A compute-in-memory chip based on resistive random-access memory
Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) 1 promises to meet such demand by storing AI model weights in dense,...
Saved in:
Published in | Nature (London) Vol. 608; no. 7923; pp. 504 - 512 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.08.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-022-04992-8 |
Cover
Abstract | Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM)
1
promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory
2
–
5
. Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware
6
–
17
, it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST
18
and 85.7 percent on CIFAR-10
19
image classification, 84.7-percent accuracy on Google speech command recognition
20
, and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task.
A compute-in-memory neural-network inference accelerator based on resistive random-access memory simultaneously improves energy efficiency, flexibility and accuracy compared with existing hardware by co-optimizing across all hierarchies of the design. |
---|---|
AbstractList | Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM)
1
promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory
2
–
5
. Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware
6
–
17
, it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST
18
and 85.7 percent on CIFAR-10
19
image classification, 84.7-percent accuracy on Google speech command recognition
20
, and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task.
A compute-in-memory neural-network inference accelerator based on resistive random-access memory simultaneously improves energy efficiency, flexibility and accuracy compared with existing hardware by co-optimizing across all hierarchies of the design. Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM)1 promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory2-5. Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware6-17, it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM-a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST18 and 85.7 percent on CIFAR-1019 image classification, 84.7-percent accuracy on Google speech command recognition20, and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task.Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM)1 promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory2-5. Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware6-17, it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM-a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST18 and 85.7 percent on CIFAR-1019 image classification, 84.7-percent accuracy on Google speech command recognition20, and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task. Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory. Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware, it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM-a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST and 85.7 percent on CIFAR-10 image classification, 84.7-percent accuracy on Google speech command recognition, and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task. Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) 1 promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory 2–5 . Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware 6–17 , it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST 18 and 85.7 percent on CIFAR-10 19 image classification, 84.7-percent accuracy on Google speech command recognition 20 , and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task. Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory . Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware , it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM-a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST and 85.7 percent on CIFAR-10 image classification, 84.7-percent accuracy on Google speech command recognition , and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task. |
Author | Qian, He Kubendran, Rajkumar Zhang, Wenqiang Schaefer, Clemens Wong, H.-S. Philip Gao, Bin Wu, Huaqiang Eryilmaz, Sukru Burc Raina, Priyanka Wan, Weier Cauwenberghs, Gert Wu, Dabin Deiss, Stephen Joshi, Siddharth |
Author_xml | – sequence: 1 givenname: Weier orcidid: 0000-0003-3507-9014 surname: Wan fullname: Wan, Weier email: weierwan@stanford.edu organization: Stanford University, University of California San Diego – sequence: 2 givenname: Rajkumar orcidid: 0000-0003-3066-4898 surname: Kubendran fullname: Kubendran, Rajkumar organization: University of California San Diego, University of Pittsburgh – sequence: 3 givenname: Clemens surname: Schaefer fullname: Schaefer, Clemens organization: University of Notre Dame – sequence: 4 givenname: Sukru Burc surname: Eryilmaz fullname: Eryilmaz, Sukru Burc organization: Stanford University – sequence: 5 givenname: Wenqiang surname: Zhang fullname: Zhang, Wenqiang organization: Tsinghua University – sequence: 6 givenname: Dabin surname: Wu fullname: Wu, Dabin organization: Tsinghua University – sequence: 7 givenname: Stephen surname: Deiss fullname: Deiss, Stephen organization: University of California San Diego – sequence: 8 givenname: Priyanka surname: Raina fullname: Raina, Priyanka organization: Stanford University – sequence: 9 givenname: He surname: Qian fullname: Qian, He organization: Tsinghua University – sequence: 10 givenname: Bin orcidid: 0000-0002-2417-983X surname: Gao fullname: Gao, Bin email: gaob1@tsinghua.edu.cn organization: Tsinghua University – sequence: 11 givenname: Siddharth surname: Joshi fullname: Joshi, Siddharth email: sjoshi2@nd.edu organization: University of California San Diego, University of Notre Dame – sequence: 12 givenname: Huaqiang surname: Wu fullname: Wu, Huaqiang email: wuhq@tsinghua.edu.cn organization: Tsinghua University – sequence: 13 givenname: H.-S. Philip surname: Wong fullname: Wong, H.-S. Philip email: hspwong@stanford.edu organization: Stanford University – sequence: 14 givenname: Gert orcidid: 0000-0002-3166-5529 surname: Cauwenberghs fullname: Cauwenberghs, Gert email: gert@ucsd.edu organization: University of California San Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35978128$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS1URG8Lf4AFisSGjWH8iu0Noqp4SZXYwNpynLmtq8S-2Eml_nsS0vLooqtZzHeOzsw5IUcpJyTkJYO3DIR5VyVTpqXAOQVpLafmCdkxqVsqW6OPyA6AGwpGtMfkpNZrAFBMy2fkWCirDeNmRz6cNSGPh3lCGhMdcczltglX8dB0vmLf5NQUrLFO8Qab4lOfR-pDwFqbDX5Onu79UPHF3TwlPz59_H7-hV58-_z1_OyCBiVhopb3qEEZ7Vv0-072IFurOfg96zjX3oreCGYkClT9shdiATSzLUfeQ6fEKXm_-R7mbsQ-YJqKH9yhxNGXW5d9dP9vUrxyl_nGWWGUNHwxeHNnUPLPGevkxlgDDoNPmOfquAZhTavFir5-gF7nuaTlvJVSUikBa6JX_yb6E-X-uQtgNiCUXGvBvQtx8lPMa8A4OAZu7dFtPbqlR_e7R7dK-QPpvfujIrGJ6gKnSyx_Yz-i-gVv3a7u |
CitedBy_id | crossref_primary_10_1038_s41377_023_01168_5 crossref_primary_10_1088_1674_4926_44_5_053102 crossref_primary_10_1126_science_adh1174 crossref_primary_10_1111_nyas_15256 crossref_primary_10_3390_ma15249087 crossref_primary_10_1021_acsnano_3c03505 crossref_primary_10_1038_s41586_024_08253_8 crossref_primary_10_1039_D3NH00520H crossref_primary_10_1109_TED_2023_3321562 crossref_primary_10_1063_5_0174863 crossref_primary_10_1002_advs_202309538 crossref_primary_10_1038_s41467_025_57543_w crossref_primary_10_1002_adma_202307393 crossref_primary_10_1109_TED_2023_3346857 crossref_primary_10_1007_s40820_024_01550_x crossref_primary_10_1038_s41598_024_74667_z crossref_primary_10_1002_adma_202307951 crossref_primary_10_1016_j_jfranklin_2024_107363 crossref_primary_10_1016_j_nanoen_2024_109646 crossref_primary_10_1002_smll_202304787 crossref_primary_10_1016_j_jallcom_2024_177487 crossref_primary_10_1063_5_0221159 crossref_primary_10_1109_JSEN_2024_3506937 crossref_primary_10_1126_sciadv_adp3710 crossref_primary_10_1016_j_mtcomm_2025_111642 crossref_primary_10_1038_s41928_024_01315_9 crossref_primary_10_1016_j_mattod_2024_08_027 crossref_primary_10_3390_ijms252212368 crossref_primary_10_1109_MNANO_2023_3297106 crossref_primary_10_3390_nano14060527 crossref_primary_10_1002_aelm_202400452 crossref_primary_10_1038_s41467_024_45670_9 crossref_primary_10_1109_ACCESS_2023_3234323 crossref_primary_10_3390_electronics13214255 crossref_primary_10_1109_TCAD_2024_3447216 crossref_primary_10_1063_5_0160109 crossref_primary_10_1039_D4NR03368J crossref_primary_10_1134_S1064226923100170 crossref_primary_10_1002_adfm_202303539 crossref_primary_10_1002_aisy_202400543 crossref_primary_10_1126_sciadv_adl3135 crossref_primary_10_1002_smsc_202300202 crossref_primary_10_1109_TCSVT_2023_3275708 crossref_primary_10_1002_adma_202301063 crossref_primary_10_1088_1361_6528_adb980 crossref_primary_10_1016_j_chaos_2023_113359 crossref_primary_10_1038_s41467_023_42792_4 crossref_primary_10_1126_sciadv_adj2908 crossref_primary_10_1038_s41928_023_01010_1 crossref_primary_10_1109_JXCDC_2024_3498837 crossref_primary_10_1063_5_0159338 crossref_primary_10_1109_JSSC_2023_3280357 crossref_primary_10_1021_acs_jpclett_5c00194 crossref_primary_10_1038_s41467_023_40770_4 crossref_primary_10_1038_s44287_023_00008_3 crossref_primary_10_1109_TED_2023_3280146 crossref_primary_10_1145_3696666 crossref_primary_10_1007_s11432_022_3695_1 crossref_primary_10_1109_TASC_2023_3252495 crossref_primary_10_1016_j_engappai_2023_106232 crossref_primary_10_3390_nano14100854 crossref_primary_10_3390_chips4010009 crossref_primary_10_1109_LED_2024_3355889 crossref_primary_10_1038_s44287_025_00141_1 crossref_primary_10_1016_j_mejo_2024_106189 crossref_primary_10_1109_ACCESS_2023_3260641 crossref_primary_10_1109_TCAD_2023_3322351 crossref_primary_10_1142_S0218127423300185 crossref_primary_10_1016_j_synthmet_2024_117598 crossref_primary_10_1038_s44335_024_00010_4 crossref_primary_10_1016_j_surfin_2024_104247 crossref_primary_10_1021_acs_nanolett_4c00124 crossref_primary_10_1002_adma_202204944 crossref_primary_10_1049_2023_1052063 crossref_primary_10_1063_5_0235758 crossref_primary_10_1016_j_mssp_2023_107673 crossref_primary_10_1021_acsnano_4c03278 crossref_primary_10_3389_femat_2022_1010613 crossref_primary_10_1002_aisy_202300399 crossref_primary_10_1038_s44335_024_00008_y crossref_primary_10_1088_1361_6528_ad4cf5 crossref_primary_10_1002_aelm_202300850 crossref_primary_10_1016_j_jallcom_2023_171096 crossref_primary_10_1039_D3CP02050A crossref_primary_10_1109_TSP_2025_3530149 crossref_primary_10_1038_s41586_023_05759_5 crossref_primary_10_1002_advs_202402667 crossref_primary_10_1038_s44287_024_00031_y crossref_primary_10_1016_j_surfin_2024_104418 crossref_primary_10_1109_MED_2023_3296084 crossref_primary_10_1364_OPTICA_543416 crossref_primary_10_1002_smsc_202300139 crossref_primary_10_1063_5_0232003 crossref_primary_10_1109_MC_2023_3278160 crossref_primary_10_1007_s11432_024_4240_x crossref_primary_10_3390_mi14030571 crossref_primary_10_1038_s41467_025_56286_y crossref_primary_10_1088_2053_1583_ad015f crossref_primary_10_1088_2634_4386_ad9b4a crossref_primary_10_1002_adfm_202416309 crossref_primary_10_1063_5_0158076 crossref_primary_10_1039_D4TC04649H crossref_primary_10_1038_s41586_023_06791_1 crossref_primary_10_1039_D3CS00918A crossref_primary_10_1021_acsnano_4c13450 crossref_primary_10_1021_acsnano_4c07454 crossref_primary_10_1038_s41928_024_01188_y crossref_primary_10_1088_1674_4926_44_10_104101 crossref_primary_10_3389_fnins_2024_1279708 crossref_primary_10_1098_rsta_2023_0389 crossref_primary_10_1038_s41586_025_08639_2 crossref_primary_10_1039_D3NH00554B crossref_primary_10_1109_TED_2024_3450437 crossref_primary_10_3390_chips3040014 crossref_primary_10_1002_aelm_202400006 crossref_primary_10_1016_j_cej_2024_154457 crossref_primary_10_1038_s41467_023_44620_1 crossref_primary_10_1038_s41566_023_01313_x crossref_primary_10_1109_JEDS_2023_3265875 crossref_primary_10_1002_adma_202305465 crossref_primary_10_1088_1361_6528_acda40 crossref_primary_10_1109_TASC_2025_3538699 crossref_primary_10_1016_j_orgel_2024_107002 crossref_primary_10_1021_acsaelm_2c00771 crossref_primary_10_1016_j_knosys_2024_112099 crossref_primary_10_1021_acsami_3c11495 crossref_primary_10_1016_j_carbon_2023_118656 crossref_primary_10_1016_j_mseb_2023_116755 crossref_primary_10_1038_s44287_024_00052_7 crossref_primary_10_1063_5_0158280 crossref_primary_10_1002_adfm_202300458 crossref_primary_10_1021_acsami_4c16223 crossref_primary_10_1109_ACCESS_2023_3258360 crossref_primary_10_1039_D3NH00421J crossref_primary_10_23919_emsci_2023_0015 crossref_primary_10_1063_5_0232217 crossref_primary_10_1063_5_0179424 crossref_primary_10_1002_pssa_202400689 crossref_primary_10_1109_TVLSI_2024_3370176 crossref_primary_10_1515_nanoph_2022_0553 crossref_primary_10_1063_5_0243471 crossref_primary_10_1109_JPROC_2024_3429360 crossref_primary_10_1038_s43588_024_00744_y crossref_primary_10_1002_aisy_202200407 crossref_primary_10_1038_s41467_023_44365_x crossref_primary_10_1038_s41467_024_46682_1 crossref_primary_10_1038_s43246_024_00573_6 crossref_primary_10_1103_PhysRevApplied_21_014028 crossref_primary_10_1109_JETCAS_2022_3207514 crossref_primary_10_1109_TMAG_2024_3491334 crossref_primary_10_1038_s41467_025_56412_w crossref_primary_10_1109_TDMR_2023_3261441 crossref_primary_10_1039_D4MA00133H crossref_primary_10_3389_fnano_2023_1147396 crossref_primary_10_1002_aelm_202300021 crossref_primary_10_1109_JETCAS_2022_3212314 crossref_primary_10_1007_s40042_025_01295_9 crossref_primary_10_1038_s41467_025_56079_3 crossref_primary_10_1063_5_0167669 crossref_primary_10_1109_JSSC_2022_3228765 crossref_primary_10_1109_JXCDC_2023_3258431 crossref_primary_10_1002_aelm_202200958 crossref_primary_10_1002_adma_202412549 crossref_primary_10_1063_5_0216429 crossref_primary_10_1109_TCSI_2024_3430290 crossref_primary_10_1063_5_0210317 crossref_primary_10_1002_aelm_202400106 crossref_primary_10_1109_JETCAS_2023_3329449 crossref_primary_10_1038_s44287_024_00037_6 crossref_primary_10_1063_5_0168089 crossref_primary_10_1002_adma_202310704 crossref_primary_10_3390_nano13142101 crossref_primary_10_1002_admt_202302238 crossref_primary_10_1016_j_mee_2023_112062 crossref_primary_10_1039_D4MH01676A crossref_primary_10_1016_j_nanoen_2025_110877 crossref_primary_10_3390_nano14080668 crossref_primary_10_1016_j_jallcom_2023_170846 crossref_primary_10_1038_s41928_023_01053_4 crossref_primary_10_1109_TCAD_2024_3358220 crossref_primary_10_1103_PhysRevB_109_115159 crossref_primary_10_1016_j_mtnano_2024_100543 crossref_primary_10_1088_2634_4386_ad29fc crossref_primary_10_1002_aisy_202300784 crossref_primary_10_1007_s10489_024_06091_9 crossref_primary_10_1109_JSSC_2024_3399615 crossref_primary_10_1109_LED_2024_3406033 crossref_primary_10_1016_j_sna_2024_115951 crossref_primary_10_1142_S1793604724500085 crossref_primary_10_34133_adi_0044 crossref_primary_10_1080_14686996_2022_2162323 crossref_primary_10_1063_5_0226206 crossref_primary_10_1063_5_0228748 crossref_primary_10_1126_science_adf5538 crossref_primary_10_1140_epjb_s10051_024_00703_6 crossref_primary_10_1145_3686259 crossref_primary_10_1038_s41928_024_01312_y crossref_primary_10_1039_D4NR00745J crossref_primary_10_1088_2631_7990_acef79 crossref_primary_10_1103_PhysRevApplied_21_034064 crossref_primary_10_1038_s41467_023_38021_7 crossref_primary_10_1038_s42256_023_00618_4 crossref_primary_10_1109_TED_2024_3479160 crossref_primary_10_3390_cryst13020323 crossref_primary_10_1038_s41928_023_00939_7 crossref_primary_10_1021_acsaelm_4c02323 crossref_primary_10_1038_s41467_024_52259_9 crossref_primary_10_1109_LSSC_2024_3520593 crossref_primary_10_1002_advs_202410765 crossref_primary_10_1038_s43588_024_00753_x crossref_primary_10_1109_JSSC_2023_3324335 crossref_primary_10_1007_s13391_024_00516_w crossref_primary_10_1038_s41467_023_41647_2 crossref_primary_10_1109_TETC_2023_3257684 crossref_primary_10_1002_adfm_202415648 crossref_primary_10_1038_s44172_023_00074_3 crossref_primary_10_3390_app132413309 crossref_primary_10_1038_s41467_023_42981_1 crossref_primary_10_1126_science_adi9405 crossref_primary_10_1002_adma_202300023 crossref_primary_10_1109_TCE_2024_3445341 crossref_primary_10_1109_TCSI_2022_3206238 crossref_primary_10_1098_rsta_2023_0393 crossref_primary_10_1002_adma_202307218 crossref_primary_10_1038_s41467_025_56319_6 crossref_primary_10_1039_D4MH01848F crossref_primary_10_1007_s11432_022_3627_8 crossref_primary_10_3389_fnins_2023_1198306 crossref_primary_10_1016_j_neucom_2023_126778 crossref_primary_10_1126_sciadv_ado8999 crossref_primary_10_1134_S2635167623601092 crossref_primary_10_1038_s41598_024_59298_8 crossref_primary_10_1088_2631_7990_ad2fea crossref_primary_10_1038_s44172_024_00226_z crossref_primary_10_1021_acs_nanolett_4c01606 crossref_primary_10_1007_s42247_023_00576_y crossref_primary_10_1002_adma_202311288 crossref_primary_10_1038_s41586_023_06337_5 crossref_primary_10_1109_TMAG_2023_3285257 crossref_primary_10_3390_electronics13193847 crossref_primary_10_1109_TED_2023_3321018 crossref_primary_10_1109_TCSII_2024_3371771 crossref_primary_10_1002_adfm_202212917 crossref_primary_10_1109_JIOT_2024_3448350 crossref_primary_10_1038_s41467_025_57183_0 crossref_primary_10_1109_JSSC_2023_3304174 crossref_primary_10_1016_j_apsusc_2023_157356 crossref_primary_10_1109_JSTQE_2025_3527904 crossref_primary_10_1063_5_0157680 crossref_primary_10_1038_s41467_024_51221_z crossref_primary_10_1038_s41578_023_00622_5 crossref_primary_10_1007_s11432_023_3888_0 crossref_primary_10_1109_TED_2024_3350550 crossref_primary_10_1038_s41928_024_01318_6 crossref_primary_10_1007_s42114_023_00686_5 crossref_primary_10_1007_s40820_024_01368_7 crossref_primary_10_1039_D2NR06773K crossref_primary_10_1002_adma_202301924 crossref_primary_10_1109_MSSC_2022_3201783 crossref_primary_10_1109_TED_2023_3321014 crossref_primary_10_1063_5_0136403 crossref_primary_10_3390_electronics14010030 crossref_primary_10_1038_s41467_024_52488_y crossref_primary_10_1038_s41467_025_56345_4 crossref_primary_10_1002_aisy_202300797 crossref_primary_10_1587_elex_21_20240071 crossref_primary_10_1145_3569940 crossref_primary_10_1109_JEDS_2024_3439712 crossref_primary_10_1016_j_mtnano_2023_100353 crossref_primary_10_1063_5_0190195 crossref_primary_10_31857_S0033849423100170 crossref_primary_10_3390_molecules27248888 crossref_primary_10_1109_LED_2024_3368146 crossref_primary_10_1109_JIOT_2024_3484396 crossref_primary_10_1021_acsaelm_2c01357 crossref_primary_10_1109_JSSC_2023_3314433 crossref_primary_10_1109_TCSII_2024_3442873 crossref_primary_10_1109_TED_2024_3521953 crossref_primary_10_1109_TCSI_2024_3458436 crossref_primary_10_1186_s40580_024_00415_8 crossref_primary_10_1038_s41467_025_58039_3 crossref_primary_10_1063_5_0133044 crossref_primary_10_1007_s40820_024_01441_1 crossref_primary_10_1039_D3NR02395H crossref_primary_10_1109_JPROC_2023_3276941 crossref_primary_10_1109_JXCDC_2024_3381888 crossref_primary_10_1002_aisy_202400594 crossref_primary_10_1109_TED_2024_3497917 crossref_primary_10_1088_2634_4386_ad33cc crossref_primary_10_1063_5_0167187 crossref_primary_10_1016_j_microrel_2025_115630 crossref_primary_10_1063_5_0167743 crossref_primary_10_1038_s41467_024_52132_9 crossref_primary_10_1109_TED_2024_3485029 crossref_primary_10_1016_j_ceramint_2024_05_090 crossref_primary_10_1016_j_device_2024_100546 crossref_primary_10_1016_j_mssp_2025_109438 crossref_primary_10_1080_14686996_2023_2188878 crossref_primary_10_1109_ACCESS_2023_3301562 crossref_primary_10_1007_s11432_023_3990_4 crossref_primary_10_1109_JSSC_2024_3470211 crossref_primary_10_3390_bdcc7040184 crossref_primary_10_1002_aelm_202400651 crossref_primary_10_1021_acs_jpclett_4c00600 crossref_primary_10_1002_aisy_202300579 crossref_primary_10_1002_adfm_202303697 crossref_primary_10_1016_j_mejo_2024_106537 crossref_primary_10_1021_acsami_3c13956 crossref_primary_10_1109_JETCAS_2022_3223295 crossref_primary_10_1016_j_apmt_2024_102214 crossref_primary_10_1109_TSMC_2024_3392732 crossref_primary_10_1088_2634_4386_ad6732 crossref_primary_10_1002_pssa_202300416 crossref_primary_10_1088_2634_4386_ace737 crossref_primary_10_1109_TCAD_2024_3366025 crossref_primary_10_1002_adfm_202313010 crossref_primary_10_1007_s10462_024_10787_2 crossref_primary_10_1109_TED_2023_3308527 crossref_primary_10_1016_j_matt_2022_10_017 crossref_primary_10_1109_LED_2022_3216558 crossref_primary_10_1038_s41467_024_44766_6 crossref_primary_10_1186_s11671_023_03775_y crossref_primary_10_3390_polym15224374 crossref_primary_10_1002_pssa_202300401 crossref_primary_10_1007_s11432_023_4021_y crossref_primary_10_1002_adfm_202418113 crossref_primary_10_1002_admt_202301762 crossref_primary_10_1016_j_device_2023_100218 crossref_primary_10_1038_s41467_023_43317_9 crossref_primary_10_1038_s41467_024_47764_w crossref_primary_10_1515_itit_2023_0018 crossref_primary_10_1002_inf2_12555 crossref_primary_10_1016_j_mtnano_2023_100441 crossref_primary_10_1007_s13391_024_00528_6 crossref_primary_10_1038_s41467_023_41958_4 crossref_primary_10_1002_advs_202303735 crossref_primary_10_1016_j_cap_2024_04_008 crossref_primary_10_1109_LED_2024_3521924 crossref_primary_10_1063_5_0141575 crossref_primary_10_1109_JXCDC_2025_3534560 crossref_primary_10_1016_j_cossms_2024_101199 crossref_primary_10_1016_j_cej_2024_148848 crossref_primary_10_1016_j_photonics_2023_101222 crossref_primary_10_1109_TED_2024_3379953 crossref_primary_10_1126_sciadv_adr6391 crossref_primary_10_1016_j_device_2024_100648 crossref_primary_10_35848_1347_4065_ad18a2 crossref_primary_10_1166_jno_2024_3530 crossref_primary_10_1038_s41467_024_48631_4 crossref_primary_10_1109_TED_2024_3427616 crossref_primary_10_1002_adma_202211305 crossref_primary_10_1002_adom_202301178 crossref_primary_10_1002_smsc_202300306 crossref_primary_10_1021_acs_nanolett_3c04820 crossref_primary_10_1002_aelm_202400625 crossref_primary_10_1103_PhysRevMaterials_6_084603 crossref_primary_10_1016_j_cossms_2024_101187 crossref_primary_10_1109_TCSII_2023_3336831 |
Cites_doi | 10.1038/s41928-021-00676-9 10.1109/TVLSI.2021.3063543 10.1162/neco.1997.9.8.1735 10.1038/s41586-021-04196-6 10.1038/nature14441 10.1109/TED.2019.2950595 10.1038/s41928-020-00505-5 10.1109/JSSC.2016.2616357 10.1109/JPROC.2012.2190369 10.1038/s41586-020-1942-4 10.1109/JSSC.2018.2865489 10.1109/TCSI.2014.2332264 10.1038/s41586-018-0180-5 10.1038/ncomms15199 10.1038/s41928-019-0288-0 10.1038/nnano.2017.83 10.1038/s41928-019-0270-x 10.1109/JSSC.2013.2239005 10.1038/nature14539 10.1109/TED.2016.2616483 10.1109/JSSC.2019.2960488 10.1109/TED.2021.3115993 10.1109/TED.2015.2439635 10.1038/ncomms3072 10.1038/s41586-019-1424-8 10.1109/72.485671 10.1109/5.726791 10.1088/0957-4484/23/7/075201 10.1038/s41928-018-0092-2 10.1038/s41928-018-0023-2 10.1109/CVPR.2016.90 10.1109/VLSIT.2018.8510690 10.1109/IEDM19573.2019.8993662 10.1109/ISSCC19947.2020.9062953 10.1109/ISCA.2016.12 10.1109/IEDM19573.2019.8993466 10.1109/ISSCC19947.2020.9062979 10.1145/3297858.3304048 10.23919/VLSIT.2019.8776485 10.23919/VLSIC.2019.8778028 10.1038/s41467-020-16108-9 10.1109/ISSCC19947.2020.9062949 10.1109/VLSITechnology18217.2020.9265066 10.1016/0893-6080(89)90020-8 10.1145/3297858.3304049 10.1109/CVPR.2019.00448 10.1109/ESSCIRC.2013.6649063 10.5281/zenodo.6558399 10.1109/VLSIT.2018.8510676 10.1109/ISSCC.2019.8662395 10.1109/IEDM.2013.6724691 10.23919/VLSICircuits52068.2021.9492362 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). Copyright Nature Publishing Group Aug 18, 2022 |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: Copyright Nature Publishing Group Aug 18, 2022 |
DBID | C6C AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/s41586-022-04992-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 512 |
ExternalDocumentID | PMC9385482 35978128 10_1038_s41586_022_04992_8 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 0B8 1CY 1VW 354 3EH 3O- 3V. 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 LGEZI LOTEE M0L MVM N4W NADUK NEJ NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK AFKWF C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 AGSTI PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-92de70587a6eafb4d0469720af1b227a93d83184e3e5dfb43304671962e2d0b53 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:12:44 EDT 2025 Fri Sep 05 13:44:34 EDT 2025 Sat Aug 23 13:08:14 EDT 2025 Wed Feb 19 02:07:51 EST 2025 Thu Apr 24 22:50:48 EDT 2025 Tue Jul 01 02:32:40 EDT 2025 Fri Feb 21 02:37:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7923 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-92de70587a6eafb4d0469720af1b227a93d83184e3e5dfb43304671962e2d0b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3166-5529 0000-0003-3507-9014 0000-0002-2417-983X 0000-0003-3066-4898 |
OpenAccessLink | https://www.nature.com/articles/s41586-022-04992-8 |
PMID | 35978128 |
PQID | 2705455305 |
PQPubID | 40569 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9385482 proquest_miscellaneous_2703986732 proquest_journals_2705455305 pubmed_primary_35978128 crossref_citationtrail_10_1038_s41586_022_04992_8 crossref_primary_10_1038_s41586_022_04992_8 springer_journals_10_1038_s41586_022_04992_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-18 |
PublicationDateYYYYMMDD | 2022-08-18 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Hung (CR9) 2021; 4 Xue (CR16) 2021; 4 Alibart, Gao, Hoskins, Strukov (CR42) 2012; 23 CR39 LeCun, Bottou, Bengio, Haffner (CR18) 1998; 86 CR38 CR37 CR35 CR34 CR33 CR30 Burr (CR24) 2015; 62 Ielmini, Wong (CR4) 2018; 1 Jiang (CR50) 2019; 66 Chen, Krishna, Emer, Sze (CR58) 2017; 52 Pei (CR61) 2019; 572 CR6 CR8 Lecun, Bengio, Hinton (CR31) 2015; 521 Wong (CR1) 2012; 100 Yao (CR5) 2020; 577 CR49 Cai (CR11) 2019; 2 CR47 CR46 Sheridan (CR26) 2017; 12 CR45 CR44 CR43 CR41 CR40 Cauwenberghs (CR51) 1996; 7 Chen (CR7) 2019; 2 Roy, Sridharan, Jain, Raghunathan (CR29) 2021; 29 Yao (CR27) 2017; 8 Wang (CR36) 2018; 1 Zimmer (CR59) 2020; 55 CR19 CR15 CR14 CR13 Prezioso (CR2) 2015; 521 CR12 CR55 CR10 CR54 CR53 CR52 Jung (CR48) 2022; 601 Tripathi, Murmann (CR57) 2014; 61 Alibart, Zamanidoost, Strukov (CR22) 2013; 4 Narayanan (CR17) 2021; 68 Lee (CR60) 2019; 54 Stepanovic, Nikolic (CR56) 2013; 48 CR28 CR23 Hochreiter, Schmidhuber (CR32) 1997; 9 CR21 Eryilmaz (CR25) 2016; 63 CR20 CR62 Ambrogio (CR3) 2018; 558 D Ielmini (4992_CR4) 2018; 1 Y Lecun (4992_CR31) 2015; 521 WH Chen (4992_CR7) 2019; 2 Y LeCun (4992_CR18) 1998; 86 4992_CR45 4992_CR44 4992_CR47 4992_CR46 SB Eryilmaz (4992_CR25) 2016; 63 4992_CR49 F Alibart (4992_CR42) 2012; 23 P Narayanan (4992_CR17) 2021; 68 4992_CR41 PM Sheridan (4992_CR26) 2017; 12 4992_CR40 4992_CR43 CX Xue (4992_CR16) 2021; 4 S Ambrogio (4992_CR3) 2018; 558 4992_CR34 G Cauwenberghs (4992_CR51) 1996; 7 4992_CR33 4992_CR35 J Pei (4992_CR61) 2019; 572 4992_CR38 4992_CR37 4992_CR39 F Cai (4992_CR11) 2019; 2 4992_CR30 JM Hung (4992_CR9) 2021; 4 M Prezioso (4992_CR2) 2015; 521 P Yao (4992_CR27) 2017; 8 4992_CR23 D Stepanovic (4992_CR56) 2013; 48 F Alibart (4992_CR22) 2013; 4 4992_CR28 S Jung (4992_CR48) 2022; 601 4992_CR62 4992_CR21 4992_CR20 YH Chen (4992_CR58) 2017; 52 GW Burr (4992_CR24) 2015; 62 Z Jiang (4992_CR50) 2019; 66 4992_CR19 P Yao (4992_CR5) 2020; 577 HSP Wong (4992_CR1) 2012; 100 4992_CR12 4992_CR55 4992_CR14 S Roy (4992_CR29) 2021; 29 4992_CR13 4992_CR15 Z Wang (4992_CR36) 2018; 1 4992_CR52 S Hochreiter (4992_CR32) 1997; 9 4992_CR10 4992_CR54 4992_CR6 4992_CR53 4992_CR8 B Zimmer (4992_CR59) 2020; 55 V Tripathi (4992_CR57) 2014; 61 J Lee (4992_CR60) 2019; 54 |
References_xml | – volume: 4 start-page: 921 year: 2021 end-page: 930 ident: CR9 article-title: A four-megabit compute-in-memory macro with eight-bit precision based on CMOS and resistive random-access memory for AI edge devices publication-title: Nat. Electron. doi: 10.1038/s41928-021-00676-9 – ident: CR45 – ident: CR49 – volume: 29 start-page: 730 year: 2021 end-page: 738 ident: CR29 article-title: TxSim: modeling training of deep neural networks on resistive crossbar systems publication-title: IEEE Trans. Very Large Scale Integr. Syst. doi: 10.1109/TVLSI.2021.3063543 – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: CR32 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 601 start-page: 211 year: 2022 end-page: 216 ident: CR48 article-title: A crossbar array of magnetoresistive memory devices for in-memory computing publication-title: Nature doi: 10.1038/s41586-021-04196-6 – ident: CR39 – ident: CR12 – volume: 521 start-page: 61 year: 2015 end-page: 64 ident: CR2 article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors publication-title: Nature doi: 10.1038/nature14441 – ident: CR35 – ident: CR54 – ident: CR8 – volume: 66 start-page: 5147 year: 2019 end-page: 5154 ident: CR50 article-title: Next-generation ultrahigh-density 3-D vertical resistive switching memory (VRSM)–Part II: design guidelines for device, array, and architecture publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2019.2950595 – volume: 4 start-page: 81 year: 2021 end-page: 90 ident: CR16 article-title: A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices publication-title: Nat. Electron. doi: 10.1038/s41928-020-00505-5 – volume: 52 start-page: 127 year: 2017 end-page: 138 ident: CR58 article-title: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2016.2616357 – ident: CR21 – ident: CR46 – ident: CR19 – volume: 100 start-page: 1951 year: 2012 end-page: 1970 ident: CR1 article-title: Metal-oxide RRAM publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2190369 – ident: CR15 – volume: 577 start-page: 641 year: 2020 end-page: 646 ident: CR5 article-title: Fully hardware-implemented memristor convolutional neural network publication-title: Nature doi: 10.1038/s41586-020-1942-4 – volume: 54 start-page: 173 year: 2019 end-page: 185 ident: CR60 article-title: UNPU: an energy-efficient deep neural network accelerator with fully variable weight bit precision publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2018.2865489 – volume: 61 start-page: 2236 year: 2014 end-page: 2242 ident: CR57 article-title: Mismatch characterization of small metal fringe capacitors publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2014.2332264 – volume: 558 start-page: 60 year: 2018 end-page: 67 ident: CR3 article-title: Equivalent-accuracy accelerated neural-network training using analogue memory publication-title: Nature doi: 10.1038/s41586-018-0180-5 – volume: 8 start-page: 15199 year: 2017 ident: CR27 article-title: Face classification using electronic synapses publication-title: Nat. Commun. doi: 10.1038/ncomms15199 – volume: 2 start-page: 420 year: 2019 end-page: 428 ident: CR7 article-title: CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors publication-title: Nat. Electron. doi: 10.1038/s41928-019-0288-0 – ident: CR43 – volume: 12 start-page: 784 year: 2017 end-page: 789 ident: CR26 article-title: Sparse coding with memristor networks publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.83 – volume: 2 start-page: 290 year: 2019 end-page: 299 ident: CR11 article-title: A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations publication-title: Nat. Electron. doi: 10.1038/s41928-019-0270-x – ident: CR47 – volume: 48 start-page: 971 year: 2013 end-page: 982 ident: CR56 article-title: A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2013.2239005 – ident: CR14 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR31 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: CR37 – ident: CR53 – volume: 63 start-page: 5004 year: 2016 end-page: 5011 ident: CR25 article-title: Training a probabilistic graphical model with resistive switching electronic synapses publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2016.2616483 – ident: CR30 – volume: 55 start-page: 920 year: 2020 end-page: 932 ident: CR59 article-title: A 0.32-128 TOPS, scalable multi-chip-module-based deep neural network inference accelerator with ground-referenced signaling in 16 nm publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2019.2960488 – ident: CR10 – ident: CR33 – volume: 68 start-page: 6629 year: 2021 end-page: 6636 ident: CR17 article-title: Fully on-chip MAC at 14 nm enabled by accurate row-wise programming of PCM-based weights and parallel vector-transport in duration-format publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2021.3115993 – volume: 62 start-page: 3498 year: 2015 end-page: 3507 ident: CR24 article-title: Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2015.2439635 – ident: CR6 – volume: 4 year: 2013 ident: CR22 article-title: Pattern classification by memristive crossbar circuits using ex situ and in situ training publication-title: Nat. Commun. doi: 10.1038/ncomms3072 – volume: 572 start-page: 106 year: 2019 end-page: 111 ident: CR61 article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture publication-title: Nature doi: 10.1038/s41586-019-1424-8 – ident: CR40 – ident: CR23 – volume: 7 start-page: 346 year: 1996 end-page: 361 ident: CR51 article-title: An analog VLSI recurrent neural network learning a continuous-time trajectory publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.485671 – ident: CR44 – volume: 86 start-page: 2278 year: 1998 end-page: 2323 ident: CR18 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: CR38 – volume: 23 start-page: 762 year: 2012 end-page: 775 ident: CR42 article-title: High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm publication-title: Nanotechnology doi: 10.1088/0957-4484/23/7/075201 – ident: CR52 – ident: CR13 – volume: 1 start-page: 333 year: 2018 end-page: 343 ident: CR4 article-title: In-memory computing with resistive switching devices publication-title: Nat. Electron. doi: 10.1038/s41928-018-0092-2 – ident: CR34 – ident: CR55 – ident: CR28 – ident: CR41 – ident: CR62 – ident: CR20 – volume: 1 start-page: 137 year: 2018 end-page: 145 ident: CR36 article-title: Fully memristive neural networks for pattern classification with unsupervised learning publication-title: Nat. Electron. doi: 10.1038/s41928-018-0023-2 – ident: 4992_CR43 doi: 10.1109/CVPR.2016.90 – volume: 29 start-page: 730 year: 2021 ident: 4992_CR29 publication-title: IEEE Trans. Very Large Scale Integr. Syst. doi: 10.1109/TVLSI.2021.3063543 – ident: 4992_CR52 doi: 10.1109/VLSIT.2018.8510690 – ident: 4992_CR30 doi: 10.1109/IEDM19573.2019.8993662 – volume: 55 start-page: 920 year: 2020 ident: 4992_CR59 publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2019.2960488 – volume: 4 year: 2013 ident: 4992_CR22 publication-title: Nat. Commun. doi: 10.1038/ncomms3072 – ident: 4992_CR15 doi: 10.1109/ISSCC19947.2020.9062953 – ident: 4992_CR37 doi: 10.1109/ISCA.2016.12 – volume: 601 start-page: 211 year: 2022 ident: 4992_CR48 publication-title: Nature doi: 10.1038/s41586-021-04196-6 – volume: 1 start-page: 333 year: 2018 ident: 4992_CR4 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0092-2 – ident: 4992_CR12 doi: 10.1109/IEDM19573.2019.8993466 – ident: 4992_CR19 – ident: 4992_CR49 – ident: 4992_CR14 doi: 10.1109/ISSCC19947.2020.9062979 – ident: 4992_CR41 – volume: 2 start-page: 420 year: 2019 ident: 4992_CR7 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0288-0 – ident: 4992_CR53 doi: 10.1145/3297858.3304048 – ident: 4992_CR13 doi: 10.23919/VLSIT.2019.8776485 – volume: 100 start-page: 1951 year: 2012 ident: 4992_CR1 publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2190369 – ident: 4992_CR28 – volume: 8 start-page: 15199 year: 2017 ident: 4992_CR27 publication-title: Nat. Commun. doi: 10.1038/ncomms15199 – ident: 4992_CR35 doi: 10.23919/VLSIC.2019.8778028 – ident: 4992_CR21 doi: 10.1038/s41467-020-16108-9 – ident: 4992_CR34 doi: 10.1109/ISSCC19947.2020.9062949 – ident: 4992_CR46 – ident: 4992_CR39 doi: 10.1109/VLSITechnology18217.2020.9265066 – volume: 1 start-page: 137 year: 2018 ident: 4992_CR36 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0023-2 – volume: 68 start-page: 6629 year: 2021 ident: 4992_CR17 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2021.3115993 – ident: 4992_CR45 doi: 10.1016/0893-6080(89)90020-8 – volume: 558 start-page: 60 year: 2018 ident: 4992_CR3 publication-title: Nature doi: 10.1038/s41586-018-0180-5 – volume: 12 start-page: 784 year: 2017 ident: 4992_CR26 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.83 – ident: 4992_CR38 doi: 10.1145/3297858.3304049 – volume: 9 start-page: 1735 year: 1997 ident: 4992_CR32 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 4992_CR62 – ident: 4992_CR33 – ident: 4992_CR55 doi: 10.1109/CVPR.2019.00448 – volume: 48 start-page: 971 year: 2013 ident: 4992_CR56 publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2013.2239005 – volume: 63 start-page: 5004 year: 2016 ident: 4992_CR25 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2016.2616483 – ident: 4992_CR40 doi: 10.1109/ESSCIRC.2013.6649063 – volume: 4 start-page: 81 year: 2021 ident: 4992_CR16 publication-title: Nat. Electron. doi: 10.1038/s41928-020-00505-5 – ident: 4992_CR47 doi: 10.5281/zenodo.6558399 – volume: 572 start-page: 106 year: 2019 ident: 4992_CR61 publication-title: Nature doi: 10.1038/s41586-019-1424-8 – ident: 4992_CR20 – volume: 521 start-page: 61 year: 2015 ident: 4992_CR2 publication-title: Nature doi: 10.1038/nature14441 – volume: 521 start-page: 436 year: 2015 ident: 4992_CR31 publication-title: Nature doi: 10.1038/nature14539 – ident: 4992_CR6 doi: 10.1109/VLSIT.2018.8510676 – volume: 23 start-page: 762 year: 2012 ident: 4992_CR42 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/7/075201 – volume: 4 start-page: 921 year: 2021 ident: 4992_CR9 publication-title: Nat. Electron. doi: 10.1038/s41928-021-00676-9 – volume: 7 start-page: 346 year: 1996 ident: 4992_CR51 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.485671 – volume: 2 start-page: 290 year: 2019 ident: 4992_CR11 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0270-x – volume: 54 start-page: 173 year: 2019 ident: 4992_CR60 publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2018.2865489 – volume: 61 start-page: 2236 year: 2014 ident: 4992_CR57 publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2014.2332264 – volume: 577 start-page: 641 year: 2020 ident: 4992_CR5 publication-title: Nature doi: 10.1038/s41586-020-1942-4 – volume: 66 start-page: 5147 year: 2019 ident: 4992_CR50 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2019.2950595 – volume: 52 start-page: 127 year: 2017 ident: 4992_CR58 publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2016.2616357 – volume: 86 start-page: 2278 year: 1998 ident: 4992_CR18 publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: 4992_CR44 – ident: 4992_CR10 doi: 10.1109/ISSCC.2019.8662395 – ident: 4992_CR54 – ident: 4992_CR23 doi: 10.1109/IEDM.2013.6724691 – ident: 4992_CR8 doi: 10.23919/VLSICircuits52068.2021.9492362 – volume: 62 start-page: 3498 year: 2015 ident: 4992_CR24 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2015.2439635 |
SSID | ssj0005174 |
Score | 2.7461455 |
Snippet | Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 504 |
SubjectTerms | 142/126 639/166/987 639/705/117 639/925/927/1007 Accuracy Algorithms Artificial intelligence Bayesian analysis Chips (memory devices) Circuit design Circuits CMOS Computer applications Design Design optimization Energy efficiency Flexibility Hardware Hierarchies Humanities and Social Sciences Image classification Image processing Image reconstruction Mathematical analysis Mathematical models Modelling multidisciplinary Neurons Object recognition Optimization techniques Random access memory Science Science (multidisciplinary) Semiconductors Software Speech recognition Versatility |
SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9sw8OhSBnsZa_eVrRsq7KFjE3X0YckPY2tLSyk0lLJC34wtyTSwOdmSDvbvdyfLCWlZH43OsnW6T93pDuBDprzJjJNckoui6lxyGxrH_aiqlW0yHeJ5x_k4P71SZ9f6egPG_V0YSqvsZWIU1H7q6Ix8Xxg0LqjHjf46-8WpaxRFV_sWGlVqreC_xBJjj2ATRbLOBrB5eDy-uFwlfdypy5yu0WTS7s9RlVlKyBWc3ACUE-uq6p79eT-N8k4sNaqok2fwNNmW7KAjhi3YCO02PI45nm6-DVuJj-dsLxWb_vgcvh0w1zV24JOW_6S827_M3UxmjPSbZ9OWoUNOguBPYKjXPMrUKjZZZB3wC7g6Of5-dMpTVwXu0Dpb8EL4gLi0pspD1dTKk4dsRFY1o1oIUxXSW2R0FWTQHsfpwCM3yKgiCJ_VWr6EQTttw2tgQcu6QP-ksU4p7wsbtFHe1qMGn7UxQxj1CCxdKjlOnS9-lDH0LW3ZIb1EpJcR6aUdwqflO7Ou4MaD0Dv9vpSJ-eblilSGsLscRrahWEjVhulthJGFzY0UQ3jVbePyc1JTITCBk5u1DV4CUEnu9ZF2chNLcxfSoguIc37uSWH1W_9fxZuHV_EWnohIlujv2x0YLH7fhndoCi3q94m-_wE5iALm priority: 102 providerName: ProQuest |
Title | A compute-in-memory chip based on resistive random-access memory |
URI | https://link.springer.com/article/10.1038/s41586-022-04992-8 https://www.ncbi.nlm.nih.gov/pubmed/35978128 https://www.proquest.com/docview/2705455305 https://www.proquest.com/docview/2703986732 https://pubmed.ncbi.nlm.nih.gov/PMC9385482 |
Volume | 608 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS-QwEB98INwX8XnuqUsO_KBosM2jSb-5u7jKgYuIwn4rbZPignbldj24_95J2q6sL_BLSsk0zWsyM8nkNwAHgTAqUDmn3JkoIos41bbIqQnTTOgikNbvd1wNoss78WcohwvAmrsw3mnfQ1r6ZbrxDjudoKDRzl2WUaekIxcvwrJWXLpZ3Yt6r24db5CX64syAdcflDEvjN5pmO8dJd-clnoh1F-D1Vp7JJ2qvuuwYMsNWPFenPlkA9ZrTp2QwxpO-mgTzjokr0I30FFJH51n7X-S34-eiJNghoxLgia3Y_V_lqDkMrhqpj6MIqmIt-Cuf37bu6R13ASao_41pTEzVgVSqzSyaZEJ42xgxYK0CDPGVBpzo5GVheVWGsx3WxqRQlZklpkgk3wblspxaXeAWMmzGC2QQudCGBNrK5UwOgsLfJdKtSBsOjDJa1BxF9viIfGH21wnVacn2OmJ7_REt-B49s1TBanxJfVeMy5JzV6ThGHzhAt4JFvwe5aNjOFOO9LSjp89DY91pDhrwc9qGGe_49JBfTEsXM0N8IzAgW7P55Sjew--HXONRh6WedJMhddqfd6KX98j34UfzE9TtPD1HixN_z7bfVR-plkbFtVQYap7oUv7F21Y7vS73QE-u-eD65u254cXmKn_4g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnRC8IDa-OgYYCSQQWEtsJ3YeJhiwqWNbhdAm7c1LYkerNNKydKD9c_xtnB2nVTextz1Gdpz4fL4vn-8H8DoSRkay5JQ7F0UUKafKViU1cV4IVUWJ9fGOg2E6OBLfjpPjJfjb3YVxaZWdTPSC2oxLFyPfYBKNC4dxk3yc_KIONcqdrnYQGnmAVjCbvsRYuNixZy__oAvXbO5-xfV-w9jO9uGXAQ0oA7REa2VKM2Ysjq1kntq8KoRxHqNkUV7FBWMyz7hRyPjCcpsYbHcBgFQi4zLLTFQ41AhUAcvCBVB6sPx5e_j9xzzJ5Eod6HBtJ-Jqo0HVqVwCMKPO7UC5tKgar9m719M2r5zdepW48wDuB1uWbLXMtwJLtl6FOz6ntGxWYSXIjYa8DcWt3z2ET1ukbIEk6KimP12e7yUpT0cT4vSpIeOanNvGCZ7flqAeNSjDcw_qSNrOj-DoVuj7GHr1uLZPgdiEFxn6Q5UqhTAmUzaRwqgirvA5kbIPcUdAXYYS5w5p40z7o3audEt0jUTXnuha9eH97J1JW-Djxt7r3brosNkbPWfNPryaNeM2dWcveW3HF74Pz1QqOevDk3YZZ5_jiSs8xnBwubDAsw6uBPhiSz069aXAM67Q5cQxP3SsMP-t_89i7eZZvIS7g8ODfb2_O9x7BveYZ1FFY7UOven5hX2OZti0eBF4ncDJbW-vf3tBPms |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3_T9QwFH8hEA2_GEHFU9SaaKLR5ra2W7sfiCJwAdELMZLwW93WLlyiu5MdGv5F_ypfu-4uB4Hf-HFp162v72v7-j4AryJhZCRLTrkLUUSRcqpsVVIT54VQVZRYv9_xdZjuH4vPJ8nJEvzr7sK4tMpOJ3pFbcal2yPvM4nOhcO4SfpVSIs42h18mPymDkHKnbR2cBp5gFkwW77cWLjkcWgv_mI412wd7OLav2ZssPd9Z58GxAFaoucypRkzFr-jZJ7avCqEcdGjZFFexQVjMs-4USgEwnKbGGx3mwGpRCZmlpmocAgSaA5WJFp9DARXPu0Nj77NE04u1YQOV3girvoNmlHlkoEZdSEI6qhFM3nF972awnnpHNebx8F9uBf8WrLdMuIaLNl6He74_NKyWYe1oEMa8iYUun77AD5uk7IFlaCjmv5yOb8XpDwdTYizrYaMa3JmG6eE_liCNtWgPs89wCNpOz-E41uh7yNYrse1fQzEJrzIMDaqVCmEMZmyiRRGFXGFz4mUPYg7AuoylDt3qBs_tT9250q3RNdIdO2JrlUP3s3embTFPm7svdmtiw6C3-g5m_bg5awZRdadw-S1HZ_7PjxTqeSsBxvtMs4-xxNXhIzh4HJhgWcdXDnwxZZ6dOrLgmdcYfiJY77vWGH-W9fP4snNs3gBd1HM9JeD4eFTWGWeQxWN1SYsT8_O7TP0yKbF88DqBH7ctnT9B8nVQq8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+compute-in-memory+chip+based+on+resistive+random-access+memory&rft.jtitle=Nature+%28London%29&rft.au=Wan%2C+Weier&rft.au=Kubendran%2C+Rajkumar&rft.au=Schaefer%2C+Clemens&rft.au=Eryilmaz%2C+Sukru+Burc&rft.date=2022-08-18&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=608&rft.issue=7923&rft.spage=504&rft_id=info:doi/10.1038%2Fs41586-022-04992-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |