Machine Learning Approaches for Automated Lesion Detection in Microwave Breast Imaging Clinical Data

Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion detection is used to accumulate clinica...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; pp. 10510 - 12
Main Authors Rana, Soumya Prakash, Dey, Maitreyee, Tiberi, Gianluigi, Sani, Lorenzo, Vispa, Alessandro, Raspa, Giovanni, Duranti, Michele, Ghavami, Mohammad, Dudley, Sandra
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.07.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-019-46974-3

Cover

Abstract Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion detection is used to accumulate clinical data from subjects undergoing breast examinations at the Department of Diagnostic Imaging, Perugia Hospital, Perugia, Italy. This paper presents the first ever clinical demonstration and comparison of a microwave ultra-wideband (UWB) device augmented by machine learning with subjects who are simultaneously undergoing conventional breast examinations. Non-ionizing microwave signals are transmitted through the breast tissue and the scattering parameters (S-parameter) are received via a dedicated moving transmitting and receiving antenna set-up. The output of a parallel radiologist study for the same subjects, performed using conventional techniques, is taken to pre-process microwave data and create suitable data for the machine intelligence system. These data are used to train and investigate several suitable supervised machine learning algorithms nearest neighbour (NN), multi-layer perceptron (MLP) neural network, and support vector machine (SVM) to create an intelligent classification system towards supporting clinicians to recognise breasts with lesions. The results are rigorously analysed, validated through statistical measurements, and found the quadratic kernel of SVM can classify the breast data with 98% accuracy.
AbstractList Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion detection is used to accumulate clinical data from subjects undergoing breast examinations at the Department of Diagnostic Imaging, Perugia Hospital, Perugia, Italy. This paper presents the first ever clinical demonstration and comparison of a microwave ultra-wideband (UWB) device augmented by machine learning with subjects who are simultaneously undergoing conventional breast examinations. Non-ionizing microwave signals are transmitted through the breast tissue and the scattering parameters (S-parameter) are received via a dedicated moving transmitting and receiving antenna set-up. The output of a parallel radiologist study for the same subjects, performed using conventional techniques, is taken to pre-process microwave data and create suitable data for the machine intelligence system. These data are used to train and investigate several suitable supervised machine learning algorithms nearest neighbour (NN), multi-layer perceptron (MLP) neural network, and support vector machine (SVM) to create an intelligent classification system towards supporting clinicians to recognise breasts with lesions. The results are rigorously analysed, validated through statistical measurements, and found the quadratic kernel of SVM can classify the breast data with 98% accuracy.
Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion detection is used to accumulate clinical data from subjects undergoing breast examinations at the Department of Diagnostic Imaging, Perugia Hospital, Perugia, Italy. This paper presents the first ever clinical demonstration and comparison of a microwave ultra-wideband (UWB) device augmented by machine learning with subjects who are simultaneously undergoing conventional breast examinations. Non-ionizing microwave signals are transmitted through the breast tissue and the scattering parameters (S-parameter) are received via a dedicated moving transmitting and receiving antenna set-up. The output of a parallel radiologist study for the same subjects, performed using conventional techniques, is taken to pre-process microwave data and create suitable data for the machine intelligence system. These data are used to train and investigate several suitable supervised machine learning algorithms nearest neighbour (NN), multi-layer perceptron (MLP) neural network, and support vector machine (SVM) to create an intelligent classification system towards supporting clinicians to recognise breasts with lesions. The results are rigorously analysed, validated through statistical measurements, and found the quadratic kernel of SVM can classify the breast data with 98% accuracy.Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion detection is used to accumulate clinical data from subjects undergoing breast examinations at the Department of Diagnostic Imaging, Perugia Hospital, Perugia, Italy. This paper presents the first ever clinical demonstration and comparison of a microwave ultra-wideband (UWB) device augmented by machine learning with subjects who are simultaneously undergoing conventional breast examinations. Non-ionizing microwave signals are transmitted through the breast tissue and the scattering parameters (S-parameter) are received via a dedicated moving transmitting and receiving antenna set-up. The output of a parallel radiologist study for the same subjects, performed using conventional techniques, is taken to pre-process microwave data and create suitable data for the machine intelligence system. These data are used to train and investigate several suitable supervised machine learning algorithms nearest neighbour (NN), multi-layer perceptron (MLP) neural network, and support vector machine (SVM) to create an intelligent classification system towards supporting clinicians to recognise breasts with lesions. The results are rigorously analysed, validated through statistical measurements, and found the quadratic kernel of SVM can classify the breast data with 98% accuracy.
ArticleNumber 10510
Author Sani, Lorenzo
Dudley, Sandra
Tiberi, Gianluigi
Rana, Soumya Prakash
Dey, Maitreyee
Duranti, Michele
Raspa, Giovanni
Ghavami, Mohammad
Vispa, Alessandro
Author_xml – sequence: 1
  givenname: Soumya Prakash
  orcidid: 0000-0002-8014-8122
  surname: Rana
  fullname: Rana, Soumya Prakash
  email: ranas9@lsbu.ac.uk
  organization: Division of Electrical and Electronic Engineering, School of Engineering, London South Bank University
– sequence: 2
  givenname: Maitreyee
  orcidid: 0000-0002-6862-7032
  surname: Dey
  fullname: Dey, Maitreyee
  organization: Division of Electrical and Electronic Engineering, School of Engineering, London South Bank University
– sequence: 3
  givenname: Gianluigi
  orcidid: 0000-0001-8787-1295
  surname: Tiberi
  fullname: Tiberi, Gianluigi
  organization: Division of Electrical and Electronic Engineering, School of Engineering, London South Bank University, UBT Srl, Spin Off of the University of Perugia
– sequence: 4
  givenname: Lorenzo
  surname: Sani
  fullname: Sani, Lorenzo
  organization: UBT Srl, Spin Off of the University of Perugia
– sequence: 5
  givenname: Alessandro
  surname: Vispa
  fullname: Vispa, Alessandro
  organization: UBT Srl, Spin Off of the University of Perugia
– sequence: 6
  givenname: Giovanni
  surname: Raspa
  fullname: Raspa, Giovanni
  organization: UBT Srl, Spin Off of the University of Perugia
– sequence: 7
  givenname: Michele
  surname: Duranti
  fullname: Duranti, Michele
  organization: Department of Diagnostic Imaging, Perugia Hospital
– sequence: 8
  givenname: Mohammad
  surname: Ghavami
  fullname: Ghavami, Mohammad
  organization: Division of Electrical and Electronic Engineering, School of Engineering, London South Bank University
– sequence: 9
  givenname: Sandra
  surname: Dudley
  fullname: Dudley, Sandra
  organization: Division of Electrical and Electronic Engineering, School of Engineering, London South Bank University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31324863$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9P3DAQxa0KVCjlC_RQReqll4D_xYkvlZaltEiLemnP1iRrL0aJndoOiG9fh90C5YDqi0f2e6M3v3mH9px3GqEPBJ8QzJrTyEklmxITWXIha16yN-iQYl6VlFG696w-QMcx3uB8Kio5kW_RASOM8kawQ7S-gu7aOl2sNARn3aZYjGPw-VHHwvhQLKbkB0h6nRXRelec66S7NFfWFVe2C_4ObnVxFjTEVFwOsJm7LHvrbAd9cQ4J3qN9A33Ux7v7CP26-Ppz-b1c_fh2uVysyq7iOJUNz5FZzRtNZSUEcFO1AhvN8nxYcNG2woiaS8mNrKGpqWFNS40BQ7uaAWVHiG37Tm6E-zvoezUGO0C4VwSrGZvaYlMZm3rAplh2fdm6xqkd9LrTLgV4cnqw6t8fZ6_Vxt8qITilZG7wedcg-N-TjkkNNna678FpP0VFqSBSCMyqLP30Qnrjp-AylFmFOREVk1n18Xmixyh_15YFzVaQ6ccYtFGdTTAvJQe0_evT0hfW_0K0Axuz2G10eIr9iusPVPbL_g
CitedBy_id crossref_primary_10_3390_jimaging8050123
crossref_primary_10_1109_JERM_2022_3218756
crossref_primary_10_1021_acsomega_2c06750
crossref_primary_10_1177_03000605241237867
crossref_primary_10_1109_TMTT_2022_3170837
crossref_primary_10_3390_tomography9010010
crossref_primary_10_1109_ACCESS_2022_3195875
crossref_primary_10_1109_TAP_2021_3121149
crossref_primary_10_1371_journal_pone_0250005
crossref_primary_10_1109_ACCESS_2024_3371886
crossref_primary_10_1016_j_neunet_2024_106778
crossref_primary_10_1109_TMTT_2022_3209679
crossref_primary_10_3390_bios13030302
crossref_primary_10_1109_JERM_2024_3372296
crossref_primary_10_3390_mi14071462
crossref_primary_10_3390_bioengineering11111173
crossref_primary_10_3390_s23115123
crossref_primary_10_1109_ACCESS_2025_3535804
crossref_primary_10_3390_cancers15215216
crossref_primary_10_1038_s44303_024_00012_8
crossref_primary_10_1109_JERM_2021_3072451
crossref_primary_10_1109_JERM_2023_3321423
crossref_primary_10_3390_mi13122049
crossref_primary_10_1109_JERM_2023_3289767
crossref_primary_10_1515_teme_2023_0048
crossref_primary_10_3390_bios13020238
crossref_primary_10_3390_diagnostics11101930
crossref_primary_10_3390_s24062013
crossref_primary_10_1109_JMMCT_2021_3076827
crossref_primary_10_3390_jimaging6080080
crossref_primary_10_1109_ACCESS_2020_3027805
crossref_primary_10_1080_21681163_2023_2172615
crossref_primary_10_3390_s20082390
crossref_primary_10_1109_MAP_2024_3411480
crossref_primary_10_1371_journal_pone_0229367
crossref_primary_10_1007_s11042_024_18775_y
crossref_primary_10_1016_j_compeleceng_2024_109620
crossref_primary_10_3390_app11219998
crossref_primary_10_4108_eetpht_10_6430
crossref_primary_10_18185_erzifbed_1130305
crossref_primary_10_1109_TMTT_2023_3245665
Cites_doi 10.1109/TAP.2003.815446
10.1088/0031-9155/52/20/002
10.1109/TIT.1967.1053964
10.2528/PIERM17111903
10.1038/srep38906
10.1109/7260.915627
10.1093/jnci/djr172
10.1109/TAP.2011.2167905
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1007/s13244-016-0531-4
10.1016/0005-2795(75)90109-9
10.1016/j.bspc.2016.09.003
10.1038/srep46732
10.1016/j.cam.2004.02.013
10.1016/j.mcna.2015.01.002
10.1088/0031-9155/52/10/001
10.1016/j.acra.2006.10.016
10.1109/MMM.2011.942702
10.1080/01621459.1984.10478083
10.1109/TBME.2007.900564
10.7326/M15-1241
10.1016/j.bspc.2019.04.025
10.1049/cp.2017.0302
10.1016/j.cmpb.2017.12.012
10.1007/978-3-319-27866-7
10.21236/AD0256582
10.7551/mitpress/5236.001.0001
10.1109/ACCESS.2017.2737633
10.1109/EUROCON.2017.8011175
10.1038/s41568-018-0016-5
10.1594/ecr2018/C-1390
10.1007/978-1-60327-101-1_3
ContentType Journal Article
Copyright The Author(s) 2019
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s41598-019-46974-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID 10.1038/s41598-019-46974-3
PMC6642213
31324863
10_1038_s41598_019_46974_3
Genre Validation Study
Journal Article
Comparative Study
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c540t-840453748e29566a4f5b60fe36970646bb6f674994f97a872f38b2ffaf2c73a23
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Oct 01 16:45:05 EDT 2025
Tue Sep 30 16:55:41 EDT 2025
Wed Oct 01 14:34:05 EDT 2025
Mon Sep 29 20:41:06 EDT 2025
Thu Jan 02 22:29:27 EST 2025
Wed Oct 01 03:48:26 EDT 2025
Thu Apr 24 22:55:26 EDT 2025
Fri Feb 21 02:38:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-840453748e29566a4f5b60fe36970646bb6f674994f97a872f38b2ffaf2c73a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-8787-1295
0000-0002-8014-8122
0000-0002-6862-7032
OpenAccessLink https://www.proquest.com/docview/2260416539?pq-origsite=%requestingapplication%
PMID 31324863
PQID 2260416539
PQPubID 2041939
PageCount 12
ParticipantIDs unpaywall_primary_10_1038_s41598_019_46974_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6642213
proquest_miscellaneous_2261966035
proquest_journals_2260416539
pubmed_primary_31324863
crossref_citationtrail_10_1038_s41598_019_46974_3
crossref_primary_10_1038_s41598_019_46974_3
springer_journals_10_1038_s41598_019_46974_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-19
PublicationDateYYYYMMDD 2019-07-19
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-19
  day: 19
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Petracci (CR1) 2011; 103
Youden (CR36) 1950; 3
Rahman (CR8) 2016; 6
Davis, Van Veen, Hagness, Kelcz (CR23) 2008; 55
Preece, Craddock, Shere, Jones, Winton (CR16) 2016
CR19
Sekkal, Merad, Meriah (CR25) 2018; 65
CR17
CR39
CR38
CR14
Lazebnik (CR12) 2007; 52
CR34
CR32
CR31
CR30
Ghavami (CR18) 2012; 60
Yamamoto (CR21) 2017; 7
CR2
Nikolova (CR11) 2011; 12
Cover, Hart (CR37) 1967; 13
CR3
Bond (CR10) 2003; 51
CR7
CR29
Sardanelli (CR4) 2017; 8
Lazebnik (CR13) 2007; 52
CR28
CR27
Meaney (CR15) 2007; 14
CR24
CR22
CR43
CR20
CR42
CR41
Kanzow, Yamashita, Fukushima (CR40) 2004; 172
Fuller, Lee, Elmore (CR6) 2015; 99
Sani (CR44) 2019; 52
Miglioretti (CR5) 2016; 164
Li, Hagness (CR9) 2001; 11
Picard, Cook (CR33) 1984; 79
Matthews (CR35) 1975; 405
Li, Porter, Santorelli, Popovic, Coates (CR26) 2017; 31
MS Fuller (46974_CR6) 2015; 99
PM Meaney (46974_CR15) 2007; 14
Y Yamamoto (46974_CR21) 2017; 7
46974_CR28
46974_CR29
NK Nikolova (46974_CR11) 2011; 12
X Li (46974_CR9) 2001; 11
46974_CR34
46974_CR31
L Sani (46974_CR44) 2019; 52
46974_CR32
W Sekkal (46974_CR25) 2018; 65
46974_CR38
A Rahman (46974_CR8) 2016; 6
46974_CR14
M Lazebnik (46974_CR13) 2007; 52
46974_CR30
EJ Bond (46974_CR10) 2003; 51
46974_CR19
46974_CR17
N Ghavami (46974_CR18) 2012; 60
46974_CR39
AW Preece (46974_CR16) 2016
Y Li (46974_CR26) 2017; 31
T Cover (46974_CR37) 1967; 13
46974_CR22
46974_CR7
BW Matthews (46974_CR35) 1975; 405
46974_CR20
46974_CR42
46974_CR43
46974_CR2
M Lazebnik (46974_CR12) 2007; 52
RR Picard (46974_CR33) 1984; 79
46974_CR3
F Sardanelli (46974_CR4) 2017; 8
46974_CR27
46974_CR24
DL Miglioretti (46974_CR5) 2016; 164
E Petracci (46974_CR1) 2011; 103
46974_CR41
SK Davis (46974_CR23) 2008; 55
WJ Youden (46974_CR36) 1950; 3
Christian Kanzow (46974_CR40) 2004; 172
References_xml – volume: 51
  start-page: 1690
  year: 2003
  end-page: 1705
  ident: CR10
  article-title: Microwave imaging via space-time beamforming for early detection of breast cancer
  publication-title: IEEE Transactions on Antennas Propag.
  doi: 10.1109/TAP.2003.815446
– ident: CR22
– volume: 52
  start-page: 6093
  year: 2007
  ident: CR13
  article-title: A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries
  publication-title: Phys. Medicine and Biol.
  doi: 10.1088/0031-9155/52/20/002
– ident: CR43
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: CR37
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE transactions on information theory
  doi: 10.1109/TIT.1967.1053964
– ident: CR14
– volume: 65
  start-page: 69
  year: 2018
  end-page: 78
  ident: CR25
  article-title: A comparative study for breast cancer detection by neural approach for different configurations of the microwave imaging system
  publication-title: Prog. In Electromagn. Res.
  doi: 10.2528/PIERM17111903
– ident: CR39
– ident: CR2
– volume: 6
  start-page: 38906
  year: 2016
  ident: CR8
  article-title: Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: To implement a wearable medical bra
  publication-title: Sci. reports
  doi: 10.1038/srep38906
– ident: CR30
– volume: 11
  start-page: 130
  year: 2001
  end-page: 132
  ident: CR9
  article-title: A confocal microwave imaging algorithm for breast cancer detection
  publication-title: IEEE Microw. Wireless components letters
  doi: 10.1109/7260.915627
– volume: 103
  start-page: 1037
  year: 2011
  end-page: 1048
  ident: CR1
  article-title: Risk factor modification and projections of absolute breast cancer risk
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djr172
– volume: 60
  start-page: 231
  year: 2012
  end-page: 239
  ident: CR18
  article-title: Uwb microwave imaging of objects with canonical shape
  publication-title: IEEE Transactions on Antennas Propag.
  doi: 10.1109/TAP.2011.2167905
– ident: CR29
– volume: 3
  start-page: 32
  year: 1950
  end-page: 35
  ident: CR36
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– volume: 8
  start-page: 11
  year: 2017
  end-page: 18
  ident: CR4
  article-title: Mammography: an update of the eusobi recommendations on information for women
  publication-title: Insights into imaging
  doi: 10.1007/s13244-016-0531-4
– ident: CR27
– volume: 405
  start-page: 442
  year: 1975
  end-page: 451
  ident: CR35
  article-title: Comparison of the predicted and observed secondary structure of t4 phage lysozyme
  publication-title: Biochimica et Biophys. Acta (BBA)-Protein Struct.
  doi: 10.1016/0005-2795(75)90109-9
– ident: CR42
– volume: 31
  start-page: 366
  year: 2017
  end-page: 376
  ident: CR26
  article-title: Microwave breast cancer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2016.09.003
– volume: 7
  start-page: 46732
  year: 2017
  ident: CR21
  article-title: Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach
  publication-title: Sci. Reports
  doi: 10.1038/srep46732
– ident: CR19
– volume: 172
  start-page: 375
  issue: 2
  year: 2004
  end-page: 397
  ident: CR40
  article-title: Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2004.02.013
– ident: CR3
– ident: CR38
– volume: 99
  start-page: 451
  year: 2015
  ident: CR6
  article-title: Breast cancer screening: an evidence-based update
  publication-title: The Med. clinics North Am.
  doi: 10.1016/j.mcna.2015.01.002
– volume: 52
  start-page: 2637
  year: 2007
  ident: CR12
  article-title: A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries
  publication-title: Phys. Medicine and Biol.
  doi: 10.1088/0031-9155/52/10/001
– ident: CR17
– volume: 14
  start-page: 207
  year: 2007
  end-page: 218
  ident: CR15
  article-title: Initial clinical experience with microwave breast imaging in women with normal mammography
  publication-title: Acad. radiology
  doi: 10.1016/j.acra.2006.10.016
– ident: CR31
– ident: CR32
– volume: 12
  start-page: 78
  year: 2011
  end-page: 94
  ident: CR11
  article-title: Microwave imaging for breast cancer
  publication-title: IEEE microwave magazine
  doi: 10.1109/MMM.2011.942702
– ident: CR34
– ident: CR7
– volume: 79
  start-page: 575
  year: 1984
  end-page: 583
  ident: CR33
  article-title: Cross-validation of regression models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1984.10478083
– volume: 55
  start-page: 237
  year: 2008
  end-page: 246
  ident: CR23
  article-title: Breast tumor characterization based on ultrawideband microwave backscatter
  publication-title: IEEE transactions on biomedical engineering
  doi: 10.1109/TBME.2007.900564
– volume: 164
  start-page: 205
  year: 2016
  end-page: 214
  ident: CR5
  article-title: Radiation-induced breast cancer incidence and mortality from digital mammography screening: a modeling study
  publication-title: Annals internal medicine
  doi: 10.7326/M15-1241
– ident: CR28
– ident: CR41
– volume: 52
  start-page: 257
  year: 2019
  end-page: 263
  ident: CR44
  article-title: “Novel microwave apparatus for breast lesions detection: Preliminary clinical results”
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2019.04.025
– ident: CR24
– ident: CR20
– start-page: 033502
  year: 2016
  ident: CR16
  article-title: Maria m4: clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection
  publication-title: J. Med. Imaging
– ident: 46974_CR28
  doi: 10.1049/cp.2017.0302
– ident: 46974_CR34
– ident: 46974_CR20
  doi: 10.1016/j.cmpb.2017.12.012
– volume: 51
  start-page: 1690
  year: 2003
  ident: 46974_CR10
  publication-title: IEEE Transactions on Antennas Propag.
  doi: 10.1109/TAP.2003.815446
– volume: 65
  start-page: 69
  year: 2018
  ident: 46974_CR25
  publication-title: Prog. In Electromagn. Res.
  doi: 10.2528/PIERM17111903
– volume: 103
  start-page: 1037
  year: 2011
  ident: 46974_CR1
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djr172
– volume: 7
  start-page: 46732
  year: 2017
  ident: 46974_CR21
  publication-title: Sci. Reports
  doi: 10.1038/srep46732
– volume: 55
  start-page: 237
  year: 2008
  ident: 46974_CR23
  publication-title: IEEE transactions on biomedical engineering
  doi: 10.1109/TBME.2007.900564
– ident: 46974_CR32
– ident: 46974_CR30
– volume: 3
  start-page: 32
  year: 1950
  ident: 46974_CR36
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– volume: 52
  start-page: 6093
  year: 2007
  ident: 46974_CR13
  publication-title: Phys. Medicine and Biol.
  doi: 10.1088/0031-9155/52/20/002
– ident: 46974_CR43
– ident: 46974_CR17
– ident: 46974_CR14
  doi: 10.1007/978-3-319-27866-7
– volume: 11
  start-page: 130
  year: 2001
  ident: 46974_CR9
  publication-title: IEEE Microw. Wireless components letters
  doi: 10.1109/7260.915627
– volume: 60
  start-page: 231
  year: 2012
  ident: 46974_CR18
  publication-title: IEEE Transactions on Antennas Propag.
  doi: 10.1109/TAP.2011.2167905
– ident: 46974_CR38
  doi: 10.21236/AD0256582
– ident: 46974_CR39
  doi: 10.7551/mitpress/5236.001.0001
– ident: 46974_CR24
  doi: 10.1109/ACCESS.2017.2737633
– volume: 31
  start-page: 366
  year: 2017
  ident: 46974_CR26
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2016.09.003
– ident: 46974_CR7
– ident: 46974_CR3
– volume: 13
  start-page: 21
  year: 1967
  ident: 46974_CR37
  publication-title: IEEE transactions on information theory
  doi: 10.1109/TIT.1967.1053964
– volume: 12
  start-page: 78
  year: 2011
  ident: 46974_CR11
  publication-title: IEEE microwave magazine
  doi: 10.1109/MMM.2011.942702
– ident: 46974_CR27
  doi: 10.1109/EUROCON.2017.8011175
– ident: 46974_CR31
– volume: 8
  start-page: 11
  year: 2017
  ident: 46974_CR4
  publication-title: Insights into imaging
  doi: 10.1007/s13244-016-0531-4
– volume: 405
  start-page: 442
  year: 1975
  ident: 46974_CR35
  publication-title: Biochimica et Biophys. Acta (BBA)-Protein Struct.
  doi: 10.1016/0005-2795(75)90109-9
– volume: 52
  start-page: 257
  year: 2019
  ident: 46974_CR44
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2019.04.025
– volume: 6
  start-page: 38906
  year: 2016
  ident: 46974_CR8
  publication-title: Sci. reports
  doi: 10.1038/srep38906
– ident: 46974_CR29
– ident: 46974_CR22
  doi: 10.1038/s41568-018-0016-5
– volume: 99
  start-page: 451
  year: 2015
  ident: 46974_CR6
  publication-title: The Med. clinics North Am.
  doi: 10.1016/j.mcna.2015.01.002
– start-page: 033502
  volume-title: J. Med. Imaging
  year: 2016
  ident: 46974_CR16
– ident: 46974_CR19
  doi: 10.1594/ecr2018/C-1390
– volume: 172
  start-page: 375
  issue: 2
  year: 2004
  ident: 46974_CR40
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2004.02.013
– volume: 164
  start-page: 205
  year: 2016
  ident: 46974_CR5
  publication-title: Annals internal medicine
  doi: 10.7326/M15-1241
– ident: 46974_CR42
– volume: 14
  start-page: 207
  year: 2007
  ident: 46974_CR15
  publication-title: Acad. radiology
  doi: 10.1016/j.acra.2006.10.016
– volume: 52
  start-page: 2637
  year: 2007
  ident: 46974_CR12
  publication-title: Phys. Medicine and Biol.
  doi: 10.1088/0031-9155/52/10/001
– volume: 79
  start-page: 575
  year: 1984
  ident: 46974_CR33
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1984.10478083
– ident: 46974_CR41
  doi: 10.1007/978-1-60327-101-1_3
– ident: 46974_CR2
SSID ssj0000529419
Score 2.4628735
Snippet Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10510
SubjectTerms 631/67/1347
631/67/2321
639/166/985
Algorithms
Artificial intelligence
Breast
Breast - diagnostic imaging
Breast Neoplasms - diagnostic imaging
Breasts
Clinical Trials as Topic
Dielectric properties
Dielectric Spectroscopy - instrumentation
Dielectric Spectroscopy - methods
Electrical properties
Equipment Design
Female
Humanities and Social Sciences
Humans
Intelligence
Learning algorithms
Lesions
Machine learning
Magnetic Resonance Imaging
Mammography
Microwave Imaging
multidisciplinary
Neural networks
Neural Networks, Computer
ROC Curve
Scattering, Radiation
Science
Science (multidisciplinary)
Statistics, Nonparametric
Support Vector Machine
Ultrasonography, Mammary
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKKwQcUHkH2sqVuFGr67XXXp9QoFQtUnqiUm4re2NDpbBJmw1V_z0zXmdLVCni7MeuPX5845n5hpCPzimnJiYwnjvNpBaw51woWKECxkHCnVVjvPPoQp1dyu_jYpwe3BbJrXJ1JsaDejKr8Y38GGBCBuChEObz_Jph1ii0rqYUGo_IDgeogqtaj3X_xoJWLMlNipXJRHm8gPsKY8q4YaAXasnE-n30AGQ-9JXsDabPyJNlM7d3t3Y6_edOOt0lzxOYpMNO-i_Ilm9eksddesm7V2Qyip6SniYS1Z90mBjE_YICWKXDZTsDxOonUANfzeiJb6NrVkOvGjpCX71b-8fTL-i53tLz3zGlEU1colN6Ylv7mlyefvvx9YylrAqsBnTWMtDoZIGkMz4H3UhZGQqnsuAFzAfgEwXSC0qDIiSD0bbUeRCly0OwIa-1sLl4Q7abWePfEeqFD5kAfK6Ek0YLF2rDTchK54OBXgeEr-a2qhPlOGa-mFbR9C3KqpNHBfKoojwqMSCf-jbzjnBjY-29lciqtPkW1f1SGZDDvhi2DdpCbONny1iHIzGpKAbkbSfh_nPIZilLBZ3rNdn3FZCSe72kufoVqbkVqHM5h5ZHq1Vy_1ubRnHUr6T_GPT7zYP-QJ7mWQxNY9zske32Zun3ATm17iBuj78sXxOX
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fbxQhEJ7UNkZ9MP6qnq0GE98scRdYWB631qZecr5ok75tYA-0yXWv8fZs-t87sOzqpabRZ2AWGGb5BmY-AN5aK62ca09zZhUViqPNWV_QQvqQB4l7VhPynWef5cmpmJ4VZ1vAhlyYGLQfKS3jb3qIDnu_wo0mJIPlmqJDpwTld2CnRNFojDtVNf0yHU9Wwt2VyHXKkMl4-ZfGm7vQDWh5M0JyvCZ9APfW7aW5vjKLxR870fEjeJggJKn6Tj-GLdc-gbv9o5LXT2E-i_GRjiTq1G-kSrzhbkUQopJq3S0Rp7o51ghnZeTIdTEgqyXnLZmFCL0r89ORwxCv3pFPF_EhI5IYRBfkyHTmGZwef_z64YSmtxRog5iso-jHiSJQzTiGHpE0whdWZt5xnA9EJRJ15qVC90d4rUypmOelZd4bzxrFDeO7sN0uW_cCiOPOZxxRueRWaMWtb3SufVZa5zVKnUA-zG3dJKLx8N7Foo4X3ryse33UqI866qPmE3g3trnsaTZurb0_qKxOJreqEUdmiC4LrifwZixGYwk3IKZ1y3Wskwc6Ul5M4Hmv4fFzgcNSlBKFqw3djxUCEfdmSXv-PRJyS3TiWI4tD4ZV8rtbt43iYFxJ_zDol_8nfQ_usywmqNFc78N292PtXiF-6uzrZDC_ACI0EuM
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P1YKMhI3KjbxE7s-LhQqoK0FQdWlFNkZ22oWLIVm1CVX8_YcQJLUUXPGTsZZxx_k5n5BuCFMcKIuXI0ZUbSTHLcc8blNBfO10HimVX5eufpoTiYZe-O8qMNEH0tTEjaD5SW4TPdZ4ftrvCg8cVgqaLo0MmMogs4d1dgU_jA0gg2Z4fvJ598JznEKBRhAosVMgkv_jF4_RQ6By3PZ0gOYdIbcK2tT_TZqV4s_jiJ9m_Bx16HLgHl607bmJ3q51_0jpdX8jbcjOCUTDrJO7Bh67twtWtXeXYP5tOQeWlJJGX9TCaRkdyuCIJfMmmbJSJgO0cJ_xeO7NkmpHrV5LgmU5_7d6p_WPLKZ8I35O230CKJRG7SBdnTjb4Ps_03H14f0NilgVaI9hqKHmKWexIby9DXEjpzuRGJsxw1QLwj0BqckOhYZU5JXUjmeGGYc9qxSnLN-AMY1cvaPgJiuXUJR7wvuMmU5MZVKlUuKYx1CmcdQ9q_tbKKFOa-k8aiDKF0XpTdCpa4gmVYwZKP4eUw5qQj8LhQeqs3hjJu5lWJCDVB3JpzNYbnw2Xchj62omu7bINM6olOeT6Gh53tDLfz7JhZIXByuWZVg4Cn-F6_Uh9_CVTfAt1DluLI7d7-fj_WRVpsDzb6H0o_vpz4E7jOklD6RlO1BaPme2ufIjJrzLO4DX8Bz9cxCA
  priority: 102
  providerName: Unpaywall
Title Machine Learning Approaches for Automated Lesion Detection in Microwave Breast Imaging Clinical Data
URI https://link.springer.com/article/10.1038/s41598-019-46974-3
https://www.ncbi.nlm.nih.gov/pubmed/31324863
https://www.proquest.com/docview/2260416539
https://www.proquest.com/docview/2261966035
https://pubmed.ncbi.nlm.nih.gov/PMC6642213
https://www.nature.com/articles/s41598-019-46974-3.pdf
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2IcR4QHxTGJWREC_Mo7ETO35AKOs2jUqtJqBSeYri1GaTQtqtKaP_PWfHCVSbpj1Fih0n9p11v4vvfofQO6W44lNpSECVIKFgsOeUiUjEjc2DBJuV23zn4YifjMPBJJpsoCbc1i_g4kbXztaTGl8W-38uVp9hw3-qU8bjjwswQjZRLJAEnD0REvZ-fkFsYSl7AOurbGyibTBW1Cr-0HsANf03laEr_2F52QngC-pTa24eed18XcOk10Mr2_PVB-j-spxnq6usKP4zYceP0EOPPXFSK8tjtKHLJ-heXY1y9RRNhy6wUmPPufoTJ55wXC8wYFucLKsZAFw9hR72Jxs-1JWL5CrxeYmHNrTvKvut8YENdK_wl1-uAhL21KMFPsyq7BkaHx99758QX4SB5ADmKgIOYBhZjhpNwZXiWWgixXtGM1gPgDMchG24AL8pNFJksaCGxYoakxmaC5ZR9hxtlbNSv0RYM216DOA8ZyqUgimTy0CaXqy0kTBqBwXN2qa5Zyi3hTKK1J2Uszit5ZGCPFInj5R10If2mXnNz3Fr791GZGmjaikA0B7A0ojJDnrbNsMus0cnWalnS9cnsDymLOqgF7WE29dZ8ssw5jC4WJN928EyeK-3lOdnjsmbg_dHA3hyr9GSf5912yz2Wk26w6Rf3WFWr9EO7bl0NhLIXbRVXS71G0BbleqiTTERXbSdJINvA7geHI1Ov8LdPu933R-MrttR0DIenSY__gJNHCnR
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemITR4QONrlA0wEjwxa4nt2PHDhAplatm6p03qW7BTGyaVtNB0Vf8p_kbOzseoJlW87NlOYufufHe-u98h9M4YYcRYORJTIwmXDGTOuIQkwvk6SNBZua93Hp6L_iX_OkpGW-hPUwvj0yqbMzEc1ONp7u_Ij8BMiMB4SJj6OPtFfNcoH11tWmhUbHFqV0tw2ebHgx7Q9z2lJ18uPvdJ3VWA5GCdlAQ8Gp540BVLwTcQmrvEiMhZJpQE_Sxg9U5IcAS4U1KnkjqWGuqcdjSXTHugAzjy73EWcY_VL0eyvdPxUTMeq7o2J2Lp0Rz0o69hixUBP1Rywtb13y2j9nZuZhugfYh2FsVMr5Z6MvlHB57soke18Yq7Fbc9Rlu2eILuV-0sV0_ReBgyMy2uQVu_426NWG7nGIxj3F2UU7CQ7Rhm-Fs63LNlSAUr8FWBhz43cKmvLf7kM-VLPPgZWijhGrt0gnu61M_Q5Z387-dou5gW9gXCllkXMfAHBDNcSWZcrmLlotRYp-CtHRQ3_zbLa4hz32ljkoVQO0uzih4Z0CML9MhYB31on5lVAB8bZx80JMtqYZ9nN6zZQW_bYRBTH3vRhZ0uwpzYA6GypIP2Kgq3n_PomTwV8HK5Rvt2gocAXx8prn4EKHAB7iON4cnDhktulrVpF4ctJ_3Hpl9u3vQbtNO_GJ5lZ4Pz0330gEahLI7E6gBtl78X9hVYbaV5HUQFo293LZt_AarXTqs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIl4HxLOkFDASnKiVXdtrrw8IBULUUFJxoFJui72xS6WwCWTTKH-NX8fY-yhRpYhLz7Z31zsznhnPzDcIvTZGGDFRjsTUSMIlA5kzLiGJcL4OEnRW7uudRyfi6JR_HifjHfSnqYXxaZXNmRgO6sks93fkXTATIjAeEqa6rk6L-NofvJ__Ir6DlI-0Nu00KhY5tusVuG-Ld8M-0PoNpYNP3z4ekbrDAMnBUikJeDc88QAsloKfIDR3iRGRs0woCbpawE6ckOAUcKekTiV1LDXUOe1oLpn2oAdw_N-QjDOfTibHsr3f8RE0Hqu6TidiaXcButLXs8WKgE8qOWGbuvCKgXs1T7MN1t5Ft5fFXK9Xejr9Rx8O7qN7tSGLexXnPUA7tniIblatLdeP0GQUsjQtrgFcz3CvRi-3CwyGMu4tyxlYy3YCM_yNHe7bMqSFFfi8wCOfJ7jSFxZ_8FnzJR7-DO2UcI1jOsV9XerH6PRa_vcTtFvMCvsUYcusixj4BoIZriQzLlexclFqrFPw1A6Km3-b5TXcue-6Mc1C2J2lWUWPDOiRBXpkrIPetmvmFdjH1tkHDcmyWvAX2SWbdtCrdhhE1sdhdGFnyzAn9qCoLOmgvYrC7es8kiZPBTxcbtC-neDhwDdHivMfARZcgCtJY1h52HDJ5Wdt28Vhy0n_sen97Zt-iW6BVGZfhifHz9AdGoUKORKrA7Rb_l7a52DAleZFkBSMvl-3aP4FmflS5g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P1YKMhI3KjbxE7s-LhQqoK0FQdWlFNkZ22oWLIVm1CVX8_YcQJLUUXPGTsZZxx_k5n5BuCFMcKIuXI0ZUbSTHLcc8blNBfO10HimVX5eufpoTiYZe-O8qMNEH0tTEjaD5SW4TPdZ4ftrvCg8cVgqaLo0MmMogs4d1dgU_jA0gg2Z4fvJ598JznEKBRhAosVMgkv_jF4_RQ6By3PZ0gOYdIbcK2tT_TZqV4s_jiJ9m_Bx16HLgHl607bmJ3q51_0jpdX8jbcjOCUTDrJO7Bh67twtWtXeXYP5tOQeWlJJGX9TCaRkdyuCIJfMmmbJSJgO0cJ_xeO7NkmpHrV5LgmU5_7d6p_WPLKZ8I35O230CKJRG7SBdnTjb4Ps_03H14f0NilgVaI9hqKHmKWexIby9DXEjpzuRGJsxw1QLwj0BqckOhYZU5JXUjmeGGYc9qxSnLN-AMY1cvaPgJiuXUJR7wvuMmU5MZVKlUuKYx1CmcdQ9q_tbKKFOa-k8aiDKF0XpTdCpa4gmVYwZKP4eUw5qQj8LhQeqs3hjJu5lWJCDVB3JpzNYbnw2Xchj62omu7bINM6olOeT6Gh53tDLfz7JhZIXByuWZVg4Cn-F6_Uh9_CVTfAt1DluLI7d7-fj_WRVpsDzb6H0o_vpz4E7jOklD6RlO1BaPme2ufIjJrzLO4DX8Bz9cxCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Approaches+for+Automated+Lesion+Detection+in+Microwave+Breast+Imaging+Clinical+Data&rft.jtitle=Scientific+reports&rft.au=Rana%2C+Soumya+Prakash&rft.au=Dey%2C+Maitreyee&rft.au=Tiberi%2C+Gianluigi&rft.au=Sani%2C+Lorenzo&rft.date=2019-07-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=10510&rft_id=info:doi/10.1038%2Fs41598-019-46974-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon