Predicting 180-day mortality for women with ovarian cancer using machine learning and patient-reported outcome data

Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using p...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 21269 - 8
Main Authors Sidey-Gibbons, Chris J., Sun, Charlotte, Schneider, Amy, Lu, Sheng-Chieh, Lu, Karen, Wright, Alexi, Meyer, Larissa
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.12.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-22614-1

Cover

Abstract Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample.
AbstractList Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample.
Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample.
Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample.Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample.
Abstract Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample.
ArticleNumber 21269
Author Lu, Sheng-Chieh
Sun, Charlotte
Wright, Alexi
Sidey-Gibbons, Chris J.
Lu, Karen
Meyer, Larissa
Schneider, Amy
Author_xml – sequence: 1
  givenname: Chris J.
  surname: Sidey-Gibbons
  fullname: Sidey-Gibbons, Chris J.
  email: cgibbons@Mdanderson.org
  organization: Section of Patient-Centered Analytics, Department of Symptom Research, University of Texas MD Anderson Cancer Center
– sequence: 2
  givenname: Charlotte
  surname: Sun
  fullname: Sun, Charlotte
  organization: Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center
– sequence: 3
  givenname: Amy
  surname: Schneider
  fullname: Schneider, Amy
  organization: Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center
– sequence: 4
  givenname: Sheng-Chieh
  surname: Lu
  fullname: Lu, Sheng-Chieh
  organization: Section of Patient-Centered Analytics, Department of Symptom Research, University of Texas MD Anderson Cancer Center
– sequence: 5
  givenname: Karen
  surname: Lu
  fullname: Lu, Karen
  organization: Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center
– sequence: 6
  givenname: Alexi
  surname: Wright
  fullname: Wright, Alexi
  organization: Department of Medical Oncology, Dana Farber Cancer Institute, Department of Medicine, Harvard Medical School
– sequence: 7
  givenname: Larissa
  surname: Meyer
  fullname: Meyer, Larissa
  organization: Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36481644$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUjVARLaU_wAJZYsMm4FcSe4OEKh6VKsEC1taN7cx4lNiD7XQ0f4_TGUrbRYU3tq7POfdx7svqxAdvq-o1we8JZuJD4qSRosaU1pS2hNfkWXVGMW9qyig9ufc-rS5S2uByGio5kS-qU9ZyQVrOz6r0I1rjdHZ-hYjAtYE9mkLMMLq8R0OIaBcm69HO5TUKNxAdeKTBaxvRnBbWBHrtvEWjheiXAHiDtpCd9bmOdlvErEFhzroIIQMZXlXPBxiTvTje59WvL59_Xn6rr79_vbr8dF3rhuNcS9YZbgasOy5N6aMbQHNOhMYD5YwaIqnEIKHnLTE9HYxlgxUNFbbtht5Kdl5dHXRNgI3aRjdB3KsATt0GQlwpiNnp0SqD-5ZQblsGjBshBTFcC9FBbwfcs65osYPW7Lew38E43gkSrBZH1MERVRxRt44oUlgfD6zt3E_W6DKSCOODUh7-eLdWq3CjZMcoEawIvDsKxPB7timrySVtxxG8DXNStGsYlV3LllxvH0E3YY6-DLiguMANa9gykzf3K7or5e9GFAA9AHQMKUU7_F-f4hFJu1xWICxdufFp6nGwqeTxKxv_lf0E6w-YmOu2
CitedBy_id crossref_primary_10_1200_CCI_24_00145
crossref_primary_10_1016_j_jclinepi_2023_10_015
crossref_primary_10_1016_j_jclinepi_2025_111675
crossref_primary_10_1200_CCI_23_00264
crossref_primary_10_1002_cnr2_70138
crossref_primary_10_1200_OP_23_00720
crossref_primary_10_1038_s41598_023_28188_w
Cites_doi 10.1016/j.ins.2018.06.056
10.18637/jss.v033.i01
10.1177/1073191111411667
10.1056/NEJMp1011024
10.3322/caac.21387
10.1200/JCO.2020.38.15_suppl.565
10.1111/exsy.12363
10.1109/TSMCC.2011.2161285
10.1155/2020/8563030
10.1016/S0959-8049(02)00495-1
10.1001/jamanetworkopen.2019.15997
10.1001/jamaoncol.2020.4331
10.1177/0962280216666564
10.1001/jama.2015.18604
10.1016/j.asoc.2019.105524
10.7326/M18-1376
10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
10.1186/s40661-017-0050-0
10.1016/j.jbi.2008.08.010
10.1016/j.janxdis.2013.11.006
10.2196/33182
10.1214/aos/1176347963
10.1016/j.jpainsymman.2007.01.008
10.1001/jama.300.14.1665
10.1001/jama.2019.16489
10.1200/JCO.2020.38.15_suppl.520
10.1002/14651858.CD011589.pub2
10.1109/TPAMI.2009.187
10.1613/jair.953
10.1136/bmj.320.7233.469
10.1136/bmjopen-2016-012799
10.1136/bmj.327.7408.195
10.1200/JCO.2014.55.5383
10.1186/s12874-019-0681-4
10.1093/jnci/djy071
10.1037/a0035768
10.1007/978-981-4585-18-7_2
10.1007/978-981-10-2777-2_7
10.1007/BF00994018
10.1007/978-0-387-30164-8_252
10.1109/IJCNN52387.2021.9534411
10.1097/SLA.0000000000004862
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-022-22614-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerLink Journals Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_d0b6124e63a34d8981d4c887abef0b37
10.1038/s41598-022-22614-1
PMC9732183
36481644
10_1038_s41598_022_22614_1
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: University of Texas MD Anderson Cancer Center
  grantid: Institutional Research Grant; Institutional Research Grant
  funderid: http://dx.doi.org/10.13039/100007313
– fundername: NCI NIH HHS
  grantid: K07 CA201013
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: ;
  grantid: Institutional Research Grant; Institutional Research Grant
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c540t-937d4df0c749d3227fac4418c0f2432d19290a9ab461db2fde3fe8528e67fbe93
IEDL.DBID M48
ISSN 2045-2322
IngestDate Fri Oct 03 12:53:57 EDT 2025
Sun Oct 26 03:58:43 EDT 2025
Tue Sep 30 17:17:53 EDT 2025
Thu Oct 02 11:49:22 EDT 2025
Tue Oct 07 09:07:10 EDT 2025
Thu Apr 03 07:06:01 EDT 2025
Wed Oct 01 01:38:23 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Fri Feb 21 02:40:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-937d4df0c749d3227fac4418c0f2432d19290a9ab461db2fde3fe8528e67fbe93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-22614-1
PMID 36481644
PQID 2748053539
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_d0b6124e63a34d8981d4c887abef0b37
unpaywall_primary_10_1038_s41598_022_22614_1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9732183
proquest_miscellaneous_2753297631
proquest_journals_2748053539
pubmed_primary_36481644
crossref_primary_10_1038_s41598_022_22614_1
crossref_citationtrail_10_1038_s41598_022_22614_1
springer_journals_10_1038_s41598_022_22614_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-08
PublicationDateYYYYMMDD 2022-12-08
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Mullen, Divine, Porcelli, Wilkinson-Ryan, Dans, Powell, Mutch, Hagemann, Thaker (CR9) 2017
Sidey-Gibbons (CR36) 2020; 5
Schalet, Cook, Choi, Cella (CR18) 2014; 28
Friedman, Hastie, Tibshirani (CR38) 2010; 33
Glare (CR13) 2003; 327
Douzas, Bacao, Last (CR49) 2018; 465
Rodríguez, Pérez, Lozano (CR42) 2010; 32
Manz (CR53) 2020
Blagus, Lusa (CR52) 2013; 14
Galar, Fernandez, Barrenechea, Bustince, Herrera (CR45) 2012; 42
CR35
Friedman (CR39) 1991
CR32
Engel (CR4) 2002; 38
Brown, Sun, Prescott, Taylor, Ramondetta, Bodurka (CR7) 2014
Ho (CR33) 2014; 2014
Douzas, Bacao, Last (CR29) 2018; 465
Tibshirani (CR37) 1997; 16
CR6
CR5
Wright (CR11) 2016; 315
CR46
CR44
Wright (CR12) 2008; 300
CR41
CR40
Niu, Cai (CR31) 2020
Gicić, Subasi (CR51) 2019; 36
Liu, Chen, Krause, Peng (CR21) 2019
Pfob (CR25) 2020; 38
Parikh (CR54) 2019; 2
Sidey-Gibbons, Sidey-Gibbons (CR23) 2019; 19
Pilkonis (CR20) 2011; 18
Peres (CR3) 2019; 111
Wright, Hatfield, Earle, Keating (CR10) 2014; 32
Christakis, Smith, Parkes, Lamont (CR47) 2000; 320
Siegel, Miller, Jemal (CR1) 2017; 67
Herzog, Monk (CR2) 2017; 4
CR55
CR50
Cohen (CR22) 2016; 6
Wolff (CR26) 2019; 170
Gibbons (CR14) 2021
Choi, Schalet, Cook, Cella (CR19) 2014; 26
Singh, Singh (CR28) 2019; 97
Lu (CR48) 2022; 10
Chawla, Bowyer, Hall, Kegelmeyer (CR30) 2002; 16
Porter (CR15) 2010; 363
Pfob (CR24) 2020; 38
CR27
Chen, Lin (CR16) 2007; 34
Harris (CR17) 2009; 42
Bergstra, Bengio (CR43) 2012; 13
Fauci, Schneider, Walters, Boone, Whitworth, Killian, Straughn (CR8) 2012
Resche-Rigon, White (CR34) 2018; 27
22614_CR27
SSW Choi (22614_CR19) 2014; 26
RB Parikh (22614_CR54) 2019; 2
KC Ho (22614_CR33) 2014; 2014
CJ Sidey-Gibbons (22614_CR36) 2020; 5
22614_CR6
22614_CR5
M Porter (22614_CR15) 2010; 363
PA Harris (22614_CR17) 2009; 42
LC Peres (22614_CR3) 2019; 111
A Pfob (22614_CR24) 2020; 38
RF Wolff (22614_CR26) 2019; 170
AJ Brown (22614_CR7) 2014
TJ Herzog (22614_CR2) 2017; 4
SC Lu (22614_CR48) 2022; 10
M Galar (22614_CR45) 2012; 42
M Resche-Rigon (22614_CR34) 2018; 27
22614_CR32
NV Chawla (22614_CR30) 2002; 16
22614_CR35
JH Friedman (22614_CR39) 1991
JD Rodríguez (22614_CR42) 2010; 32
G Douzas (22614_CR29) 2018; 465
A Pfob (22614_CR25) 2020; 38
JAM Sidey-Gibbons (22614_CR23) 2019; 19
G Douzas (22614_CR49) 2018; 465
JF Cohen (22614_CR22) 2016; 6
Y Liu (22614_CR21) 2019
J Fauci (22614_CR8) 2012
22614_CR44
RL Siegel (22614_CR1) 2017; 67
22614_CR46
22614_CR40
22614_CR41
R Tibshirani (22614_CR37) 1997; 16
J Bergstra (22614_CR43) 2012; 13
A Niu (22614_CR31) 2020
A Gicić (22614_CR51) 2019; 36
MM Mullen (22614_CR9) 2017
P Glare (22614_CR13) 2003; 327
J Engel (22614_CR4) 2002; 38
PA Pilkonis (22614_CR20) 2011; 18
R Blagus (22614_CR52) 2013; 14
C Gibbons (22614_CR14) 2021
22614_CR55
J Friedman (22614_CR38) 2010; 33
22614_CR50
AA Wright (22614_CR11) 2016; 315
NA Christakis (22614_CR47) 2000; 320
AA Wright (22614_CR10) 2014; 32
D Singh (22614_CR28) 2019; 97
M-L Chen (22614_CR16) 2007; 34
CR Manz (22614_CR53) 2020
BD Schalet (22614_CR18) 2014; 28
AA Wright (22614_CR12) 2008; 300
References_xml – volume: 465
  start-page: 1
  year: 2018
  end-page: 20
  ident: CR29
  article-title: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.06.056
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: CR38
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 18
  start-page: 263
  year: 2011
  end-page: 283
  ident: CR20
  article-title: Item banks for measuring emotional distress from the patient-reported outcomes measurement information system (PROMIS®): depression, anxiety, and anger
  publication-title: Assessment
  doi: 10.1177/1073191111411667
– year: 2014
  ident: CR7
  publication-title: Missed Opportunities: Patterns of Medical Care and Hospice Utilization Among Ovarian Cancer Patients
– volume: 363
  start-page: 2477
  year: 2010
  end-page: 2481
  ident: CR15
  article-title: What is value in health care?
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1011024
– volume: 67
  start-page: 7
  year: 2017
  end-page: 30
  ident: CR1
  article-title: Cancer statistics, 2017
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21387
– volume: 38
  start-page: 565
  year: 2020
  end-page: 565
  ident: CR25
  article-title: Artificial intelligence to accurately identify breast cancer patients with a pathologic complete response for omission of surgery after neoadjuvant systemic therapy: an international multicenter analysis
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2020.38.15_suppl.565
– volume: 36
  start-page: e12363
  year: 2019
  ident: CR51
  article-title: Credit scoring for a microcredit data set using the synthetic minority oversampling technique and ensemble classifiers
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12363
– ident: CR35
– volume: 42
  start-page: 463
  year: 2012
  end-page: 484
  ident: CR45
  article-title: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches.
  publication-title: Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2011.2161285
– year: 2020
  ident: CR31
  article-title: Big data analytics for complex credit risk assessment of network lending based on SMOTE algorithm
  publication-title: Complexity
  doi: 10.1155/2020/8563030
– volume: 38
  start-page: 2435
  year: 2002
  end-page: 2445
  ident: CR4
  article-title: Moderate progress for ovarian cancer in the last 20 years: Prolongation of survival, but no improvement in the cure rate
  publication-title: Eur. J. Cancer
  doi: 10.1016/S0959-8049(02)00495-1
– volume: 2
  start-page: e1915997
  year: 2019
  ident: CR54
  article-title: Machine learning approaches to predict 6-month mortality among patients with cancer
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.15997
– ident: CR46
– year: 2017
  ident: CR9
  publication-title: The Effect of a Multidisciplinary Palliative Care Initiative on End of Life Care in Gynecologic Oncology Patients
– year: 2020
  ident: CR53
  article-title: Validation of a machine learning algorithm to predict 180-day mortality for outpatients with cancer
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2020.4331
– volume: 27
  start-page: 1634
  year: 2018
  end-page: 1649
  ident: CR34
  article-title: Multiple imputation by chained equations for systematically and sporadically missing multilevel data
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280216666564
– volume: 315
  start-page: 284
  year: 2016
  end-page: 292
  ident: CR11
  article-title: Family perspectives on aggressive cancer care near the end of life
  publication-title: JAMA
  doi: 10.1001/jama.2015.18604
– ident: CR50
– volume: 97
  start-page: 105524
  year: 2019
  ident: CR28
  article-title: Investigating the impact of data normalization on classification performance
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105524
– ident: CR32
– volume: 170
  start-page: 51
  year: 2019
  ident: CR26
  article-title: PROBAST: a tool to assess the risk of bias and applicability of prediction model studies
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M18-1376
– volume: 16
  start-page: 385
  year: 1997
  end-page: 395
  ident: CR37
  article-title: The lasso method for variable selection in the Cox model
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
– volume: 4
  start-page: 1
  year: 2017
  end-page: 12
  ident: CR2
  article-title: Bringing new medicines to women with epithelial ovarian cancer: what is the unmet medical need?
  publication-title: Gynecol. Oncol. Res. Pract.
  doi: 10.1186/s40661-017-0050-0
– ident: CR5
– volume: 42
  start-page: 377
  year: 2009
  end-page: 381
  ident: CR17
  article-title: Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2008.08.010
– volume: 28
  start-page: 88
  year: 2014
  end-page: 96
  ident: CR18
  article-title: Establishing a common metric for self-reported anxiety: linking the MASQ, PANAS, and GAD-7 to PROMIS anxiety
  publication-title: J. Anxiety Disord.
  doi: 10.1016/j.janxdis.2013.11.006
– volume: 2014
  start-page: 1787
  year: 2014
  end-page: 1796
  ident: CR33
  article-title: Predicting discharge mortality after acute ischemic stroke using balanced data
  publication-title: AMIA Annu. Symp. Proc.
– volume: 10
  start-page: e33182
  year: 2022
  ident: CR48
  article-title: Machine learning–based short-term mortality prediction models for patients with cancer using electronic health record data: systematic review and critical appraisal
  publication-title: JMIR Med. Inf.
  doi: 10.2196/33182
– year: 2012
  ident: CR8
  publication-title: The Utilization of Palliative Care in Gynecologic Oncology Patients Near the End of Life
– year: 1991
  ident: CR39
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176347963
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: CR43
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 590
  year: 2007
  end-page: 599
  ident: CR16
  article-title: Cancer symptom clusters: a validation study
  publication-title: J. Pain Symptom Manag.
  doi: 10.1016/j.jpainsymman.2007.01.008
– volume: 300
  start-page: 1665
  year: 2008
  end-page: 1673
  ident: CR12
  article-title: Associations between end-of-life discussions, patient mental health, medical care near death, and caregiver bereavement adjustment
  publication-title: JAMA J. Am. Med. Assoc.
  doi: 10.1001/jama.300.14.1665
– volume: 5
  start-page: 338
  year: 2020
  end-page: 347
  ident: CR36
  article-title: Development of machine learning algorithms for the prediction of financial toxicity in localized breast cancer following surgical treatment
  publication-title: JCO Clin. Cancer Inform.
– year: 2019
  ident: CR21
  article-title: How to read articles that use machine learning: users’ guides to the medical literature
  publication-title: JAMA J. Am. Med. Assoc.
  doi: 10.1001/jama.2019.16489
– volume: 38
  start-page: 520
  year: 2020
  end-page: 520
  ident: CR24
  article-title: Towards data-driven decision-making for breast cancer patients undergoing mastectomy and reconstruction: prediction of individual patient-reported outcomes at two-year follow-up using machine learning
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2020.38.15_suppl.520
– year: 2021
  ident: CR14
  article-title: Routine provision of feedback from patient-reported outcome measurements to healthcare providers and patients in clinical practice
  publication-title: Cochrane Database Syst. Rev.
  doi: 10.1002/14651858.CD011589.pub2
– ident: CR6
– volume: 32
  start-page: 569
  year: 2010
  end-page: 575
  ident: CR42
  article-title: sensitivity analysis of k-fold cross validation in prediction error estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.187
– volume: 14
  start-page: 1
  year: 2013
  end-page: 16
  ident: CR52
  article-title: SMOTE for high-dimensional class-imbalanced data
  publication-title: BMC Bioinform.
– ident: CR40
– ident: CR27
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR30
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– ident: CR44
– volume: 320
  start-page: 469
  year: 2000
  end-page: 473
  ident: CR47
  article-title: Extent and determinants of error in doctors’ prognoses in terminally ill patients: prospective cohort study Commentary: Why do doctors overestimate? Commentary: Prognoses should be based on proved indices not intuition
  publication-title: BMJ
  doi: 10.1136/bmj.320.7233.469
– volume: 6
  start-page: e012799
  year: 2016
  ident: CR22
  article-title: STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2016-012799
– volume: 327
  start-page: 195
  year: 2003
  end-page: 198
  ident: CR13
  article-title: A systematic review of physicians’ survival predictions in terminally ill cancer patients
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.327.7408.195
– volume: 32
  start-page: 3534
  year: 2014
  end-page: 3539
  ident: CR10
  article-title: End-of-life care for older patients with ovarian cancer is intensive despite high rates of hospice use
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2014.55.5383
– volume: 465
  start-page: 1
  year: 2018
  end-page: 20
  ident: CR49
  article-title: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.06.056
– ident: CR55
– volume: 19
  start-page: 1
  year: 2019
  end-page: 18
  ident: CR23
  article-title: Machine learning in medicine: a practical introduction
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-019-0681-4
– ident: CR41
– volume: 111
  start-page: 60
  year: 2019
  end-page: 68
  ident: CR3
  article-title: Invasive epithelial ovarian cancer survival by histotype and disease stage
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djy071
– volume: 26
  start-page: 513
  year: 2014
  end-page: 527
  ident: CR19
  article-title: Establishing a common metric for depressive symptoms: linking the BDI-II, CES-D, and PHQ-9 to PROMIS depression
  publication-title: Psychol. Assess.
  doi: 10.1037/a0035768
– ident: 22614_CR50
  doi: 10.1007/978-981-4585-18-7_2
– volume: 315
  start-page: 284
  year: 2016
  ident: 22614_CR11
  publication-title: JAMA
  doi: 10.1001/jama.2015.18604
– volume-title: Missed Opportunities: Patterns of Medical Care and Hospice Utilization Among Ovarian Cancer Patients
  year: 2014
  ident: 22614_CR7
– ident: 22614_CR32
– volume: 327
  start-page: 195
  year: 2003
  ident: 22614_CR13
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.327.7408.195
– year: 2020
  ident: 22614_CR53
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2020.4331
– volume: 4
  start-page: 1
  year: 2017
  ident: 22614_CR2
  publication-title: Gynecol. Oncol. Res. Pract.
  doi: 10.1186/s40661-017-0050-0
– volume: 16
  start-page: 321
  year: 2002
  ident: 22614_CR30
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– year: 2020
  ident: 22614_CR31
  publication-title: Complexity
  doi: 10.1155/2020/8563030
– volume: 26
  start-page: 513
  year: 2014
  ident: 22614_CR19
  publication-title: Psychol. Assess.
  doi: 10.1037/a0035768
– volume: 38
  start-page: 565
  year: 2020
  ident: 22614_CR25
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2020.38.15_suppl.565
– volume: 18
  start-page: 263
  year: 2011
  ident: 22614_CR20
  publication-title: Assessment
  doi: 10.1177/1073191111411667
– volume-title: The Effect of a Multidisciplinary Palliative Care Initiative on End of Life Care in Gynecologic Oncology Patients
  year: 2017
  ident: 22614_CR9
– volume: 13
  start-page: 281
  year: 2012
  ident: 22614_CR43
  publication-title: J. Mach. Learn. Res.
– year: 1991
  ident: 22614_CR39
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176347963
– ident: 22614_CR41
– volume: 300
  start-page: 1665
  year: 2008
  ident: 22614_CR12
  publication-title: JAMA J. Am. Med. Assoc.
  doi: 10.1001/jama.300.14.1665
– volume: 38
  start-page: 520
  year: 2020
  ident: 22614_CR24
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2020.38.15_suppl.520
– volume: 97
  start-page: 105524
  year: 2019
  ident: 22614_CR28
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105524
– volume: 10
  start-page: e33182
  year: 2022
  ident: 22614_CR48
  publication-title: JMIR Med. Inf.
  doi: 10.2196/33182
– volume: 5
  start-page: 338
  year: 2020
  ident: 22614_CR36
  publication-title: JCO Clin. Cancer Inform.
– ident: 22614_CR27
  doi: 10.1007/978-981-10-2777-2_7
– volume: 6
  start-page: e012799
  year: 2016
  ident: 22614_CR22
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2016-012799
– volume: 38
  start-page: 2435
  year: 2002
  ident: 22614_CR4
  publication-title: Eur. J. Cancer
  doi: 10.1016/S0959-8049(02)00495-1
– volume: 465
  start-page: 1
  year: 2018
  ident: 22614_CR49
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.06.056
– year: 2021
  ident: 22614_CR14
  publication-title: Cochrane Database Syst. Rev.
  doi: 10.1002/14651858.CD011589.pub2
– ident: 22614_CR40
  doi: 10.1007/BF00994018
– volume: 19
  start-page: 1
  year: 2019
  ident: 22614_CR23
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-019-0681-4
– volume: 33
  start-page: 1
  year: 2010
  ident: 22614_CR38
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– ident: 22614_CR44
  doi: 10.1007/978-0-387-30164-8_252
– ident: 22614_CR55
  doi: 10.1109/IJCNN52387.2021.9534411
– volume: 16
  start-page: 385
  year: 1997
  ident: 22614_CR37
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
– year: 2019
  ident: 22614_CR21
  publication-title: JAMA J. Am. Med. Assoc.
  doi: 10.1001/jama.2019.16489
– ident: 22614_CR35
  doi: 10.1097/SLA.0000000000004862
– volume: 2
  start-page: e1915997
  year: 2019
  ident: 22614_CR54
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.15997
– ident: 22614_CR6
– volume: 32
  start-page: 569
  year: 2010
  ident: 22614_CR42
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.187
– volume: 27
  start-page: 1634
  year: 2018
  ident: 22614_CR34
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280216666564
– volume: 32
  start-page: 3534
  year: 2014
  ident: 22614_CR10
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2014.55.5383
– volume: 67
  start-page: 7
  year: 2017
  ident: 22614_CR1
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21387
– volume: 170
  start-page: 51
  year: 2019
  ident: 22614_CR26
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M18-1376
– volume: 111
  start-page: 60
  year: 2019
  ident: 22614_CR3
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djy071
– volume: 363
  start-page: 2477
  year: 2010
  ident: 22614_CR15
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1011024
– volume: 42
  start-page: 463
  year: 2012
  ident: 22614_CR45
  publication-title: Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2011.2161285
– volume: 36
  start-page: e12363
  year: 2019
  ident: 22614_CR51
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12363
– ident: 22614_CR5
– volume: 34
  start-page: 590
  year: 2007
  ident: 22614_CR16
  publication-title: J. Pain Symptom Manag.
  doi: 10.1016/j.jpainsymman.2007.01.008
– volume: 42
  start-page: 377
  year: 2009
  ident: 22614_CR17
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2008.08.010
– volume: 465
  start-page: 1
  year: 2018
  ident: 22614_CR29
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.06.056
– volume: 28
  start-page: 88
  year: 2014
  ident: 22614_CR18
  publication-title: J. Anxiety Disord.
  doi: 10.1016/j.janxdis.2013.11.006
– volume: 14
  start-page: 1
  year: 2013
  ident: 22614_CR52
  publication-title: BMC Bioinform.
– ident: 22614_CR46
– volume-title: The Utilization of Palliative Care in Gynecologic Oncology Patients Near the End of Life
  year: 2012
  ident: 22614_CR8
– volume: 320
  start-page: 469
  year: 2000
  ident: 22614_CR47
  publication-title: BMJ
  doi: 10.1136/bmj.320.7233.469
– volume: 2014
  start-page: 1787
  year: 2014
  ident: 22614_CR33
  publication-title: AMIA Annu. Symp. Proc.
SSID ssj0000529419
Score 2.433103
Snippet Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately...
Abstract Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21269
SubjectTerms 631/67/1517/1709
692/308/409
Algorithms
Datasets
Decision making
Female
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Mortality
multidisciplinary
Ovarian cancer
Ovarian Neoplasms
Patient Reported Outcome Measures
Patients
Prognosis
Schools
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC4kIOpBfGc0SgvezJCe6d6Z7qOKIQiKBwO5Nf2aKGxmwz4M--9T1T077qJED153eqC36qvtr7aqvwJ4423wQje-9MEHEtV2pQoNp1RFY3oQ69bR5eTPX5qTU_npbHK2NeqLesKyPHA23FHgDg9hGRthhQxKI7-SHiPDuthxJ9I9cq70VjKVVb1rLSs93JLhQh0t8KSi22SYeyHjqGRZ7ZxESbD_Tyzz92bJsWJ6D-6s-ku7vrLT6dahdPwA7g9skr3L3-Ih3Ir9I7id50uuH8Pi65zqMNTZzCrFy2DX7CLxbeTeDOkqSwIMjP6MZbOfmDbbnnnCwZxRQ_w5u0i9lpENwyXOme0DG7RYy1xviIHNVksEbmTUbvoETo8_fvtwUg5TFkqPbG1ZIj8JMnTct1IHDO-2sx45kvK8q6WoA1JAza22TjZVcHUXouiimtQqNm3nohZPYa-f9XEfGHIvkgv0kUcurUIXTTjSKxeca7R3toBqY3HjBwlymoQxNakULpTJXjLoJZO8ZKoC3o7vXGYBjhtXvydHjitJPDt9gJAyA6TM3yBVwMEGBmaI6IXB7F2RFo7QBbweH2MsUoHF9nG2ojUTUSO_E7iPZxk1405EIxWmprKAdgdPO1vdfdL_-J70vklQCX95CzjcIO_Xtm4yxeGIzn-w3PP_YbkXcLemCKN2H3UAe8v5Kr5E0rZ0r1J8XgMbxDx0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFVEfxG-jVVbwzYZusnvJ7oOIlZYieBSx0LewX7kK1-S8D-X-e2fyVQ_l8DXZwGRnZvc3O7O_AXjrjHdCZy523nki1bax8hmnUEVjeBDS3NLl5C-T7OxCfr4cX-7BpL8LQ2WV_ZrYLNS-dnRGfoTRkyIuEqE_zH_E1DWKsqt9Cw3TtVbw7xuKsVuwnxIz1gj2j08m51-HUxfKa8lEd7dnuFBHS9zB6JYZxmSIRBIZJ1s7VEPk_y_0-XcR5ZBJvQd31tXcbH6Z2eyPzer0AdzvUCb72JrFQ9gL1SO43fad3DyG5fmC8jNU8cwSxWNvNuy6weGIyRnCWNYQMzA6pGX1TwynTcUc2ceCUaH8lF03NZiBdU0npsxUnnUcrXGbhwie1esVTm5gVIb6BC5OT759Oou77guxQxS3ihG3eOlL7nKpPbp9XhqH2Ek5XqZSpB6hoeZGGyuzxNu09EGUQY1TFbK8tEGLpzCq6io8B4aYjGgEXeCBS6OMDWOOsMt6azPtrIkg6We8cB01OXXImBVNilyootVSgVoqGi0VSQTvhm_mLTHHztHHpMhhJJFqNw_qxbTofLTw3CLekyETRkivNEJ56XARRnlLbkUewUFvBkXn6cvixi4jeDO8Rh-lxIupQr2mMWORIu4TKMez1moGSUQmFYasMoJ8y562RN1-U32_anjAiWgJV-QIDnvLuxFr11QcDtb5HzP3YvdPv4S7KfkOFfioAxitFuvwCmHayr7ufO83zr06Yw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_KFVEfpH6vthLBN28xu8ntJo-ntJQDRdBC30K-thaue-U-lPvvndndW10qpb5ukmXIzCS_yUx-AXjnbfBCFz71wQci1XapCgWnUEVjeBDz0tHl5M9fitMzOTufnO_BeHcXZpC_b6i7V7jF0DUwDJoQKmQyxVhnX6FhqhHsT6ezb7P-TIWyVjLT3d0YHP7h5uDB_tPQ9P8LW94skezzpA_h_qa-tttfdj7_ays6OYBHHYZk01bpj2Ev1k_gXvuq5PYprL4uKftC9cwsUzwNdsuuGpSNiJshSGUN7QKjI1i2-InBsq2ZJ-0vGZXBX7CrpsIysu5JiQtm68A6Bta0zTLEwBabNZprZFRk-gzOTo6_fzpNu7cVUo8YbZ0iKgkyVNyXUgd06rKyHpGR8rzKpcgDAj_NrbZOFllweRWiqKKa5CoWZeWiFs9hVC_q-BIYIi4iCfSRRy6tsi5OOIIqF5wrtHc2gWw348Z3xOP0_sXcNAlwoUyrJYNaMo2WTJbA-37MdUu7cWvvj6TIvidRZjcf0JJM54EmcIdoTsZCWCGD0gjUpcclFuWtuBNlAoc7MzCdH68MxuyKGHCETuBt34weSGkVW8fFhvpMRI6oTqAcL1qr6SURhVQYkMoEyoE9DUQdttSXPxqWb6JRwvU2gfHO8v6IddtUjHvrvMPMvfq_v7-GBzn5EpXzqEMYrZebeISgbO3edL74G-LuLn4
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADLbKVgg48H4EChokbjRlNjNJJseCqCokqh5YUU7RvLJFbLPV7ga0_HrsyQMWqopeE0dyPI7nc-z5DPDKamdFkdnYOuuIVNvEymWcUpUC0wOf5IYOJ388yg4n8sNJerIFWX8WJjTtB0rLEKb77rA3S9xo6DAYpk4IGMYyxgjjqmuwnaWIwUewPTk63v9Ck-QQo8QIE5LuhAwX6oKHN3ahQNZ_EcL8t1FyqJbeghtNfa7XP_Rs9seGdHAHPvev0vahfNtrVmbP_vyL5fHq73oXbncYle23kvdgy9f34Xo7tXL9AJbHC6ruUL80GyseO71mZwHFI6JnCIJZoHVg9IuXzb9jMq5rZsm7Foza7KfsLHRwetaNrJgyXTvWMbzGbRXDOzZvVqiwZ9TE-hAmB-8_vTuMu9kNsUUMuIoR9TjpKm5zWThcjbzSFpGXsrxKpEgcAsuC60IbmY2dSSrnReVVmiif5ZXxhXgEo3pe-yfAENERCaH13HOplTY-5QjajDMmK6zREYz7tSxtR2xO8zVmZSiwC1W2Bi3RoGUwaDmO4PXwzHlL63Gp9FtykUGSKLnDhfliWnbLVjpuEC1KnwktpFMFJgLSYghHfStuRB7BTu9gZRcnlmWSS0UMO6KI4OVwG79wKtvo2s8bkklFgqhRoB6PW38cNBGZVJjwygjyDU_dUHXzTv31NLCIE00TxvMIdnuf_q3WZabYHfz-Pyz39Griz-BmQm5P7UJqB0arReOfI-hbmRfdF_4L6OdRBA
  priority: 102
  providerName: Unpaywall
Title Predicting 180-day mortality for women with ovarian cancer using machine learning and patient-reported outcome data
URI https://link.springer.com/article/10.1038/s41598-022-22614-1
https://www.ncbi.nlm.nih.gov/pubmed/36481644
https://www.proquest.com/docview/2748053539
https://www.proquest.com/docview/2753297631
https://pubmed.ncbi.nlm.nih.gov/PMC9732183
https://www.nature.com/articles/s41598-022-22614-1.pdf
https://doaj.org/article/d0b6124e63a34d8981d4c887abef0b37
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Health & Medical Collection (via ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEF_ugagfxLfRs6wgfvGiSXab7H4Q6ZU7jsKVohbqp7CvVKGX9PpQ-987k5cWS_FTIbst09mZ3d9kZn9DyGujrGEyNr6xxiKptvaFjQMMVSSEBy5KNF5OvhrGl2M-mHQnB6Qpt60VuNwZ2mE_qfFi9u7XzeYjOPyH6sq4eL-EQwgvikFYBWAi5H74Zn7jY2MpTMDWXTYOyTEcXhK7O1zVEUBF_x1JHsr6Os3uX9s6skpm_11w9N-qyja1epfcXudztfmpZrO_Tq-L--ReDTtpr7KTB-TA5Q_JraoR5eYRWY4WmLDBEmgaisC3akOvS50ASKeAa2nJ1EDxrS0tfkB8rXJq0GAWFCvnp_S6LMp0tO5CMaUqt7QmbfWrxISztFivwMIdxbrUx2R8cf6lf-nX7Rh8A7Bu5QOQsdxmgUm4tLAPJJkyAKaECbKIs8gCVpSBkkrzOLQ6yqxjmRPdSLg4ybST7Ak5yovcPSMUQBryChoXuIArobTrBoDDtNU6lkYrj4SNxlNTc5Vjy4xZWubMmUirVUphldJyldLQI2_b78wrpo69s89wIduZyLJdPigW07R22tQGGgAgdzFTjFshAdtzA7syyJsFmiUeOWnMIG0sN4UwXyBpDpMeedUOg9NiJkblrljjnC6LAAgykONpZTWtJCzmAmJY7pFky562RN0eyb9_K4nBkXkJtmiPnDaW90esfao4ba3zPzT3fP-ffkHuROg7WPEjTsjRarF2LwG3rXSHHCaTpEOOe73B5wF8np0PR5_gaT_ud8p3IZ3SN2FkPBz1vv4GecZGFw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqhwQLwJFDASnGhUJ_YmzqFCFFptabuqUCv1ZvzKgrRNln1Q7Z_jtzGTV1mBVlx6TRzJ8YxnvvGMvyHkjdXO8iyxoXXWIam2CaVLGIYqGYQHPk4NXk4-GST9c_H5onexRn61d2GwrLK1iZWhdqXFM_IdiJ4kcpHw7P34R4hdozC72rbQ0E1rBbdbUYw1FzuO_OIKQrjp7uEnkPfbOD7YP_vYD5suA6EFtDILwT874XJmU5E5UO801xYwgrQsjwWPHUCgjOlMG5FEzsS58zz3shdLn6S58UjGBC5gQ3CRQfC3sbc_OP3SnfJgHk1EWXNbh3G5MwWPibfaIAYE5BOJMFryiFXjgH-h3b-LNrvM7R2yOS_GenGlR6M_nOPBPXK3QbX0Q62G98maLx6QW3Wfy8VDMj2dYD4IK6xpJFno9IJeVrgfYgAKsJlWRBAUD4Vp-RPCd11Qi_o4oViYP6SXVc2np02TiyHVhaMNJ2xY5z28o-V8BsL0FMteH5HzG5HDY7JelIV_SihgQKQttJ55JrTUxvcYwDzjjEkya3RAonbFlW2o0LEjx0hVKXkuVS0lBVJSlZRUFJB33Tfjmghk5eg9FGQ3Ekm8qwflZKgam6AcM4AvhU-45sLJDEIHYcHow3xzZngakK1WDVRjWabqeh8E5HX3GmwCJnp04cs5junxGHAmh3k8qbWmmwlPhIQQWQQkXdKnpakuvym-f6t4x5HYCTxAQLZbzbue1qql2O608z9W7tnqn35FNvtnJ8fq-HBw9JzcjnEfYXGR3CLrs8ncvwCIODMvm31Iydeb3vq_Af5ad5U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HxJtAASPBiUbrxN7EOVQIKKuWQtUDlfbm-pUFaZss-2i1f62_rjN5lRVoxaXXxJEcz8PfeMbfEPLWamd5ltjQOuuQVNuE0iUMQ5UMwgMfpwYvJ38_TPaOxddhf7hBLtq7MFhW2frEylG70uIZeQ-iJ4lcJDzr5U1ZxNHu4MPkd4gdpDDT2rbTqFXkwC_PIXyb7ezvgqzfxfHgy4_Pe2HTYSC0gFTmIezNTric2VRkDlQ7zbUFfCAty2PBYwfwJ2M600YkkTNx7jzPvezH0idpbjwSMYH7v5FynmE5YTpMu_MdzKCJKGvu6TAuezPYK_E-G0R_gHkiEUYre2HVMuBfOPfvcs0uZ3uX3F4UE7081-PxH9vi4D651-BZ-rFWwAdkwxcPyc26w-XyEZkdTTEThLXVNJIsdHpJTyvED-ifAmCmFQUExeNgWp5B4K4LalETpxRL8kf0tKr29LRpbzGiunC0YYMN64yHd7RczEGMnmLB62NyfC1SeEI2i7LwzwgF9IeEhdYzz4SW2vg-A4BnnDFJZo0OSNSuuLINCTr24hirKhnPpaqlpEBKqpKSigLyvvtmUlOArB39CQXZjUT67upBOR2pxhsoxwwgS-ETrrlwMoOgQVhw9zDfnBmeBmSrVQPV-JSZurKAgLzpXoM3wBSPLny5wDF9HgPC5DCPp7XWdDPhiZAQHIuApCv6tDLV1TfFr58V4zhSOoHvD8h2q3lX01q3FNuddv7Hyj1f_9OvyS0wePVt__DgBbkToxlhVZHcIpvz6cK_BGw4N68qI6Tk5Lqt_hKtyHUv
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADLbKVgg48H4EChokbjRlNjNJJseCqCokqh5YUU7RvLJFbLPV7ga0_HrsyQMWqopeE0dyPI7nc-z5DPDKamdFkdnYOuuIVNvEymWcUpUC0wOf5IYOJ388yg4n8sNJerIFWX8WJjTtB0rLEKb77rA3S9xo6DAYpk4IGMYyxgjjqmuwnaWIwUewPTk63v9Ck-QQo8QIE5LuhAwX6oKHN3ahQNZ_EcL8t1FyqJbeghtNfa7XP_Rs9seGdHAHPvev0vahfNtrVmbP_vyL5fHq73oXbncYle23kvdgy9f34Xo7tXL9AJbHC6ruUL80GyseO71mZwHFI6JnCIJZoHVg9IuXzb9jMq5rZsm7Foza7KfsLHRwetaNrJgyXTvWMbzGbRXDOzZvVqiwZ9TE-hAmB-8_vTuMu9kNsUUMuIoR9TjpKm5zWThcjbzSFpGXsrxKpEgcAsuC60IbmY2dSSrnReVVmiif5ZXxhXgEo3pe-yfAENERCaH13HOplTY-5QjajDMmK6zREYz7tSxtR2xO8zVmZSiwC1W2Bi3RoGUwaDmO4PXwzHlL63Gp9FtykUGSKLnDhfliWnbLVjpuEC1KnwktpFMFJgLSYghHfStuRB7BTu9gZRcnlmWSS0UMO6KI4OVwG79wKtvo2s8bkklFgqhRoB6PW38cNBGZVJjwygjyDU_dUHXzTv31NLCIE00TxvMIdnuf_q3WZabYHfz-Pyz39Griz-BmQm5P7UJqB0arReOfI-hbmRfdF_4L6OdRBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+180-day+mortality+for+women+with+ovarian+cancer+using+machine+learning+and+patient-reported+outcome+data&rft.jtitle=Scientific+reports&rft.au=Sidey-Gibbons%2C+Chris+J&rft.au=Sun%2C+Charlotte&rft.au=Schneider%2C+Amy&rft.au=Lu%2C+Sheng-Chieh&rft.date=2022-12-08&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-22614-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon