Systematic tissue annotations of genomics samples by modeling unstructured metadata
There are currently >1.3 million human –omics samples that are publicly available. This valuable resource remains acutely underused because discovering particular samples from this ever-growing data collection remains a significant challenge. The major impediment is that sample attributes are rou...
Saved in:
| Published in | Nature communications Vol. 13; no. 1; pp. 6736 - 13 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
08.11.2022
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2041-1723 2041-1723 |
| DOI | 10.1038/s41467-022-34435-x |
Cover
| Abstract | There are currently >1.3 million human –omics samples that are publicly available. This valuable resource remains acutely underused because discovering particular samples from this ever-growing data collection remains a significant challenge. The major impediment is that sample attributes are routinely described using varied terminologies written in unstructured natural language. We propose a natural-language-processing-based machine learning approach (NLP-ML) to infer tissue and cell-type annotations for genomics samples based only on their free-text metadata. NLP-ML works by creating numerical representations of sample descriptions and using these representations as features in a supervised learning classifier that predicts tissue/cell-type terms. Our approach significantly outperforms an advanced graph-based reasoning annotation method (MetaSRA) and a baseline exact string matching method (TAGGER). Model similarities between related tissues demonstrate that NLP-ML models capture biologically-meaningful signals in text. Additionally, these models correctly classify tissue-associated biological processes and diseases based on their text descriptions alone. NLP-ML models are nearly as accurate as models based on gene-expression profiles in predicting sample tissue annotations but have the distinct capability to classify samples irrespective of the genomics experiment type based on their text metadata. Python NLP-ML prediction code and trained tissue models are available at
https://github.com/krishnanlab/txt2onto
.
The 1+ million publicly-available human –omics samples currently remain acutely underused. Here the authors present an approach combining natural language processing and machine learning to infer the source tissue of public genomics samples based on their plain text descriptions, making these samples easy to discover and reuse. |
|---|---|
| AbstractList | There are currently >1.3 million human –omics samples that are publicly available. This valuable resource remains acutely underused because discovering particular samples from this ever-growing data collection remains a significant challenge. The major impediment is that sample attributes are routinely described using varied terminologies written in unstructured natural language. We propose a natural-language-processing-based machine learning approach (NLP-ML) to infer tissue and cell-type annotations for genomics samples based only on their free-text metadata. NLP-ML works by creating numerical representations of sample descriptions and using these representations as features in a supervised learning classifier that predicts tissue/cell-type terms. Our approach significantly outperforms an advanced graph-based reasoning annotation method (MetaSRA) and a baseline exact string matching method (TAGGER). Model similarities between related tissues demonstrate that NLP-ML models capture biologically-meaningful signals in text. Additionally, these models correctly classify tissue-associated biological processes and diseases based on their text descriptions alone. NLP-ML models are nearly as accurate as models based on gene-expression profiles in predicting sample tissue annotations but have the distinct capability to classify samples irrespective of the genomics experiment type based on their text metadata. Python NLP-ML prediction code and trained tissue models are available at https://github.com/krishnanlab/txt2onto.The 1+ million publicly-available human –omics samples currently remain acutely underused. Here the authors present an approach combining natural language processing and machine learning to infer the source tissue of public genomics samples based on their plain text descriptions, making these samples easy to discover and reuse. There are currently >1.3 million human -omics samples that are publicly available. This valuable resource remains acutely underused because discovering particular samples from this ever-growing data collection remains a significant challenge. The major impediment is that sample attributes are routinely described using varied terminologies written in unstructured natural language. We propose a natural-language-processing-based machine learning approach (NLP-ML) to infer tissue and cell-type annotations for genomics samples based only on their free-text metadata. NLP-ML works by creating numerical representations of sample descriptions and using these representations as features in a supervised learning classifier that predicts tissue/cell-type terms. Our approach significantly outperforms an advanced graph-based reasoning annotation method (MetaSRA) and a baseline exact string matching method (TAGGER). Model similarities between related tissues demonstrate that NLP-ML models capture biologically-meaningful signals in text. Additionally, these models correctly classify tissue-associated biological processes and diseases based on their text descriptions alone. NLP-ML models are nearly as accurate as models based on gene-expression profiles in predicting sample tissue annotations but have the distinct capability to classify samples irrespective of the genomics experiment type based on their text metadata. Python NLP-ML prediction code and trained tissue models are available at https://github.com/krishnanlab/txt2onto .There are currently >1.3 million human -omics samples that are publicly available. This valuable resource remains acutely underused because discovering particular samples from this ever-growing data collection remains a significant challenge. The major impediment is that sample attributes are routinely described using varied terminologies written in unstructured natural language. We propose a natural-language-processing-based machine learning approach (NLP-ML) to infer tissue and cell-type annotations for genomics samples based only on their free-text metadata. NLP-ML works by creating numerical representations of sample descriptions and using these representations as features in a supervised learning classifier that predicts tissue/cell-type terms. Our approach significantly outperforms an advanced graph-based reasoning annotation method (MetaSRA) and a baseline exact string matching method (TAGGER). Model similarities between related tissues demonstrate that NLP-ML models capture biologically-meaningful signals in text. Additionally, these models correctly classify tissue-associated biological processes and diseases based on their text descriptions alone. NLP-ML models are nearly as accurate as models based on gene-expression profiles in predicting sample tissue annotations but have the distinct capability to classify samples irrespective of the genomics experiment type based on their text metadata. Python NLP-ML prediction code and trained tissue models are available at https://github.com/krishnanlab/txt2onto . There are currently >1.3 million human –omics samples that are publicly available. This valuable resource remains acutely underused because discovering particular samples from this ever-growing data collection remains a significant challenge. The major impediment is that sample attributes are routinely described using varied terminologies written in unstructured natural language. We propose a natural-language-processing-based machine learning approach (NLP-ML) to infer tissue and cell-type annotations for genomics samples based only on their free-text metadata. NLP-ML works by creating numerical representations of sample descriptions and using these representations as features in a supervised learning classifier that predicts tissue/cell-type terms. Our approach significantly outperforms an advanced graph-based reasoning annotation method (MetaSRA) and a baseline exact string matching method (TAGGER). Model similarities between related tissues demonstrate that NLP-ML models capture biologically-meaningful signals in text. Additionally, these models correctly classify tissue-associated biological processes and diseases based on their text descriptions alone. NLP-ML models are nearly as accurate as models based on gene-expression profiles in predicting sample tissue annotations but have the distinct capability to classify samples irrespective of the genomics experiment type based on their text metadata. Python NLP-ML prediction code and trained tissue models are available at https://github.com/krishnanlab/txt2onto . The 1+ million publicly-available human –omics samples currently remain acutely underused. Here the authors present an approach combining natural language processing and machine learning to infer the source tissue of public genomics samples based on their plain text descriptions, making these samples easy to discover and reuse. There are currently >1.3 million human –omics samples that are publicly available. This valuable resource remains acutely underused because discovering particular samples from this ever-growing data collection remains a significant challenge. The major impediment is that sample attributes are routinely described using varied terminologies written in unstructured natural language. We propose a natural-language-processing-based machine learning approach (NLP-ML) to infer tissue and cell-type annotations for genomics samples based only on their free-text metadata. NLP-ML works by creating numerical representations of sample descriptions and using these representations as features in a supervised learning classifier that predicts tissue/cell-type terms. Our approach significantly outperforms an advanced graph-based reasoning annotation method (MetaSRA) and a baseline exact string matching method (TAGGER). Model similarities between related tissues demonstrate that NLP-ML models capture biologically-meaningful signals in text. Additionally, these models correctly classify tissue-associated biological processes and diseases based on their text descriptions alone. NLP-ML models are nearly as accurate as models based on gene-expression profiles in predicting sample tissue annotations but have the distinct capability to classify samples irrespective of the genomics experiment type based on their text metadata. Python NLP-ML prediction code and trained tissue models are available at https://github.com/krishnanlab/txt2onto . There are currently >1.3 million human -omics samples that are publicly available. This valuable resource remains acutely underused because discovering particular samples from this ever-growing data collection remains a significant challenge. The major impediment is that sample attributes are routinely described using varied terminologies written in unstructured natural language. We propose a natural-language-processing-based machine learning approach (NLP-ML) to infer tissue and cell-type annotations for genomics samples based only on their free-text metadata. NLP-ML works by creating numerical representations of sample descriptions and using these representations as features in a supervised learning classifier that predicts tissue/cell-type terms. Our approach significantly outperforms an advanced graph-based reasoning annotation method (MetaSRA) and a baseline exact string matching method (TAGGER). Model similarities between related tissues demonstrate that NLP-ML models capture biologically-meaningful signals in text. Additionally, these models correctly classify tissue-associated biological processes and diseases based on their text descriptions alone. NLP-ML models are nearly as accurate as models based on gene-expression profiles in predicting sample tissue annotations but have the distinct capability to classify samples irrespective of the genomics experiment type based on their text metadata. Python NLP-ML prediction code and trained tissue models are available at https://github.com/krishnanlab/txt2onto . The 1+ million publicly-available human –omics samples currently remain acutely underused. Here the authors present an approach combining natural language processing and machine learning to infer the source tissue of public genomics samples based on their plain text descriptions, making these samples easy to discover and reuse. |
| ArticleNumber | 6736 |
| Author | Yannakopoulos, Anna Hawkins, Nathaniel T. Maldaver, Marc Guare, Lindsay A. Krishnan, Arjun |
| Author_xml | – sequence: 1 givenname: Nathaniel T. surname: Hawkins fullname: Hawkins, Nathaniel T. organization: Department of Computational Mathematics, Science and Engineering, Michigan State University – sequence: 2 givenname: Marc orcidid: 0000-0001-9689-2768 surname: Maldaver fullname: Maldaver, Marc organization: Department of Computational Mathematics, Science and Engineering, Michigan State University – sequence: 3 givenname: Anna surname: Yannakopoulos fullname: Yannakopoulos, Anna organization: Department of Computational Mathematics, Science and Engineering, Michigan State University – sequence: 4 givenname: Lindsay A. orcidid: 0000-0001-6988-5319 surname: Guare fullname: Guare, Lindsay A. organization: Department of Computational Mathematics, Science and Engineering, Michigan State University, Department of Biochemistry and Molecular Biology, Michigan State University, Department of Microbiology and Molecular Genetics, Michigan State University – sequence: 5 givenname: Arjun orcidid: 0000-0002-7980-4110 surname: Krishnan fullname: Krishnan, Arjun email: arjun.krishnan@cuanschutz.edu organization: Department of Computational Mathematics, Science and Engineering, Michigan State University, Department of Biochemistry and Molecular Biology, Michigan State University, Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36347858$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAUjFARLaV_gAOKxIVLwF9xkgsSqvioVIlD4Wy92C_Bq8RebAe6_x5vs5S2hwr7YOt5Zjxv7OfFkfMOi-IlJW8p4e27KKiQTUUYq7gQvK6unxQnjAha0Ybxozv74-Isxg3Jg3e0FeJZccwlF01btyfF1dUuJpwhWV0mG-OCJTjnUy54F0s_lCM6P1sdywjzdsJY9rty9gYn68ZycTGFRacloClnTGAgwYvi6QBTxLPDelp8__Tx2_mX6vLr54vzD5eVrgVJVceNAW4GQK573UMLA4PsUZAGOjQCJNl7NAM2rNGik1jXPbIWO2koRcJPi4tV13jYqG2wM4Sd8mDVTcGHUUHIjU2oiKmJkWwAqplgdQ_QUqmBY0NZrbs2a_FVa3Fb2P2GaboVpETtE1dr4ionrm4SV9eZ9X5lbZd-RqPRpQDTPSv3T5z9oUb_S3VScFHTLPDmIBD8zwVjUrONGqcJHPolKtZwIWlD-d7h6wfQjV-CywHvUbyVeXYZ9equo1srf188A9gK0MHHGHD4vz7bByRt1y-Su7LT49RDsDHf40YM_2w_wvoDJnTjNQ |
| CitedBy_id | crossref_primary_10_3389_frai_2024_1366273 crossref_primary_10_1093_bib_bbae652 crossref_primary_10_1016_j_chip_2025_100135 crossref_primary_10_3390_metabo13080941 |
| Cites_doi | 10.1038/sdata.2017.125 10.1136/jamia.2009.002733 10.3390/healthcare8020120 10.1093/bioinformatics/btn520 10.1093/biostatistics/kxp059 10.1007/s12551-018-0490-8 10.1093/bioinformatics/btx334 10.1093/nar/gni179 10.1186/gb-2005-6-2-r21 10.1093/nar/gks1193 10.1186/gb-2012-13-1-r5 10.1073/pnas.2001238117 10.1038/sdata.2016.18 10.1186/s12859-020-03694-0 10.1038/ncomms12846 10.1093/bioinformatics/btg405 10.1093/nar/gku1057 10.1093/nar/gkaa1062 10.1038/s41576-020-0257-5 10.1371/journal.pbio.1002195 10.1186/s12859-017-1888-1 10.1038/s41467-019-11461-w 10.1093/bioinformatics/btt529 10.3389/fgene.2020.610798 10.1038/ng1201-365 10.1016/j.jbi.2017.06.017 10.1093/bioinformatics/btaa034 10.1093/nar/gky1061 10.1093/nar/gky102 10.1016/j.cels.2018.12.010 10.1186/1471-2105-10-S2-S1 10.1093/database/bax083 10.1093/database/baab021 10.1186/s13059-021-02332-z 10.1101/078469 10.1038/s41597-019-0258-4 10.1142/9789812776136_0056 10.1093/nar/gky1106 10.5281/zenodo.7232237 10.3389/fgene.2019.00126 10.1093/database/baw080 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41467-022-34435-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_0d50d62fa1c2425baa816ca3e7125c98 10.1038/s41467-022-34435-x PMC9643451 36347858 10_1038_s41467_022_34435_x |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Michigan State University (Michigan State University Spartans) funderid: https://doi.org/10.13039/100007709 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS) grantid: R35 GM128765 funderid: https://doi.org/10.13039/100000057 – fundername: NSF | BIO | Division of Biological Infrastructure (DBI) grantid: 2045651 funderid: https://doi.org/10.13039/100000153 – fundername: NIGMS NIH HHS grantid: R35 GM128765 – fundername: ; – fundername: ; grantid: R35 GM128765 – fundername: ; grantid: 2045651 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM 4.4 ADTOC BAPOH CAG COF EJD LGEZI LOTEE NADUK NXXTH UNPAY |
| ID | FETCH-LOGICAL-c540t-93dda3dfae3cbcba8af2a039407a9ed4a607858dfe727c496e55be28e96d11e03 |
| IEDL.DBID | M48 |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:44:48 EDT 2025 Sun Oct 26 03:59:17 EDT 2025 Tue Sep 30 17:18:01 EDT 2025 Thu Oct 02 10:00:32 EDT 2025 Tue Oct 07 07:32:09 EDT 2025 Thu Apr 03 07:03:28 EDT 2025 Wed Oct 01 01:43:30 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Fri Feb 21 02:38:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-93dda3dfae3cbcba8af2a039407a9ed4a607858dfe727c496e55be28e96d11e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9689-2768 0000-0001-6988-5319 0000-0002-7980-4110 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-34435-x |
| PMID | 36347858 |
| PQID | 2733868689 |
| PQPubID | 546298 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0d50d62fa1c2425baa816ca3e7125c98 unpaywall_primary_10_1038_s41467_022_34435_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_9643451 proquest_miscellaneous_2734617138 proquest_journals_2733868689 pubmed_primary_36347858 crossref_primary_10_1038_s41467_022_34435_x crossref_citationtrail_10_1038_s41467_022_34435_x springer_journals_10_1038_s41467_022_34435_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-08 |
| PublicationDateYYYYMMDD | 2022-11-08 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Hadley (CR11) 2017; 4 Mungall, Torniai, Gkoutos, Lewis, Haendel (CR8) 2012; 13 Panahiazar, Dumontier, Gevaert (CR23) 2017; 72 CR37 Galeota, Pelizzola (CR21) 2017; 18 CR36 Byrd, Greene, Prasad, Jiang, Greene (CR34) 2020; 21 CR35 Gautier, Cope, Bolstad, Irizarry (CR47) 2004; 20 Giles (CR22) 2017; 18 CR32 Dai (CR48) 2005; 33 Quiñones (CR9) 2020; 21 Lee, Krishnan, Zhu, Troyanskaya (CR28) 2013; 29 CR6 CR7 Wang, McCormick, Leek (CR40) 2020; 117 Perez-Riverol (CR14) 2019; 10 CR49 CR44 CR43 CR42 Stephens (CR15) 2015; 13 Barrett (CR3) 2013; 41 Basha (CR30) 2020; 36 Bard, Rhee, Ashburner (CR41) 2005; 6 CR18 CR17 Wang (CR10) 2016; 7 Wang, Lachmann, Ma’ayan (CR16) 2019; 11 CR13 Sarkans (CR2) 2021; 49 Syed (CR38) 2020; 8 McCall, Bolstad, Irizarry (CR46) 2010; 11 Ellis, Collado-Torres, Jaffe, Leek (CR31) 2018; 46 Courtot (CR5) 2019; 47 CR29 CR27 CR26 CR25 Bernstein, Doan, Dewey (CR24) 2017; 33 Zhu, Davis, Stephens, Meltzer, Chen (CR45) 2008; 24 CR20 Lee (CR33) 2019; 8 Brazma (CR4) 2001; 29 Aronson, Lang (CR19) 2010; 17 Kolesnikov (CR1) 2015; 43 Krassowski, Das, Sahu, Misra (CR12) 2020; 11 Wilkinson (CR39) 2016; 3 CJ Mungall (34435_CR8) 2012; 13 34435_CR29 34435_CR36 34435_CR37 34435_CR35 34435_CR32 M Dai (34435_CR48) 2005; 33 M Panahiazar (34435_CR23) 2017; 72 Z Wang (34435_CR10) 2016; 7 MN McCall (34435_CR46) 2010; 11 A Brazma (34435_CR4) 2001; 29 E Galeota (34435_CR21) 2017; 18 CB Giles (34435_CR22) 2017; 18 T Barrett (34435_CR3) 2013; 41 34435_CR18 34435_CR27 34435_CR25 34435_CR26 34435_CR20 J Bard (34435_CR41) 2005; 6 34435_CR6 34435_CR7 U Sarkans (34435_CR2) 2021; 49 Y Perez-Riverol (34435_CR14) 2019; 10 Y Lee (34435_CR33) 2019; 8 K Syed (34435_CR38) 2020; 8 M Quiñones (34435_CR9) 2020; 21 MD Wilkinson (34435_CR39) 2016; 3 M Krassowski (34435_CR12) 2020; 11 34435_CR17 M Courtot (34435_CR5) 2019; 47 AR Aronson (34435_CR19) 2010; 17 34435_CR13 Y Zhu (34435_CR45) 2008; 24 N Kolesnikov (34435_CR1) 2015; 43 Z Wang (34435_CR16) 2019; 11 O Basha (34435_CR30) 2020; 36 S Wang (34435_CR40) 2020; 117 SE Ellis (34435_CR31) 2018; 46 D Hadley (34435_CR11) 2017; 4 Y Lee (34435_CR28) 2013; 29 JB Byrd (34435_CR34) 2020; 21 L Gautier (34435_CR47) 2004; 20 34435_CR49 34435_CR43 34435_CR44 34435_CR42 ZD Stephens (34435_CR15) 2015; 13 MN Bernstein (34435_CR24) 2017; 33 |
| References_xml | – volume: 4 year: 2017 ident: CR11 article-title: Precision annotation of digital samples in NCBI’s gene expression omnibus publication-title: Sci. Data doi: 10.1038/sdata.2017.125 – volume: 17 start-page: 229 year: 2010 end-page: 236 ident: CR19 article-title: An overview of metamap: historical perspective and recent advances publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/jamia.2009.002733 – volume: 8 start-page: 120 year: 2020 ident: CR38 article-title: Integrated natural language processing and machine learning models for standardizing radiotherapy structure names publication-title: Healthcare doi: 10.3390/healthcare8020120 – ident: CR49 – volume: 24 start-page: 2798 year: 2008 end-page: 2800 ident: CR45 article-title: GEOmetadb: powerful alternative search engine for the gene expression omnibus publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn520 – volume: 11 start-page: 242 year: 2010 end-page: 253 ident: CR46 article-title: Frozen robust multiarray analysis (fRMA) publication-title: Biostatistics doi: 10.1093/biostatistics/kxp059 – volume: 11 start-page: 103 year: 2019 end-page: 110 ident: CR16 article-title: Mining data and metadata from the gene expression omnibus publication-title: Biophys. Rev. doi: 10.1007/s12551-018-0490-8 – volume: 33 start-page: 2914 year: 2017 end-page: 2923 ident: CR24 article-title: MetaSRA: normalized human sample-specific metadata for the Sequence Read Archive publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx334 – ident: CR35 – ident: CR29 – volume: 33 start-page: 175 year: 2005 ident: CR48 article-title: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip Data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gni179 – ident: CR25 – ident: CR42 – volume: 6 year: 2005 ident: CR41 article-title: An ontology for cell types publication-title: Genome Biol. doi: 10.1186/gb-2005-6-2-r21 – volume: 41 start-page: D991 year: 2013 end-page: D995 ident: CR3 article-title: NCBI GEO: archive for functional genomics data sets-update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1193 – volume: 13 year: 2012 ident: CR8 article-title: Uberon, an integrative multi-species anatomy ontology publication-title: Genome Biol. doi: 10.1186/gb-2012-13-1-r5 – volume: 117 start-page: 30266 year: 2020 end-page: 30275 ident: CR40 article-title: Methods for correcting inference based on outcomes predicted by machine learning publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2001238117 – volume: 3 year: 2016 ident: CR39 article-title: The FAIR guiding principles for scientific data management and stewardship publication-title: Sci. Data doi: 10.1038/sdata.2016.18 – volume: 21 year: 2020 ident: CR9 article-title: METAGENOTE: a simplified web platform for metadata annotation of genomic samples and streamlined submission to NCBI’s sequence read archive publication-title: BMC Bioinforma. doi: 10.1186/s12859-020-03694-0 – ident: CR32 – ident: CR36 – volume: 7 year: 2016 ident: CR10 article-title: Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd publication-title: Nat. Commun. doi: 10.1038/ncomms12846 – ident: CR26 – volume: 20 start-page: 307 year: 2004 end-page: 315 ident: CR47 article-title: Affy—Analysis of Affymetrix GeneChip Data at the Probe Level publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg405 – volume: 43 start-page: D1113 year: 2015 end-page: D1116 ident: CR1 article-title: ArrayExpress update-simplifying data submissions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1057 – ident: CR18 – ident: CR43 – ident: CR37 – volume: 49 start-page: 1502 year: 2021 end-page: 1506 ident: CR2 article-title: From ArrayExpress to BioStudies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1062 – ident: CR6 – volume: 21 start-page: 615 year: 2020 end-page: 629 ident: CR34 article-title: Responsible practical genomic data sharing that accelerates research publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0257-5 – volume: 13 start-page: 1002195 year: 2015 ident: CR15 article-title: Big data: astronomical or genomical? publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002195 – ident: CR27 – volume: 18 year: 2017 ident: CR22 article-title: ALE: automated label extraction from GEO metadata publication-title: BMC Bioinforma. doi: 10.1186/s12859-017-1888-1 – volume: 10 year: 2019 ident: CR14 article-title: Quantifying the impact of public omics data publication-title: Nat. Commun. doi: 10.1038/s41467-019-11461-w – ident: CR44 – volume: 29 start-page: 3036 year: 2013 end-page: 3044 ident: CR28 article-title: Ontology-aware classification of tissue and cell-type signals in gene expression profiles across platforms and technologies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt529 – ident: CR17 – volume: 18 start-page: 403 year: 2017 end-page: 412 ident: CR21 article-title: Ontology-based annotations and semantic relations in large-scale (epi)genomics data publication-title: Brief. Bioinforma. – ident: CR13 – volume: 11 start-page: 1598 year: 2020 ident: CR12 article-title: State of the field in multi-omics research: from computational needs to data mining and sharing publication-title: Front. Genet. doi: 10.3389/fgene.2020.610798 – volume: 29 start-page: 365 year: 2001 end-page: 371 ident: CR4 article-title: Minimum information about a microarray experiment (MIAME)-toward standards for microarray data publication-title: Nat. Genet. doi: 10.1038/ng1201-365 – volume: 72 start-page: 132 year: 2017 end-page: 139 ident: CR23 article-title: Predicting biomedical metadata in CEDAR: A study of Gene Expression Omnibus (GEO) publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2017.06.017 – volume: 36 start-page: 2821 year: 2020 end-page: 2828 ident: CR30 article-title: Differential network analysis of multiple human tissue interactomes highlights tissue-selective processes and genetic disorder genes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa034 – ident: CR7 – volume: 47 start-page: D1172 year: 2019 end-page: D1178 ident: CR5 article-title: BioSamples database: an updated sample metadata hub publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1061 – volume: 46 start-page: e54 year: 2018 ident: CR31 article-title: Improving the value of public RNA-seq expression data by phenotype prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky102 – ident: CR20 – volume: 8 start-page: 152 year: 2019 end-page: 162 6 ident: CR33 article-title: A computational framework for genome-wide characterization of the human disease landscape publication-title: Cell Syst. doi: 10.1016/j.cels.2018.12.010 – ident: 34435_CR18 doi: 10.1186/1471-2105-10-S2-S1 – volume: 11 start-page: 1598 year: 2020 ident: 34435_CR12 publication-title: Front. Genet. doi: 10.3389/fgene.2020.610798 – volume: 11 start-page: 242 year: 2010 ident: 34435_CR46 publication-title: Biostatistics doi: 10.1093/biostatistics/kxp059 – volume: 29 start-page: 365 year: 2001 ident: 34435_CR4 publication-title: Nat. Genet. doi: 10.1038/ng1201-365 – volume: 46 start-page: e54 year: 2018 ident: 34435_CR31 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky102 – ident: 34435_CR37 doi: 10.1093/database/bax083 – volume: 3 year: 2016 ident: 34435_CR39 publication-title: Sci. Data doi: 10.1038/sdata.2016.18 – volume: 11 start-page: 103 year: 2019 ident: 34435_CR16 publication-title: Biophys. Rev. doi: 10.1007/s12551-018-0490-8 – ident: 34435_CR25 doi: 10.1093/database/baab021 – volume: 21 year: 2020 ident: 34435_CR9 publication-title: BMC Bioinforma. doi: 10.1186/s12859-020-03694-0 – volume: 33 start-page: 2914 year: 2017 ident: 34435_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx334 – ident: 34435_CR35 doi: 10.1186/s13059-021-02332-z – ident: 34435_CR29 doi: 10.1101/078469 – ident: 34435_CR13 doi: 10.1038/s41597-019-0258-4 – volume: 10 year: 2019 ident: 34435_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11461-w – volume: 8 start-page: 120 year: 2020 ident: 34435_CR38 publication-title: Healthcare doi: 10.3390/healthcare8020120 – volume: 18 year: 2017 ident: 34435_CR22 publication-title: BMC Bioinforma. doi: 10.1186/s12859-017-1888-1 – ident: 34435_CR27 – volume: 49 start-page: 1502 year: 2021 ident: 34435_CR2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1062 – volume: 4 year: 2017 ident: 34435_CR11 publication-title: Sci. Data doi: 10.1038/sdata.2017.125 – ident: 34435_CR17 doi: 10.1142/9789812776136_0056 – ident: 34435_CR6 – ident: 34435_CR36 doi: 10.1093/nar/gky1106 – volume: 117 start-page: 30266 year: 2020 ident: 34435_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2001238117 – ident: 34435_CR44 – volume: 24 start-page: 2798 year: 2008 ident: 34435_CR45 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn520 – volume: 72 start-page: 132 year: 2017 ident: 34435_CR23 publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2017.06.017 – volume: 29 start-page: 3036 year: 2013 ident: 34435_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt529 – ident: 34435_CR49 doi: 10.5281/zenodo.7232237 – volume: 18 start-page: 403 year: 2017 ident: 34435_CR21 publication-title: Brief. Bioinforma. – volume: 20 start-page: 307 year: 2004 ident: 34435_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg405 – volume: 21 start-page: 615 year: 2020 ident: 34435_CR34 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0257-5 – volume: 41 start-page: D991 year: 2013 ident: 34435_CR3 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1193 – volume: 7 year: 2016 ident: 34435_CR10 publication-title: Nat. Commun. doi: 10.1038/ncomms12846 – volume: 47 start-page: D1172 year: 2019 ident: 34435_CR5 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1061 – volume: 13 start-page: 1002195 year: 2015 ident: 34435_CR15 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002195 – ident: 34435_CR43 – ident: 34435_CR20 – volume: 43 start-page: D1113 year: 2015 ident: 34435_CR1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1057 – volume: 33 start-page: 175 year: 2005 ident: 34435_CR48 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gni179 – volume: 17 start-page: 229 year: 2010 ident: 34435_CR19 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/jamia.2009.002733 – ident: 34435_CR7 – volume: 36 start-page: 2821 year: 2020 ident: 34435_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa034 – volume: 8 start-page: 152 year: 2019 ident: 34435_CR33 publication-title: Cell Syst. doi: 10.1016/j.cels.2018.12.010 – volume: 13 year: 2012 ident: 34435_CR8 publication-title: Genome Biol. doi: 10.1186/gb-2012-13-1-r5 – ident: 34435_CR32 doi: 10.3389/fgene.2019.00126 – volume: 6 year: 2005 ident: 34435_CR41 publication-title: Genome Biol. doi: 10.1186/gb-2005-6-2-r21 – ident: 34435_CR42 – ident: 34435_CR26 doi: 10.1093/database/baw080 |
| SSID | ssj0000391844 |
| Score | 2.4499173 |
| Snippet | There are currently >1.3 million human –omics samples that are publicly available. This valuable resource remains acutely underused because discovering... There are currently >1.3 million human -omics samples that are publicly available. This valuable resource remains acutely underused because discovering... The 1+ million publicly-available human –omics samples currently remain acutely underused. Here the authors present an approach combining natural language... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6736 |
| SubjectTerms | 38 45 631/114/1305 631/114/2164 631/114/2401 631/1647/514 Annotations Biological activity Classification Data collection Descriptions Gene expression Genomics Humanities and Social Sciences Humans Language Learning algorithms Machine Learning Metadata multidisciplinary Natural language Natural Language Processing Representations Science Science (multidisciplinary) Signal processing String matching Tissues Unstructured data |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSgg4IMoz0CIjcaNRk7XjtY-AWlVIcCmVerPGL1Fpm62aXdH994ydbNgVqPSAckucxJmH53M8_gbgvROxCqh8iQ5FSREqlDYKW7o6KistTjEXm_j6TZ6ciS_nzflGqa-UE9bTA_eCO6x8U3k5iVi7hI4toqqlQx6mFJqdztt8K6U3JlN5DOaapi5i2CVTcXXYiTwm5OR1QRihvNmKRJmw_28o889kyXHF9BE8WLZXuPqJs9lGUDp-Ao8HNMk-9l-xC_dC-xTu9_UlV8_g9HTkaWaLLGGGbTvvV987No8sUbReXriOdZhogjtmVywXx6FXs-XALru8Dp5dhgWmdNLncHZ89P3zSTlUUSgdobFFqbn3yH3EwJ11FhXGCVapIPoUdfACJaGERvkYCMo4oWVoGhsmKmjp6zpU_AXstPM2vAJmOXde-sij90JHab1EgVhFwlAU1kIB9Vqixg0U46nSxczkpW6uTK8FQ1owWQvmpoAP4z1XPcHGra0_JUWNLRM5dj5BJmMGkzH_MpkC9tZqNoPHdoZgHFeSDl3Au_Ey-VpaQME2zJe5jSDEV3N6xMveKsaecMlFkmMB0y172erq9pX24kfm806UaKKpCzhYW9bvbt0mioPR-u4gudf_Q3Jv4OEkeVD-rb4HO2SEYZ9A2cK-zf73C_TbNPU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4anRDwgLgvMJCReGPRktpxnQeEGNo0IVEhxqS9Wce3MalLuqUV67_Hdi6jAlWob43buufi88XH-T6Ad5q5zKIwKWpkqa9QNlWOqVTnTiiucIJRbOLrlB-fsi9nxdkWTPtnYcKxyn5NjAu1qXXYI9_3ZZYK7l_lx_lVGlSjQne1l9DATlrBfIgUY3dgexyYsUawfXA4_fZ92HUJfOiCse7pmYyK_YbFtSIeamceO6Q3axUqEvn_C33-fYhy6KQ-gHvLao6rXzib_VGsjh7Bww5lkk9tWDyGLVs9gbut7uTqKZycDPzNZBEtT7Cq6rYr35DakUDdenmhG9JgoA9uiFqRKJrjf5osO9bZ5bU15NIuMBwzfQanR4c_Ph-nnbpCqj1KW6QlNQapcWipVlqhQDfGLAilT7C0hiH36KEQxlkPcTQruS0KZcfCltzkuc3ocxhVdWV3gChKteHGUWcMKx1XhiNDzJzHVr7c2QTy3qJSd9TjQQFjJmMLnArZekF6L8joBXmTwPvhM_OWeGPj6IPgqGFkIM2Ob9TX57LLQZmZIjN87DDX4UZLIYqca6R24lGeLkUCu72bZZfJjbyNuwTeDpd9DobGCla2XsYxzCPBnPqveNFGxTATyikLdkxgshYva1Ndv1Jd_Iw834EqjRV5Ant9ZN1Oa5Mp9obo-w_Lvdz8p1_B_XHIjbiRvgsjH172tYdhC_Wmy63f7H0zKA priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6aOiHYA-I6AgMZiTcakdSO6zwWxDRVgpcyaW_W8U1M6tKJtBr99xw7aaAamkB5iy-xzkXni4_9HYB3VoTCo3I5WhQ5RSifmyBMbsugjDQ4xVRs4stXeXYu5hfVxQGMd3dh9vL3ibq7FcmZ06lzQcE9J8R4qMgw1QgOZ7P5Yj7sqUS2cyVEfzeGhn-4PXgv_iSa_r9hy9tHJIc86RHc3zTXuL3B5fKPUHT6CB72GJLNOqU_hgPfPIF7XVXJ7VNYLAZ2ZrZOcmXYNKsu596yVWCRmPXq0rasxUgO3DKzZakkDn2abXpO2c0P79iVX2M8RPoMzk8_f_t0lve1E3JLGGyd19w55C6g59ZYgwrDBItYBn2KtXcCJWGDSrngCcBYUUtfVcZPlK-lK0tf8OcwalaNfwHMcG6ddIEH50QdpHESBWIRCDlRMPMZlDuJatsTi8f6FkudEtxc6U4LmrSgkxb0zwzeD2OuO1qNO3t_jIoaekZK7PSCLEX3HqYLVxVOTgKWNv5GGURVSovcTwnD2VplcLJTs-79tNUE3riS9NQZvB2aycNi2gQbv9qkPoJwXslpiuPOKoaVcMlFlGMG0z172Vvqfktz-T2xeEciNFGVGYx3lvV7WXeJYjxY3z9I7uX_zf4KHkyir6Rt8xMYkbn51wS61uZN72u_AD75J7M priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P0IFGQkbjRLsna8zrEgqgqJCqmsKCdr_IKKbXZFsqLLr8d2HrBQVVS5JePIHo89XzLjbwBeaOYyi8KkqJGl3kPZVDmmUp07objCKcZiE-8P-cGMvTsujreA92dhYtJ-pLSM23SfHfaqZnFJx9xz5l18ejZeGncFtnnhMfgItmeHH_Y-h0pyGctT75Vpd0Imo-KcxhteKJL1n4cw_02UHKKlN-Daqlri-gfO5384pP1b8KkfSpuH8m28atRY__yL5fHyY70NNzuMSvZayTuwZau7cLWtWrm-B0dHA_szaeK8EayqRRvTr8nCkUD8enqia1JjIB-uiVqTWHLHD4qsOs5a3yFDTm2DIUn1Psz23358c5B2tRlS7TFek5bUGKTGoaVaaYUC3QSzUGZ9iqU1DLnHHoUwznqApFnJbVEoOxG25CbPbUYfwKhaVPYREEWpNtw46oxhpePKcGSImfPIzDtLm0Dez5XUHXF5qJ8xlzGAToVsFSa9wmRUmDxL4OXQZtnSdlwo_TqYwCAZKLfjjcX3L7KbFpmZIjN84jDX4TNNIYqca6R26jGiLkUCO70ByW4fqKUHh1Rwf5UJPB8e-xUcwjJY2cUqyjCPI3PqX_GwtbehJ5RTFvSYwHTDEje6uvmkOvkaWcID0Ror8gR2e5v93a2LVLE72PV_aO7x5cSfwPVJMOv4W34HRt7c7FMP6hr1rFvBvwA7d0qA priority: 102 providerName: Unpaywall |
| Title | Systematic tissue annotations of genomics samples by modeling unstructured metadata |
| URI | https://link.springer.com/article/10.1038/s41467-022-34435-x https://www.ncbi.nlm.nih.gov/pubmed/36347858 https://www.proquest.com/docview/2733868689 https://www.proquest.com/docview/2734617138 https://pubmed.ncbi.nlm.nih.gov/PMC9643451 https://www.nature.com/articles/s41467-022-34435-x.pdf https://doaj.org/article/0d50d62fa1c2425baa816ca3e7125c98 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: ADMLS dateStart: 20121101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: Directory of Open Access Scholarly Resources (ROAD) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: NAO dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 8FG dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2041-1723 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M48 dateStart: 20101001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: AAJSJ dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Link Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: C6C dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGJmA8IO4ERhUk3lhGUrtO8oBQV61MlVZNlErlKTq-waQuGU0r1n_PsXNhFWVClVIpdlrrXHI-x873EfJOMhNqSFQAEliAFUoHwjARyMgkgguIwYlNnI356ZSNZr3ZDmnkjmoDllundlZParqYH13_XH_ChP9YvTKefCiZS3e3L51h-Q8QU-5hpUqtlMNZDffdnZmmOKFh9bsz2y_dJ_copyxOrAj8jVLlGP23wdC_d1O2S6oPyP1VfgXrXzCf36haw0fkYQ03_X4VH4_Jjs6fkLuVAOX6KZlMWiJnf-lc4EOeF9XyfOkXxrccrpcXsvRLsDzCpS_WvlPPwb_2VzX97GqhlX-pl2D3mz4j0-HJ18FpUMssBBLh2jJIqVJAlQFNpZACEjBdCK1iegypVgx4aK2hjEasI1nKda8ndDfRKVdRpEP6nOzmRa5fEl9QKhVXhhqlWGq4UBwYQGgQZGHd0x6JGotmsuYgt1IY88ythdMkqxySoUMy55Ds2iPv22uuKgaOW3sfW0e1PS17tjtRLL5ndTJmoeqFincNRNLOuARAEnEJVMcI92SaeOSgcXPWRGSGOI8mHD-pR962zZiMdoUFcl2sXB-GkDCi-BMvqqhoR9JElUfijXjZGOpmS37xwxF-W8401os8cthE1p9h3WaKwzb6_sNyr_454tdkv2szxD1MPyC7GFn6DUKxpeiQO_EsxmMy_Nwhe_3-aDLC7-OT8fkXPDvgg457yNFxeYgt0_F5_9tvaeY4Sg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKESocEDuBAkaCE42axI7jHBBiq6Z0ubSVenOfN6g0TYZmRu38KX4jtrOUEWjEpcpt4kmct8fP-T6E3ihqEwNcx6CAxi5DmVhaKmOVWi6ZhAIC2cTePhsd0W_H-fEK-tV_C-O3VfYxMQRqXSu_Rr7p0izhzB3lh8nP2LNG-e5qT6HRmsWOmV-4V7bm_fYXp9-3Wbb19fDzKO5YBWLlqpNpXBKtgWgLhiipJHCwGSSeILyA0mgKzGXNnGtrXGpXtGQmz6XJuCmZTlOTEHfdG-gmJS6WOP8pjothTcejrXNKu29zEsI3GxoiUdgyT11lEl8u5L9AE_Cv2vbvLZpDn_YOWptVE5hfwHj8RyrcuofudjUs_tga3X20YqoH6FbLajl_iA4OBnRoPA16xVBVddvzb3BtsQeGPTtVDW7AgxM3WM5xoORxt8azDtN2dm40PjNT8JtYH6Gja5HyY7Ra1ZV5irAkRGmmLbFa09IyqRlQgMS6ys0lUxOhtJeoUB2wuefXGIvQYCdctFoQTgsiaEFcRujd8J9JC-uxdPQnr6hhpIfkDj_U599F5-Ei0XmiWWYhVf41TgLwlCkgpnA1pCp5hNZ7NYsuTjTiyqoj9Ho47Tzct22gMvUsjKGuzkyJu8ST1iqGmRBGqJdjhIoFe1mY6uKZ6vRHQBH3QGw0TyO00VvW1bSWiWJjsL7_kNyz5Q_9Cq2NDvd2xe72_s5zdDvzfhKW7NfRqjM188IVfFP5MngZRifX7da_AXBxayc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4k2ggJHgRKNNYsdxDggBpWopVEil0t7M-AWVtsnS7Krdv8avw3YeZQVacaly23gTZx6eiWfyfQi9UNQmBriOQQGNXYQysbRUxiq1XDIJBQSyic_7bOeQfhzn4zX0q_8WxrdV9mtiWKh1rfwe-ciFWcKZO8qR7doivmxtv5n-jD2DlK-09nQarYnsmcWpe31rXu9uOV2_zLLtD1_f78Qdw0CsXKYyi0uiNRBtwRAllQQONoPEk4UXUBpNgbkImnNtjQvzipbM5Lk0GTcl02lqEuKuewlddlMrfTthMS6G_R2PvM4p7b7TSQgfNTSsSqF9nrosJT5bioWBMuBfee7f7ZpDzfYGujavprA4hcnkj7C4fQvd7PJZ_LY1wNtozVR30JWW4XJxFx0cDEjReBZ0jKGq6rb-3-DaYg8Se3ykGtyABypusFzgQM_jbo3nHb7t_MRofGxm4Bta76HDC5HyfbRe1ZV5iLAkRGmmLbFa09IyqRlQgMS6LM4FVhOhtJeoUB3IuefamIhQbCdctFoQTgsiaEGcRejV8J9pC_GxcvQ7r6hhpIfnDj_UJ99F5-0i0XmiWWYhVf6VTgLwlCkgpnD5pCp5hDZ6NYtuzWjEuYVH6Plw2nm7L-FAZep5GENdzpkSd4kHrVUMMyGMUC_HCBVL9rI01eUz1dGPgCjuQdlonkZos7es82mtEsXmYH3_IblHqx_6GbrqHFp82t3fe4yuZ95Nwu79Blp3lmaeuNxvJp8GJ8Po20V79W-BFm9q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P0IFGQkbjRLsna8zrEgqgqJCqmsKCdr_IKKbXZFsqLLr8d2HrBQVVS5JePIHo89XzLjbwBeaOYyi8KkqJGl3kPZVDmmUp07objCKcZiE-8P-cGMvTsujreA92dhYtJ-pLSM23SfHfaqZnFJx9xz5l18ejZeGncFtnnhMfgItmeHH_Y-h0pyGctT75Vpd0Imo-KcxhteKJL1n4cw_02UHKKlN-Daqlri-gfO5384pP1b8KkfSpuH8m28atRY__yL5fHyY70NNzuMSvZayTuwZau7cLWtWrm-B0dHA_szaeK8EayqRRvTr8nCkUD8enqia1JjIB-uiVqTWHLHD4qsOs5a3yFDTm2DIUn1Psz23358c5B2tRlS7TFek5bUGKTGoaVaaYUC3QSzUGZ9iqU1DLnHHoUwznqApFnJbVEoOxG25CbPbUYfwKhaVPYREEWpNtw46oxhpePKcGSImfPIzDtLm0Dez5XUHXF5qJ8xlzGAToVsFSa9wmRUmDxL4OXQZtnSdlwo_TqYwCAZKLfjjcX3L7KbFpmZIjN84jDX4TNNIYqca6R26jGiLkUCO70ByW4fqKUHh1Rwf5UJPB8e-xUcwjJY2cUqyjCPI3PqX_GwtbehJ5RTFvSYwHTDEje6uvmkOvkaWcID0Ror8gR2e5v93a2LVLE72PV_aO7x5cSfwPVJMOv4W34HRt7c7FMP6hr1rFvBvwA7d0qA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+tissue+annotations+of+genomics+samples+by+modeling+unstructured+metadata&rft.jtitle=Nature+communications&rft.au=Hawkins%2C+Nathaniel+T&rft.au=Maldaver%2C+Marc&rft.au=Yannakopoulos%2C+Anna&rft.au=Guare%2C+Lindsay+A&rft.date=2022-11-08&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=6736&rft_id=info:doi/10.1038%2Fs41467-022-34435-x&rft_id=info%3Apmid%2F36347858&rft.externalDocID=36347858 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |