4GJIKUKvnc9m9znFoB80wXoXLX2Ili7R0vto6U2h0kfUO_UnSexASutdlCD-t_0E6y8pz-ON |
CitedBy_id | crossref_primary_10_1016_j_jaip_2024_04_035 crossref_primary_10_1038_s44303_024_00063_x crossref_primary_10_1038_s41598_023_32790_3 crossref_primary_10_1109_ACCESS_2024_3383140 crossref_primary_10_3390_jcdd11070207 |
Cites_doi | 10.1373/clinchem.2009.133801 10.1161/STROKEAHA.108.521419 10.1161/STROKEAHA.109.562157 10.1371/journal.pbio.0020108 10.1056/NEJMoa1412981 10.1212/WNL.0000000000007936 10.1198/jasa.2010.tm09415 10.1161/STROKEAHA.111.620336 10.1111/ijs.12199 10.1212/WNL.0b013e31824367ab 10.1007/s10115-013-0679-x 10.1007/s00180-020-01000-3 10.5853/jos.2015.17.1.38 10.1016/S1474-4422(19)30034-1 10.1136/svn-2017-000101 10.1016/S1385-7258(60)50006-0 10.1161/JAHA.115.002433 10.1056/NEJMp1500523 10.1016/j.csda.2017.06.003 10.1055/s-0038-1649503 10.1161/CIRCULATIONAHA.109.932822 10.1161/01.STR.31.2.456 10.1136/jnnp.2004.040543 10.1016/j.clinimag.2020.09.005 10.1038/s41698-017-0005-2 10.5220/0005278101720181 10.1145/3368555.3384465 10.5220/0010187502960303 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-13636-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_6ab4bfa9cec44b8896a25fa6342467db PMC9177616 35676413 10_1038_s41598_022_13636_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: Chonnam National University Hospital Biomedical Research Institutes grantid: BCRI20050 – fundername: Ministry of Health and Welfare grantid: HR20C0021 funderid: http://dx.doi.org/10.13039/100008903 – fundername: GIST grantid: BCRI20050 – fundername: Ministry of Health and Welfare grantid: HR20C0021 – fundername: ; grantid: HR20C0021 – fundername: ; grantid: BCRI20050 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PKEHL PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c540t-9b7e5d47a8372ebd9792889c2c6361413010a8f2f9bfc38066678c94296b61e03 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:28:50 EDT 2025 Tue Sep 30 16:24:32 EDT 2025 Sun Aug 24 04:14:17 EDT 2025 Wed Aug 13 07:37:09 EDT 2025 Wed Feb 19 02:26:57 EST 2025 Wed Oct 01 04:54:26 EDT 2025 Thu Apr 24 23:06:53 EDT 2025 Fri Feb 21 02:39:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-9b7e5d47a8372ebd9792889c2c6361413010a8f2f9bfc38066678c94296b61e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2674138698?pq-origsite=%requestingapplication% |
PMID | 35676413 |
PQID | 2674138698 |
PQPubID | 2041939 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6ab4bfa9cec44b8896a25fa6342467db pubmedcentral_primary_oai_pubmedcentral_nih_gov_9177616 proquest_miscellaneous_2674754717 proquest_journals_2674138698 pubmed_primary_35676413 crossref_citationtrail_10_1038_s41598_022_13636_w crossref_primary_10_1038_s41598_022_13636_w springer_journals_10_1038_s41598_022_13636_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-08 |
PublicationDateYYYYMMDD | 2022-06-08 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Gretton (CR19) 2012; 13 Navi (CR5) 2011; 42 Nedeltchev (CR24) 2005; 76 Rost (CR31) 2016; 5 Saenger, Christenson (CR4) 2010; 56 Knoflach (CR33) 2012; 78 Collins, Varmus (CR11) 2015; 372 CR15 Štrumbelj, Kononenko (CR20) 2014; 41 CR12 Weimar (CR7) 2010; 41 Kernan (CR25) 2000; 31 Witten, Tibshirani (CR14) 2010; 105 Weimar (CR6) 2009; 40 CR30 Cucchiara (CR23) 2019; 93 Jiang (CR9) 2017; 2 Bair, Tibshirani, Golub (CR13) 2004; 2 Katan, Luft (CR2) 2018; 38 Kuiper (CR18) 1960; 63 Amarenco (CR3) 2016; 374 Kim (CR16) 2014; 9 Kim (CR17) 2015; 17 CR28 Yedavalli (CR8) 2021; 69 CR27 Djuric, Zadeh, Aldape, Diamandis (CR10) 2017; 1 Johnson (CR1) 2019; 18 CR22 CR21 Smith (CR32) 2010; 122 Liverani (CR29) 2021; 36 Gaynor, Bair (CR26) 2017; 116 M Katan (13636_CR2) 2018; 38 F Jiang (13636_CR9) 2017; 2 A Gretton (13636_CR19) 2012; 13 BJ Kim (13636_CR16) 2014; 9 EE Smith (13636_CR32) 2010; 122 S Gaynor (13636_CR26) 2017; 116 NS Rost (13636_CR31) 2016; 5 C Weimar (13636_CR7) 2010; 41 M Knoflach (13636_CR33) 2012; 78 13636_CR15 K Nedeltchev (13636_CR24) 2005; 76 13636_CR12 NH Kuiper (13636_CR18) 1960; 63 AK Saenger (13636_CR4) 2010; 56 13636_CR30 CO Johnson (13636_CR1) 2019; 18 BB Navi (13636_CR5) 2011; 42 BJ Kim (13636_CR17) 2015; 17 U Djuric (13636_CR10) 2017; 1 E Štrumbelj (13636_CR20) 2014; 41 E Bair (13636_CR13) 2004; 2 WN Kernan (13636_CR25) 2000; 31 P Amarenco (13636_CR3) 2016; 374 S Liverani (13636_CR29) 2021; 36 VS Yedavalli (13636_CR8) 2021; 69 13636_CR27 13636_CR28 C Weimar (13636_CR6) 2009; 40 DM Witten (13636_CR14) 2010; 105 13636_CR21 13636_CR22 FS Collins (13636_CR11) 2015; 372 B Cucchiara (13636_CR23) 2019; 93 |
References_xml | – volume: 56 start-page: 21 year: 2010 end-page: 33 ident: CR4 article-title: Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment publication-title: Clin. Chem. doi: 10.1373/clinchem.2009.133801 – volume: 40 start-page: 350 year: 2009 end-page: 354 ident: CR6 article-title: The Essen stroke risk score predicts recurrent cardiovascular events: a validation within the REduction of Atherothrombosis for Continued Health (REACH) registry publication-title: Stroke doi: 10.1161/STROKEAHA.108.521419 – ident: CR22 – ident: CR12 – ident: CR30 – volume: 1 start-page: 1 year: 2017 end-page: 5 ident: CR10 article-title: Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care publication-title: NPJ Precis. Oncol. – volume: 41 start-page: 487 year: 2010 end-page: 493 ident: CR7 article-title: Prediction of recurrent stroke and vascular death in patients with transient ischemic attack or nondisabling stroke: a prospective comparison of validated prognostic scores publication-title: Stroke doi: 10.1161/STROKEAHA.109.562157 – volume: 2 year: 2004 ident: CR13 article-title: Semi-supervised methods to predict patient survival from gene expression data publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020108 – volume: 374 start-page: 1533 year: 2016 end-page: 1542 ident: CR3 article-title: One-year risk of stroke after transient ischemic attack or minor stroke publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1412981 – volume: 93 start-page: e708 year: 2019 end-page: e716 ident: CR23 article-title: Disability after minor stroke and TIA: a secondary analysis of the SOCRATES trial publication-title: Neurology doi: 10.1212/WNL.0000000000007936 – volume: 105 start-page: 713 year: 2010 end-page: 726 ident: CR14 article-title: A framework for feature selection in clustering publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2010.tm09415 – volume: 42 start-page: 3392 year: 2011 end-page: 3396 ident: CR5 article-title: Validation of the Stroke Prognostic Instrument-II in a large, modern, community-based cohort of ischemic stroke survivors publication-title: Stroke doi: 10.1161/STROKEAHA.111.620336 – volume: 9 start-page: 514 year: 2014 end-page: 518 ident: CR16 article-title: Current status of acute stroke management in Korea: a report on a multicenter, comprehensive acute stroke registry publication-title: Int. J. Stroke doi: 10.1111/ijs.12199 – ident: CR27 – volume: 78 start-page: 279 year: 2012 end-page: 285 ident: CR33 article-title: Functional recovery after ischemic stroke—a matter of age: data from the Austrian Stroke Unit Registry publication-title: Neurology doi: 10.1212/WNL.0b013e31824367ab – volume: 41 start-page: 647 year: 2014 end-page: 665 ident: CR20 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-013-0679-x – ident: CR21 – volume: 36 start-page: 35 year: 2021 end-page: 60 ident: CR29 article-title: Clustering method for censored and collinear survival data publication-title: Comput. Stat. doi: 10.1007/s00180-020-01000-3 – volume: 17 start-page: 38 year: 2015 ident: CR17 article-title: Case characteristics, hyperacute treatment, and outcome information from the clinical research center for stroke-fifth division registry in South Korea publication-title: J. Stroke doi: 10.5853/jos.2015.17.1.38 – volume: 18 start-page: 439 year: 2019 end-page: 458 ident: CR1 article-title: Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(19)30034-1 – volume: 2 start-page: 230 year: 2017 end-page: 243 ident: CR9 article-title: Artificial intelligence in healthcare: past, present and future publication-title: Stroke Vasc. Neurol. doi: 10.1136/svn-2017-000101 – volume: 63 start-page: 38 year: 1960 end-page: 47 ident: CR18 article-title: Tests concerning random points on a circle publication-title: Nederl. Akad. Wetensch. Proc. Ser. A. doi: 10.1016/S1385-7258(60)50006-0 – volume: 5 start-page: e002433 year: 2016 ident: CR31 article-title: Stroke severity is a crucial predictor of outcome: an international prospective validation study publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.115.002433 – ident: CR15 – volume: 372 start-page: 793 year: 2015 end-page: 795 ident: CR11 article-title: A new initiative on precision medicine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1500523 – volume: 116 start-page: 139 year: 2017 end-page: 154 ident: CR26 article-title: Identification of relevant subtypes via preweighted sparse clustering publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2017.06.003 – volume: 38 start-page: 208 year: 2018 end-page: 211 ident: CR2 article-title: Global burden of stroke publication-title: Semin. Neurol. doi: 10.1055/s-0038-1649503 – volume: 122 start-page: 1496 year: 2010 end-page: 1504 ident: CR32 article-title: Risk score for in-hospital ischemic stroke mortality derived and validated within the Get With the Guidelines-Stroke Program publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.932822 – volume: 31 start-page: 456 year: 2000 end-page: 462 ident: CR25 article-title: The stroke prognosis instrument II (SPI-II) a clinical prediction instrument for patients with transient ischemia and nondisabling ischemic stroke publication-title: Stroke doi: 10.1161/01.STR.31.2.456 – volume: 76 start-page: 191 year: 2005 end-page: 195 ident: CR24 article-title: Ischaemic stroke in young adults: predictors of outcome and recurrence publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2004.040543 – volume: 69 start-page: 246 year: 2021 end-page: 254 ident: CR8 article-title: Artificial intelligence in stroke imaging: current and future perspectives publication-title: Clin. Imaging. doi: 10.1016/j.clinimag.2020.09.005 – volume: 13 start-page: 723 year: 2012 end-page: 773 ident: CR19 article-title: A kernel two-sample test publication-title: J. Mach. Learn. Res. – ident: CR28 – volume: 42 start-page: 3392 year: 2011 ident: 13636_CR5 publication-title: Stroke doi: 10.1161/STROKEAHA.111.620336 – volume: 116 start-page: 139 year: 2017 ident: 13636_CR26 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2017.06.003 – volume: 122 start-page: 1496 year: 2010 ident: 13636_CR32 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.932822 – volume: 36 start-page: 35 year: 2021 ident: 13636_CR29 publication-title: Comput. Stat. doi: 10.1007/s00180-020-01000-3 – volume: 372 start-page: 793 year: 2015 ident: 13636_CR11 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1500523 – volume: 374 start-page: 1533 year: 2016 ident: 13636_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1412981 – ident: 13636_CR27 – volume: 31 start-page: 456 year: 2000 ident: 13636_CR25 publication-title: Stroke doi: 10.1161/01.STR.31.2.456 – volume: 2 start-page: 230 year: 2017 ident: 13636_CR9 publication-title: Stroke Vasc. Neurol. doi: 10.1136/svn-2017-000101 – volume: 1 start-page: 1 year: 2017 ident: 13636_CR10 publication-title: NPJ Precis. Oncol. doi: 10.1038/s41698-017-0005-2 – volume: 38 start-page: 208 year: 2018 ident: 13636_CR2 publication-title: Semin. Neurol. doi: 10.1055/s-0038-1649503 – volume: 69 start-page: 246 year: 2021 ident: 13636_CR8 publication-title: Clin. Imaging. doi: 10.1016/j.clinimag.2020.09.005 – volume: 76 start-page: 191 year: 2005 ident: 13636_CR24 publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2004.040543 – volume: 63 start-page: 38 year: 1960 ident: 13636_CR18 publication-title: Nederl. Akad. Wetensch. Proc. Ser. A. doi: 10.1016/S1385-7258(60)50006-0 – ident: 13636_CR15 – volume: 2 year: 2004 ident: 13636_CR13 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020108 – volume: 17 start-page: 38 year: 2015 ident: 13636_CR17 publication-title: J. Stroke doi: 10.5853/jos.2015.17.1.38 – volume: 41 start-page: 647 year: 2014 ident: 13636_CR20 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-013-0679-x – volume: 40 start-page: 350 year: 2009 ident: 13636_CR6 publication-title: Stroke doi: 10.1161/STROKEAHA.108.521419 – volume: 78 start-page: 279 year: 2012 ident: 13636_CR33 publication-title: Neurology doi: 10.1212/WNL.0b013e31824367ab – volume: 5 start-page: e002433 year: 2016 ident: 13636_CR31 publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.115.002433 – volume: 93 start-page: e708 year: 2019 ident: 13636_CR23 publication-title: Neurology doi: 10.1212/WNL.0000000000007936 – volume: 56 start-page: 21 year: 2010 ident: 13636_CR4 publication-title: Clin. Chem. doi: 10.1373/clinchem.2009.133801 – ident: 13636_CR21 doi: 10.5220/0005278101720181 – volume: 18 start-page: 439 year: 2019 ident: 13636_CR1 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(19)30034-1 – ident: 13636_CR30 doi: 10.1145/3368555.3384465 – ident: 13636_CR28 – volume: 13 start-page: 723 year: 2012 ident: 13636_CR19 publication-title: J. Mach. Learn. Res. – volume: 105 start-page: 713 year: 2010 ident: 13636_CR14 publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2010.tm09415 – volume: 9 start-page: 514 year: 2014 ident: 13636_CR16 publication-title: Int. J. Stroke doi: 10.1111/ijs.12199 – ident: 13636_CR12 – ident: 13636_CR22 doi: 10.5220/0010187502960303 – volume: 41 start-page: 487 year: 2010 ident: 13636_CR7 publication-title: Stroke doi: 10.1161/STROKEAHA.109.562157 |
SSID | ssj0000529419 |
Score | 2.403318 |
Snippet | Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several... Abstract Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9420 |
SubjectTerms | 692/617/375 692/617/375/534 Brain Ischemia - complications Brain Ischemia - epidemiology Cerebral infarction Cluster Analysis Hemorrhage Humanities and Social Sciences Humans Ischemia Ischemic Stroke - epidemiology multidisciplinary Myocardial infarction Neural networks Neural Networks, Computer Prospective Studies Retrospective Studies Risk Factors Science Science (multidisciplinary) Stroke Stroke - epidemiology Stroke - etiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDaLGj_hxBERVIcGJSr1ZfkWs2CaoyarsnR_O2E6WLs8LtyR2LGs8k2_GnnyD0HNLgmARwhKwHVFz1gSwObhVUhLHRAg6J2O-_yBOTvm7s_bsSqmvlBNW6IGL4I6Eddx1VvvoOXdKaWFp21nBOAUbDy59fQHGrgRThdWbak70_JdMw9TRCEiV_iaD2IswwUR9uYdEmbD_d17mr8mSP52YZiA6voVuzh4kflVmfhtdi_0ddL3UlNzeRd8S3Qa09yW_u04wFbBfbxIjAgyIc-0bPHR4BYFtSo3H43QxfI54plgdcdqbxRaf26-rc7teb3FIH4LeT_liqZCVhiD1FiwFL-mseNhMoMFxvIdOj99-fHNSz6UWag8u21RrJ2MbuLQQr9Logpaagqw99SAqkoCONFZ1tNOu80yloEcqrwHMhBMkNuw-OuiHPj5E2KWXuuha3USAf69aTRsZreSOdDHYCpFF7MbPPOSpHMba5PNwpkxZKgNLZfJSmcsKvdi986WwcPy19-u0mrueiUE7PwC9MrNemX_pVYUOF10ws1mPhgpwwJgSWlXo2a4ZDDKdstg-DpvSR7aA-bJCD4rq7GbCWiEFjFAhuadUe1Pdb-lXnzLpN4TVUhBRoZeL-v2Y1p9F8eh_iOIxukGT3aS9J3WIDqaLTXwCrtjknmar-w4WaDJ3 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiJC6IN4GCjMQNosZx4scJAaKqkOBEpb1ZfgVWbJOyyarsnQ9nxkm2Wh69JbFj2Z4Zz9MzhLy0LAgeQS0B2hF5xYsANAevSkrmuAhBp2DMT5_FyWn1cVEvJoNbP4VVzmdiOqhD59FGflQK4H1cCa3enP_IsWoUelenEhrXyQ0GogpitVzInY0FvVgV09NdmYKrox74Fd4pAw2MccFFfrHHj1La_n_Jmn-HTP7hN03s6PgOuT3JkfTtCPi75Fps75GbY2XJ7X3yC5NuQHs7RnnnyKwC9asN5kWAAWmqgEO7hi5BvcUAedoP6-57pFOi1Z6ihZZaemZ_Ls_sarWlAY-D1g_pYa6ThUOwfAv0QuegVtptBtjT2D8gp8cfvrw_yaeCC7kHwW3ItZOxDpW0oLWW0QUtdamU9qWHrWLI7lhhVVM22jWeK1R9pPIaWJpwgsWCPyQHbdfGx4Q6_KmJrtZFBCHAq1qXhYxWVo41MdiMsHnbjZ-ykWNRjJVJXnGuzAgqA6AyCVTmIiOvdv-cj7k4ruz9DqG564l5tNOHbv3VTGRphHWVa6z20VeVg7UKW9aNFbwqgYMEl5HDGRfMRNy9uUTFjLzYNQNZoq_FtrHbjH1kDZxfZuTRiDq7mfBaSAEjZETuIdXeVPdb2uW3lPoblGspmMjI6xn9Lqf1_614cvUqnpJbJVIE2pbUITkY1pv4DEStwT1P9PQbhTkpLA priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiHcDBRmJG0TEduLHcUFU1UpwgUq9WX4FVmwTtMmq7J0fzth5oIWCxC0bP-S1Z_LN2ONvEHphiOcsgFsCusPzkhUedA5-SiGIZdx7lYIx33_gZ-fl8qK6OEB0uguTgvYTpWX6TE_RYa87AJp4GQxcJ8I44_nVDXQkBaOgjEeLxfLjct5ZiWdXJVHjDZmCyWsa76FQIuu_zsL8M1Dyt9PSBEKnd9Dt0XrEi2G8d9FBaO6hm0M-yd199CNSbUB5M8R25xGiPHbrbWRDgA5xynuD2xqvwKmNYfG46zft14BHetUOx31ZbPCl-b66NOv1Dvv4EWhcnx6m7FixC5LvQEvwFMqK220Pcxm6B-j89N2nt2f5mGYhd2Cu9bmyIlS-FAZ8VRqsV0JRKZWjDqaKRJAjhZE1rZWtHZPR4RHSKQAybjkJBXuIDpu2CccI29ioDrZSRQDod7JStBDBiNKSOniTITJNu3YjB3lMhbHW6SycST0slYal0mmp9FWGXs5tvg0MHP-s_Sau5lwzsmenF-3msx6lSXNjS1sb5YIrSwv_lRta1YazkgJueJuhk0kW9KjSnaYcjC8muZIZej4XgzLGExbThHY71BEV4L3I0KNBdOaRsIoLDj1kSOwJ1d5Q90ua1ZdE-A0uteCEZ-jVJH6_hvX3qXj8f9WfoFs0akjcYZIn6LDfbMNTMLh6-2zUsJ9nKCi- priority: 102 providerName: Springer Nature |
Title | Neural network-based clustering model of ischemic stroke patients with a maximally distinct distribution of 1-year vascular outcomes |
URI | https://link.springer.com/article/10.1038/s41598-022-13636-w https://www.ncbi.nlm.nih.gov/pubmed/35676413 https://www.proquest.com/docview/2674138698 https://www.proquest.com/docview/2674754717 https://pubmed.ncbi.nlm.nih.gov/PMC9177616 https://doaj.org/article/6ab4bfa9cec44b8896a25fa6342467db |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ6C9IL4JjMpIvEGgjhN_PCDUVZumSpsQUKlvkZ04o6JLtjbV1nf-cM5OUlToeMqHP-Scf5e7s893AG81zTmzaJYg7_AwZv0ceQ4fpRDUMJ7nyjtjnp3z03E8miSTHejSHbUEXGw17Vw-qfF89uH2evUZGf5Tc2RcflygEHIHxdCsoowzHt7swj5Kpsih_KxV95tY35GKqWrPzmxvegD3WcIFjynbEFU-ov82NfRfb8q_tlS9pDp5CA9aFZMMGkw8gh1bPoZ7TdLJ1RP45eJxYHnZOICHTo7lJJstXcgE7JD45DikKsgUyeN858minlc_LWljsC6IW7wlmlzq2-mlns1WJHd_ijKr_U2XQst1QcMVshLp_F1JtawR4nbxFMYnx9-Hp2GbiyHMUKerQ2WETfJYaDRoI2tyJVQkpcqiDKlGnSSkfS2LqFCmyJh0VpGQmUJpxw2nts-ewV5ZlfYFEOMaFdYkqm9RP8hkoqK-sFrEhhY21wHQjuxp1gYqd_kyZqnfMGcybWYtxVlL_aylNwG8W7e5asJ0_Lf2kZvNdU0XYtu_qOYXacuxKdcmNoVWmc3i2OC3ch0lheYsjlC45CaAww4LaQfbNOKooTHJlQzgzboYOdZtw-jSVsumjkhQKRABPG-gsx5JB70AxAaoNoa6WVJOf_io4Gh3C055AO87-P0Z1t2keHnnEF7BQeT4wq04yUPYq-dL-xoVsNr0YFdMRA_2B4PRtxFej47Pv3zFt0M-7PlFjZ7nu99ebjJA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFCC6ItQQKGAlOEDWxEy8HhNiqKV1OrTS34C0wYpqUSUbD3PkevpFnJ5lqWHrrbTJ2nuy83e_5PYSeq9Qy6sAtAd5hcUYTCzwHj4LzVFNmrQzJmIdHbHSSfRrn4w30a7gL49MqB5kYBLWtjT8j3yEMdB8VTIo3Z99j3zXKR1eHFhodWey75QJctub13gfA7wtCdj8evx_FfVeB2IB10sZSc5fbjCtwzYjTVnJJhJCGGEZBV4FMTxMlSlJKXRoqvH3PhZEgt5lmqUsowL2CrsK2Ml-rn4_56kzHR82yVPZ3cxIqdhrQj_4OG3h8KQX48WJN_4U2Af-ybf9O0fwjThvU3-4tdLO3W_HbjtBuow1X3UHXuk6Wy7vopy_yAeNVl1Uee-VosZnOfR0GAIhDxx1cl3gC7rRPyMdNO6u_OdwXdm2wPxHGCp-qH5NTNZ0usfXipzJt-DH05fIg0ngJiMBDEi2u5y3g0DX30MmloOI-2qzqyj1AWPuXSqdzmTgwOozIJUm4UzzTaemsilA6fPbC9NXPfROOaRGi8FQUHaoKQFURUFUsIvRy9c5ZV_vjwtnvPDZXM33d7vBHPftS9GKgYEpnulTSOJNlGvbKFMlLxWhGQGNZHaHtgRaKXpg0xTnpR-jZahjEgI_tqMrV824Oz8HS4BHa6khntRKaM84AQoT4GlGtLXV9pJp8DaXGwZnnLGURejWQ3_my_v8pHl68i6fo-uj48KA42Dvaf4RuEM8d_lxLbKPNdjZ3j8HMa_WTwFsYfb5sZv4NkxJjyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFIC6IN4ECRoITRJvYiR8HhICyailUHKi0t-BXYMU2KZuslr3zVXwdYyfZann01lsSOyMn8_aMZxB6olLLqAO3BHiHxRlNLPAc3ArOU02ZtTIkY344ZHtH2btJPtlCv4azMD6tcpCJQVDb2vg98hFhoPuoYFKMyj4t4uPu-OXJ99h3kPKR1qGdRkciB261BPetebG_C7h-Ssj47ac3e3HfYSA2YKm0sdTc5TbjCtw04rSVXBIhpCGGUdBbIN_TRImSlFKXhgpv63NhJMhwplnqEgpwL6CLnGbUp5PxCV_v7_gIWpbK_pxOQsWoAV3pz7OB95dSgB8vN3RhaBnwLzv373TNP2K2QRWOr6GrvQ2LX3VEdx1tueoGutR1tVzdRD99wQ8Yr7oM89grSovNbOFrMgBAHLrv4LrEU3CtfXI-btp5_c3hvshrg_3uMFb4WP2YHqvZbIWtF0WVacPF0KPLg0jjFSACDwm1uF60gE_X3EJH54KK22i7qit3F2HtXyqdzmXiwAAxIpck4U7xTKelsypC6fDbC9NXQvcNOWZFiMhTUXSoKgBVRUBVsYzQs_U7J10dkDNnv_bYXM_0NbzDg3r-pehFQsGUznSppHEmyzR8K1MkLxWjGQHtZXWEdgZaKHrB0hSnbBChx-thEAk-zqMqVy-6OTwHq4NH6E5HOuuV0JxxBhAixDeIamOpmyPV9GsoOw6OPWcpi9DzgfxOl_X_X3Hv7K94hC4DGxfv9w8P7qMrxDOH3-ISO2i7nS_cA7D4Wv0wsBZGn8-bl38DS2NoBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network-based+clustering+model+of+ischemic+stroke+patients+with+a+maximally+distinct+distribution+of+1-year+vascular+outcomes&rft.jtitle=Scientific+reports&rft.au=Kim%2C+Joon-Tae&rft.au=Kim%2C+Nu+Ri&rft.au=Choi%2C+Su+Hoon&rft.au=Oh%2C+Seungwon&rft.date=2022-06-08&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=9420&rft_id=info:doi/10.1038%2Fs41598-022-13636-w&rft_id=info%3Apmid%2F35676413&rft.externalDocID=35676413 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |