Predicting 180-day mortality for women with ovarian cancer using machine learning and patient-reported outcome data
Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using p...
Saved in:
| Published in | Scientific reports Vol. 12; no. 1; pp. 21269 - 8 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
08.12.2022
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-022-22614-1 |
Cover
| Abstract | Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample. |
|---|---|
| AbstractList | Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample. Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample. Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample.Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample. Abstract Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately estimating prognosis. We trained machine learning algorithms to guide prognosis by predicting 180-day mortality for women with ovarian cancer using patient-reported outcomes (PRO) data. We collected data from a single academic cancer institution in the United States. Women completed biopsychosocial PRO measures every 90 days. We randomly partitioned our dataset into training and testing samples. We used synthetic minority oversampling to reduce class imbalance in the training dataset. We fitted training data to six machine learning algorithms and combined their classifications on the testing dataset into an unweighted voting ensemble. We assessed each algorithm's accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) using testing data. We recruited 245 patients who completed 1319 PRO assessments. The final voting ensemble produced state-of-the-art results on the task of predicting 180-day mortality for ovarian cancer paitents (Accuracy = 0.79, Sensitivity = 0.71, Specificity = 0.80, AUROC = 0.76). The algorithm correctly identified 25 of the 35 women in the testing dataset who died within 180 days of assessment. Machine learning algorithms trained using PRO data offer encouraging performance in predicting whether a woman with ovarian cancer will die within 180 days. This model could be used to drive data-driven end-of-life care and address current shortcomings in care delivery. Our model demonstrates the potential of biopsychosocial PROM information to make substantial contributions to oncology prediction modeling. This model could inform clinical decision-making Future research is needed to validate these findings in a larger, more diverse sample. |
| ArticleNumber | 21269 |
| Author | Lu, Sheng-Chieh Sun, Charlotte Wright, Alexi Sidey-Gibbons, Chris J. Lu, Karen Meyer, Larissa Schneider, Amy |
| Author_xml | – sequence: 1 givenname: Chris J. surname: Sidey-Gibbons fullname: Sidey-Gibbons, Chris J. email: cgibbons@Mdanderson.org organization: Section of Patient-Centered Analytics, Department of Symptom Research, University of Texas MD Anderson Cancer Center – sequence: 2 givenname: Charlotte surname: Sun fullname: Sun, Charlotte organization: Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center – sequence: 3 givenname: Amy surname: Schneider fullname: Schneider, Amy organization: Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center – sequence: 4 givenname: Sheng-Chieh surname: Lu fullname: Lu, Sheng-Chieh organization: Section of Patient-Centered Analytics, Department of Symptom Research, University of Texas MD Anderson Cancer Center – sequence: 5 givenname: Karen surname: Lu fullname: Lu, Karen organization: Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center – sequence: 6 givenname: Alexi surname: Wright fullname: Wright, Alexi organization: Department of Medical Oncology, Dana Farber Cancer Institute, Department of Medicine, Harvard Medical School – sequence: 7 givenname: Larissa surname: Meyer fullname: Meyer, Larissa organization: Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36481644$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstu1DAUjVARLaU_wAJZYsMm4FcSe4OEKh6VKsEC1taN7cx4lNiD7XQ0f4_TGUrbRYU3tq7POfdx7svqxAdvq-o1we8JZuJD4qSRosaU1pS2hNfkWXVGMW9qyig9ufc-rS5S2uByGio5kS-qU9ZyQVrOz6r0I1rjdHZ-hYjAtYE9mkLMMLq8R0OIaBcm69HO5TUKNxAdeKTBaxvRnBbWBHrtvEWjheiXAHiDtpCd9bmOdlvErEFhzroIIQMZXlXPBxiTvTje59WvL59_Xn6rr79_vbr8dF3rhuNcS9YZbgasOy5N6aMbQHNOhMYD5YwaIqnEIKHnLTE9HYxlgxUNFbbtht5Kdl5dHXRNgI3aRjdB3KsATt0GQlwpiNnp0SqD-5ZQblsGjBshBTFcC9FBbwfcs65osYPW7Lew38E43gkSrBZH1MERVRxRt44oUlgfD6zt3E_W6DKSCOODUh7-eLdWq3CjZMcoEawIvDsKxPB7timrySVtxxG8DXNStGsYlV3LllxvH0E3YY6-DLiguMANa9gykzf3K7or5e9GFAA9AHQMKUU7_F-f4hFJu1xWICxdufFp6nGwqeTxKxv_lf0E6w-YmOu2 |
| CitedBy_id | crossref_primary_10_1200_CCI_24_00145 crossref_primary_10_1016_j_jclinepi_2023_10_015 crossref_primary_10_1016_j_jclinepi_2025_111675 crossref_primary_10_1200_CCI_23_00264 crossref_primary_10_1002_cnr2_70138 crossref_primary_10_1200_OP_23_00720 crossref_primary_10_1038_s41598_023_28188_w |
| Cites_doi | 10.1016/j.ins.2018.06.056 10.18637/jss.v033.i01 10.1177/1073191111411667 10.1056/NEJMp1011024 10.3322/caac.21387 10.1200/JCO.2020.38.15_suppl.565 10.1111/exsy.12363 10.1109/TSMCC.2011.2161285 10.1155/2020/8563030 10.1016/S0959-8049(02)00495-1 10.1001/jamanetworkopen.2019.15997 10.1001/jamaoncol.2020.4331 10.1177/0962280216666564 10.1001/jama.2015.18604 10.1016/j.asoc.2019.105524 10.7326/M18-1376 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 10.1186/s40661-017-0050-0 10.1016/j.jbi.2008.08.010 10.1016/j.janxdis.2013.11.006 10.2196/33182 10.1214/aos/1176347963 10.1016/j.jpainsymman.2007.01.008 10.1001/jama.300.14.1665 10.1001/jama.2019.16489 10.1200/JCO.2020.38.15_suppl.520 10.1002/14651858.CD011589.pub2 10.1109/TPAMI.2009.187 10.1613/jair.953 10.1136/bmj.320.7233.469 10.1136/bmjopen-2016-012799 10.1136/bmj.327.7408.195 10.1200/JCO.2014.55.5383 10.1186/s12874-019-0681-4 10.1093/jnci/djy071 10.1037/a0035768 10.1007/978-981-4585-18-7_2 10.1007/978-981-10-2777-2_7 10.1007/BF00994018 10.1007/978-0-387-30164-8_252 10.1109/IJCNN52387.2021.9534411 10.1097/SLA.0000000000004862 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-022-22614-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerLink Journals Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_d0b6124e63a34d8981d4c887abef0b37 10.1038/s41598-022-22614-1 PMC9732183 36481644 10_1038_s41598_022_22614_1 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: University of Texas MD Anderson Cancer Center grantid: Institutional Research Grant; Institutional Research Grant funderid: http://dx.doi.org/10.13039/100007313 – fundername: NCI NIH HHS grantid: K07 CA201013 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: ; grantid: Institutional Research Grant; Institutional Research Grant |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c540t-937d4df0c749d3227fac4418c0f2432d19290a9ab461db2fde3fe8528e67fbe93 |
| IEDL.DBID | M48 |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:57 EDT 2025 Sun Oct 26 03:58:43 EDT 2025 Tue Sep 30 17:17:53 EDT 2025 Thu Oct 02 11:49:22 EDT 2025 Tue Oct 07 09:07:10 EDT 2025 Thu Apr 03 07:06:01 EDT 2025 Wed Oct 01 01:38:23 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Fri Feb 21 02:40:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-937d4df0c749d3227fac4418c0f2432d19290a9ab461db2fde3fe8528e67fbe93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-22614-1 |
| PMID | 36481644 |
| PQID | 2748053539 |
| PQPubID | 2041939 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d0b6124e63a34d8981d4c887abef0b37 unpaywall_primary_10_1038_s41598_022_22614_1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9732183 proquest_miscellaneous_2753297631 proquest_journals_2748053539 pubmed_primary_36481644 crossref_primary_10_1038_s41598_022_22614_1 crossref_citationtrail_10_1038_s41598_022_22614_1 springer_journals_10_1038_s41598_022_22614_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-08 |
| PublicationDateYYYYMMDD | 2022-12-08 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Mullen, Divine, Porcelli, Wilkinson-Ryan, Dans, Powell, Mutch, Hagemann, Thaker (CR9) 2017 Sidey-Gibbons (CR36) 2020; 5 Schalet, Cook, Choi, Cella (CR18) 2014; 28 Friedman, Hastie, Tibshirani (CR38) 2010; 33 Glare (CR13) 2003; 327 Douzas, Bacao, Last (CR49) 2018; 465 Rodríguez, Pérez, Lozano (CR42) 2010; 32 Manz (CR53) 2020 Blagus, Lusa (CR52) 2013; 14 Galar, Fernandez, Barrenechea, Bustince, Herrera (CR45) 2012; 42 CR35 Friedman (CR39) 1991 CR32 Engel (CR4) 2002; 38 Brown, Sun, Prescott, Taylor, Ramondetta, Bodurka (CR7) 2014 Ho (CR33) 2014; 2014 Douzas, Bacao, Last (CR29) 2018; 465 Tibshirani (CR37) 1997; 16 CR6 CR5 Wright (CR11) 2016; 315 CR46 CR44 Wright (CR12) 2008; 300 CR41 CR40 Niu, Cai (CR31) 2020 Gicić, Subasi (CR51) 2019; 36 Liu, Chen, Krause, Peng (CR21) 2019 Pfob (CR25) 2020; 38 Parikh (CR54) 2019; 2 Sidey-Gibbons, Sidey-Gibbons (CR23) 2019; 19 Pilkonis (CR20) 2011; 18 Peres (CR3) 2019; 111 Wright, Hatfield, Earle, Keating (CR10) 2014; 32 Christakis, Smith, Parkes, Lamont (CR47) 2000; 320 Siegel, Miller, Jemal (CR1) 2017; 67 Herzog, Monk (CR2) 2017; 4 CR55 CR50 Cohen (CR22) 2016; 6 Wolff (CR26) 2019; 170 Gibbons (CR14) 2021 Choi, Schalet, Cook, Cella (CR19) 2014; 26 Singh, Singh (CR28) 2019; 97 Lu (CR48) 2022; 10 Chawla, Bowyer, Hall, Kegelmeyer (CR30) 2002; 16 Porter (CR15) 2010; 363 Pfob (CR24) 2020; 38 CR27 Chen, Lin (CR16) 2007; 34 Harris (CR17) 2009; 42 Bergstra, Bengio (CR43) 2012; 13 Fauci, Schneider, Walters, Boone, Whitworth, Killian, Straughn (CR8) 2012 Resche-Rigon, White (CR34) 2018; 27 22614_CR27 SSW Choi (22614_CR19) 2014; 26 RB Parikh (22614_CR54) 2019; 2 KC Ho (22614_CR33) 2014; 2014 CJ Sidey-Gibbons (22614_CR36) 2020; 5 22614_CR6 22614_CR5 M Porter (22614_CR15) 2010; 363 PA Harris (22614_CR17) 2009; 42 LC Peres (22614_CR3) 2019; 111 A Pfob (22614_CR24) 2020; 38 RF Wolff (22614_CR26) 2019; 170 AJ Brown (22614_CR7) 2014 TJ Herzog (22614_CR2) 2017; 4 SC Lu (22614_CR48) 2022; 10 M Galar (22614_CR45) 2012; 42 M Resche-Rigon (22614_CR34) 2018; 27 22614_CR32 NV Chawla (22614_CR30) 2002; 16 22614_CR35 JH Friedman (22614_CR39) 1991 JD Rodríguez (22614_CR42) 2010; 32 G Douzas (22614_CR29) 2018; 465 A Pfob (22614_CR25) 2020; 38 JAM Sidey-Gibbons (22614_CR23) 2019; 19 G Douzas (22614_CR49) 2018; 465 JF Cohen (22614_CR22) 2016; 6 Y Liu (22614_CR21) 2019 J Fauci (22614_CR8) 2012 22614_CR44 RL Siegel (22614_CR1) 2017; 67 22614_CR46 22614_CR40 22614_CR41 R Tibshirani (22614_CR37) 1997; 16 J Bergstra (22614_CR43) 2012; 13 A Niu (22614_CR31) 2020 A Gicić (22614_CR51) 2019; 36 MM Mullen (22614_CR9) 2017 P Glare (22614_CR13) 2003; 327 J Engel (22614_CR4) 2002; 38 PA Pilkonis (22614_CR20) 2011; 18 R Blagus (22614_CR52) 2013; 14 C Gibbons (22614_CR14) 2021 22614_CR55 J Friedman (22614_CR38) 2010; 33 22614_CR50 AA Wright (22614_CR11) 2016; 315 NA Christakis (22614_CR47) 2000; 320 AA Wright (22614_CR10) 2014; 32 D Singh (22614_CR28) 2019; 97 M-L Chen (22614_CR16) 2007; 34 CR Manz (22614_CR53) 2020 BD Schalet (22614_CR18) 2014; 28 AA Wright (22614_CR12) 2008; 300 |
| References_xml | – volume: 465 start-page: 1 year: 2018 end-page: 20 ident: CR29 article-title: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.06.056 – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: CR38 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – volume: 18 start-page: 263 year: 2011 end-page: 283 ident: CR20 article-title: Item banks for measuring emotional distress from the patient-reported outcomes measurement information system (PROMIS®): depression, anxiety, and anger publication-title: Assessment doi: 10.1177/1073191111411667 – year: 2014 ident: CR7 publication-title: Missed Opportunities: Patterns of Medical Care and Hospice Utilization Among Ovarian Cancer Patients – volume: 363 start-page: 2477 year: 2010 end-page: 2481 ident: CR15 article-title: What is value in health care? publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1011024 – volume: 67 start-page: 7 year: 2017 end-page: 30 ident: CR1 article-title: Cancer statistics, 2017 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21387 – volume: 38 start-page: 565 year: 2020 end-page: 565 ident: CR25 article-title: Artificial intelligence to accurately identify breast cancer patients with a pathologic complete response for omission of surgery after neoadjuvant systemic therapy: an international multicenter analysis publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2020.38.15_suppl.565 – volume: 36 start-page: e12363 year: 2019 ident: CR51 article-title: Credit scoring for a microcredit data set using the synthetic minority oversampling technique and ensemble classifiers publication-title: Expert Syst. doi: 10.1111/exsy.12363 – ident: CR35 – volume: 42 start-page: 463 year: 2012 end-page: 484 ident: CR45 article-title: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. publication-title: Syst. Man Cybern. Part C Appl. Rev. doi: 10.1109/TSMCC.2011.2161285 – year: 2020 ident: CR31 article-title: Big data analytics for complex credit risk assessment of network lending based on SMOTE algorithm publication-title: Complexity doi: 10.1155/2020/8563030 – volume: 38 start-page: 2435 year: 2002 end-page: 2445 ident: CR4 article-title: Moderate progress for ovarian cancer in the last 20 years: Prolongation of survival, but no improvement in the cure rate publication-title: Eur. J. Cancer doi: 10.1016/S0959-8049(02)00495-1 – volume: 2 start-page: e1915997 year: 2019 ident: CR54 article-title: Machine learning approaches to predict 6-month mortality among patients with cancer publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.15997 – ident: CR46 – year: 2017 ident: CR9 publication-title: The Effect of a Multidisciplinary Palliative Care Initiative on End of Life Care in Gynecologic Oncology Patients – year: 2020 ident: CR53 article-title: Validation of a machine learning algorithm to predict 180-day mortality for outpatients with cancer publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2020.4331 – volume: 27 start-page: 1634 year: 2018 end-page: 1649 ident: CR34 article-title: Multiple imputation by chained equations for systematically and sporadically missing multilevel data publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280216666564 – volume: 315 start-page: 284 year: 2016 end-page: 292 ident: CR11 article-title: Family perspectives on aggressive cancer care near the end of life publication-title: JAMA doi: 10.1001/jama.2015.18604 – ident: CR50 – volume: 97 start-page: 105524 year: 2019 ident: CR28 article-title: Investigating the impact of data normalization on classification performance publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105524 – ident: CR32 – volume: 170 start-page: 51 year: 2019 ident: CR26 article-title: PROBAST: a tool to assess the risk of bias and applicability of prediction model studies publication-title: Ann. Intern. Med. doi: 10.7326/M18-1376 – volume: 16 start-page: 385 year: 1997 end-page: 395 ident: CR37 article-title: The lasso method for variable selection in the Cox model publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 – volume: 4 start-page: 1 year: 2017 end-page: 12 ident: CR2 article-title: Bringing new medicines to women with epithelial ovarian cancer: what is the unmet medical need? publication-title: Gynecol. Oncol. Res. Pract. doi: 10.1186/s40661-017-0050-0 – ident: CR5 – volume: 42 start-page: 377 year: 2009 end-page: 381 ident: CR17 article-title: Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2008.08.010 – volume: 28 start-page: 88 year: 2014 end-page: 96 ident: CR18 article-title: Establishing a common metric for self-reported anxiety: linking the MASQ, PANAS, and GAD-7 to PROMIS anxiety publication-title: J. Anxiety Disord. doi: 10.1016/j.janxdis.2013.11.006 – volume: 2014 start-page: 1787 year: 2014 end-page: 1796 ident: CR33 article-title: Predicting discharge mortality after acute ischemic stroke using balanced data publication-title: AMIA Annu. Symp. Proc. – volume: 10 start-page: e33182 year: 2022 ident: CR48 article-title: Machine learning–based short-term mortality prediction models for patients with cancer using electronic health record data: systematic review and critical appraisal publication-title: JMIR Med. Inf. doi: 10.2196/33182 – year: 2012 ident: CR8 publication-title: The Utilization of Palliative Care in Gynecologic Oncology Patients Near the End of Life – year: 1991 ident: CR39 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. doi: 10.1214/aos/1176347963 – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: CR43 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 590 year: 2007 end-page: 599 ident: CR16 article-title: Cancer symptom clusters: a validation study publication-title: J. Pain Symptom Manag. doi: 10.1016/j.jpainsymman.2007.01.008 – volume: 300 start-page: 1665 year: 2008 end-page: 1673 ident: CR12 article-title: Associations between end-of-life discussions, patient mental health, medical care near death, and caregiver bereavement adjustment publication-title: JAMA J. Am. Med. Assoc. doi: 10.1001/jama.300.14.1665 – volume: 5 start-page: 338 year: 2020 end-page: 347 ident: CR36 article-title: Development of machine learning algorithms for the prediction of financial toxicity in localized breast cancer following surgical treatment publication-title: JCO Clin. Cancer Inform. – year: 2019 ident: CR21 article-title: How to read articles that use machine learning: users’ guides to the medical literature publication-title: JAMA J. Am. Med. Assoc. doi: 10.1001/jama.2019.16489 – volume: 38 start-page: 520 year: 2020 end-page: 520 ident: CR24 article-title: Towards data-driven decision-making for breast cancer patients undergoing mastectomy and reconstruction: prediction of individual patient-reported outcomes at two-year follow-up using machine learning publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2020.38.15_suppl.520 – year: 2021 ident: CR14 article-title: Routine provision of feedback from patient-reported outcome measurements to healthcare providers and patients in clinical practice publication-title: Cochrane Database Syst. Rev. doi: 10.1002/14651858.CD011589.pub2 – ident: CR6 – volume: 32 start-page: 569 year: 2010 end-page: 575 ident: CR42 article-title: sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.187 – volume: 14 start-page: 1 year: 2013 end-page: 16 ident: CR52 article-title: SMOTE for high-dimensional class-imbalanced data publication-title: BMC Bioinform. – ident: CR40 – ident: CR27 – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: CR30 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – ident: CR44 – volume: 320 start-page: 469 year: 2000 end-page: 473 ident: CR47 article-title: Extent and determinants of error in doctors’ prognoses in terminally ill patients: prospective cohort study Commentary: Why do doctors overestimate? Commentary: Prognoses should be based on proved indices not intuition publication-title: BMJ doi: 10.1136/bmj.320.7233.469 – volume: 6 start-page: e012799 year: 2016 ident: CR22 article-title: STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration publication-title: BMJ Open doi: 10.1136/bmjopen-2016-012799 – volume: 327 start-page: 195 year: 2003 end-page: 198 ident: CR13 article-title: A systematic review of physicians’ survival predictions in terminally ill cancer patients publication-title: Br. Med. J. doi: 10.1136/bmj.327.7408.195 – volume: 32 start-page: 3534 year: 2014 end-page: 3539 ident: CR10 article-title: End-of-life care for older patients with ovarian cancer is intensive despite high rates of hospice use publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2014.55.5383 – volume: 465 start-page: 1 year: 2018 end-page: 20 ident: CR49 article-title: Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.06.056 – ident: CR55 – volume: 19 start-page: 1 year: 2019 end-page: 18 ident: CR23 article-title: Machine learning in medicine: a practical introduction publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-019-0681-4 – ident: CR41 – volume: 111 start-page: 60 year: 2019 end-page: 68 ident: CR3 article-title: Invasive epithelial ovarian cancer survival by histotype and disease stage publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djy071 – volume: 26 start-page: 513 year: 2014 end-page: 527 ident: CR19 article-title: Establishing a common metric for depressive symptoms: linking the BDI-II, CES-D, and PHQ-9 to PROMIS depression publication-title: Psychol. Assess. doi: 10.1037/a0035768 – ident: 22614_CR50 doi: 10.1007/978-981-4585-18-7_2 – volume: 315 start-page: 284 year: 2016 ident: 22614_CR11 publication-title: JAMA doi: 10.1001/jama.2015.18604 – volume-title: Missed Opportunities: Patterns of Medical Care and Hospice Utilization Among Ovarian Cancer Patients year: 2014 ident: 22614_CR7 – ident: 22614_CR32 – volume: 327 start-page: 195 year: 2003 ident: 22614_CR13 publication-title: Br. Med. J. doi: 10.1136/bmj.327.7408.195 – year: 2020 ident: 22614_CR53 publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2020.4331 – volume: 4 start-page: 1 year: 2017 ident: 22614_CR2 publication-title: Gynecol. Oncol. Res. Pract. doi: 10.1186/s40661-017-0050-0 – volume: 16 start-page: 321 year: 2002 ident: 22614_CR30 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – year: 2020 ident: 22614_CR31 publication-title: Complexity doi: 10.1155/2020/8563030 – volume: 26 start-page: 513 year: 2014 ident: 22614_CR19 publication-title: Psychol. Assess. doi: 10.1037/a0035768 – volume: 38 start-page: 565 year: 2020 ident: 22614_CR25 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2020.38.15_suppl.565 – volume: 18 start-page: 263 year: 2011 ident: 22614_CR20 publication-title: Assessment doi: 10.1177/1073191111411667 – volume-title: The Effect of a Multidisciplinary Palliative Care Initiative on End of Life Care in Gynecologic Oncology Patients year: 2017 ident: 22614_CR9 – volume: 13 start-page: 281 year: 2012 ident: 22614_CR43 publication-title: J. Mach. Learn. Res. – year: 1991 ident: 22614_CR39 publication-title: Ann. Stat. doi: 10.1214/aos/1176347963 – ident: 22614_CR41 – volume: 300 start-page: 1665 year: 2008 ident: 22614_CR12 publication-title: JAMA J. Am. Med. Assoc. doi: 10.1001/jama.300.14.1665 – volume: 38 start-page: 520 year: 2020 ident: 22614_CR24 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2020.38.15_suppl.520 – volume: 97 start-page: 105524 year: 2019 ident: 22614_CR28 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105524 – volume: 10 start-page: e33182 year: 2022 ident: 22614_CR48 publication-title: JMIR Med. Inf. doi: 10.2196/33182 – volume: 5 start-page: 338 year: 2020 ident: 22614_CR36 publication-title: JCO Clin. Cancer Inform. – ident: 22614_CR27 doi: 10.1007/978-981-10-2777-2_7 – volume: 6 start-page: e012799 year: 2016 ident: 22614_CR22 publication-title: BMJ Open doi: 10.1136/bmjopen-2016-012799 – volume: 38 start-page: 2435 year: 2002 ident: 22614_CR4 publication-title: Eur. J. Cancer doi: 10.1016/S0959-8049(02)00495-1 – volume: 465 start-page: 1 year: 2018 ident: 22614_CR49 publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.06.056 – year: 2021 ident: 22614_CR14 publication-title: Cochrane Database Syst. Rev. doi: 10.1002/14651858.CD011589.pub2 – ident: 22614_CR40 doi: 10.1007/BF00994018 – volume: 19 start-page: 1 year: 2019 ident: 22614_CR23 publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-019-0681-4 – volume: 33 start-page: 1 year: 2010 ident: 22614_CR38 publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – ident: 22614_CR44 doi: 10.1007/978-0-387-30164-8_252 – ident: 22614_CR55 doi: 10.1109/IJCNN52387.2021.9534411 – volume: 16 start-page: 385 year: 1997 ident: 22614_CR37 publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 – year: 2019 ident: 22614_CR21 publication-title: JAMA J. Am. Med. Assoc. doi: 10.1001/jama.2019.16489 – ident: 22614_CR35 doi: 10.1097/SLA.0000000000004862 – volume: 2 start-page: e1915997 year: 2019 ident: 22614_CR54 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.15997 – ident: 22614_CR6 – volume: 32 start-page: 569 year: 2010 ident: 22614_CR42 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.187 – volume: 27 start-page: 1634 year: 2018 ident: 22614_CR34 publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280216666564 – volume: 32 start-page: 3534 year: 2014 ident: 22614_CR10 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2014.55.5383 – volume: 67 start-page: 7 year: 2017 ident: 22614_CR1 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21387 – volume: 170 start-page: 51 year: 2019 ident: 22614_CR26 publication-title: Ann. Intern. Med. doi: 10.7326/M18-1376 – volume: 111 start-page: 60 year: 2019 ident: 22614_CR3 publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djy071 – volume: 363 start-page: 2477 year: 2010 ident: 22614_CR15 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1011024 – volume: 42 start-page: 463 year: 2012 ident: 22614_CR45 publication-title: Syst. Man Cybern. Part C Appl. Rev. doi: 10.1109/TSMCC.2011.2161285 – volume: 36 start-page: e12363 year: 2019 ident: 22614_CR51 publication-title: Expert Syst. doi: 10.1111/exsy.12363 – ident: 22614_CR5 – volume: 34 start-page: 590 year: 2007 ident: 22614_CR16 publication-title: J. Pain Symptom Manag. doi: 10.1016/j.jpainsymman.2007.01.008 – volume: 42 start-page: 377 year: 2009 ident: 22614_CR17 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2008.08.010 – volume: 465 start-page: 1 year: 2018 ident: 22614_CR29 publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.06.056 – volume: 28 start-page: 88 year: 2014 ident: 22614_CR18 publication-title: J. Anxiety Disord. doi: 10.1016/j.janxdis.2013.11.006 – volume: 14 start-page: 1 year: 2013 ident: 22614_CR52 publication-title: BMC Bioinform. – ident: 22614_CR46 – volume-title: The Utilization of Palliative Care in Gynecologic Oncology Patients Near the End of Life year: 2012 ident: 22614_CR8 – volume: 320 start-page: 469 year: 2000 ident: 22614_CR47 publication-title: BMJ doi: 10.1136/bmj.320.7233.469 – volume: 2014 start-page: 1787 year: 2014 ident: 22614_CR33 publication-title: AMIA Annu. Symp. Proc. |
| SSID | ssj0000529419 |
| Score | 2.433103 |
| Snippet | Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately... Abstract Contrary to national guidelines, women with ovarian cancer often receive treatment at the end of life, potentially due to the difficulty in accurately... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 21269 |
| SubjectTerms | 631/67/1517/1709 692/308/409 Algorithms Datasets Decision making Female Humanities and Social Sciences Humans Learning algorithms Machine Learning Mortality multidisciplinary Ovarian cancer Ovarian Neoplasms Patient Reported Outcome Measures Patients Prognosis Schools Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC4kIOpBfGc0SgvezJCe6d6Z7qOKIQiKBwO5Nf2aKGxmwz4M--9T1T077qJED153eqC36qvtr7aqvwJ4423wQje-9MEHEtV2pQoNp1RFY3oQ69bR5eTPX5qTU_npbHK2NeqLesKyPHA23FHgDg9hGRthhQxKI7-SHiPDuthxJ9I9cq70VjKVVb1rLSs93JLhQh0t8KSi22SYeyHjqGRZ7ZxESbD_Tyzz92bJsWJ6D-6s-ku7vrLT6dahdPwA7g9skr3L3-Ih3Ir9I7id50uuH8Pi65zqMNTZzCrFy2DX7CLxbeTeDOkqSwIMjP6MZbOfmDbbnnnCwZxRQ_w5u0i9lpENwyXOme0DG7RYy1xviIHNVksEbmTUbvoETo8_fvtwUg5TFkqPbG1ZIj8JMnTct1IHDO-2sx45kvK8q6WoA1JAza22TjZVcHUXouiimtQqNm3nohZPYa-f9XEfGHIvkgv0kUcurUIXTTjSKxeca7R3toBqY3HjBwlymoQxNakULpTJXjLoJZO8ZKoC3o7vXGYBjhtXvydHjitJPDt9gJAyA6TM3yBVwMEGBmaI6IXB7F2RFo7QBbweH2MsUoHF9nG2ojUTUSO_E7iPZxk1405EIxWmprKAdgdPO1vdfdL_-J70vklQCX95CzjcIO_Xtm4yxeGIzn-w3PP_YbkXcLemCKN2H3UAe8v5Kr5E0rZ0r1J8XgMbxDx0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFVEfxG-jVVbwzYZusnvJ7oOIlZYieBSx0LewX7kK1-S8D-X-e2fyVQ_l8DXZwGRnZvc3O7O_AXjrjHdCZy523nki1bax8hmnUEVjeBDS3NLl5C-T7OxCfr4cX-7BpL8LQ2WV_ZrYLNS-dnRGfoTRkyIuEqE_zH_E1DWKsqt9Cw3TtVbw7xuKsVuwnxIz1gj2j08m51-HUxfKa8lEd7dnuFBHS9zB6JYZxmSIRBIZJ1s7VEPk_y_0-XcR5ZBJvQd31tXcbH6Z2eyPzer0AdzvUCb72JrFQ9gL1SO43fad3DyG5fmC8jNU8cwSxWNvNuy6weGIyRnCWNYQMzA6pGX1TwynTcUc2ceCUaH8lF03NZiBdU0npsxUnnUcrXGbhwie1esVTm5gVIb6BC5OT759Oou77guxQxS3ihG3eOlL7nKpPbp9XhqH2Ek5XqZSpB6hoeZGGyuzxNu09EGUQY1TFbK8tEGLpzCq6io8B4aYjGgEXeCBS6OMDWOOsMt6azPtrIkg6We8cB01OXXImBVNilyootVSgVoqGi0VSQTvhm_mLTHHztHHpMhhJJFqNw_qxbTofLTw3CLekyETRkivNEJ56XARRnlLbkUewUFvBkXn6cvixi4jeDO8Rh-lxIupQr2mMWORIu4TKMez1moGSUQmFYasMoJ8y562RN1-U32_anjAiWgJV-QIDnvLuxFr11QcDtb5HzP3YvdPv4S7KfkOFfioAxitFuvwCmHayr7ufO83zr06Yw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_KFVEfpH6vthLBN28xu8ntJo-ntJQDRdBC30K-thaue-U-lPvvndndW10qpb5ukmXIzCS_yUx-AXjnbfBCFz71wQci1XapCgWnUEVjeBDz0tHl5M9fitMzOTufnO_BeHcXZpC_b6i7V7jF0DUwDJoQKmQyxVhnX6FhqhHsT6ezb7P-TIWyVjLT3d0YHP7h5uDB_tPQ9P8LW94skezzpA_h_qa-tttfdj7_ays6OYBHHYZk01bpj2Ev1k_gXvuq5PYprL4uKftC9cwsUzwNdsuuGpSNiJshSGUN7QKjI1i2-InBsq2ZJ-0vGZXBX7CrpsIysu5JiQtm68A6Bta0zTLEwBabNZprZFRk-gzOTo6_fzpNu7cVUo8YbZ0iKgkyVNyXUgd06rKyHpGR8rzKpcgDAj_NrbZOFllweRWiqKKa5CoWZeWiFs9hVC_q-BIYIi4iCfSRRy6tsi5OOIIqF5wrtHc2gWw348Z3xOP0_sXcNAlwoUyrJYNaMo2WTJbA-37MdUu7cWvvj6TIvidRZjcf0JJM54EmcIdoTsZCWCGD0gjUpcclFuWtuBNlAoc7MzCdH68MxuyKGHCETuBt34weSGkVW8fFhvpMRI6oTqAcL1qr6SURhVQYkMoEyoE9DUQdttSXPxqWb6JRwvU2gfHO8v6IddtUjHvrvMPMvfq_v7-GBzn5EpXzqEMYrZebeISgbO3edL74G-LuLn4 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADLbKVgg48H4EChokbjRlNjNJJseCqCokqh5YUU7RvLJFbLPV7ga0_HrsyQMWqopeE0dyPI7nc-z5DPDKamdFkdnYOuuIVNvEymWcUpUC0wOf5IYOJ388yg4n8sNJerIFWX8WJjTtB0rLEKb77rA3S9xo6DAYpk4IGMYyxgjjqmuwnaWIwUewPTk63v9Ck-QQo8QIE5LuhAwX6oKHN3ahQNZ_EcL8t1FyqJbeghtNfa7XP_Rs9seGdHAHPvev0vahfNtrVmbP_vyL5fHq73oXbncYle23kvdgy9f34Xo7tXL9AJbHC6ruUL80GyseO71mZwHFI6JnCIJZoHVg9IuXzb9jMq5rZsm7Foza7KfsLHRwetaNrJgyXTvWMbzGbRXDOzZvVqiwZ9TE-hAmB-8_vTuMu9kNsUUMuIoR9TjpKm5zWThcjbzSFpGXsrxKpEgcAsuC60IbmY2dSSrnReVVmiif5ZXxhXgEo3pe-yfAENERCaH13HOplTY-5QjajDMmK6zREYz7tSxtR2xO8zVmZSiwC1W2Bi3RoGUwaDmO4PXwzHlL63Gp9FtykUGSKLnDhfliWnbLVjpuEC1KnwktpFMFJgLSYghHfStuRB7BTu9gZRcnlmWSS0UMO6KI4OVwG79wKtvo2s8bkklFgqhRoB6PW38cNBGZVJjwygjyDU_dUHXzTv31NLCIE00TxvMIdnuf_q3WZabYHfz-Pyz39Griz-BmQm5P7UJqB0arReOfI-hbmRfdF_4L6OdRBA priority: 102 providerName: Unpaywall |
| Title | Predicting 180-day mortality for women with ovarian cancer using machine learning and patient-reported outcome data |
| URI | https://link.springer.com/article/10.1038/s41598-022-22614-1 https://www.ncbi.nlm.nih.gov/pubmed/36481644 https://www.proquest.com/docview/2748053539 https://www.proquest.com/docview/2753297631 https://pubmed.ncbi.nlm.nih.gov/PMC9732183 https://www.nature.com/articles/s41598-022-22614-1.pdf https://doaj.org/article/d0b6124e63a34d8981d4c887abef0b37 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Health & Medical Collection (via ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEF_ugagfxLfRs6wgfvGiSXab7H4Q6ZU7jsKVohbqp7CvVKGX9PpQ-987k5cWS_FTIbst09mZ3d9kZn9DyGujrGEyNr6xxiKptvaFjQMMVSSEBy5KNF5OvhrGl2M-mHQnB6Qpt60VuNwZ2mE_qfFi9u7XzeYjOPyH6sq4eL-EQwgvikFYBWAi5H74Zn7jY2MpTMDWXTYOyTEcXhK7O1zVEUBF_x1JHsr6Os3uX9s6skpm_11w9N-qyja1epfcXudztfmpZrO_Tq-L--ReDTtpr7KTB-TA5Q_JraoR5eYRWY4WmLDBEmgaisC3akOvS50ASKeAa2nJ1EDxrS0tfkB8rXJq0GAWFCvnp_S6LMp0tO5CMaUqt7QmbfWrxISztFivwMIdxbrUx2R8cf6lf-nX7Rh8A7Bu5QOQsdxmgUm4tLAPJJkyAKaECbKIs8gCVpSBkkrzOLQ6yqxjmRPdSLg4ybST7Ak5yovcPSMUQBryChoXuIArobTrBoDDtNU6lkYrj4SNxlNTc5Vjy4xZWubMmUirVUphldJyldLQI2_b78wrpo69s89wIduZyLJdPigW07R22tQGGgAgdzFTjFshAdtzA7syyJsFmiUeOWnMIG0sN4UwXyBpDpMeedUOg9NiJkblrljjnC6LAAgykONpZTWtJCzmAmJY7pFky562RN0eyb9_K4nBkXkJtmiPnDaW90esfao4ba3zPzT3fP-ffkHuROg7WPEjTsjRarF2LwG3rXSHHCaTpEOOe73B5wF8np0PR5_gaT_ud8p3IZ3SN2FkPBz1vv4GecZGFw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqhwQLwJFDASnGhUJ_YmzqFCFFptabuqUCv1ZvzKgrRNln1Q7Z_jtzGTV1mBVlx6TRzJ8YxnvvGMvyHkjdXO8iyxoXXWIam2CaVLGIYqGYQHPk4NXk4-GST9c_H5onexRn61d2GwrLK1iZWhdqXFM_IdiJ4kcpHw7P34R4hdozC72rbQ0E1rBbdbUYw1FzuO_OIKQrjp7uEnkPfbOD7YP_vYD5suA6EFtDILwT874XJmU5E5UO801xYwgrQsjwWPHUCgjOlMG5FEzsS58zz3shdLn6S58UjGBC5gQ3CRQfC3sbc_OP3SnfJgHk1EWXNbh3G5MwWPibfaIAYE5BOJMFryiFXjgH-h3b-LNrvM7R2yOS_GenGlR6M_nOPBPXK3QbX0Q62G98maLx6QW3Wfy8VDMj2dYD4IK6xpJFno9IJeVrgfYgAKsJlWRBAUD4Vp-RPCd11Qi_o4oViYP6SXVc2np02TiyHVhaMNJ2xY5z28o-V8BsL0FMteH5HzG5HDY7JelIV_SihgQKQttJ55JrTUxvcYwDzjjEkya3RAonbFlW2o0LEjx0hVKXkuVS0lBVJSlZRUFJB33Tfjmghk5eg9FGQ3Ekm8qwflZKgam6AcM4AvhU-45sLJDEIHYcHow3xzZngakK1WDVRjWabqeh8E5HX3GmwCJnp04cs5junxGHAmh3k8qbWmmwlPhIQQWQQkXdKnpakuvym-f6t4x5HYCTxAQLZbzbue1qql2O608z9W7tnqn35FNvtnJ8fq-HBw9JzcjnEfYXGR3CLrs8ncvwCIODMvm31Iydeb3vq_Af5ad5U |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HxJtAASPBiUbrxN7EOVQIKKuWQtUDlfbm-pUFaZss-2i1f62_rjN5lRVoxaXXxJEcz8PfeMbfEPLWamd5ltjQOuuQVNuE0iUMQ5UMwgMfpwYvJ38_TPaOxddhf7hBLtq7MFhW2frEylG70uIZeQ-iJ4lcJDzr5U1ZxNHu4MPkd4gdpDDT2rbTqFXkwC_PIXyb7ezvgqzfxfHgy4_Pe2HTYSC0gFTmIezNTric2VRkDlQ7zbUFfCAty2PBYwfwJ2M600YkkTNx7jzPvezH0idpbjwSMYH7v5FynmE5YTpMu_MdzKCJKGvu6TAuezPYK_E-G0R_gHkiEUYre2HVMuBfOPfvcs0uZ3uX3F4UE7081-PxH9vi4D651-BZ-rFWwAdkwxcPyc26w-XyEZkdTTEThLXVNJIsdHpJTyvED-ifAmCmFQUExeNgWp5B4K4LalETpxRL8kf0tKr29LRpbzGiunC0YYMN64yHd7RczEGMnmLB62NyfC1SeEI2i7LwzwgF9IeEhdYzz4SW2vg-A4BnnDFJZo0OSNSuuLINCTr24hirKhnPpaqlpEBKqpKSigLyvvtmUlOArB39CQXZjUT67upBOR2pxhsoxwwgS-ETrrlwMoOgQVhw9zDfnBmeBmSrVQPV-JSZurKAgLzpXoM3wBSPLny5wDF9HgPC5DCPp7XWdDPhiZAQHIuApCv6tDLV1TfFr58V4zhSOoHvD8h2q3lX01q3FNuddv7Hyj1f_9OvyS0wePVt__DgBbkToxlhVZHcIpvz6cK_BGw4N68qI6Tk5Lqt_hKtyHUv |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADLbKVgg48H4EChokbjRlNjNJJseCqCokqh5YUU7RvLJFbLPV7ga0_HrsyQMWqopeE0dyPI7nc-z5DPDKamdFkdnYOuuIVNvEymWcUpUC0wOf5IYOJ388yg4n8sNJerIFWX8WJjTtB0rLEKb77rA3S9xo6DAYpk4IGMYyxgjjqmuwnaWIwUewPTk63v9Ck-QQo8QIE5LuhAwX6oKHN3ahQNZ_EcL8t1FyqJbeghtNfa7XP_Rs9seGdHAHPvev0vahfNtrVmbP_vyL5fHq73oXbncYle23kvdgy9f34Xo7tXL9AJbHC6ruUL80GyseO71mZwHFI6JnCIJZoHVg9IuXzb9jMq5rZsm7Foza7KfsLHRwetaNrJgyXTvWMbzGbRXDOzZvVqiwZ9TE-hAmB-8_vTuMu9kNsUUMuIoR9TjpKm5zWThcjbzSFpGXsrxKpEgcAsuC60IbmY2dSSrnReVVmiif5ZXxhXgEo3pe-yfAENERCaH13HOplTY-5QjajDMmK6zREYz7tSxtR2xO8zVmZSiwC1W2Bi3RoGUwaDmO4PXwzHlL63Gp9FtykUGSKLnDhfliWnbLVjpuEC1KnwktpFMFJgLSYghHfStuRB7BTu9gZRcnlmWSS0UMO6KI4OVwG79wKtvo2s8bkklFgqhRoB6PW38cNBGZVJjwygjyDU_dUHXzTv31NLCIE00TxvMIdnuf_q3WZabYHfz-Pyz39Griz-BmQm5P7UJqB0arReOfI-hbmRfdF_4L6OdRBA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+180-day+mortality+for+women+with+ovarian+cancer+using+machine+learning+and+patient-reported+outcome+data&rft.jtitle=Scientific+reports&rft.au=Sidey-Gibbons%2C+Chris+J&rft.au=Sun%2C+Charlotte&rft.au=Schneider%2C+Amy&rft.au=Lu%2C+Sheng-Chieh&rft.date=2022-12-08&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-22614-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |