Machine Learning Approaches for Automated Lesion Detection in Microwave Breast Imaging Clinical Data
Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion detection is used to accumulate clinica...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; pp. 10510 - 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.07.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-019-46974-3 |
Cover
Abstract | Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion detection is used to accumulate clinical data from subjects undergoing breast examinations at the Department of Diagnostic Imaging, Perugia Hospital, Perugia, Italy. This paper presents the first ever clinical demonstration and comparison of a microwave ultra-wideband (UWB) device augmented by machine learning with subjects who are simultaneously undergoing conventional breast examinations. Non-ionizing microwave signals are transmitted through the breast tissue and the scattering parameters (S-parameter) are received via a dedicated moving transmitting and receiving antenna set-up. The output of a parallel radiologist study for the same subjects, performed using conventional techniques, is taken to pre-process microwave data and create suitable data for the machine intelligence system. These data are used to train and investigate several suitable supervised machine learning algorithms nearest neighbour (NN), multi-layer perceptron (MLP) neural network, and support vector machine (SVM) to create an intelligent classification system towards supporting clinicians to recognise breasts with lesions. The results are rigorously analysed, validated through statistical measurements, and found the quadratic kernel of SVM can classify the breast data with 98% accuracy. |
---|---|
AbstractList | Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion detection is used to accumulate clinical data from subjects undergoing breast examinations at the Department of Diagnostic Imaging, Perugia Hospital, Perugia, Italy. This paper presents the first ever clinical demonstration and comparison of a microwave ultra-wideband (UWB) device augmented by machine learning with subjects who are simultaneously undergoing conventional breast examinations. Non-ionizing microwave signals are transmitted through the breast tissue and the scattering parameters (S-parameter) are received via a dedicated moving transmitting and receiving antenna set-up. The output of a parallel radiologist study for the same subjects, performed using conventional techniques, is taken to pre-process microwave data and create suitable data for the machine intelligence system. These data are used to train and investigate several suitable supervised machine learning algorithms nearest neighbour (NN), multi-layer perceptron (MLP) neural network, and support vector machine (SVM) to create an intelligent classification system towards supporting clinicians to recognise breasts with lesions. The results are rigorously analysed, validated through statistical measurements, and found the quadratic kernel of SVM can classify the breast data with 98% accuracy. Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion detection is used to accumulate clinical data from subjects undergoing breast examinations at the Department of Diagnostic Imaging, Perugia Hospital, Perugia, Italy. This paper presents the first ever clinical demonstration and comparison of a microwave ultra-wideband (UWB) device augmented by machine learning with subjects who are simultaneously undergoing conventional breast examinations. Non-ionizing microwave signals are transmitted through the breast tissue and the scattering parameters (S-parameter) are received via a dedicated moving transmitting and receiving antenna set-up. The output of a parallel radiologist study for the same subjects, performed using conventional techniques, is taken to pre-process microwave data and create suitable data for the machine intelligence system. These data are used to train and investigate several suitable supervised machine learning algorithms nearest neighbour (NN), multi-layer perceptron (MLP) neural network, and support vector machine (SVM) to create an intelligent classification system towards supporting clinicians to recognise breasts with lesions. The results are rigorously analysed, validated through statistical measurements, and found the quadratic kernel of SVM can classify the breast data with 98% accuracy.Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy tissues by exploiting their dielectric properties. In this paper, a microwave apparatus for breast lesion detection is used to accumulate clinical data from subjects undergoing breast examinations at the Department of Diagnostic Imaging, Perugia Hospital, Perugia, Italy. This paper presents the first ever clinical demonstration and comparison of a microwave ultra-wideband (UWB) device augmented by machine learning with subjects who are simultaneously undergoing conventional breast examinations. Non-ionizing microwave signals are transmitted through the breast tissue and the scattering parameters (S-parameter) are received via a dedicated moving transmitting and receiving antenna set-up. The output of a parallel radiologist study for the same subjects, performed using conventional techniques, is taken to pre-process microwave data and create suitable data for the machine intelligence system. These data are used to train and investigate several suitable supervised machine learning algorithms nearest neighbour (NN), multi-layer perceptron (MLP) neural network, and support vector machine (SVM) to create an intelligent classification system towards supporting clinicians to recognise breasts with lesions. The results are rigorously analysed, validated through statistical measurements, and found the quadratic kernel of SVM can classify the breast data with 98% accuracy. |
ArticleNumber | 10510 |
Author | Sani, Lorenzo Dudley, Sandra Tiberi, Gianluigi Rana, Soumya Prakash Dey, Maitreyee Duranti, Michele Raspa, Giovanni Ghavami, Mohammad Vispa, Alessandro |
Author_xml | – sequence: 1 givenname: Soumya Prakash orcidid: 0000-0002-8014-8122 surname: Rana fullname: Rana, Soumya Prakash email: ranas9@lsbu.ac.uk organization: Division of Electrical and Electronic Engineering, School of Engineering, London South Bank University – sequence: 2 givenname: Maitreyee orcidid: 0000-0002-6862-7032 surname: Dey fullname: Dey, Maitreyee organization: Division of Electrical and Electronic Engineering, School of Engineering, London South Bank University – sequence: 3 givenname: Gianluigi orcidid: 0000-0001-8787-1295 surname: Tiberi fullname: Tiberi, Gianluigi organization: Division of Electrical and Electronic Engineering, School of Engineering, London South Bank University, UBT Srl, Spin Off of the University of Perugia – sequence: 4 givenname: Lorenzo surname: Sani fullname: Sani, Lorenzo organization: UBT Srl, Spin Off of the University of Perugia – sequence: 5 givenname: Alessandro surname: Vispa fullname: Vispa, Alessandro organization: UBT Srl, Spin Off of the University of Perugia – sequence: 6 givenname: Giovanni surname: Raspa fullname: Raspa, Giovanni organization: UBT Srl, Spin Off of the University of Perugia – sequence: 7 givenname: Michele surname: Duranti fullname: Duranti, Michele organization: Department of Diagnostic Imaging, Perugia Hospital – sequence: 8 givenname: Mohammad surname: Ghavami fullname: Ghavami, Mohammad organization: Division of Electrical and Electronic Engineering, School of Engineering, London South Bank University – sequence: 9 givenname: Sandra surname: Dudley fullname: Dudley, Sandra organization: Division of Electrical and Electronic Engineering, School of Engineering, London South Bank University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31324863$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9P3DAQxa0KVCjlC_RQReqll4D_xYkvlZaltEiLemnP1iRrL0aJndoOiG9fh90C5YDqi0f2e6M3v3mH9px3GqEPBJ8QzJrTyEklmxITWXIha16yN-iQYl6VlFG696w-QMcx3uB8Kio5kW_RASOM8kawQ7S-gu7aOl2sNARn3aZYjGPw-VHHwvhQLKbkB0h6nRXRelec66S7NFfWFVe2C_4ObnVxFjTEVFwOsJm7LHvrbAd9cQ4J3qN9A33Ux7v7CP26-Ppz-b1c_fh2uVysyq7iOJUNz5FZzRtNZSUEcFO1AhvN8nxYcNG2woiaS8mNrKGpqWFNS40BQ7uaAWVHiG37Tm6E-zvoezUGO0C4VwSrGZvaYlMZm3rAplh2fdm6xqkd9LrTLgV4cnqw6t8fZ6_Vxt8qITilZG7wedcg-N-TjkkNNna678FpP0VFqSBSCMyqLP30Qnrjp-AylFmFOREVk1n18Xmixyh_15YFzVaQ6ccYtFGdTTAvJQe0_evT0hfW_0K0Axuz2G10eIr9iusPVPbL_g |
CitedBy_id | crossref_primary_10_3390_jimaging8050123 crossref_primary_10_1109_JERM_2022_3218756 crossref_primary_10_1021_acsomega_2c06750 crossref_primary_10_1177_03000605241237867 crossref_primary_10_1109_TMTT_2022_3170837 crossref_primary_10_3390_tomography9010010 crossref_primary_10_1109_ACCESS_2022_3195875 crossref_primary_10_1109_TAP_2021_3121149 crossref_primary_10_1371_journal_pone_0250005 crossref_primary_10_1109_ACCESS_2024_3371886 crossref_primary_10_1016_j_neunet_2024_106778 crossref_primary_10_1109_TMTT_2022_3209679 crossref_primary_10_3390_bios13030302 crossref_primary_10_1109_JERM_2024_3372296 crossref_primary_10_3390_mi14071462 crossref_primary_10_3390_bioengineering11111173 crossref_primary_10_3390_s23115123 crossref_primary_10_1109_ACCESS_2025_3535804 crossref_primary_10_3390_cancers15215216 crossref_primary_10_1038_s44303_024_00012_8 crossref_primary_10_1109_JERM_2021_3072451 crossref_primary_10_1109_JERM_2023_3321423 crossref_primary_10_3390_mi13122049 crossref_primary_10_1109_JERM_2023_3289767 crossref_primary_10_1515_teme_2023_0048 crossref_primary_10_3390_bios13020238 crossref_primary_10_3390_diagnostics11101930 crossref_primary_10_3390_s24062013 crossref_primary_10_1109_JMMCT_2021_3076827 crossref_primary_10_3390_jimaging6080080 crossref_primary_10_1109_ACCESS_2020_3027805 crossref_primary_10_1080_21681163_2023_2172615 crossref_primary_10_3390_s20082390 crossref_primary_10_1109_MAP_2024_3411480 crossref_primary_10_1371_journal_pone_0229367 crossref_primary_10_1007_s11042_024_18775_y crossref_primary_10_1016_j_compeleceng_2024_109620 crossref_primary_10_3390_app11219998 crossref_primary_10_4108_eetpht_10_6430 crossref_primary_10_18185_erzifbed_1130305 crossref_primary_10_1109_TMTT_2023_3245665 |
Cites_doi | 10.1109/TAP.2003.815446 10.1088/0031-9155/52/20/002 10.1109/TIT.1967.1053964 10.2528/PIERM17111903 10.1038/srep38906 10.1109/7260.915627 10.1093/jnci/djr172 10.1109/TAP.2011.2167905 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1007/s13244-016-0531-4 10.1016/0005-2795(75)90109-9 10.1016/j.bspc.2016.09.003 10.1038/srep46732 10.1016/j.cam.2004.02.013 10.1016/j.mcna.2015.01.002 10.1088/0031-9155/52/10/001 10.1016/j.acra.2006.10.016 10.1109/MMM.2011.942702 10.1080/01621459.1984.10478083 10.1109/TBME.2007.900564 10.7326/M15-1241 10.1016/j.bspc.2019.04.025 10.1049/cp.2017.0302 10.1016/j.cmpb.2017.12.012 10.1007/978-3-319-27866-7 10.21236/AD0256582 10.7551/mitpress/5236.001.0001 10.1109/ACCESS.2017.2737633 10.1109/EUROCON.2017.8011175 10.1038/s41568-018-0016-5 10.1594/ecr2018/C-1390 10.1007/978-1-60327-101-1_3 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
DOI | 10.1038/s41598-019-46974-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | 10.1038/s41598-019-46974-3 PMC6642213 31324863 10_1038_s41598_019_46974_3 |
Genre | Validation Study Journal Article Comparative Study |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c540t-840453748e29566a4f5b60fe36970646bb6f674994f97a872f38b2ffaf2c73a23 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Oct 01 16:45:05 EDT 2025 Tue Sep 30 16:55:41 EDT 2025 Wed Oct 01 14:34:05 EDT 2025 Mon Sep 29 20:41:06 EDT 2025 Thu Jan 02 22:29:27 EST 2025 Wed Oct 01 03:48:26 EDT 2025 Thu Apr 24 22:55:26 EDT 2025 Fri Feb 21 02:38:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-840453748e29566a4f5b60fe36970646bb6f674994f97a872f38b2ffaf2c73a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0001-8787-1295 0000-0002-8014-8122 0000-0002-6862-7032 |
OpenAccessLink | https://www.proquest.com/docview/2260416539?pq-origsite=%requestingapplication% |
PMID | 31324863 |
PQID | 2260416539 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | unpaywall_primary_10_1038_s41598_019_46974_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6642213 proquest_miscellaneous_2261966035 proquest_journals_2260416539 pubmed_primary_31324863 crossref_citationtrail_10_1038_s41598_019_46974_3 crossref_primary_10_1038_s41598_019_46974_3 springer_journals_10_1038_s41598_019_46974_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-19 |
PublicationDateYYYYMMDD | 2019-07-19 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Petracci (CR1) 2011; 103 Youden (CR36) 1950; 3 Rahman (CR8) 2016; 6 Davis, Van Veen, Hagness, Kelcz (CR23) 2008; 55 Preece, Craddock, Shere, Jones, Winton (CR16) 2016 CR19 Sekkal, Merad, Meriah (CR25) 2018; 65 CR17 CR39 CR38 CR14 Lazebnik (CR12) 2007; 52 CR34 CR32 CR31 CR30 Ghavami (CR18) 2012; 60 Yamamoto (CR21) 2017; 7 CR2 Nikolova (CR11) 2011; 12 Cover, Hart (CR37) 1967; 13 CR3 Bond (CR10) 2003; 51 CR7 CR29 Sardanelli (CR4) 2017; 8 Lazebnik (CR13) 2007; 52 CR28 CR27 Meaney (CR15) 2007; 14 CR24 CR22 CR43 CR20 CR42 CR41 Kanzow, Yamashita, Fukushima (CR40) 2004; 172 Fuller, Lee, Elmore (CR6) 2015; 99 Sani (CR44) 2019; 52 Miglioretti (CR5) 2016; 164 Li, Hagness (CR9) 2001; 11 Picard, Cook (CR33) 1984; 79 Matthews (CR35) 1975; 405 Li, Porter, Santorelli, Popovic, Coates (CR26) 2017; 31 MS Fuller (46974_CR6) 2015; 99 PM Meaney (46974_CR15) 2007; 14 Y Yamamoto (46974_CR21) 2017; 7 46974_CR28 46974_CR29 NK Nikolova (46974_CR11) 2011; 12 X Li (46974_CR9) 2001; 11 46974_CR34 46974_CR31 L Sani (46974_CR44) 2019; 52 46974_CR32 W Sekkal (46974_CR25) 2018; 65 46974_CR38 A Rahman (46974_CR8) 2016; 6 46974_CR14 M Lazebnik (46974_CR13) 2007; 52 46974_CR30 EJ Bond (46974_CR10) 2003; 51 46974_CR19 46974_CR17 N Ghavami (46974_CR18) 2012; 60 46974_CR39 AW Preece (46974_CR16) 2016 Y Li (46974_CR26) 2017; 31 T Cover (46974_CR37) 1967; 13 46974_CR22 46974_CR7 BW Matthews (46974_CR35) 1975; 405 46974_CR20 46974_CR42 46974_CR43 46974_CR2 M Lazebnik (46974_CR12) 2007; 52 RR Picard (46974_CR33) 1984; 79 46974_CR3 F Sardanelli (46974_CR4) 2017; 8 46974_CR27 46974_CR24 DL Miglioretti (46974_CR5) 2016; 164 E Petracci (46974_CR1) 2011; 103 46974_CR41 SK Davis (46974_CR23) 2008; 55 WJ Youden (46974_CR36) 1950; 3 Christian Kanzow (46974_CR40) 2004; 172 |
References_xml | – volume: 51 start-page: 1690 year: 2003 end-page: 1705 ident: CR10 article-title: Microwave imaging via space-time beamforming for early detection of breast cancer publication-title: IEEE Transactions on Antennas Propag. doi: 10.1109/TAP.2003.815446 – ident: CR22 – volume: 52 start-page: 6093 year: 2007 ident: CR13 article-title: A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries publication-title: Phys. Medicine and Biol. doi: 10.1088/0031-9155/52/20/002 – ident: CR43 – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: CR37 article-title: Nearest neighbor pattern classification publication-title: IEEE transactions on information theory doi: 10.1109/TIT.1967.1053964 – ident: CR14 – volume: 65 start-page: 69 year: 2018 end-page: 78 ident: CR25 article-title: A comparative study for breast cancer detection by neural approach for different configurations of the microwave imaging system publication-title: Prog. In Electromagn. Res. doi: 10.2528/PIERM17111903 – ident: CR39 – ident: CR2 – volume: 6 start-page: 38906 year: 2016 ident: CR8 article-title: Electromagnetic performances analysis of an ultra-wideband and flexible material antenna in microwave breast imaging: To implement a wearable medical bra publication-title: Sci. reports doi: 10.1038/srep38906 – ident: CR30 – volume: 11 start-page: 130 year: 2001 end-page: 132 ident: CR9 article-title: A confocal microwave imaging algorithm for breast cancer detection publication-title: IEEE Microw. Wireless components letters doi: 10.1109/7260.915627 – volume: 103 start-page: 1037 year: 2011 end-page: 1048 ident: CR1 article-title: Risk factor modification and projections of absolute breast cancer risk publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djr172 – volume: 60 start-page: 231 year: 2012 end-page: 239 ident: CR18 article-title: Uwb microwave imaging of objects with canonical shape publication-title: IEEE Transactions on Antennas Propag. doi: 10.1109/TAP.2011.2167905 – ident: CR29 – volume: 3 start-page: 32 year: 1950 end-page: 35 ident: CR36 article-title: Index for rating diagnostic tests publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – volume: 8 start-page: 11 year: 2017 end-page: 18 ident: CR4 article-title: Mammography: an update of the eusobi recommendations on information for women publication-title: Insights into imaging doi: 10.1007/s13244-016-0531-4 – ident: CR27 – volume: 405 start-page: 442 year: 1975 end-page: 451 ident: CR35 article-title: Comparison of the predicted and observed secondary structure of t4 phage lysozyme publication-title: Biochimica et Biophys. Acta (BBA)-Protein Struct. doi: 10.1016/0005-2795(75)90109-9 – ident: CR42 – volume: 31 start-page: 366 year: 2017 end-page: 376 ident: CR26 article-title: Microwave breast cancer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2016.09.003 – volume: 7 start-page: 46732 year: 2017 ident: CR21 article-title: Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach publication-title: Sci. Reports doi: 10.1038/srep46732 – ident: CR19 – volume: 172 start-page: 375 issue: 2 year: 2004 end-page: 397 ident: CR40 article-title: Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2004.02.013 – ident: CR3 – ident: CR38 – volume: 99 start-page: 451 year: 2015 ident: CR6 article-title: Breast cancer screening: an evidence-based update publication-title: The Med. clinics North Am. doi: 10.1016/j.mcna.2015.01.002 – volume: 52 start-page: 2637 year: 2007 ident: CR12 article-title: A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries publication-title: Phys. Medicine and Biol. doi: 10.1088/0031-9155/52/10/001 – ident: CR17 – volume: 14 start-page: 207 year: 2007 end-page: 218 ident: CR15 article-title: Initial clinical experience with microwave breast imaging in women with normal mammography publication-title: Acad. radiology doi: 10.1016/j.acra.2006.10.016 – ident: CR31 – ident: CR32 – volume: 12 start-page: 78 year: 2011 end-page: 94 ident: CR11 article-title: Microwave imaging for breast cancer publication-title: IEEE microwave magazine doi: 10.1109/MMM.2011.942702 – ident: CR34 – ident: CR7 – volume: 79 start-page: 575 year: 1984 end-page: 583 ident: CR33 article-title: Cross-validation of regression models publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1984.10478083 – volume: 55 start-page: 237 year: 2008 end-page: 246 ident: CR23 article-title: Breast tumor characterization based on ultrawideband microwave backscatter publication-title: IEEE transactions on biomedical engineering doi: 10.1109/TBME.2007.900564 – volume: 164 start-page: 205 year: 2016 end-page: 214 ident: CR5 article-title: Radiation-induced breast cancer incidence and mortality from digital mammography screening: a modeling study publication-title: Annals internal medicine doi: 10.7326/M15-1241 – ident: CR28 – ident: CR41 – volume: 52 start-page: 257 year: 2019 end-page: 263 ident: CR44 article-title: “Novel microwave apparatus for breast lesions detection: Preliminary clinical results” publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2019.04.025 – ident: CR24 – ident: CR20 – start-page: 033502 year: 2016 ident: CR16 article-title: Maria m4: clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection publication-title: J. Med. Imaging – ident: 46974_CR28 doi: 10.1049/cp.2017.0302 – ident: 46974_CR34 – ident: 46974_CR20 doi: 10.1016/j.cmpb.2017.12.012 – volume: 51 start-page: 1690 year: 2003 ident: 46974_CR10 publication-title: IEEE Transactions on Antennas Propag. doi: 10.1109/TAP.2003.815446 – volume: 65 start-page: 69 year: 2018 ident: 46974_CR25 publication-title: Prog. In Electromagn. Res. doi: 10.2528/PIERM17111903 – volume: 103 start-page: 1037 year: 2011 ident: 46974_CR1 publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djr172 – volume: 7 start-page: 46732 year: 2017 ident: 46974_CR21 publication-title: Sci. Reports doi: 10.1038/srep46732 – volume: 55 start-page: 237 year: 2008 ident: 46974_CR23 publication-title: IEEE transactions on biomedical engineering doi: 10.1109/TBME.2007.900564 – ident: 46974_CR32 – ident: 46974_CR30 – volume: 3 start-page: 32 year: 1950 ident: 46974_CR36 publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – volume: 52 start-page: 6093 year: 2007 ident: 46974_CR13 publication-title: Phys. Medicine and Biol. doi: 10.1088/0031-9155/52/20/002 – ident: 46974_CR43 – ident: 46974_CR17 – ident: 46974_CR14 doi: 10.1007/978-3-319-27866-7 – volume: 11 start-page: 130 year: 2001 ident: 46974_CR9 publication-title: IEEE Microw. Wireless components letters doi: 10.1109/7260.915627 – volume: 60 start-page: 231 year: 2012 ident: 46974_CR18 publication-title: IEEE Transactions on Antennas Propag. doi: 10.1109/TAP.2011.2167905 – ident: 46974_CR38 doi: 10.21236/AD0256582 – ident: 46974_CR39 doi: 10.7551/mitpress/5236.001.0001 – ident: 46974_CR24 doi: 10.1109/ACCESS.2017.2737633 – volume: 31 start-page: 366 year: 2017 ident: 46974_CR26 publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2016.09.003 – ident: 46974_CR7 – ident: 46974_CR3 – volume: 13 start-page: 21 year: 1967 ident: 46974_CR37 publication-title: IEEE transactions on information theory doi: 10.1109/TIT.1967.1053964 – volume: 12 start-page: 78 year: 2011 ident: 46974_CR11 publication-title: IEEE microwave magazine doi: 10.1109/MMM.2011.942702 – ident: 46974_CR27 doi: 10.1109/EUROCON.2017.8011175 – ident: 46974_CR31 – volume: 8 start-page: 11 year: 2017 ident: 46974_CR4 publication-title: Insights into imaging doi: 10.1007/s13244-016-0531-4 – volume: 405 start-page: 442 year: 1975 ident: 46974_CR35 publication-title: Biochimica et Biophys. Acta (BBA)-Protein Struct. doi: 10.1016/0005-2795(75)90109-9 – volume: 52 start-page: 257 year: 2019 ident: 46974_CR44 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2019.04.025 – volume: 6 start-page: 38906 year: 2016 ident: 46974_CR8 publication-title: Sci. reports doi: 10.1038/srep38906 – ident: 46974_CR29 – ident: 46974_CR22 doi: 10.1038/s41568-018-0016-5 – volume: 99 start-page: 451 year: 2015 ident: 46974_CR6 publication-title: The Med. clinics North Am. doi: 10.1016/j.mcna.2015.01.002 – start-page: 033502 volume-title: J. Med. Imaging year: 2016 ident: 46974_CR16 – ident: 46974_CR19 doi: 10.1594/ecr2018/C-1390 – volume: 172 start-page: 375 issue: 2 year: 2004 ident: 46974_CR40 publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2004.02.013 – volume: 164 start-page: 205 year: 2016 ident: 46974_CR5 publication-title: Annals internal medicine doi: 10.7326/M15-1241 – ident: 46974_CR42 – volume: 14 start-page: 207 year: 2007 ident: 46974_CR15 publication-title: Acad. radiology doi: 10.1016/j.acra.2006.10.016 – volume: 52 start-page: 2637 year: 2007 ident: 46974_CR12 publication-title: Phys. Medicine and Biol. doi: 10.1088/0031-9155/52/10/001 – volume: 79 start-page: 575 year: 1984 ident: 46974_CR33 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1984.10478083 – ident: 46974_CR41 doi: 10.1007/978-1-60327-101-1_3 – ident: 46974_CR2 |
SSID | ssj0000529419 |
Score | 2.4628735 |
Snippet | Breast lesion detection employing state of the art microwave systems provide a safe, non-ionizing technique that can differentiate healthy and non-healthy... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10510 |
SubjectTerms | 631/67/1347 631/67/2321 639/166/985 Algorithms Artificial intelligence Breast Breast - diagnostic imaging Breast Neoplasms - diagnostic imaging Breasts Clinical Trials as Topic Dielectric properties Dielectric Spectroscopy - instrumentation Dielectric Spectroscopy - methods Electrical properties Equipment Design Female Humanities and Social Sciences Humans Intelligence Learning algorithms Lesions Machine learning Magnetic Resonance Imaging Mammography Microwave Imaging multidisciplinary Neural networks Neural Networks, Computer ROC Curve Scattering, Radiation Science Science (multidisciplinary) Statistics, Nonparametric Support Vector Machine Ultrasonography, Mammary |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKKwQcUHkH2sqVuFGr67XXXp9QoFQtUnqiUm4re2NDpbBJmw1V_z0zXmdLVCni7MeuPX5845n5hpCPzimnJiYwnjvNpBaw51woWKECxkHCnVVjvPPoQp1dyu_jYpwe3BbJrXJ1JsaDejKr8Y38GGBCBuChEObz_Jph1ii0rqYUGo_IDgeogqtaj3X_xoJWLMlNipXJRHm8gPsKY8q4YaAXasnE-n30AGQ-9JXsDabPyJNlM7d3t3Y6_edOOt0lzxOYpMNO-i_Ilm9eksddesm7V2Qyip6SniYS1Z90mBjE_YICWKXDZTsDxOonUANfzeiJb6NrVkOvGjpCX71b-8fTL-i53tLz3zGlEU1colN6Ylv7mlyefvvx9YylrAqsBnTWMtDoZIGkMz4H3UhZGQqnsuAFzAfgEwXSC0qDIiSD0bbUeRCly0OwIa-1sLl4Q7abWePfEeqFD5kAfK6Ek0YLF2rDTchK54OBXgeEr-a2qhPlOGa-mFbR9C3KqpNHBfKoojwqMSCf-jbzjnBjY-29lciqtPkW1f1SGZDDvhi2DdpCbONny1iHIzGpKAbkbSfh_nPIZilLBZ3rNdn3FZCSe72kufoVqbkVqHM5h5ZHq1Vy_1ubRnHUr6T_GPT7zYP-QJ7mWQxNY9zske32Zun3ATm17iBuj78sXxOX priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fbxQhEJ7UNkZ9MP6qnq0GE98scRdYWB631qZecr5ok75tYA-0yXWv8fZs-t87sOzqpabRZ2AWGGb5BmY-AN5aK62ca09zZhUViqPNWV_QQvqQB4l7VhPynWef5cmpmJ4VZ1vAhlyYGLQfKS3jb3qIDnu_wo0mJIPlmqJDpwTld2CnRNFojDtVNf0yHU9Wwt2VyHXKkMl4-ZfGm7vQDWh5M0JyvCZ9APfW7aW5vjKLxR870fEjeJggJKn6Tj-GLdc-gbv9o5LXT2E-i_GRjiTq1G-kSrzhbkUQopJq3S0Rp7o51ghnZeTIdTEgqyXnLZmFCL0r89ORwxCv3pFPF_EhI5IYRBfkyHTmGZwef_z64YSmtxRog5iso-jHiSJQzTiGHpE0whdWZt5xnA9EJRJ15qVC90d4rUypmOelZd4bzxrFDeO7sN0uW_cCiOPOZxxRueRWaMWtb3SufVZa5zVKnUA-zG3dJKLx8N7Foo4X3ryse33UqI866qPmE3g3trnsaTZurb0_qKxOJreqEUdmiC4LrifwZixGYwk3IKZ1y3Wskwc6Ul5M4Hmv4fFzgcNSlBKFqw3djxUCEfdmSXv-PRJyS3TiWI4tD4ZV8rtbt43iYFxJ_zDol_8nfQ_usywmqNFc78N292PtXiF-6uzrZDC_ACI0EuM priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P1YKMhI3KjbxE7s-LhQqoK0FQdWlFNkZ22oWLIVm1CVX8_YcQJLUUXPGTsZZxx_k5n5BuCFMcKIuXI0ZUbSTHLcc8blNBfO10HimVX5eufpoTiYZe-O8qMNEH0tTEjaD5SW4TPdZ4ftrvCg8cVgqaLo0MmMogs4d1dgU_jA0gg2Z4fvJ598JznEKBRhAosVMgkv_jF4_RQ6By3PZ0gOYdIbcK2tT_TZqV4s_jiJ9m_Bx16HLgHl607bmJ3q51_0jpdX8jbcjOCUTDrJO7Bh67twtWtXeXYP5tOQeWlJJGX9TCaRkdyuCIJfMmmbJSJgO0cJ_xeO7NkmpHrV5LgmU5_7d6p_WPLKZ8I35O230CKJRG7SBdnTjb4Ps_03H14f0NilgVaI9hqKHmKWexIby9DXEjpzuRGJsxw1QLwj0BqckOhYZU5JXUjmeGGYc9qxSnLN-AMY1cvaPgJiuXUJR7wvuMmU5MZVKlUuKYx1CmcdQ9q_tbKKFOa-k8aiDKF0XpTdCpa4gmVYwZKP4eUw5qQj8LhQeqs3hjJu5lWJCDVB3JpzNYbnw2Xchj62omu7bINM6olOeT6Gh53tDLfz7JhZIXByuWZVg4Cn-F6_Uh9_CVTfAt1DluLI7d7-fj_WRVpsDzb6H0o_vpz4E7jOklD6RlO1BaPme2ufIjJrzLO4DX8Bz9cxCA priority: 102 providerName: Unpaywall |
Title | Machine Learning Approaches for Automated Lesion Detection in Microwave Breast Imaging Clinical Data |
URI | https://link.springer.com/article/10.1038/s41598-019-46974-3 https://www.ncbi.nlm.nih.gov/pubmed/31324863 https://www.proquest.com/docview/2260416539 https://www.proquest.com/docview/2261966035 https://pubmed.ncbi.nlm.nih.gov/PMC6642213 https://www.nature.com/articles/s41598-019-46974-3.pdf |
UnpaywallVersion | publishedVersion |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2IcR4QHxTGJWREC_Mo7ETO35AKOs2jUqtJqBSeYri1GaTQtqtKaP_PWfHCVSbpj1Fih0n9p11v4vvfofQO6W44lNpSECVIKFgsOeUiUjEjc2DBJuV23zn4YifjMPBJJpsoCbc1i_g4kbXztaTGl8W-38uVp9hw3-qU8bjjwswQjZRLJAEnD0REvZ-fkFsYSl7AOurbGyibTBW1Cr-0HsANf03laEr_2F52QngC-pTa24eed18XcOk10Mr2_PVB-j-spxnq6usKP4zYceP0EOPPXFSK8tjtKHLJ-heXY1y9RRNhy6wUmPPufoTJ55wXC8wYFucLKsZAFw9hR72Jxs-1JWL5CrxeYmHNrTvKvut8YENdK_wl1-uAhL21KMFPsyq7BkaHx99758QX4SB5ADmKgIOYBhZjhpNwZXiWWgixXtGM1gPgDMchG24AL8pNFJksaCGxYoakxmaC5ZR9hxtlbNSv0RYM216DOA8ZyqUgimTy0CaXqy0kTBqBwXN2qa5Zyi3hTKK1J2Uszit5ZGCPFInj5R10If2mXnNz3Fr791GZGmjaikA0B7A0ojJDnrbNsMus0cnWalnS9cnsDymLOqgF7WE29dZ8ssw5jC4WJN928EyeK-3lOdnjsmbg_dHA3hyr9GSf5912yz2Wk26w6Rf3WFWr9EO7bl0NhLIXbRVXS71G0BbleqiTTERXbSdJINvA7geHI1Ov8LdPu933R-MrttR0DIenSY__gJNHCnR |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemITR4QONrlA0wEjwxa4nt2PHDhAplatm6p03qW7BTGyaVtNB0Vf8p_kbOzseoJlW87NlOYufufHe-u98h9M4YYcRYORJTIwmXDGTOuIQkwvk6SNBZua93Hp6L_iX_OkpGW-hPUwvj0yqbMzEc1ONp7u_Ij8BMiMB4SJj6OPtFfNcoH11tWmhUbHFqV0tw2ebHgx7Q9z2lJ18uPvdJ3VWA5GCdlAQ8Gp540BVLwTcQmrvEiMhZJpQE_Sxg9U5IcAS4U1KnkjqWGuqcdjSXTHugAzjy73EWcY_VL0eyvdPxUTMeq7o2J2Lp0Rz0o69hixUBP1Rywtb13y2j9nZuZhugfYh2FsVMr5Z6MvlHB57soke18Yq7Fbc9Rlu2eILuV-0sV0_ReBgyMy2uQVu_426NWG7nGIxj3F2UU7CQ7Rhm-Fs63LNlSAUr8FWBhz43cKmvLf7kM-VLPPgZWijhGrt0gnu61M_Q5Z387-dou5gW9gXCllkXMfAHBDNcSWZcrmLlotRYp-CtHRQ3_zbLa4hz32ljkoVQO0uzih4Z0CML9MhYB31on5lVAB8bZx80JMtqYZ9nN6zZQW_bYRBTH3vRhZ0uwpzYA6GypIP2Kgq3n_PomTwV8HK5Rvt2gocAXx8prn4EKHAB7iON4cnDhktulrVpF4ctJ_3Hpl9u3vQbtNO_GJ5lZ4Pz0330gEahLI7E6gBtl78X9hVYbaV5HUQFo293LZt_AarXTqs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIl4HxLOkFDASnKiVXdtrrw8IBULUUFJxoFJui72xS6WwCWTTKH-NX8fY-yhRpYhLz7Z31zsznhnPzDcIvTZGGDFRjsTUSMIlA5kzLiGJcL4OEnRW7uudRyfi6JR_HifjHfSnqYXxaZXNmRgO6sks93fkXTATIjAeEqa6rk6L-NofvJ__Ir6DlI-0Nu00KhY5tusVuG-Ld8M-0PoNpYNP3z4ekbrDAMnBUikJeDc88QAsloKfIDR3iRGRs0woCbpawE6ckOAUcKekTiV1LDXUOe1oLpn2oAdw_N-QjDOfTibHsr3f8RE0Hqu6TidiaXcButLXs8WKgE8qOWGbuvCKgXs1T7MN1t5Ft5fFXK9Xejr9Rx8O7qN7tSGLexXnPUA7tniIblatLdeP0GQUsjQtrgFcz3CvRi-3CwyGMu4tyxlYy3YCM_yNHe7bMqSFFfi8wCOfJ7jSFxZ_8FnzJR7-DO2UcI1jOsV9XerH6PRa_vcTtFvMCvsUYcusixj4BoIZriQzLlexclFqrFPw1A6Km3-b5TXcue-6Mc1C2J2lWUWPDOiRBXpkrIPetmvmFdjH1tkHDcmyWvAX2SWbdtCrdhhE1sdhdGFnyzAn9qCoLOmgvYrC7es8kiZPBTxcbtC-neDhwDdHivMfARZcgCtJY1h52HDJ5Wdt28Vhy0n_sen97Zt-iW6BVGZfhifHz9AdGoUKORKrA7Rb_l7a52DAleZFkBSMvl-3aP4FmflS5g |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P1YKMhI3KjbxE7s-LhQqoK0FQdWlFNkZ22oWLIVm1CVX8_YcQJLUUXPGTsZZxx_k5n5BuCFMcKIuXI0ZUbSTHLcc8blNBfO10HimVX5eufpoTiYZe-O8qMNEH0tTEjaD5SW4TPdZ4ftrvCg8cVgqaLo0MmMogs4d1dgU_jA0gg2Z4fvJ598JznEKBRhAosVMgkv_jF4_RQ6By3PZ0gOYdIbcK2tT_TZqV4s_jiJ9m_Bx16HLgHl607bmJ3q51_0jpdX8jbcjOCUTDrJO7Bh67twtWtXeXYP5tOQeWlJJGX9TCaRkdyuCIJfMmmbJSJgO0cJ_xeO7NkmpHrV5LgmU5_7d6p_WPLKZ8I35O230CKJRG7SBdnTjb4Ps_03H14f0NilgVaI9hqKHmKWexIby9DXEjpzuRGJsxw1QLwj0BqckOhYZU5JXUjmeGGYc9qxSnLN-AMY1cvaPgJiuXUJR7wvuMmU5MZVKlUuKYx1CmcdQ9q_tbKKFOa-k8aiDKF0XpTdCpa4gmVYwZKP4eUw5qQj8LhQeqs3hjJu5lWJCDVB3JpzNYbnw2Xchj62omu7bINM6olOeT6Gh53tDLfz7JhZIXByuWZVg4Cn-F6_Uh9_CVTfAt1DluLI7d7-fj_WRVpsDzb6H0o_vpz4E7jOklD6RlO1BaPme2ufIjJrzLO4DX8Bz9cxCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Approaches+for+Automated+Lesion+Detection+in+Microwave+Breast+Imaging+Clinical+Data&rft.jtitle=Scientific+reports&rft.au=Rana%2C+Soumya+Prakash&rft.au=Dey%2C+Maitreyee&rft.au=Tiberi%2C+Gianluigi&rft.au=Sani%2C+Lorenzo&rft.date=2019-07-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=10510&rft_id=info:doi/10.1038%2Fs41598-019-46974-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |