A compute-in-memory chip based on resistive random-access memory

Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) 1 promises to meet such demand by storing AI model weights in dense,...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 608; no. 7923; pp. 504 - 512
Main Authors Wan, Weier, Kubendran, Rajkumar, Schaefer, Clemens, Eryilmaz, Sukru Burc, Zhang, Wenqiang, Wu, Dabin, Deiss, Stephen, Raina, Priyanka, Qian, He, Gao, Bin, Joshi, Siddharth, Wu, Huaqiang, Wong, H.-S. Philip, Cauwenberghs, Gert
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.08.2022
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-022-04992-8

Cover

Abstract Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) 1 promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory 2 – 5 . Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware 6 – 17 , it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST 18 and 85.7 percent on CIFAR-10 19 image classification, 84.7-percent accuracy on Google speech command recognition 20 , and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task. A compute-in-memory neural-network inference accelerator based on resistive random-access memory simultaneously improves energy efficiency, flexibility and accuracy compared with existing hardware by co-optimizing across all hierarchies of the design.
AbstractList Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) 1 promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory 2 – 5 . Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware 6 – 17 , it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST 18 and 85.7 percent on CIFAR-10 19 image classification, 84.7-percent accuracy on Google speech command recognition 20 , and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task. A compute-in-memory neural-network inference accelerator based on resistive random-access memory simultaneously improves energy efficiency, flexibility and accuracy compared with existing hardware by co-optimizing across all hierarchies of the design.
Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM)1 promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory2-5. Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware6-17, it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM-a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST18 and 85.7 percent on CIFAR-1019 image classification, 84.7-percent accuracy on Google speech command recognition20, and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task.Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM)1 promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory2-5. Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware6-17, it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM-a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST18 and 85.7 percent on CIFAR-1019 image classification, 84.7-percent accuracy on Google speech command recognition20, and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task.
Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory. Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware, it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM-a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST and 85.7 percent on CIFAR-10 image classification, 84.7-percent accuracy on Google speech command recognition, and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task.
Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) 1 promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory 2–5 . Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware 6–17 , it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM—a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST 18 and 85.7 percent on CIFAR-10 19 image classification, 84.7-percent accuracy on Google speech command recognition 20 , and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task.
Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM) promises to meet such demand by storing AI model weights in dense, analogue and non-volatile RRAM devices, and by performing AI computation directly within RRAM, thus eliminating power-hungry data movement between separate compute and memory . Although recent studies have demonstrated in-memory matrix-vector multiplication on fully integrated RRAM-CIM hardware , it remains a goal for a RRAM-CIM chip to simultaneously deliver high energy efficiency, versatility to support diverse models and software-comparable accuracy. Although efficiency, versatility and accuracy are all indispensable for broad adoption of the technology, the inter-related trade-offs among them cannot be addressed by isolated improvements on any single abstraction level of the design. Here, by co-optimizing across all hierarchies of the design from algorithms and architecture to circuits and devices, we present NeuRRAM-a RRAM-based CIM chip that simultaneously delivers versatility in reconfiguring CIM cores for diverse model architectures, energy efficiency that is two-times better than previous state-of-the-art RRAM-CIM chips across various computational bit-precisions, and inference accuracy comparable to software models quantized to four-bit weights across various AI tasks, including accuracy of 99.0 percent on MNIST and 85.7 percent on CIFAR-10 image classification, 84.7-percent accuracy on Google speech command recognition , and a 70-percent reduction in image-reconstruction error on a Bayesian image-recovery task.
Author Qian, He
Kubendran, Rajkumar
Zhang, Wenqiang
Schaefer, Clemens
Wong, H.-S. Philip
Gao, Bin
Wu, Huaqiang
Eryilmaz, Sukru Burc
Raina, Priyanka
Wan, Weier
Cauwenberghs, Gert
Wu, Dabin
Deiss, Stephen
Joshi, Siddharth
Author_xml – sequence: 1
  givenname: Weier
  orcidid: 0000-0003-3507-9014
  surname: Wan
  fullname: Wan, Weier
  email: weierwan@stanford.edu
  organization: Stanford University, University of California San Diego
– sequence: 2
  givenname: Rajkumar
  orcidid: 0000-0003-3066-4898
  surname: Kubendran
  fullname: Kubendran, Rajkumar
  organization: University of California San Diego, University of Pittsburgh
– sequence: 3
  givenname: Clemens
  surname: Schaefer
  fullname: Schaefer, Clemens
  organization: University of Notre Dame
– sequence: 4
  givenname: Sukru Burc
  surname: Eryilmaz
  fullname: Eryilmaz, Sukru Burc
  organization: Stanford University
– sequence: 5
  givenname: Wenqiang
  surname: Zhang
  fullname: Zhang, Wenqiang
  organization: Tsinghua University
– sequence: 6
  givenname: Dabin
  surname: Wu
  fullname: Wu, Dabin
  organization: Tsinghua University
– sequence: 7
  givenname: Stephen
  surname: Deiss
  fullname: Deiss, Stephen
  organization: University of California San Diego
– sequence: 8
  givenname: Priyanka
  surname: Raina
  fullname: Raina, Priyanka
  organization: Stanford University
– sequence: 9
  givenname: He
  surname: Qian
  fullname: Qian, He
  organization: Tsinghua University
– sequence: 10
  givenname: Bin
  orcidid: 0000-0002-2417-983X
  surname: Gao
  fullname: Gao, Bin
  email: gaob1@tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 11
  givenname: Siddharth
  surname: Joshi
  fullname: Joshi, Siddharth
  email: sjoshi2@nd.edu
  organization: University of California San Diego, University of Notre Dame
– sequence: 12
  givenname: Huaqiang
  surname: Wu
  fullname: Wu, Huaqiang
  email: wuhq@tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 13
  givenname: H.-S. Philip
  surname: Wong
  fullname: Wong, H.-S. Philip
  email: hspwong@stanford.edu
  organization: Stanford University
– sequence: 14
  givenname: Gert
  orcidid: 0000-0002-3166-5529
  surname: Cauwenberghs
  fullname: Cauwenberghs, Gert
  email: gert@ucsd.edu
  organization: University of California San Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35978128$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URG8Lf4AFisSGjWH8iu0Noqp4SZXYwNpynLmtq8S-2Eml_nsS0vLooqtZzHeOzsw5IUcpJyTkJYO3DIR5VyVTpqXAOQVpLafmCdkxqVsqW6OPyA6AGwpGtMfkpNZrAFBMy2fkWCirDeNmRz6cNSGPh3lCGhMdcczltglX8dB0vmLf5NQUrLFO8Qab4lOfR-pDwFqbDX5Onu79UPHF3TwlPz59_H7-hV58-_z1_OyCBiVhopb3qEEZ7Vv0-072IFurOfg96zjX3oreCGYkClT9shdiATSzLUfeQ6fEKXm_-R7mbsQ-YJqKH9yhxNGXW5d9dP9vUrxyl_nGWWGUNHwxeHNnUPLPGevkxlgDDoNPmOfquAZhTavFir5-gF7nuaTlvJVSUikBa6JX_yb6E-X-uQtgNiCUXGvBvQtx8lPMa8A4OAZu7dFtPbqlR_e7R7dK-QPpvfujIrGJ6gKnSyx_Yz-i-gVv3a7u
CitedBy_id crossref_primary_10_1038_s41377_023_01168_5
crossref_primary_10_1088_1674_4926_44_5_053102
crossref_primary_10_1126_science_adh1174
crossref_primary_10_1111_nyas_15256
crossref_primary_10_3390_ma15249087
crossref_primary_10_1021_acsnano_3c03505
crossref_primary_10_1038_s41586_024_08253_8
crossref_primary_10_1039_D3NH00520H
crossref_primary_10_1109_TED_2023_3321562
crossref_primary_10_1063_5_0174863
crossref_primary_10_1002_advs_202309538
crossref_primary_10_1038_s41467_025_57543_w
crossref_primary_10_1002_adma_202307393
crossref_primary_10_1109_TED_2023_3346857
crossref_primary_10_1007_s40820_024_01550_x
crossref_primary_10_1038_s41598_024_74667_z
crossref_primary_10_1002_adma_202307951
crossref_primary_10_1016_j_jfranklin_2024_107363
crossref_primary_10_1016_j_nanoen_2024_109646
crossref_primary_10_1002_smll_202304787
crossref_primary_10_1016_j_jallcom_2024_177487
crossref_primary_10_1063_5_0221159
crossref_primary_10_1109_JSEN_2024_3506937
crossref_primary_10_1126_sciadv_adp3710
crossref_primary_10_1016_j_mtcomm_2025_111642
crossref_primary_10_1038_s41928_024_01315_9
crossref_primary_10_1016_j_mattod_2024_08_027
crossref_primary_10_3390_ijms252212368
crossref_primary_10_1109_MNANO_2023_3297106
crossref_primary_10_3390_nano14060527
crossref_primary_10_1002_aelm_202400452
crossref_primary_10_1038_s41467_024_45670_9
crossref_primary_10_1109_ACCESS_2023_3234323
crossref_primary_10_3390_electronics13214255
crossref_primary_10_1109_TCAD_2024_3447216
crossref_primary_10_1063_5_0160109
crossref_primary_10_1039_D4NR03368J
crossref_primary_10_1134_S1064226923100170
crossref_primary_10_1002_adfm_202303539
crossref_primary_10_1002_aisy_202400543
crossref_primary_10_1126_sciadv_adl3135
crossref_primary_10_1002_smsc_202300202
crossref_primary_10_1109_TCSVT_2023_3275708
crossref_primary_10_1002_adma_202301063
crossref_primary_10_1088_1361_6528_adb980
crossref_primary_10_1016_j_chaos_2023_113359
crossref_primary_10_1038_s41467_023_42792_4
crossref_primary_10_1126_sciadv_adj2908
crossref_primary_10_1038_s41928_023_01010_1
crossref_primary_10_1109_JXCDC_2024_3498837
crossref_primary_10_1063_5_0159338
crossref_primary_10_1109_JSSC_2023_3280357
crossref_primary_10_1021_acs_jpclett_5c00194
crossref_primary_10_1038_s41467_023_40770_4
crossref_primary_10_1038_s44287_023_00008_3
crossref_primary_10_1109_TED_2023_3280146
crossref_primary_10_1145_3696666
crossref_primary_10_1007_s11432_022_3695_1
crossref_primary_10_1109_TASC_2023_3252495
crossref_primary_10_1016_j_engappai_2023_106232
crossref_primary_10_3390_nano14100854
crossref_primary_10_3390_chips4010009
crossref_primary_10_1109_LED_2024_3355889
crossref_primary_10_1038_s44287_025_00141_1
crossref_primary_10_1016_j_mejo_2024_106189
crossref_primary_10_1109_ACCESS_2023_3260641
crossref_primary_10_1109_TCAD_2023_3322351
crossref_primary_10_1142_S0218127423300185
crossref_primary_10_1016_j_synthmet_2024_117598
crossref_primary_10_1038_s44335_024_00010_4
crossref_primary_10_1016_j_surfin_2024_104247
crossref_primary_10_1021_acs_nanolett_4c00124
crossref_primary_10_1002_adma_202204944
crossref_primary_10_1049_2023_1052063
crossref_primary_10_1063_5_0235758
crossref_primary_10_1016_j_mssp_2023_107673
crossref_primary_10_1021_acsnano_4c03278
crossref_primary_10_3389_femat_2022_1010613
crossref_primary_10_1002_aisy_202300399
crossref_primary_10_1038_s44335_024_00008_y
crossref_primary_10_1088_1361_6528_ad4cf5
crossref_primary_10_1002_aelm_202300850
crossref_primary_10_1016_j_jallcom_2023_171096
crossref_primary_10_1039_D3CP02050A
crossref_primary_10_1109_TSP_2025_3530149
crossref_primary_10_1038_s41586_023_05759_5
crossref_primary_10_1002_advs_202402667
crossref_primary_10_1038_s44287_024_00031_y
crossref_primary_10_1016_j_surfin_2024_104418
crossref_primary_10_1109_MED_2023_3296084
crossref_primary_10_1364_OPTICA_543416
crossref_primary_10_1002_smsc_202300139
crossref_primary_10_1063_5_0232003
crossref_primary_10_1109_MC_2023_3278160
crossref_primary_10_1007_s11432_024_4240_x
crossref_primary_10_3390_mi14030571
crossref_primary_10_1038_s41467_025_56286_y
crossref_primary_10_1088_2053_1583_ad015f
crossref_primary_10_1088_2634_4386_ad9b4a
crossref_primary_10_1002_adfm_202416309
crossref_primary_10_1063_5_0158076
crossref_primary_10_1039_D4TC04649H
crossref_primary_10_1038_s41586_023_06791_1
crossref_primary_10_1039_D3CS00918A
crossref_primary_10_1021_acsnano_4c13450
crossref_primary_10_1021_acsnano_4c07454
crossref_primary_10_1038_s41928_024_01188_y
crossref_primary_10_1088_1674_4926_44_10_104101
crossref_primary_10_3389_fnins_2024_1279708
crossref_primary_10_1098_rsta_2023_0389
crossref_primary_10_1038_s41586_025_08639_2
crossref_primary_10_1039_D3NH00554B
crossref_primary_10_1109_TED_2024_3450437
crossref_primary_10_3390_chips3040014
crossref_primary_10_1002_aelm_202400006
crossref_primary_10_1016_j_cej_2024_154457
crossref_primary_10_1038_s41467_023_44620_1
crossref_primary_10_1038_s41566_023_01313_x
crossref_primary_10_1109_JEDS_2023_3265875
crossref_primary_10_1002_adma_202305465
crossref_primary_10_1088_1361_6528_acda40
crossref_primary_10_1109_TASC_2025_3538699
crossref_primary_10_1016_j_orgel_2024_107002
crossref_primary_10_1021_acsaelm_2c00771
crossref_primary_10_1016_j_knosys_2024_112099
crossref_primary_10_1021_acsami_3c11495
crossref_primary_10_1016_j_carbon_2023_118656
crossref_primary_10_1016_j_mseb_2023_116755
crossref_primary_10_1038_s44287_024_00052_7
crossref_primary_10_1063_5_0158280
crossref_primary_10_1002_adfm_202300458
crossref_primary_10_1021_acsami_4c16223
crossref_primary_10_1109_ACCESS_2023_3258360
crossref_primary_10_1039_D3NH00421J
crossref_primary_10_23919_emsci_2023_0015
crossref_primary_10_1063_5_0232217
crossref_primary_10_1063_5_0179424
crossref_primary_10_1002_pssa_202400689
crossref_primary_10_1109_TVLSI_2024_3370176
crossref_primary_10_1515_nanoph_2022_0553
crossref_primary_10_1063_5_0243471
crossref_primary_10_1109_JPROC_2024_3429360
crossref_primary_10_1038_s43588_024_00744_y
crossref_primary_10_1002_aisy_202200407
crossref_primary_10_1038_s41467_023_44365_x
crossref_primary_10_1038_s41467_024_46682_1
crossref_primary_10_1038_s43246_024_00573_6
crossref_primary_10_1103_PhysRevApplied_21_014028
crossref_primary_10_1109_JETCAS_2022_3207514
crossref_primary_10_1109_TMAG_2024_3491334
crossref_primary_10_1038_s41467_025_56412_w
crossref_primary_10_1109_TDMR_2023_3261441
crossref_primary_10_1039_D4MA00133H
crossref_primary_10_3389_fnano_2023_1147396
crossref_primary_10_1002_aelm_202300021
crossref_primary_10_1109_JETCAS_2022_3212314
crossref_primary_10_1007_s40042_025_01295_9
crossref_primary_10_1038_s41467_025_56079_3
crossref_primary_10_1063_5_0167669
crossref_primary_10_1109_JSSC_2022_3228765
crossref_primary_10_1109_JXCDC_2023_3258431
crossref_primary_10_1002_aelm_202200958
crossref_primary_10_1002_adma_202412549
crossref_primary_10_1063_5_0216429
crossref_primary_10_1109_TCSI_2024_3430290
crossref_primary_10_1063_5_0210317
crossref_primary_10_1002_aelm_202400106
crossref_primary_10_1109_JETCAS_2023_3329449
crossref_primary_10_1038_s44287_024_00037_6
crossref_primary_10_1063_5_0168089
crossref_primary_10_1002_adma_202310704
crossref_primary_10_3390_nano13142101
crossref_primary_10_1002_admt_202302238
crossref_primary_10_1016_j_mee_2023_112062
crossref_primary_10_1039_D4MH01676A
crossref_primary_10_1016_j_nanoen_2025_110877
crossref_primary_10_3390_nano14080668
crossref_primary_10_1016_j_jallcom_2023_170846
crossref_primary_10_1038_s41928_023_01053_4
crossref_primary_10_1109_TCAD_2024_3358220
crossref_primary_10_1103_PhysRevB_109_115159
crossref_primary_10_1016_j_mtnano_2024_100543
crossref_primary_10_1088_2634_4386_ad29fc
crossref_primary_10_1002_aisy_202300784
crossref_primary_10_1007_s10489_024_06091_9
crossref_primary_10_1109_JSSC_2024_3399615
crossref_primary_10_1109_LED_2024_3406033
crossref_primary_10_1016_j_sna_2024_115951
crossref_primary_10_1142_S1793604724500085
crossref_primary_10_34133_adi_0044
crossref_primary_10_1080_14686996_2022_2162323
crossref_primary_10_1063_5_0226206
crossref_primary_10_1063_5_0228748
crossref_primary_10_1126_science_adf5538
crossref_primary_10_1140_epjb_s10051_024_00703_6
crossref_primary_10_1145_3686259
crossref_primary_10_1038_s41928_024_01312_y
crossref_primary_10_1039_D4NR00745J
crossref_primary_10_1088_2631_7990_acef79
crossref_primary_10_1103_PhysRevApplied_21_034064
crossref_primary_10_1038_s41467_023_38021_7
crossref_primary_10_1038_s42256_023_00618_4
crossref_primary_10_1109_TED_2024_3479160
crossref_primary_10_3390_cryst13020323
crossref_primary_10_1038_s41928_023_00939_7
crossref_primary_10_1021_acsaelm_4c02323
crossref_primary_10_1038_s41467_024_52259_9
crossref_primary_10_1109_LSSC_2024_3520593
crossref_primary_10_1002_advs_202410765
crossref_primary_10_1038_s43588_024_00753_x
crossref_primary_10_1109_JSSC_2023_3324335
crossref_primary_10_1007_s13391_024_00516_w
crossref_primary_10_1038_s41467_023_41647_2
crossref_primary_10_1109_TETC_2023_3257684
crossref_primary_10_1002_adfm_202415648
crossref_primary_10_1038_s44172_023_00074_3
crossref_primary_10_3390_app132413309
crossref_primary_10_1038_s41467_023_42981_1
crossref_primary_10_1126_science_adi9405
crossref_primary_10_1002_adma_202300023
crossref_primary_10_1109_TCE_2024_3445341
crossref_primary_10_1109_TCSI_2022_3206238
crossref_primary_10_1098_rsta_2023_0393
crossref_primary_10_1002_adma_202307218
crossref_primary_10_1038_s41467_025_56319_6
crossref_primary_10_1039_D4MH01848F
crossref_primary_10_1007_s11432_022_3627_8
crossref_primary_10_3389_fnins_2023_1198306
crossref_primary_10_1016_j_neucom_2023_126778
crossref_primary_10_1126_sciadv_ado8999
crossref_primary_10_1134_S2635167623601092
crossref_primary_10_1038_s41598_024_59298_8
crossref_primary_10_1088_2631_7990_ad2fea
crossref_primary_10_1038_s44172_024_00226_z
crossref_primary_10_1021_acs_nanolett_4c01606
crossref_primary_10_1007_s42247_023_00576_y
crossref_primary_10_1002_adma_202311288
crossref_primary_10_1038_s41586_023_06337_5
crossref_primary_10_1109_TMAG_2023_3285257
crossref_primary_10_3390_electronics13193847
crossref_primary_10_1109_TED_2023_3321018
crossref_primary_10_1109_TCSII_2024_3371771
crossref_primary_10_1002_adfm_202212917
crossref_primary_10_1109_JIOT_2024_3448350
crossref_primary_10_1038_s41467_025_57183_0
crossref_primary_10_1109_JSSC_2023_3304174
crossref_primary_10_1016_j_apsusc_2023_157356
crossref_primary_10_1109_JSTQE_2025_3527904
crossref_primary_10_1063_5_0157680
crossref_primary_10_1038_s41467_024_51221_z
crossref_primary_10_1038_s41578_023_00622_5
crossref_primary_10_1007_s11432_023_3888_0
crossref_primary_10_1109_TED_2024_3350550
crossref_primary_10_1038_s41928_024_01318_6
crossref_primary_10_1007_s42114_023_00686_5
crossref_primary_10_1007_s40820_024_01368_7
crossref_primary_10_1039_D2NR06773K
crossref_primary_10_1002_adma_202301924
crossref_primary_10_1109_MSSC_2022_3201783
crossref_primary_10_1109_TED_2023_3321014
crossref_primary_10_1063_5_0136403
crossref_primary_10_3390_electronics14010030
crossref_primary_10_1038_s41467_024_52488_y
crossref_primary_10_1038_s41467_025_56345_4
crossref_primary_10_1002_aisy_202300797
crossref_primary_10_1587_elex_21_20240071
crossref_primary_10_1145_3569940
crossref_primary_10_1109_JEDS_2024_3439712
crossref_primary_10_1016_j_mtnano_2023_100353
crossref_primary_10_1063_5_0190195
crossref_primary_10_31857_S0033849423100170
crossref_primary_10_3390_molecules27248888
crossref_primary_10_1109_LED_2024_3368146
crossref_primary_10_1109_JIOT_2024_3484396
crossref_primary_10_1021_acsaelm_2c01357
crossref_primary_10_1109_JSSC_2023_3314433
crossref_primary_10_1109_TCSII_2024_3442873
crossref_primary_10_1109_TED_2024_3521953
crossref_primary_10_1109_TCSI_2024_3458436
crossref_primary_10_1186_s40580_024_00415_8
crossref_primary_10_1038_s41467_025_58039_3
crossref_primary_10_1063_5_0133044
crossref_primary_10_1007_s40820_024_01441_1
crossref_primary_10_1039_D3NR02395H
crossref_primary_10_1109_JPROC_2023_3276941
crossref_primary_10_1109_JXCDC_2024_3381888
crossref_primary_10_1002_aisy_202400594
crossref_primary_10_1109_TED_2024_3497917
crossref_primary_10_1088_2634_4386_ad33cc
crossref_primary_10_1063_5_0167187
crossref_primary_10_1016_j_microrel_2025_115630
crossref_primary_10_1063_5_0167743
crossref_primary_10_1038_s41467_024_52132_9
crossref_primary_10_1109_TED_2024_3485029
crossref_primary_10_1016_j_ceramint_2024_05_090
crossref_primary_10_1016_j_device_2024_100546
crossref_primary_10_1016_j_mssp_2025_109438
crossref_primary_10_1080_14686996_2023_2188878
crossref_primary_10_1109_ACCESS_2023_3301562
crossref_primary_10_1007_s11432_023_3990_4
crossref_primary_10_1109_JSSC_2024_3470211
crossref_primary_10_3390_bdcc7040184
crossref_primary_10_1002_aelm_202400651
crossref_primary_10_1021_acs_jpclett_4c00600
crossref_primary_10_1002_aisy_202300579
crossref_primary_10_1002_adfm_202303697
crossref_primary_10_1016_j_mejo_2024_106537
crossref_primary_10_1021_acsami_3c13956
crossref_primary_10_1109_JETCAS_2022_3223295
crossref_primary_10_1016_j_apmt_2024_102214
crossref_primary_10_1109_TSMC_2024_3392732
crossref_primary_10_1088_2634_4386_ad6732
crossref_primary_10_1002_pssa_202300416
crossref_primary_10_1088_2634_4386_ace737
crossref_primary_10_1109_TCAD_2024_3366025
crossref_primary_10_1002_adfm_202313010
crossref_primary_10_1007_s10462_024_10787_2
crossref_primary_10_1109_TED_2023_3308527
crossref_primary_10_1016_j_matt_2022_10_017
crossref_primary_10_1109_LED_2022_3216558
crossref_primary_10_1038_s41467_024_44766_6
crossref_primary_10_1186_s11671_023_03775_y
crossref_primary_10_3390_polym15224374
crossref_primary_10_1002_pssa_202300401
crossref_primary_10_1007_s11432_023_4021_y
crossref_primary_10_1002_adfm_202418113
crossref_primary_10_1002_admt_202301762
crossref_primary_10_1016_j_device_2023_100218
crossref_primary_10_1038_s41467_023_43317_9
crossref_primary_10_1038_s41467_024_47764_w
crossref_primary_10_1515_itit_2023_0018
crossref_primary_10_1002_inf2_12555
crossref_primary_10_1016_j_mtnano_2023_100441
crossref_primary_10_1007_s13391_024_00528_6
crossref_primary_10_1038_s41467_023_41958_4
crossref_primary_10_1002_advs_202303735
crossref_primary_10_1016_j_cap_2024_04_008
crossref_primary_10_1109_LED_2024_3521924
crossref_primary_10_1063_5_0141575
crossref_primary_10_1109_JXCDC_2025_3534560
crossref_primary_10_1016_j_cossms_2024_101199
crossref_primary_10_1016_j_cej_2024_148848
crossref_primary_10_1016_j_photonics_2023_101222
crossref_primary_10_1109_TED_2024_3379953
crossref_primary_10_1126_sciadv_adr6391
crossref_primary_10_1016_j_device_2024_100648
crossref_primary_10_35848_1347_4065_ad18a2
crossref_primary_10_1166_jno_2024_3530
crossref_primary_10_1038_s41467_024_48631_4
crossref_primary_10_1109_TED_2024_3427616
crossref_primary_10_1002_adma_202211305
crossref_primary_10_1002_adom_202301178
crossref_primary_10_1002_smsc_202300306
crossref_primary_10_1021_acs_nanolett_3c04820
crossref_primary_10_1002_aelm_202400625
crossref_primary_10_1103_PhysRevMaterials_6_084603
crossref_primary_10_1016_j_cossms_2024_101187
crossref_primary_10_1109_TCSII_2023_3336831
Cites_doi 10.1038/s41928-021-00676-9
10.1109/TVLSI.2021.3063543
10.1162/neco.1997.9.8.1735
10.1038/s41586-021-04196-6
10.1038/nature14441
10.1109/TED.2019.2950595
10.1038/s41928-020-00505-5
10.1109/JSSC.2016.2616357
10.1109/JPROC.2012.2190369
10.1038/s41586-020-1942-4
10.1109/JSSC.2018.2865489
10.1109/TCSI.2014.2332264
10.1038/s41586-018-0180-5
10.1038/ncomms15199
10.1038/s41928-019-0288-0
10.1038/nnano.2017.83
10.1038/s41928-019-0270-x
10.1109/JSSC.2013.2239005
10.1038/nature14539
10.1109/TED.2016.2616483
10.1109/JSSC.2019.2960488
10.1109/TED.2021.3115993
10.1109/TED.2015.2439635
10.1038/ncomms3072
10.1038/s41586-019-1424-8
10.1109/72.485671
10.1109/5.726791
10.1088/0957-4484/23/7/075201
10.1038/s41928-018-0092-2
10.1038/s41928-018-0023-2
10.1109/CVPR.2016.90
10.1109/VLSIT.2018.8510690
10.1109/IEDM19573.2019.8993662
10.1109/ISSCC19947.2020.9062953
10.1109/ISCA.2016.12
10.1109/IEDM19573.2019.8993466
10.1109/ISSCC19947.2020.9062979
10.1145/3297858.3304048
10.23919/VLSIT.2019.8776485
10.23919/VLSIC.2019.8778028
10.1038/s41467-020-16108-9
10.1109/ISSCC19947.2020.9062949
10.1109/VLSITechnology18217.2020.9265066
10.1016/0893-6080(89)90020-8
10.1145/3297858.3304049
10.1109/CVPR.2019.00448
10.1109/ESSCIRC.2013.6649063
10.5281/zenodo.6558399
10.1109/VLSIT.2018.8510676
10.1109/ISSCC.2019.8662395
10.1109/IEDM.2013.6724691
10.23919/VLSICircuits52068.2021.9492362
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
Copyright Nature Publishing Group Aug 18, 2022
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: Copyright Nature Publishing Group Aug 18, 2022
DBID C6C
AAYXX
CITATION
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/s41586-022-04992-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database (ProQuest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Agricultural Science Database

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 512
ExternalDocumentID PMC9385482
35978128
10_1038_s41586_022_04992_8
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
C6C
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
0B8
1CY
1VW
354
3EH
3O-
3V.
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
I-F
ITC
J5H
L-9
LGEZI
LOTEE
M0L
MVM
N4W
NADUK
NEJ
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
AFKWF
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
AGSTI
PUEGO
5PM
ID FETCH-LOGICAL-c540t-92de70587a6eafb4d0469720af1b227a93d83184e3e5dfb43304671962e2d0b53
IEDL.DBID C6C
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:12:44 EDT 2025
Fri Sep 05 13:44:34 EDT 2025
Sat Aug 23 13:08:14 EDT 2025
Wed Feb 19 02:07:51 EST 2025
Thu Apr 24 22:50:48 EDT 2025
Tue Jul 01 02:32:40 EDT 2025
Fri Feb 21 02:37:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7923
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-92de70587a6eafb4d0469720af1b227a93d83184e3e5dfb43304671962e2d0b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3166-5529
0000-0003-3507-9014
0000-0002-2417-983X
0000-0003-3066-4898
OpenAccessLink https://www.nature.com/articles/s41586-022-04992-8
PMID 35978128
PQID 2705455305
PQPubID 40569
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9385482
proquest_miscellaneous_2703986732
proquest_journals_2705455305
pubmed_primary_35978128
crossref_citationtrail_10_1038_s41586_022_04992_8
crossref_primary_10_1038_s41586_022_04992_8
springer_journals_10_1038_s41586_022_04992_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-18
PublicationDateYYYYMMDD 2022-08-18
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hung (CR9) 2021; 4
Xue (CR16) 2021; 4
Alibart, Gao, Hoskins, Strukov (CR42) 2012; 23
CR39
LeCun, Bottou, Bengio, Haffner (CR18) 1998; 86
CR38
CR37
CR35
CR34
CR33
CR30
Burr (CR24) 2015; 62
Ielmini, Wong (CR4) 2018; 1
Jiang (CR50) 2019; 66
Chen, Krishna, Emer, Sze (CR58) 2017; 52
Pei (CR61) 2019; 572
CR6
CR8
Lecun, Bengio, Hinton (CR31) 2015; 521
Wong (CR1) 2012; 100
Yao (CR5) 2020; 577
CR49
Cai (CR11) 2019; 2
CR47
CR46
Sheridan (CR26) 2017; 12
CR45
CR44
CR43
CR41
CR40
Cauwenberghs (CR51) 1996; 7
Chen (CR7) 2019; 2
Roy, Sridharan, Jain, Raghunathan (CR29) 2021; 29
Yao (CR27) 2017; 8
Wang (CR36) 2018; 1
Zimmer (CR59) 2020; 55
CR19
CR15
CR14
CR13
Prezioso (CR2) 2015; 521
CR12
CR55
CR10
CR54
CR53
CR52
Jung (CR48) 2022; 601
Tripathi, Murmann (CR57) 2014; 61
Alibart, Zamanidoost, Strukov (CR22) 2013; 4
Narayanan (CR17) 2021; 68
Lee (CR60) 2019; 54
Stepanovic, Nikolic (CR56) 2013; 48
CR28
CR23
Hochreiter, Schmidhuber (CR32) 1997; 9
CR21
Eryilmaz (CR25) 2016; 63
CR20
CR62
Ambrogio (CR3) 2018; 558
D Ielmini (4992_CR4) 2018; 1
Y Lecun (4992_CR31) 2015; 521
WH Chen (4992_CR7) 2019; 2
Y LeCun (4992_CR18) 1998; 86
4992_CR45
4992_CR44
4992_CR47
4992_CR46
SB Eryilmaz (4992_CR25) 2016; 63
4992_CR49
F Alibart (4992_CR42) 2012; 23
P Narayanan (4992_CR17) 2021; 68
4992_CR41
PM Sheridan (4992_CR26) 2017; 12
4992_CR40
4992_CR43
CX Xue (4992_CR16) 2021; 4
S Ambrogio (4992_CR3) 2018; 558
4992_CR34
G Cauwenberghs (4992_CR51) 1996; 7
4992_CR33
4992_CR35
J Pei (4992_CR61) 2019; 572
4992_CR38
4992_CR37
4992_CR39
F Cai (4992_CR11) 2019; 2
4992_CR30
JM Hung (4992_CR9) 2021; 4
M Prezioso (4992_CR2) 2015; 521
P Yao (4992_CR27) 2017; 8
4992_CR23
D Stepanovic (4992_CR56) 2013; 48
F Alibart (4992_CR22) 2013; 4
4992_CR28
S Jung (4992_CR48) 2022; 601
4992_CR62
4992_CR21
4992_CR20
YH Chen (4992_CR58) 2017; 52
GW Burr (4992_CR24) 2015; 62
Z Jiang (4992_CR50) 2019; 66
4992_CR19
P Yao (4992_CR5) 2020; 577
HSP Wong (4992_CR1) 2012; 100
4992_CR12
4992_CR55
4992_CR14
S Roy (4992_CR29) 2021; 29
4992_CR13
4992_CR15
Z Wang (4992_CR36) 2018; 1
4992_CR52
S Hochreiter (4992_CR32) 1997; 9
4992_CR10
4992_CR54
4992_CR6
4992_CR53
4992_CR8
B Zimmer (4992_CR59) 2020; 55
V Tripathi (4992_CR57) 2014; 61
J Lee (4992_CR60) 2019; 54
References_xml – volume: 4
  start-page: 921
  year: 2021
  end-page: 930
  ident: CR9
  article-title: A four-megabit compute-in-memory macro with eight-bit precision based on CMOS and resistive random-access memory for AI edge devices
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-021-00676-9
– ident: CR45
– ident: CR49
– volume: 29
  start-page: 730
  year: 2021
  end-page: 738
  ident: CR29
  article-title: TxSim: modeling training of deep neural networks on resistive crossbar systems
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2021.3063543
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: CR32
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 601
  start-page: 211
  year: 2022
  end-page: 216
  ident: CR48
  article-title: A crossbar array of magnetoresistive memory devices for in-memory computing
  publication-title: Nature
  doi: 10.1038/s41586-021-04196-6
– ident: CR39
– ident: CR12
– volume: 521
  start-page: 61
  year: 2015
  end-page: 64
  ident: CR2
  article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors
  publication-title: Nature
  doi: 10.1038/nature14441
– ident: CR35
– ident: CR54
– ident: CR8
– volume: 66
  start-page: 5147
  year: 2019
  end-page: 5154
  ident: CR50
  article-title: Next-generation ultrahigh-density 3-D vertical resistive switching memory (VRSM)–Part II: design guidelines for device, array, and architecture
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2950595
– volume: 4
  start-page: 81
  year: 2021
  end-page: 90
  ident: CR16
  article-title: A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00505-5
– volume: 52
  start-page: 127
  year: 2017
  end-page: 138
  ident: CR58
  article-title: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2016.2616357
– ident: CR21
– ident: CR46
– ident: CR19
– volume: 100
  start-page: 1951
  year: 2012
  end-page: 1970
  ident: CR1
  article-title: Metal-oxide RRAM
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2190369
– ident: CR15
– volume: 577
  start-page: 641
  year: 2020
  end-page: 646
  ident: CR5
  article-title: Fully hardware-implemented memristor convolutional neural network
  publication-title: Nature
  doi: 10.1038/s41586-020-1942-4
– volume: 54
  start-page: 173
  year: 2019
  end-page: 185
  ident: CR60
  article-title: UNPU: an energy-efficient deep neural network accelerator with fully variable weight bit precision
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2018.2865489
– volume: 61
  start-page: 2236
  year: 2014
  end-page: 2242
  ident: CR57
  article-title: Mismatch characterization of small metal fringe capacitors
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2014.2332264
– volume: 558
  start-page: 60
  year: 2018
  end-page: 67
  ident: CR3
  article-title: Equivalent-accuracy accelerated neural-network training using analogue memory
  publication-title: Nature
  doi: 10.1038/s41586-018-0180-5
– volume: 8
  start-page: 15199
  year: 2017
  ident: CR27
  article-title: Face classification using electronic synapses
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15199
– volume: 2
  start-page: 420
  year: 2019
  end-page: 428
  ident: CR7
  article-title: CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0288-0
– ident: CR43
– volume: 12
  start-page: 784
  year: 2017
  end-page: 789
  ident: CR26
  article-title: Sparse coding with memristor networks
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.83
– volume: 2
  start-page: 290
  year: 2019
  end-page: 299
  ident: CR11
  article-title: A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0270-x
– ident: CR47
– volume: 48
  start-page: 971
  year: 2013
  end-page: 982
  ident: CR56
  article-title: A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2013.2239005
– ident: CR14
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR31
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR37
– ident: CR53
– volume: 63
  start-page: 5004
  year: 2016
  end-page: 5011
  ident: CR25
  article-title: Training a probabilistic graphical model with resistive switching electronic synapses
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2016.2616483
– ident: CR30
– volume: 55
  start-page: 920
  year: 2020
  end-page: 932
  ident: CR59
  article-title: A 0.32-128 TOPS, scalable multi-chip-module-based deep neural network inference accelerator with ground-referenced signaling in 16 nm
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2019.2960488
– ident: CR10
– ident: CR33
– volume: 68
  start-page: 6629
  year: 2021
  end-page: 6636
  ident: CR17
  article-title: Fully on-chip MAC at 14 nm enabled by accurate row-wise programming of PCM-based weights and parallel vector-transport in duration-format
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2021.3115993
– volume: 62
  start-page: 3498
  year: 2015
  end-page: 3507
  ident: CR24
  article-title: Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2015.2439635
– ident: CR6
– volume: 4
  year: 2013
  ident: CR22
  article-title: Pattern classification by memristive crossbar circuits using ex situ and in situ training
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3072
– volume: 572
  start-page: 106
  year: 2019
  end-page: 111
  ident: CR61
  article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture
  publication-title: Nature
  doi: 10.1038/s41586-019-1424-8
– ident: CR40
– ident: CR23
– volume: 7
  start-page: 346
  year: 1996
  end-page: 361
  ident: CR51
  article-title: An analog VLSI recurrent neural network learning a continuous-time trajectory
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.485671
– ident: CR44
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2323
  ident: CR18
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: CR38
– volume: 23
  start-page: 762
  year: 2012
  end-page: 775
  ident: CR42
  article-title: High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/7/075201
– ident: CR52
– ident: CR13
– volume: 1
  start-page: 333
  year: 2018
  end-page: 343
  ident: CR4
  article-title: In-memory computing with resistive switching devices
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0092-2
– ident: CR34
– ident: CR55
– ident: CR28
– ident: CR41
– ident: CR62
– ident: CR20
– volume: 1
  start-page: 137
  year: 2018
  end-page: 145
  ident: CR36
  article-title: Fully memristive neural networks for pattern classification with unsupervised learning
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0023-2
– ident: 4992_CR43
  doi: 10.1109/CVPR.2016.90
– volume: 29
  start-page: 730
  year: 2021
  ident: 4992_CR29
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
  doi: 10.1109/TVLSI.2021.3063543
– ident: 4992_CR52
  doi: 10.1109/VLSIT.2018.8510690
– ident: 4992_CR30
  doi: 10.1109/IEDM19573.2019.8993662
– volume: 55
  start-page: 920
  year: 2020
  ident: 4992_CR59
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2019.2960488
– volume: 4
  year: 2013
  ident: 4992_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3072
– ident: 4992_CR15
  doi: 10.1109/ISSCC19947.2020.9062953
– ident: 4992_CR37
  doi: 10.1109/ISCA.2016.12
– volume: 601
  start-page: 211
  year: 2022
  ident: 4992_CR48
  publication-title: Nature
  doi: 10.1038/s41586-021-04196-6
– volume: 1
  start-page: 333
  year: 2018
  ident: 4992_CR4
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0092-2
– ident: 4992_CR12
  doi: 10.1109/IEDM19573.2019.8993466
– ident: 4992_CR19
– ident: 4992_CR49
– ident: 4992_CR14
  doi: 10.1109/ISSCC19947.2020.9062979
– ident: 4992_CR41
– volume: 2
  start-page: 420
  year: 2019
  ident: 4992_CR7
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0288-0
– ident: 4992_CR53
  doi: 10.1145/3297858.3304048
– ident: 4992_CR13
  doi: 10.23919/VLSIT.2019.8776485
– volume: 100
  start-page: 1951
  year: 2012
  ident: 4992_CR1
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2190369
– ident: 4992_CR28
– volume: 8
  start-page: 15199
  year: 2017
  ident: 4992_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15199
– ident: 4992_CR35
  doi: 10.23919/VLSIC.2019.8778028
– ident: 4992_CR21
  doi: 10.1038/s41467-020-16108-9
– ident: 4992_CR34
  doi: 10.1109/ISSCC19947.2020.9062949
– ident: 4992_CR46
– ident: 4992_CR39
  doi: 10.1109/VLSITechnology18217.2020.9265066
– volume: 1
  start-page: 137
  year: 2018
  ident: 4992_CR36
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0023-2
– volume: 68
  start-page: 6629
  year: 2021
  ident: 4992_CR17
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2021.3115993
– ident: 4992_CR45
  doi: 10.1016/0893-6080(89)90020-8
– volume: 558
  start-page: 60
  year: 2018
  ident: 4992_CR3
  publication-title: Nature
  doi: 10.1038/s41586-018-0180-5
– volume: 12
  start-page: 784
  year: 2017
  ident: 4992_CR26
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.83
– ident: 4992_CR38
  doi: 10.1145/3297858.3304049
– volume: 9
  start-page: 1735
  year: 1997
  ident: 4992_CR32
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 4992_CR62
– ident: 4992_CR33
– ident: 4992_CR55
  doi: 10.1109/CVPR.2019.00448
– volume: 48
  start-page: 971
  year: 2013
  ident: 4992_CR56
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2013.2239005
– volume: 63
  start-page: 5004
  year: 2016
  ident: 4992_CR25
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2016.2616483
– ident: 4992_CR40
  doi: 10.1109/ESSCIRC.2013.6649063
– volume: 4
  start-page: 81
  year: 2021
  ident: 4992_CR16
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00505-5
– ident: 4992_CR47
  doi: 10.5281/zenodo.6558399
– volume: 572
  start-page: 106
  year: 2019
  ident: 4992_CR61
  publication-title: Nature
  doi: 10.1038/s41586-019-1424-8
– ident: 4992_CR20
– volume: 521
  start-page: 61
  year: 2015
  ident: 4992_CR2
  publication-title: Nature
  doi: 10.1038/nature14441
– volume: 521
  start-page: 436
  year: 2015
  ident: 4992_CR31
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 4992_CR6
  doi: 10.1109/VLSIT.2018.8510676
– volume: 23
  start-page: 762
  year: 2012
  ident: 4992_CR42
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/7/075201
– volume: 4
  start-page: 921
  year: 2021
  ident: 4992_CR9
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-021-00676-9
– volume: 7
  start-page: 346
  year: 1996
  ident: 4992_CR51
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.485671
– volume: 2
  start-page: 290
  year: 2019
  ident: 4992_CR11
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0270-x
– volume: 54
  start-page: 173
  year: 2019
  ident: 4992_CR60
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2018.2865489
– volume: 61
  start-page: 2236
  year: 2014
  ident: 4992_CR57
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2014.2332264
– volume: 577
  start-page: 641
  year: 2020
  ident: 4992_CR5
  publication-title: Nature
  doi: 10.1038/s41586-020-1942-4
– volume: 66
  start-page: 5147
  year: 2019
  ident: 4992_CR50
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2950595
– volume: 52
  start-page: 127
  year: 2017
  ident: 4992_CR58
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2016.2616357
– volume: 86
  start-page: 2278
  year: 1998
  ident: 4992_CR18
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 4992_CR44
– ident: 4992_CR10
  doi: 10.1109/ISSCC.2019.8662395
– ident: 4992_CR54
– ident: 4992_CR23
  doi: 10.1109/IEDM.2013.6724691
– ident: 4992_CR8
  doi: 10.23919/VLSICircuits52068.2021.9492362
– volume: 62
  start-page: 3498
  year: 2015
  ident: 4992_CR24
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2015.2439635
SSID ssj0005174
Score 2.7461455
Snippet Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 504
SubjectTerms 142/126
639/166/987
639/705/117
639/925/927/1007
Accuracy
Algorithms
Artificial intelligence
Bayesian analysis
Chips (memory devices)
Circuit design
Circuits
CMOS
Computer applications
Design
Design optimization
Energy efficiency
Flexibility
Hardware
Hierarchies
Humanities and Social Sciences
Image classification
Image processing
Image reconstruction
Mathematical analysis
Mathematical models
Modelling
multidisciplinary
Neurons
Object recognition
Optimization techniques
Random access memory
Science
Science (multidisciplinary)
Semiconductors
Software
Speech recognition
Versatility
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9sw8OhSBnsZa_eVrRsq7KFjE3X0YckPY2tLSyk0lLJC34wtyTSwOdmSDvbvdyfLCWlZH43OsnW6T93pDuBDprzJjJNckoui6lxyGxrH_aiqlW0yHeJ5x_k4P71SZ9f6egPG_V0YSqvsZWIU1H7q6Ix8Xxg0LqjHjf46-8WpaxRFV_sWGlVqreC_xBJjj2ATRbLOBrB5eDy-uFwlfdypy5yu0WTS7s9RlVlKyBWc3ACUE-uq6p79eT-N8k4sNaqok2fwNNmW7KAjhi3YCO02PI45nm6-DVuJj-dsLxWb_vgcvh0w1zV24JOW_6S827_M3UxmjPSbZ9OWoUNOguBPYKjXPMrUKjZZZB3wC7g6Of5-dMpTVwXu0Dpb8EL4gLi0pspD1dTKk4dsRFY1o1oIUxXSW2R0FWTQHsfpwCM3yKgiCJ_VWr6EQTttw2tgQcu6QP-ksU4p7wsbtFHe1qMGn7UxQxj1CCxdKjlOnS9-lDH0LW3ZIb1EpJcR6aUdwqflO7Ou4MaD0Dv9vpSJ-eblilSGsLscRrahWEjVhulthJGFzY0UQ3jVbePyc1JTITCBk5u1DV4CUEnu9ZF2chNLcxfSoguIc37uSWH1W_9fxZuHV_EWnohIlujv2x0YLH7fhndoCi3q94m-_wE5iALm
  priority: 102
  providerName: ProQuest
Title A compute-in-memory chip based on resistive random-access memory
URI https://link.springer.com/article/10.1038/s41586-022-04992-8
https://www.ncbi.nlm.nih.gov/pubmed/35978128
https://www.proquest.com/docview/2705455305
https://www.proquest.com/docview/2703986732
https://pubmed.ncbi.nlm.nih.gov/PMC9385482
Volume 608
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS-QwEB98INwX8XnuqUsO_KBosM2jSb-5u7jKgYuIwn4rbZPignbldj24_95J2q6sL_BLSsk0zWsyM8nkNwAHgTAqUDmn3JkoIos41bbIqQnTTOgikNbvd1wNoss78WcohwvAmrsw3mnfQ1r6ZbrxDjudoKDRzl2WUaekIxcvwrJWXLpZ3Yt6r24db5CX64syAdcflDEvjN5pmO8dJd-clnoh1F-D1Vp7JJ2qvuuwYMsNWPFenPlkA9ZrTp2QwxpO-mgTzjokr0I30FFJH51n7X-S34-eiJNghoxLgia3Y_V_lqDkMrhqpj6MIqmIt-Cuf37bu6R13ASao_41pTEzVgVSqzSyaZEJ42xgxYK0CDPGVBpzo5GVheVWGsx3WxqRQlZklpkgk3wblspxaXeAWMmzGC2QQudCGBNrK5UwOgsLfJdKtSBsOjDJa1BxF9viIfGH21wnVacn2OmJ7_REt-B49s1TBanxJfVeMy5JzV6ThGHzhAt4JFvwe5aNjOFOO9LSjp89DY91pDhrwc9qGGe_49JBfTEsXM0N8IzAgW7P55Sjew--HXONRh6WedJMhddqfd6KX98j34UfzE9TtPD1HixN_z7bfVR-plkbFtVQYap7oUv7F21Y7vS73QE-u-eD65u254cXmKn_4g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnRC8IDa-OgYYCSQQWEtsJ3YeJhiwqWNbhdAm7c1LYkerNNKydKD9c_xtnB2nVTextz1Gdpz4fL4vn-8H8DoSRkay5JQ7F0UUKafKViU1cV4IVUWJ9fGOg2E6OBLfjpPjJfjb3YVxaZWdTPSC2oxLFyPfYBKNC4dxk3yc_KIONcqdrnYQGnmAVjCbvsRYuNixZy__oAvXbO5-xfV-w9jO9uGXAQ0oA7REa2VKM2Ysjq1kntq8KoRxHqNkUV7FBWMyz7hRyPjCcpsYbHcBgFQi4zLLTFQ41AhUAcvCBVB6sPx5e_j9xzzJ5Eod6HBtJ-Jqo0HVqVwCMKPO7UC5tKgar9m719M2r5zdepW48wDuB1uWbLXMtwJLtl6FOz6ntGxWYSXIjYa8DcWt3z2ET1ukbIEk6KimP12e7yUpT0cT4vSpIeOanNvGCZ7flqAeNSjDcw_qSNrOj-DoVuj7GHr1uLZPgdiEFxn6Q5UqhTAmUzaRwqgirvA5kbIPcUdAXYYS5w5p40z7o3audEt0jUTXnuha9eH97J1JW-Djxt7r3brosNkbPWfNPryaNeM2dWcveW3HF74Pz1QqOevDk3YZZ5_jiSs8xnBwubDAsw6uBPhiSz069aXAM67Q5cQxP3SsMP-t_89i7eZZvIS7g8ODfb2_O9x7BveYZ1FFY7UOven5hX2OZti0eBF4ncDJbW-vf3tBPms
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3_T9QwFH8hEA2_GEHFU9SaaKLR5ra2W7sfiCJwAdELMZLwW93WLlyiu5MdGv5F_ypfu-4uB4Hf-HFp162v72v7-j4AryJhZCRLTrkLUUSRcqpsVVIT54VQVZRYv9_xdZjuH4vPJ8nJEvzr7sK4tMpOJ3pFbcal2yPvM4nOhcO4SfpVSIs42h18mPymDkHKnbR2cBp5gFkwW77cWLjkcWgv_mI412wd7OLav2ZssPd9Z58GxAFaoucypRkzFr-jZJ7avCqEcdGjZFFexQVjMs-4USgEwnKbGGx3mwGpRCZmlpmocAgSaA5WJFp9DARXPu0Nj77NE04u1YQOV3girvoNmlHlkoEZdSEI6qhFM3nF972awnnpHNebx8F9uBf8WrLdMuIaLNl6He74_NKyWYe1oEMa8iYUun77AD5uk7IFlaCjmv5yOb8XpDwdTYizrYaMa3JmG6eE_liCNtWgPs89wCNpOz-E41uh7yNYrse1fQzEJrzIMDaqVCmEMZmyiRRGFXGFz4mUPYg7AuoylDt3qBs_tT9250q3RNdIdO2JrlUP3s3embTFPm7svdmtiw6C3-g5m_bg5awZRdadw-S1HZ_7PjxTqeSsBxvtMs4-xxNXhIzh4HJhgWcdXDnwxZZ6dOrLgmdcYfiJY77vWGH-W9fP4snNs3gBd1HM9JeD4eFTWGWeQxWN1SYsT8_O7TP0yKbF88DqBH7ctnT9B8nVQq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+compute-in-memory+chip+based+on+resistive+random-access+memory&rft.jtitle=Nature+%28London%29&rft.au=Wan%2C+Weier&rft.au=Kubendran%2C+Rajkumar&rft.au=Schaefer%2C+Clemens&rft.au=Eryilmaz%2C+Sukru+Burc&rft.date=2022-08-18&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=608&rft.issue=7923&rft.spage=504&rft_id=info:doi/10.1038%2Fs41586-022-04992-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon