Neural network-based clustering model of ischemic stroke patients with a maximally distinct distribution of 1-year vascular outcomes

Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 9420 - 10
Main Authors Kim, Joon-Tae, Kim, Nu Ri, Choi, Su Hoon, Oh, Seungwon, Park, Man-Seok, Lee, Seung-Han, Kim, Byeong C., Choi, Jonghyun, Kim, Min Soo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.06.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-13636-w

Cover

Abstract Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke.
AbstractList Abstract Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke.
Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke.
Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke.Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke.
Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke.
ArticleNumber 9420
Author Oh, Seungwon
Kim, Min Soo
Lee, Seung-Han
Kim, Joon-Tae
Choi, Su Hoon
Kim, Byeong C.
Kim, Nu Ri
Park, Man-Seok
Choi, Jonghyun
Author_xml – sequence: 1
  givenname: Joon-Tae
  surname: Kim
  fullname: Kim, Joon-Tae
  email: alldelight2@jnu.ac.kr
  organization: Department of Neurology, Gwangju-Jeonnam Regional Cerebrovascular Center, Chonnam National University Medical School, Chonnam National University Hospital
– sequence: 2
  givenname: Nu Ri
  surname: Kim
  fullname: Kim, Nu Ri
  organization: Department of Neurology, Gwangju-Jeonnam Regional Cerebrovascular Center, Chonnam National University Medical School, Chonnam National University Hospital
– sequence: 3
  givenname: Su Hoon
  surname: Choi
  fullname: Choi, Su Hoon
  organization: Department of Mathematics and Statistics, Chonnam National University
– sequence: 4
  givenname: Seungwon
  surname: Oh
  fullname: Oh, Seungwon
  organization: Department of Mathematics and Statistics, Chonnam National University
– sequence: 5
  givenname: Man-Seok
  surname: Park
  fullname: Park, Man-Seok
  organization: Department of Neurology, Gwangju-Jeonnam Regional Cerebrovascular Center, Chonnam National University Medical School, Chonnam National University Hospital
– sequence: 6
  givenname: Seung-Han
  surname: Lee
  fullname: Lee, Seung-Han
  organization: Department of Neurology, Gwangju-Jeonnam Regional Cerebrovascular Center, Chonnam National University Medical School, Chonnam National University Hospital
– sequence: 7
  givenname: Byeong C.
  surname: Kim
  fullname: Kim, Byeong C.
  organization: Department of Neurology, Gwangju-Jeonnam Regional Cerebrovascular Center, Chonnam National University Medical School, Chonnam National University Hospital
– sequence: 8
  givenname: Jonghyun
  surname: Choi
  fullname: Choi, Jonghyun
  organization: AI Graduate School, Gwangju Institute of Science and Technology
– sequence: 9
  givenname: Min Soo
  surname: Kim
  fullname: Kim, Min Soo
  email: kimms@chonnam.ac.kr
  organization: Department of Mathematics and Statistics, Chonnam National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35676413$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFARLaV_gAOyxIVLwF-x4wsSqvioVMEFzpbtvOx6m8SL7XS7d3443t0W2h7qi5_smfG853lZHU1hgqp6TfB7gln7IXHSqLbGlNaECSbqzbPqhGLe1JRRenSvPq7OUlrhshqqOFEvqmPWCCk4YSfVn-8wRzOgCfImxKvamgQdcsOcMkQ_LdAYOhhQ6JFPbgmjdyjlGK4ArU32MOWENj4vkUGjufGjGYYt6nzKfnJ5X0Rv5-zDtJMg9RZMRNcmuXkoRZizCyOkV9Xz3gwJzm730-rXl88_z7_Vlz--Xpx_uqxdw3GulZXQdFyalkkKtlNS0bZVjrrSPyntYIJN29Ne2d6xFgshZOsUp0pYQQCz0-rioNsFs9LrWPzGrQ7G6_1BiAttYvZuAC2M5bY3yoHj3JZXhKFNbwTjlAvZ2aL18aC1nu0InSujKHN8IPrwZvJLvQjXWhEpBRFF4N2tQAy_Z0hZj2XEMAxmgjAnTYXksuGSyAJ9-wi6CnOcyqj2KMJaodqCenPf0T8rd59dAO0B4GJIKUKvnc9m9znFoB80wXoXLX2Ili7R0vto6U2h0kfUO_UnSexASutdlCD-t_0E6y8pz-ON
CitedBy_id crossref_primary_10_1016_j_jaip_2024_04_035
crossref_primary_10_1038_s44303_024_00063_x
crossref_primary_10_1038_s41598_023_32790_3
crossref_primary_10_1109_ACCESS_2024_3383140
crossref_primary_10_3390_jcdd11070207
Cites_doi 10.1373/clinchem.2009.133801
10.1161/STROKEAHA.108.521419
10.1161/STROKEAHA.109.562157
10.1371/journal.pbio.0020108
10.1056/NEJMoa1412981
10.1212/WNL.0000000000007936
10.1198/jasa.2010.tm09415
10.1161/STROKEAHA.111.620336
10.1111/ijs.12199
10.1212/WNL.0b013e31824367ab
10.1007/s10115-013-0679-x
10.1007/s00180-020-01000-3
10.5853/jos.2015.17.1.38
10.1016/S1474-4422(19)30034-1
10.1136/svn-2017-000101
10.1016/S1385-7258(60)50006-0
10.1161/JAHA.115.002433
10.1056/NEJMp1500523
10.1016/j.csda.2017.06.003
10.1055/s-0038-1649503
10.1161/CIRCULATIONAHA.109.932822
10.1161/01.STR.31.2.456
10.1136/jnnp.2004.040543
10.1016/j.clinimag.2020.09.005
10.1038/s41698-017-0005-2
10.5220/0005278101720181
10.1145/3368555.3384465
10.5220/0010187502960303
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-13636-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_6ab4bfa9cec44b8896a25fa6342467db
PMC9177616
35676413
10_1038_s41598_022_13636_w
Genre Journal Article
GrantInformation_xml – fundername: Chonnam National University Hospital Biomedical Research Institutes
  grantid: BCRI20050
– fundername: Ministry of Health and Welfare
  grantid: HR20C0021
  funderid: http://dx.doi.org/10.13039/100008903
– fundername: GIST
  grantid: BCRI20050
– fundername: Ministry of Health and Welfare
  grantid: HR20C0021
– fundername: ;
  grantid: HR20C0021
– fundername: ;
  grantid: BCRI20050
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c540t-9b7e5d47a8372ebd9792889c2c6361413010a8f2f9bfc38066678c94296b61e03
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:50 EDT 2025
Tue Sep 30 16:24:32 EDT 2025
Sun Aug 24 04:14:17 EDT 2025
Wed Aug 13 07:37:09 EDT 2025
Wed Feb 19 02:26:57 EST 2025
Wed Oct 01 04:54:26 EDT 2025
Thu Apr 24 23:06:53 EDT 2025
Fri Feb 21 02:39:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-9b7e5d47a8372ebd9792889c2c6361413010a8f2f9bfc38066678c94296b61e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2674138698?pq-origsite=%requestingapplication%
PMID 35676413
PQID 2674138698
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_6ab4bfa9cec44b8896a25fa6342467db
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9177616
proquest_miscellaneous_2674754717
proquest_journals_2674138698
pubmed_primary_35676413
crossref_citationtrail_10_1038_s41598_022_13636_w
crossref_primary_10_1038_s41598_022_13636_w
springer_journals_10_1038_s41598_022_13636_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-08
PublicationDateYYYYMMDD 2022-06-08
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Gretton (CR19) 2012; 13
Navi (CR5) 2011; 42
Nedeltchev (CR24) 2005; 76
Rost (CR31) 2016; 5
Saenger, Christenson (CR4) 2010; 56
Knoflach (CR33) 2012; 78
Collins, Varmus (CR11) 2015; 372
CR15
Štrumbelj, Kononenko (CR20) 2014; 41
CR12
Weimar (CR7) 2010; 41
Kernan (CR25) 2000; 31
Witten, Tibshirani (CR14) 2010; 105
Weimar (CR6) 2009; 40
CR30
Cucchiara (CR23) 2019; 93
Jiang (CR9) 2017; 2
Bair, Tibshirani, Golub (CR13) 2004; 2
Katan, Luft (CR2) 2018; 38
Kuiper (CR18) 1960; 63
Amarenco (CR3) 2016; 374
Kim (CR16) 2014; 9
Kim (CR17) 2015; 17
CR28
Yedavalli (CR8) 2021; 69
CR27
Djuric, Zadeh, Aldape, Diamandis (CR10) 2017; 1
Johnson (CR1) 2019; 18
CR22
CR21
Smith (CR32) 2010; 122
Liverani (CR29) 2021; 36
Gaynor, Bair (CR26) 2017; 116
M Katan (13636_CR2) 2018; 38
F Jiang (13636_CR9) 2017; 2
A Gretton (13636_CR19) 2012; 13
BJ Kim (13636_CR16) 2014; 9
EE Smith (13636_CR32) 2010; 122
S Gaynor (13636_CR26) 2017; 116
NS Rost (13636_CR31) 2016; 5
C Weimar (13636_CR7) 2010; 41
M Knoflach (13636_CR33) 2012; 78
13636_CR15
K Nedeltchev (13636_CR24) 2005; 76
13636_CR12
NH Kuiper (13636_CR18) 1960; 63
AK Saenger (13636_CR4) 2010; 56
13636_CR30
CO Johnson (13636_CR1) 2019; 18
BB Navi (13636_CR5) 2011; 42
BJ Kim (13636_CR17) 2015; 17
U Djuric (13636_CR10) 2017; 1
E Štrumbelj (13636_CR20) 2014; 41
E Bair (13636_CR13) 2004; 2
WN Kernan (13636_CR25) 2000; 31
P Amarenco (13636_CR3) 2016; 374
S Liverani (13636_CR29) 2021; 36
VS Yedavalli (13636_CR8) 2021; 69
13636_CR27
13636_CR28
C Weimar (13636_CR6) 2009; 40
DM Witten (13636_CR14) 2010; 105
13636_CR21
13636_CR22
FS Collins (13636_CR11) 2015; 372
B Cucchiara (13636_CR23) 2019; 93
References_xml – volume: 56
  start-page: 21
  year: 2010
  end-page: 33
  ident: CR4
  article-title: Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2009.133801
– volume: 40
  start-page: 350
  year: 2009
  end-page: 354
  ident: CR6
  article-title: The Essen stroke risk score predicts recurrent cardiovascular events: a validation within the REduction of Atherothrombosis for Continued Health (REACH) registry
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.521419
– ident: CR22
– ident: CR12
– ident: CR30
– volume: 1
  start-page: 1
  year: 2017
  end-page: 5
  ident: CR10
  article-title: Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care
  publication-title: NPJ Precis. Oncol.
– volume: 41
  start-page: 487
  year: 2010
  end-page: 493
  ident: CR7
  article-title: Prediction of recurrent stroke and vascular death in patients with transient ischemic attack or nondisabling stroke: a prospective comparison of validated prognostic scores
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.562157
– volume: 2
  year: 2004
  ident: CR13
  article-title: Semi-supervised methods to predict patient survival from gene expression data
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0020108
– volume: 374
  start-page: 1533
  year: 2016
  end-page: 1542
  ident: CR3
  article-title: One-year risk of stroke after transient ischemic attack or minor stroke
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1412981
– volume: 93
  start-page: e708
  year: 2019
  end-page: e716
  ident: CR23
  article-title: Disability after minor stroke and TIA: a secondary analysis of the SOCRATES trial
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000007936
– volume: 105
  start-page: 713
  year: 2010
  end-page: 726
  ident: CR14
  article-title: A framework for feature selection in clustering
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2010.tm09415
– volume: 42
  start-page: 3392
  year: 2011
  end-page: 3396
  ident: CR5
  article-title: Validation of the Stroke Prognostic Instrument-II in a large, modern, community-based cohort of ischemic stroke survivors
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.111.620336
– volume: 9
  start-page: 514
  year: 2014
  end-page: 518
  ident: CR16
  article-title: Current status of acute stroke management in Korea: a report on a multicenter, comprehensive acute stroke registry
  publication-title: Int. J. Stroke
  doi: 10.1111/ijs.12199
– ident: CR27
– volume: 78
  start-page: 279
  year: 2012
  end-page: 285
  ident: CR33
  article-title: Functional recovery after ischemic stroke—a matter of age: data from the Austrian Stroke Unit Registry
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31824367ab
– volume: 41
  start-page: 647
  year: 2014
  end-page: 665
  ident: CR20
  article-title: Explaining prediction models and individual predictions with feature contributions
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0679-x
– ident: CR21
– volume: 36
  start-page: 35
  year: 2021
  end-page: 60
  ident: CR29
  article-title: Clustering method for censored and collinear survival data
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-020-01000-3
– volume: 17
  start-page: 38
  year: 2015
  ident: CR17
  article-title: Case characteristics, hyperacute treatment, and outcome information from the clinical research center for stroke-fifth division registry in South Korea
  publication-title: J. Stroke
  doi: 10.5853/jos.2015.17.1.38
– volume: 18
  start-page: 439
  year: 2019
  end-page: 458
  ident: CR1
  article-title: Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(19)30034-1
– volume: 2
  start-page: 230
  year: 2017
  end-page: 243
  ident: CR9
  article-title: Artificial intelligence in healthcare: past, present and future
  publication-title: Stroke Vasc. Neurol.
  doi: 10.1136/svn-2017-000101
– volume: 63
  start-page: 38
  year: 1960
  end-page: 47
  ident: CR18
  article-title: Tests concerning random points on a circle
  publication-title: Nederl. Akad. Wetensch. Proc. Ser. A.
  doi: 10.1016/S1385-7258(60)50006-0
– volume: 5
  start-page: e002433
  year: 2016
  ident: CR31
  article-title: Stroke severity is a crucial predictor of outcome: an international prospective validation study
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.115.002433
– ident: CR15
– volume: 372
  start-page: 793
  year: 2015
  end-page: 795
  ident: CR11
  article-title: A new initiative on precision medicine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1500523
– volume: 116
  start-page: 139
  year: 2017
  end-page: 154
  ident: CR26
  article-title: Identification of relevant subtypes via preweighted sparse clustering
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2017.06.003
– volume: 38
  start-page: 208
  year: 2018
  end-page: 211
  ident: CR2
  article-title: Global burden of stroke
  publication-title: Semin. Neurol.
  doi: 10.1055/s-0038-1649503
– volume: 122
  start-page: 1496
  year: 2010
  end-page: 1504
  ident: CR32
  article-title: Risk score for in-hospital ischemic stroke mortality derived and validated within the Get With the Guidelines-Stroke Program
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.932822
– volume: 31
  start-page: 456
  year: 2000
  end-page: 462
  ident: CR25
  article-title: The stroke prognosis instrument II (SPI-II) a clinical prediction instrument for patients with transient ischemia and nondisabling ischemic stroke
  publication-title: Stroke
  doi: 10.1161/01.STR.31.2.456
– volume: 76
  start-page: 191
  year: 2005
  end-page: 195
  ident: CR24
  article-title: Ischaemic stroke in young adults: predictors of outcome and recurrence
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2004.040543
– volume: 69
  start-page: 246
  year: 2021
  end-page: 254
  ident: CR8
  article-title: Artificial intelligence in stroke imaging: current and future perspectives
  publication-title: Clin. Imaging.
  doi: 10.1016/j.clinimag.2020.09.005
– volume: 13
  start-page: 723
  year: 2012
  end-page: 773
  ident: CR19
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res.
– ident: CR28
– volume: 42
  start-page: 3392
  year: 2011
  ident: 13636_CR5
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.111.620336
– volume: 116
  start-page: 139
  year: 2017
  ident: 13636_CR26
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2017.06.003
– volume: 122
  start-page: 1496
  year: 2010
  ident: 13636_CR32
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.932822
– volume: 36
  start-page: 35
  year: 2021
  ident: 13636_CR29
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-020-01000-3
– volume: 372
  start-page: 793
  year: 2015
  ident: 13636_CR11
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1500523
– volume: 374
  start-page: 1533
  year: 2016
  ident: 13636_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1412981
– ident: 13636_CR27
– volume: 31
  start-page: 456
  year: 2000
  ident: 13636_CR25
  publication-title: Stroke
  doi: 10.1161/01.STR.31.2.456
– volume: 2
  start-page: 230
  year: 2017
  ident: 13636_CR9
  publication-title: Stroke Vasc. Neurol.
  doi: 10.1136/svn-2017-000101
– volume: 1
  start-page: 1
  year: 2017
  ident: 13636_CR10
  publication-title: NPJ Precis. Oncol.
  doi: 10.1038/s41698-017-0005-2
– volume: 38
  start-page: 208
  year: 2018
  ident: 13636_CR2
  publication-title: Semin. Neurol.
  doi: 10.1055/s-0038-1649503
– volume: 69
  start-page: 246
  year: 2021
  ident: 13636_CR8
  publication-title: Clin. Imaging.
  doi: 10.1016/j.clinimag.2020.09.005
– volume: 76
  start-page: 191
  year: 2005
  ident: 13636_CR24
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2004.040543
– volume: 63
  start-page: 38
  year: 1960
  ident: 13636_CR18
  publication-title: Nederl. Akad. Wetensch. Proc. Ser. A.
  doi: 10.1016/S1385-7258(60)50006-0
– ident: 13636_CR15
– volume: 2
  year: 2004
  ident: 13636_CR13
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0020108
– volume: 17
  start-page: 38
  year: 2015
  ident: 13636_CR17
  publication-title: J. Stroke
  doi: 10.5853/jos.2015.17.1.38
– volume: 41
  start-page: 647
  year: 2014
  ident: 13636_CR20
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0679-x
– volume: 40
  start-page: 350
  year: 2009
  ident: 13636_CR6
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.521419
– volume: 78
  start-page: 279
  year: 2012
  ident: 13636_CR33
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31824367ab
– volume: 5
  start-page: e002433
  year: 2016
  ident: 13636_CR31
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.115.002433
– volume: 93
  start-page: e708
  year: 2019
  ident: 13636_CR23
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000007936
– volume: 56
  start-page: 21
  year: 2010
  ident: 13636_CR4
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2009.133801
– ident: 13636_CR21
  doi: 10.5220/0005278101720181
– volume: 18
  start-page: 439
  year: 2019
  ident: 13636_CR1
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(19)30034-1
– ident: 13636_CR30
  doi: 10.1145/3368555.3384465
– ident: 13636_CR28
– volume: 13
  start-page: 723
  year: 2012
  ident: 13636_CR19
  publication-title: J. Mach. Learn. Res.
– volume: 105
  start-page: 713
  year: 2010
  ident: 13636_CR14
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2010.tm09415
– volume: 9
  start-page: 514
  year: 2014
  ident: 13636_CR16
  publication-title: Int. J. Stroke
  doi: 10.1111/ijs.12199
– ident: 13636_CR12
– ident: 13636_CR22
  doi: 10.5220/0010187502960303
– volume: 41
  start-page: 487
  year: 2010
  ident: 13636_CR7
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.562157
SSID ssj0000529419
Score 2.403318
Snippet Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several...
Abstract Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9420
SubjectTerms 692/617/375
692/617/375/534
Brain Ischemia - complications
Brain Ischemia - epidemiology
Cerebral infarction
Cluster Analysis
Hemorrhage
Humanities and Social Sciences
Humans
Ischemia
Ischemic Stroke - epidemiology
multidisciplinary
Myocardial infarction
Neural networks
Neural Networks, Computer
Prospective Studies
Retrospective Studies
Risk Factors
Science
Science (multidisciplinary)
Stroke
Stroke - epidemiology
Stroke - etiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEDaLGj_hxBERVIcGJSr1ZfkWs2CaoyarsnR_O2E6WLs8LtyR2LGs8k2_GnnyD0HNLgmARwhKwHVFz1gSwObhVUhLHRAg6J2O-_yBOTvm7s_bsSqmvlBNW6IGL4I6Eddx1VvvoOXdKaWFp21nBOAUbDy59fQHGrgRThdWbak70_JdMw9TRCEiV_iaD2IswwUR9uYdEmbD_d17mr8mSP52YZiA6voVuzh4kflVmfhtdi_0ddL3UlNzeRd8S3Qa09yW_u04wFbBfbxIjAgyIc-0bPHR4BYFtSo3H43QxfI54plgdcdqbxRaf26-rc7teb3FIH4LeT_liqZCVhiD1FiwFL-mseNhMoMFxvIdOj99-fHNSz6UWag8u21RrJ2MbuLQQr9Logpaagqw99SAqkoCONFZ1tNOu80yloEcqrwHMhBMkNuw-OuiHPj5E2KWXuuha3USAf69aTRsZreSOdDHYCpFF7MbPPOSpHMba5PNwpkxZKgNLZfJSmcsKvdi986WwcPy19-u0mrueiUE7PwC9MrNemX_pVYUOF10ws1mPhgpwwJgSWlXo2a4ZDDKdstg-DpvSR7aA-bJCD4rq7GbCWiEFjFAhuadUe1Pdb-lXnzLpN4TVUhBRoZeL-v2Y1p9F8eh_iOIxukGT3aS9J3WIDqaLTXwCrtjknmar-w4WaDJ3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IIiJC6IN4GCjMQNosZx4scJAaKqkOBEpb1ZfgVWbJOyyarsnQ9nxkm2Wh69JbFj2Z4Zz9MzhLy0LAgeQS0B2hF5xYsANAevSkrmuAhBp2DMT5_FyWn1cVEvJoNbP4VVzmdiOqhD59FGflQK4H1cCa3enP_IsWoUelenEhrXyQ0GogpitVzInY0FvVgV09NdmYKrox74Fd4pAw2MccFFfrHHj1La_n_Jmn-HTP7hN03s6PgOuT3JkfTtCPi75Fps75GbY2XJ7X3yC5NuQHs7RnnnyKwC9asN5kWAAWmqgEO7hi5BvcUAedoP6-57pFOi1Z6ihZZaemZ_Ls_sarWlAY-D1g_pYa6ThUOwfAv0QuegVtptBtjT2D8gp8cfvrw_yaeCC7kHwW3ItZOxDpW0oLWW0QUtdamU9qWHrWLI7lhhVVM22jWeK1R9pPIaWJpwgsWCPyQHbdfGx4Q6_KmJrtZFBCHAq1qXhYxWVo41MdiMsHnbjZ-ykWNRjJVJXnGuzAgqA6AyCVTmIiOvdv-cj7k4ruz9DqG564l5tNOHbv3VTGRphHWVa6z20VeVg7UKW9aNFbwqgYMEl5HDGRfMRNy9uUTFjLzYNQNZoq_FtrHbjH1kDZxfZuTRiDq7mfBaSAEjZETuIdXeVPdb2uW3lPoblGspmMjI6xn9Lqf1_614cvUqnpJbJVIE2pbUITkY1pv4DEStwT1P9PQbhTkpLA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiHcDBRmJG0TEduLHcUFU1UpwgUq9WX4FVmwTtMmq7J0fzth5oIWCxC0bP-S1Z_LN2ONvEHphiOcsgFsCusPzkhUedA5-SiGIZdx7lYIx33_gZ-fl8qK6OEB0uguTgvYTpWX6TE_RYa87AJp4GQxcJ8I44_nVDXQkBaOgjEeLxfLjct5ZiWdXJVHjDZmCyWsa76FQIuu_zsL8M1Dyt9PSBEKnd9Dt0XrEi2G8d9FBaO6hm0M-yd199CNSbUB5M8R25xGiPHbrbWRDgA5xynuD2xqvwKmNYfG46zft14BHetUOx31ZbPCl-b66NOv1Dvv4EWhcnx6m7FixC5LvQEvwFMqK220Pcxm6B-j89N2nt2f5mGYhd2Cu9bmyIlS-FAZ8VRqsV0JRKZWjDqaKRJAjhZE1rZWtHZPR4RHSKQAybjkJBXuIDpu2CccI29ioDrZSRQDod7JStBDBiNKSOniTITJNu3YjB3lMhbHW6SycST0slYal0mmp9FWGXs5tvg0MHP-s_Sau5lwzsmenF-3msx6lSXNjS1sb5YIrSwv_lRta1YazkgJueJuhk0kW9KjSnaYcjC8muZIZej4XgzLGExbThHY71BEV4L3I0KNBdOaRsIoLDj1kSOwJ1d5Q90ua1ZdE-A0uteCEZ-jVJH6_hvX3qXj8f9WfoFs0akjcYZIn6LDfbMNTMLh6-2zUsJ9nKCi-
  priority: 102
  providerName: Springer Nature
Title Neural network-based clustering model of ischemic stroke patients with a maximally distinct distribution of 1-year vascular outcomes
URI https://link.springer.com/article/10.1038/s41598-022-13636-w
https://www.ncbi.nlm.nih.gov/pubmed/35676413
https://www.proquest.com/docview/2674138698
https://www.proquest.com/docview/2674754717
https://pubmed.ncbi.nlm.nih.gov/PMC9177616
https://doaj.org/article/6ab4bfa9cec44b8896a25fa6342467db
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ6C9IL4JjMpIvEGgjhN_PCDUVZumSpsQUKlvkZ04o6JLtjbV1nf-cM5OUlToeMqHP-Scf5e7s893AG81zTmzaJYg7_AwZv0ceQ4fpRDUMJ7nyjtjnp3z03E8miSTHejSHbUEXGw17Vw-qfF89uH2evUZGf5Tc2RcflygEHIHxdCsoowzHt7swj5Kpsih_KxV95tY35GKqWrPzmxvegD3WcIFjynbEFU-ov82NfRfb8q_tlS9pDp5CA9aFZMMGkw8gh1bPoZ7TdLJ1RP45eJxYHnZOICHTo7lJJstXcgE7JD45DikKsgUyeN858minlc_LWljsC6IW7wlmlzq2-mlns1WJHd_ijKr_U2XQst1QcMVshLp_F1JtawR4nbxFMYnx9-Hp2GbiyHMUKerQ2WETfJYaDRoI2tyJVQkpcqiDKlGnSSkfS2LqFCmyJh0VpGQmUJpxw2nts-ewV5ZlfYFEOMaFdYkqm9RP8hkoqK-sFrEhhY21wHQjuxp1gYqd_kyZqnfMGcybWYtxVlL_aylNwG8W7e5asJ0_Lf2kZvNdU0XYtu_qOYXacuxKdcmNoVWmc3i2OC3ch0lheYsjlC45CaAww4LaQfbNOKooTHJlQzgzboYOdZtw-jSVsumjkhQKRABPG-gsx5JB70AxAaoNoa6WVJOf_io4Gh3C055AO87-P0Z1t2keHnnEF7BQeT4wq04yUPYq-dL-xoVsNr0YFdMRA_2B4PRtxFej47Pv3zFt0M-7PlFjZ7nu99ebjJA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFCC6ItQQKGAlOEDWxEy8HhNiqKV1OrTS34C0wYpqUSUbD3PkevpFnJ5lqWHrrbTJ2nuy83e_5PYSeq9Qy6sAtAd5hcUYTCzwHj4LzVFNmrQzJmIdHbHSSfRrn4w30a7gL49MqB5kYBLWtjT8j3yEMdB8VTIo3Z99j3zXKR1eHFhodWey75QJctub13gfA7wtCdj8evx_FfVeB2IB10sZSc5fbjCtwzYjTVnJJhJCGGEZBV4FMTxMlSlJKXRoqvH3PhZEgt5lmqUsowL2CrsK2Ml-rn4_56kzHR82yVPZ3cxIqdhrQj_4OG3h8KQX48WJN_4U2Af-ybf9O0fwjThvU3-4tdLO3W_HbjtBuow1X3UHXuk6Wy7vopy_yAeNVl1Uee-VosZnOfR0GAIhDxx1cl3gC7rRPyMdNO6u_OdwXdm2wPxHGCp-qH5NTNZ0usfXipzJt-DH05fIg0ngJiMBDEi2u5y3g0DX30MmloOI-2qzqyj1AWPuXSqdzmTgwOozIJUm4UzzTaemsilA6fPbC9NXPfROOaRGi8FQUHaoKQFURUFUsIvRy9c5ZV_vjwtnvPDZXM33d7vBHPftS9GKgYEpnulTSOJNlGvbKFMlLxWhGQGNZHaHtgRaKXpg0xTnpR-jZahjEgI_tqMrV824Oz8HS4BHa6khntRKaM84AQoT4GlGtLXV9pJp8DaXGwZnnLGURejWQ3_my_v8pHl68i6fo-uj48KA42Dvaf4RuEM8d_lxLbKPNdjZ3j8HMa_WTwFsYfb5sZv4NkxJjyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFIC6IN4ECRoITRJvYiR8HhICyailUHKi0t-BXYMU2KZuslr3zVXwdYyfZann01lsSOyMn8_aMZxB6olLLqAO3BHiHxRlNLPAc3ArOU02ZtTIkY344ZHtH2btJPtlCv4azMD6tcpCJQVDb2vg98hFhoPuoYFKMyj4t4uPu-OXJ99h3kPKR1qGdRkciB261BPetebG_C7h-Ssj47ac3e3HfYSA2YKm0sdTc5TbjCtw04rSVXBIhpCGGUdBbIN_TRImSlFKXhgpv63NhJMhwplnqEgpwL6CLnGbUp5PxCV_v7_gIWpbK_pxOQsWoAV3pz7OB95dSgB8vN3RhaBnwLzv373TNP2K2QRWOr6GrvQ2LX3VEdx1tueoGutR1tVzdRD99wQ8Yr7oM89grSovNbOFrMgBAHLrv4LrEU3CtfXI-btp5_c3hvshrg_3uMFb4WP2YHqvZbIWtF0WVacPF0KPLg0jjFSACDwm1uF60gE_X3EJH54KK22i7qit3F2HtXyqdzmXiwAAxIpck4U7xTKelsypC6fDbC9NXQvcNOWZFiMhTUXSoKgBVRUBVsYzQs_U7J10dkDNnv_bYXM_0NbzDg3r-pehFQsGUznSppHEmyzR8K1MkLxWjGQHtZXWEdgZaKHrB0hSnbBChx-thEAk-zqMqVy-6OTwHq4NH6E5HOuuV0JxxBhAixDeIamOpmyPV9GsoOw6OPWcpi9DzgfxOl_X_X3Hv7K94hC4DGxfv9w8P7qMrxDOH3-ISO2i7nS_cA7D4Wv0wsBZGn8-bl38DS2NoBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network-based+clustering+model+of+ischemic+stroke+patients+with+a+maximally+distinct+distribution+of+1-year+vascular+outcomes&rft.jtitle=Scientific+reports&rft.au=Kim%2C+Joon-Tae&rft.au=Kim%2C+Nu+Ri&rft.au=Choi%2C+Su+Hoon&rft.au=Oh%2C+Seungwon&rft.date=2022-06-08&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=9420&rft_id=info:doi/10.1038%2Fs41598-022-13636-w&rft_id=info%3Apmid%2F35676413&rft.externalDocID=35676413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon