Towards machine learning aided real-time range imaging in proton therapy

Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED i...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 2735 - 17
Main Authors Lerendegui-Marco, Jorge, Balibrea-Correa, Javier, Babiano-Suárez, Víctor, Ladarescu, Ion, Domingo-Pardo, César
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.02.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-06126-6

Cover

Abstract Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by γ -ray energies spanning up to 5–6 MeV, rather low γ -ray emission yields and very intense neutron induced γ -ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high γ -ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl 3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr 3 . Its high time-resolution (CRT  ∼  500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl 3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV γ -ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10 8 protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy γ -rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.
AbstractList Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by γ -ray energies spanning up to 5–6 MeV, rather low γ -ray emission yields and very intense neutron induced γ -ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high γ -ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl 3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr 3 . Its high time-resolution (CRT  ∼  500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl 3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV γ -ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10 8 protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy γ -rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.
Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by $$\gamma $$ γ -ray energies spanning up to 5–6 MeV, rather low $$\gamma $$ γ -ray emission yields and very intense neutron induced $$\gamma $$ γ -ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high $$\gamma $$ γ -ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl $$_{3}$$ 3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr $$_{3}$$ 3 . Its high time-resolution (CRT  $$\sim $$ ∼  500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl $$_{3}$$ 3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV $$\gamma $$ γ -ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10 $$^{8}$$ 8 protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy $$\gamma $$ γ -rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.
Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by γ-ray energies spanning up to 5–6 MeV, rather low γ-ray emission yields and very intense neutron induced γ-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high γ-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr3. Its high time-resolution (CRT ∼ 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV γ-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 108 protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy γ-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.
Abstract Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by $$\gamma $$ γ -ray energies spanning up to 5–6 MeV, rather low $$\gamma $$ γ -ray emission yields and very intense neutron induced $$\gamma $$ γ -ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high $$\gamma $$ γ -ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl $$_{3}$$ 3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr $$_{3}$$ 3 . Its high time-resolution (CRT  $$\sim $$ ∼  500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl $$_{3}$$ 3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV $$\gamma $$ γ -ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10 $$^{8}$$ 8 protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy $$\gamma $$ γ -rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.
Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by [Formula: see text]-ray energies spanning up to 5-6 MeV, rather low [Formula: see text]-ray emission yields and very intense neutron induced [Formula: see text]-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high [Formula: see text]-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl[Formula: see text] crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr[Formula: see text]. Its high time-resolution (CRT [Formula: see text] 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl[Formula: see text] monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV [Formula: see text]-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10[Formula: see text] protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy [Formula: see text]-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.
Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by $$\gamma $$ γ-ray energies spanning up to 5–6 MeV, rather low $$\gamma $$ γ-ray emission yields and very intense neutron induced $$\gamma $$ γ-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high $$\gamma $$ γ-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl $$_{3}$$ 3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr $$_{3}$$ 3. Its high time-resolution (CRT  $$\sim $$ ∼ 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl $$_{3}$$ 3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV $$\gamma $$ γ-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10 $$^{8}$$ 8 protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy $$\gamma $$ γ-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.
Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by [Formula: see text]-ray energies spanning up to 5-6 MeV, rather low [Formula: see text]-ray emission yields and very intense neutron induced [Formula: see text]-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high [Formula: see text]-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl[Formula: see text] crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr[Formula: see text]. Its high time-resolution (CRT [Formula: see text] 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl[Formula: see text] monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV [Formula: see text]-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10[Formula: see text] protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy [Formula: see text]-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by [Formula: see text]-ray energies spanning up to 5-6 MeV, rather low [Formula: see text]-ray emission yields and very intense neutron induced [Formula: see text]-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high [Formula: see text]-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl[Formula: see text] crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr[Formula: see text]. Its high time-resolution (CRT [Formula: see text] 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl[Formula: see text] monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV [Formula: see text]-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10[Formula: see text] protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy [Formula: see text]-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.
ArticleNumber 2735
Author Lerendegui-Marco, Jorge
Domingo-Pardo, César
Babiano-Suárez, Víctor
Ladarescu, Ion
Balibrea-Correa, Javier
Author_xml – sequence: 1
  givenname: Jorge
  surname: Lerendegui-Marco
  fullname: Lerendegui-Marco, Jorge
  email: jorge.lerendegui@ific.uv.es
  organization: Instituto de Física Corpuscular, CSIC-University of Valencia
– sequence: 2
  givenname: Javier
  surname: Balibrea-Correa
  fullname: Balibrea-Correa, Javier
  organization: Instituto de Física Corpuscular, CSIC-University of Valencia
– sequence: 3
  givenname: Víctor
  surname: Babiano-Suárez
  fullname: Babiano-Suárez, Víctor
  organization: Instituto de Física Corpuscular, CSIC-University of Valencia
– sequence: 4
  givenname: Ion
  surname: Ladarescu
  fullname: Ladarescu, Ion
  organization: Instituto de Física Corpuscular, CSIC-University of Valencia
– sequence: 5
  givenname: César
  surname: Domingo-Pardo
  fullname: Domingo-Pardo, César
  organization: Instituto de Física Corpuscular, CSIC-University of Valencia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35177663$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1r3DAUNCWlSdP8gR6KoZde3EqyvnwplNA2gUAv6VnI0rNXiy25kt2w_77aePN5CBUIPfRmhnkjvS2OfPBQFO8x-oxRLb8kilkjK0RIhTgmvOKvihOCKKtITcjRo_q4OEtpi_JipKG4eVMc1wwLwXl9UlxchxsdbSpHbTbOQzmAjt75vtTOgi0j6KGa3Qhl1L6H0o2633edL6cY5uDLeQNRT7t3xetODwnODudp8fvH9-vzi-rq18_L829XlWEUzZUkAoxFdWe4FUCYNBJoB0iKtmlay4wAQYmmEhpuia0F4TRvMAxwy6WsT4vLVdcGvVVTzIbiTgXt1O1FiL3ScXZmACVaCkKglnSY0Vby1lCQ1IoWa8YNZVmrXrUWP-ndjR6Ge0GM1D5mtcascszqNmbFM-vrypqWdgRrwM9RD0-sPO14t1F9-KukZJQJmgU-HQRi-LNAmtXokoFh0B7CkhThNWoIatB-2o_PoNuwRJ8DzijSMCK5wBn14bGjeyt3z5wBcgWYGFKK0CnjZj27sDfohpenJc-o_xXRIdiUwfnbxAfbL7D-AS0W28o
CitedBy_id crossref_primary_10_1088_1361_6560_acf5c2
crossref_primary_10_1140_epjti_s40485_024_00108_w
crossref_primary_10_1140_epjp_s13360_024_05664_4
crossref_primary_10_1063_5_0213950
crossref_primary_10_1088_1361_6560_ad2e6a
crossref_primary_10_1051_epjconf_202328401018
crossref_primary_10_33769_aupse_1417403
crossref_primary_10_1140_epjp_s13360_022_03414_y
Cites_doi 10.3389/fonc.2016.00080
10.1016/j.net.2020.03.012
10.1088/1742-6596/1561/1/012021
10.1109/NSSMIC.2011.6154457
10.1016/j.nima.2016.04.028
10.1140/epja/i2015-15160-6
10.1038/s41598-018-37623-2
10.1016/j.nima.2015.02.030
10.1140/epja/i2013-13027-6
10.3389/fonc.2016.00010
10.1109/NSSMIC.1998.773871
10.1140/epja/s10050-020-00141-9
10.3389/fonc.2015.00150
10.1109/23.682685
10.1109/TNS.2014.2335538
10.1016/j.nima.2014.11.042
10.1088/1361-6560/aa6068
10.1016/j.nima.2019.163228
10.1140/epja/i2016-16100-8
10.1145/2939672.2939785
10.1016/j.nima.2019.03.079
10.1088/1361-6560/ab00b2
10.1088/0031-9155/47/12/309
10.1038/s41598-021-88812-5
10.1088/1361-6560/abc5cd
10.1016/j.radphyschem.2017.01.024
10.3389/fonc.2016.00014
10.1016/j.nima.2021.165249
10.1016/j.nima.2015.11.036
10.1145/1365490.1365500
10.1088/0031-9155/57/11/R99
10.1016/j.nima.2013.07.018
10.1038/s41598-019-38611-w
10.1088/1748-0221/11/06/p06009
10.1088/0031-9155/59/19/5849
10.1088/1748-0221/13/03/p03014
10.1016/j.nds.2011.11.002
10.1038/s41598-018-26591-2
10.1016/j.ejmp.2018.09.001
10.1109/TRPMS.2019.2933985
10.1016/j.nima.2016.04.002
10.1088/0031-9155/60/5/1845
10.1063/1.2378561
10.1088/0031-9155/56/4/012
10.1016/j.nima.2017.10.009
10.1007/BF01366453
10.1016/j.nima.2017.07.063
10.1088/0031-9155/60/18/7085
10.1088/1361-6560/aaa203
10.1088/0031-9155/57/17/5459
10.1118/1.4959551
10.1088/0031-9155/58/15/r131
10.1016/j.nima.2016.06.125
10.1088/1361-6560/aad513
10.1088/0031-9155/55/17/009
10.1088/1742-6596/1668/1/012013
10.1088/0031-9155/59/18/5399
10.1088/0031-9155/57/20/6429
10.1088/0031-9155/59/23/7089
10.1088/0031-9155/57/11/3371
10.1016/S0168-9002(02)01749-7
10.1088/0031-9155/60/16/6247
10.1088/0031-9155/60/12/4849
10.1049/piee.1977.0203
ContentType Journal Article
Copyright The Author(s) 2022. corrected publication 2022
2022. The Author(s).
The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022, corrected publication 2022
Copyright_xml – notice: The Author(s) 2022. corrected publication 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022, corrected publication 2022
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-022-06126-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 17
ExternalDocumentID oai_doaj_org_article_7b4e770b2f154b86bc4e84d7b1a56c45
10.1038/s41598-022-06126-6
PMC8854574
35177663
10_1038_s41598_022_06126_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Consejo Superior de Investigaciones Cient├¡ficas
  grantid: PIE-201750I26
  funderid: http://dx.doi.org/10.13039/501100003339
– fundername: H2020 European Research Council
  grantid: ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: Ministerio de Ciencia e Innovaci├│n
  grantid: PID2019-104714GB-C21
  funderid: http://dx.doi.org/10.13039/501100004837
– fundername: ;
  grantid: ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740
– fundername: ;
  grantid: PIE-201750I26
– fundername: ;
  grantid: PID2019-104714GB-C21
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c540t-827ecd03fc6d7e258c8e4fe087b99bd5c7e742a48e96d2d37264726ec5e1b6883
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Fri Oct 03 12:41:35 EDT 2025
Sun Oct 26 04:14:53 EDT 2025
Tue Sep 30 16:00:19 EDT 2025
Thu Sep 04 19:51:56 EDT 2025
Tue Oct 07 08:02:13 EDT 2025
Mon Jul 21 06:06:15 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Wed Oct 01 02:18:18 EDT 2025
Fri Feb 21 02:36:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-827ecd03fc6d7e258c8e4fe087b99bd5c7e742a48e96d2d37264726ec5e1b6883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1038%2Fs41598-022-06126-6
PMID 35177663
PQID 2629528671
PQPubID 2041939
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_7b4e770b2f154b86bc4e84d7b1a56c45
unpaywall_primary_10_1038_s41598_022_06126_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8854574
proquest_miscellaneous_2630920908
proquest_journals_2629528671
pubmed_primary_35177663
crossref_citationtrail_10_1038_s41598_022_06126_6
crossref_primary_10_1038_s41598_022_06126_6
springer_journals_10_1038_s41598_022_06126_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-17
PublicationDateYYYYMMDD 2022-02-17
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References GolnikCRange assessment in particle therapy based on promptγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray timing measurementsPhysics in Medicine and Biology201459539954222014PMB....59.5399G1:CAS:528:DC%2BC2cXitVWqsL%2FO10.1088/0031-9155/59/18/539925157685
GuerreroCPerformance of the neutron time-of-flight facility n\_TOF at CERNEuropean Physical Journal A201349272013EPJA...49...27G1:CAS:528:DC%2BC3sXltFSnurg%3D10.1140/epja/i2013-13027-6
McCleskeyMEvaluation of a multistage CdZnTe Compton camera for prompt γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} imaging for proton therapyNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20157851631692015NIMPA.785..163M1:CAS:528:DC%2BC2MXjs1Wlu78%3D10.1016/j.nima.2015.02.030
Aldawood, S. et al. Development of a Compton camera for prompt-gamma medical imaging. Radiat. Phys. Chem.140, 190–197, https://doi.org/10.1016/j.radphyschem.2017.01.024 (2017).
High-sensitivitY Measurements of key stellar Nucleo-Synthesis reactions (HYMNS). ERC Consolidator Grant, Agreement No. 681740, PI C. Domingo-Pardo .
LlosáGFirst Images of a Three-Layer Compton Telescope Prototype for Treatment Monitoring in Hadron TherapyFrontiers in Oncology20166142016NYASA1376...14L10.3389/fonc.2016.00014268706934735841
YaoZXiaoYChenZWangBHouQCompton-based prompt gamma imaging using ordered origin ensemble algorithm with resolution recovery in proton therapyScientific Reports2019911332019NatSR...9.1133Y1:CAS:528:DC%2BC1MXns1Ogt7c%3D10.1038/s41598-018-37623-2307186716361882
Wilderman, S. J., Clinthorne, N. H., Fessler, J. A. & Rogers, W. L. List-mode maximum likelihood reconstruction of Compton scatter camera images in nuclear medicine. In 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255), vol. 3, 1716–1720. https://doi.org/10.1109/NSSMIC.1998.773871 (1998).
Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, 785–794. https://doi.org/10.1145/2939672.2939785 (ACM, New York, NY, USA, 2016).
Domingo-PardoCi-TED: A novel concept for high-sensitivity (n,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}) cross-section measurementsNuclear Instruments and Methods in Physics Research A201682578862016NIMPA.825...78D1:CAS:528:DC%2BC28XmsFyqu7Y%3D10.1016/j.nima.2016.04.002
KraanACRange Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo ModelingFrontiers in Oncology2015515010.3389/fonc.2015.00150262175864493660
SmeetsJPrompt gamma imaging with a slit camera for real-time range control in proton therapyPhysics in Medicine and Biology201257337134052012PMB....57.3371S1:CAS:528:DC%2BC38XhtF2isrjJ10.1088/0031-9155/57/11/337122572603
Babiano, V. et al.γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-Ray position reconstruction in large monolithic LaCl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document}(Ce) crystals with SiPM readout. Nuclear Instrum. Methods Phys. Res. A931, 1–22. https://doi.org/10.1016/j.nima.2019.03.079 (2019).
Ytre-HaugeKSSkjerdalKMattinglyJMericIA Monte Carlo feasibility study for neutron based real-time range verification in proton therapyScientific Reports2019920112019NatSR...9.2011Y1:CAS:528:DC%2BC1MXnslemtrY%3D10.1038/s41598-019-38611-w307658086376014
GarcíaARMACACO II test-beam with high energy photonsPhysics in Medicine & Biology2020652450272020PMB....65x5027R1:CAS:528:DC%2BB3MXlslCqtrg%3D10.1088/1361-6560/abc5cd
MuñozEProton range verification with macaco ii compton camera enhanced by a neural network for event selectionScientific Reports20211193252021NatSR..11.9325M1:CAS:528:DC%2BB3MXhtVartb7K10.1038/s41598-021-88812-5339273248085220
BiegunAKTime-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation studyPhysics in Medicine and Biology201257642964442012PMB....57.6429B10.1088/0031-9155/57/20/642922996154
Knopf, A.-C. & Lomax, A. In vivo proton range verification: a review. Phys. Med. iol., https://doi.org/10.1088/0031-9155/58/15/r131 (2013).
PeraliIPrompt gamma imaging of proton pencil beams at clinical dose ratePhysics in Medicine and Biology201459584958712014PMB....59.5849P1:STN:280:DC%2BC2M%2FpslOnsA%3D%3D10.1088/0031-9155/59/19/584925207724
KimSMFully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemesPhysics in Medicine and Biology201055500750272010PMB....55.5007K10.1088/0031-9155/55/17/00920702926
Paganetti, H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol.. https://doi.org/10.1088/0031-9155/57/11/R99 (2012).
KataokaJHandy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arraysNuclear Instruments and Methods in Physics Research A20137324034072013NIMPA.732..403K1:CAS:528:DC%2BC3sXhtFCgsLjO10.1016/j.nima.2013.07.018
Everett, D. Gamma-radiation imaging system based on the compton effect. Proc. Inst. Electri. Eng.124, 995–1000 (5) (1977).
Chollet, F. et al. Keras. https://keras.io (2015).
MinC-HKimCHYounM-YKimJ-WPrompt gamma measurements for locating the dose falloff region in the proton therapyApplied Physics Letters2006891835172006ApPhL..89r3517M1:CAS:528:DC%2BD28Xht1WrsbfF10.1063/1.2378561
FontanaMMonitoring Ion Beam Therapy With a Compton Camera: Simulation Studies of the Clinical FeasibilityIEEE Transactions on Radiation and Plasma Medical Sciences2020421823210.1109/TRPMS.2019.2933985
VerburgJMSecoJProton range verification through prompt gamma-ray spectroscopyPhysics in Medicine and Biology201459708971062014PMB....59.7089V1:CAS:528:DC%2BC2cXitVyit7jJ10.1088/0031-9155/59/23/708925365362
Hueso-GonzálezFCompton Camera and Prompt Gamma Ray Timing: Two Methods for In Vivo Range Assessment in Proton TherapyFrontiers in Oncology201668010.3389/fonc.2016.00080271484734829070
Hueso-GonzálezFFirst test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facilityPhysics in Medicine and Biology201560624762722015PMB....60.6247H10.1088/0031-9155/60/16/624726237433
Taya, T. et al. First demonstration of real-time gamma imaging by using a handheld Compton camera for particle therapy. Nuclear Instrum. Methods Phys. Res. Sect.A Acceler. Spectrom. Detect. Assoc. Equip.831, 355–361. https://doi.org/10.1016/j.nima.2016.04.028 (2016).
MoteabbedMEspañaSPaganettiHMonte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapyPhysics in Medicine and Biology201156106310822011PMB....56.1063M1:STN:280:DC%2BC3M7mtV2msQ%3D%3D10.1088/0031-9155/56/4/01221263174
PedregosaFScikit-learn: Machine Learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189
Krimmer, J., Dauvergne, D., Létang, J. & Testa, E. Prompt-gamma monitoring in hadrontherapy: A review. Nuclear Instrum. Methods Phys. Res. Sect. A: Acceler. Spectrom. Detect. Assoc. Equip.878, 58–73. https://doi.org/10.1016/j.nima.2017.07.063 (2018).
Di FrancescoATOFPET 2: A high-performance circuit for PET time-of-flightNuclear Instruments and Methods in Physics Research A20168241941952016NIMPA.824..194D1:CAS:528:DC%2BC2MXhvVyhurrN10.1016/j.nima.2015.11.036
WildermanSFast algorithm for list mode back-projection of Compton scatter camera dataIEEE Transactions on Nuclear Science1998459579621998ITNS...45..957W10.1109/23.682685
WildermanSJRogersWLKnollGFEngdahlJCFast algorithm for list mode back-projection of Compton scatter camera dataIEEE Transactions on Nuclear Science1998459579621998ITNS...45..957W10.1109/23.682685
Plompen, A. J. M. et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur. Phys. J. A56, 181. https://doi.org/10.1140/epja/s10050-020-00141-9 (2020).
OllerosPOn the performance of large monolithic LaCl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document}(Ce) crystals coupled to pixelated silicon photosensorsJournal of Instrumentation201813P03014P030141:CAS:528:DC%2BC1cXit1amt7bI10.1088/1748-0221/13/03/p03014
AllisonJRecent developments in Geant4Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20168351862252016NIMPA.835..186A1:CAS:528:DC%2BC28XhtFymsbbJ10.1016/j.nima.2016.06.125
Balibrea-CorreaJMachine Learning aided 3D-position reconstruction in large LaCl3 crystalsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment202110011652491:CAS:528:DC%2BB3MXnvVGit78%3D10.1016/j.nima.2021.165249
VerburgJMShihHASecoJSimulation of prompt gamma-ray emission during proton radiotherapyPhysics in Medicine and Biolog
JM Verburg (6126_CR47) 2012; 57
C Guerrero (6126_CR32) 2013; 49
6126_CR70
6126_CR71
6126_CR30
AC Kraan (6126_CR2) 2015; 5
J Kataoka (6126_CR57) 2013; 732
JC Polf (6126_CR19) 2015; 60
M Pinto (6126_CR48) 2016; 6
J Smeets (6126_CR12) 2012; 57
6126_CR39
M Priegnitz (6126_CR14) 2015; 60
Y Nagao (6126_CR58) 2018; 912
F Hueso-González (6126_CR9) 2015; 60
6126_CR1
6126_CR40
6126_CR3
T Tomitani (6126_CR46) 2002; 47
S Wilderman (6126_CR67) 1998; 45
6126_CR4
6126_CR42
A Fedorov (6126_CR52) 2020; 52
M Fontana (6126_CR28) 2020; 4
J Lerendegui-Marco (6126_CR43) 2016; 52
A Di Francesco (6126_CR56) 2016; 824
O Klein (6126_CR68) 1929; 52
AK Biegun (6126_CR36) 2012; 57
Z Yao (6126_CR37) 2019; 9
J Allison (6126_CR49) 2016; 835
H Rohling (6126_CR31) 2017; 62
P Olleros (6126_CR41) 2018; 13
F Pedregosa (6126_CR69) 2011; 12
F Hueso-González (6126_CR16) 2016; 6
G Llosá (6126_CR25) 2016; 6
E Muñoz (6126_CR51) 2021; 11
E Draeger (6126_CR26) 2018; 63
6126_CR50
C Domingo-Pardo (6126_CR38) 2016; 825
6126_CR53
C-H Min (6126_CR7) 2006; 89
6126_CR11
6126_CR55
AR García (6126_CR29) 2020; 65
6126_CR15
6126_CR59
A Wrońska (6126_CR17) 2020; 1561
RK Parajuli (6126_CR27) 2019; 64
E Mendoza (6126_CR62) 2014; 61
M Moteabbed (6126_CR5) 2011; 56
JM Verburg (6126_CR10) 2014; 59
R Plag (6126_CR33) 2003; 496
SM Kim (6126_CR66) 2010; 55
6126_CR60
6126_CR61
S Lo Meo (6126_CR64) 2015; 51
6126_CR63
I Perali (6126_CR13) 2014; 59
6126_CR21
6126_CR65
6126_CR22
6126_CR23
C Golnik (6126_CR8) 2014; 59
6126_CR24
J Balibrea-Correa (6126_CR34) 2021; 1001
KS Ytre-Hauge (6126_CR6) 2019; 9
C Domingo-Pardo (6126_CR35) 2020; 1668
SJ Wilderman (6126_CR44) 1998; 45
J Nickolls (6126_CR54) 2008; 6
PG Ortega (6126_CR18) 2015; 60
A Andreyev (6126_CR45) 2016; 43
M McCleskey (6126_CR20) 2015; 785
35260763 - Sci Rep. 2022 Mar 8;12(1):4102. doi: 10.1038/s41598-022-08155-7
References_xml – reference: Mendoza, E., Sansaloni, F., Arce, P., Cano-Ott, D. & Lagares, J. I. A new physics model for the charged particle transport with Geant4. In 2011 IEEE Nuclear Science Symposium Conference Record, 2242–2244, https://doi.org/10.1109/NSSMIC.2011.6154457 (2011).
– reference: WildermanSFast algorithm for list mode back-projection of Compton scatter camera dataIEEE Transactions on Nuclear Science1998459579621998ITNS...45..957W10.1109/23.682685
– reference: Krimmer, J. et al. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accelera. Spectrom. Detect. Assoc. Equip.787, 98–101, https://doi.org/10.1016/j.nima.2014.11.042 (2015).
– reference: AllisonJRecent developments in Geant4Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20168351862252016NIMPA.835..186A1:CAS:528:DC%2BC28XhtFymsbbJ10.1016/j.nima.2016.06.125
– reference: OrtegaPGNoise evaluation of Compton camera imaging for proton therapyPhysics in Medicine and Biology201560184518632015PMB....60.1845O1:CAS:528:DC%2BC2MXjt1Cmu7Y%3D10.1088/0031-9155/60/5/184525658644
– reference: NagaoYYamaguchiMKawachiNWatabeHDevelopment of a cost-effective Compton camera using a positron emission tomography data acquisition systemNuclear Instruments and Methods in Physics Research A201891220232018NIMPA.912...20N1:CAS:528:DC%2BC2sXhvVWlu7nF10.1016/j.nima.2017.10.009
– reference: PlagRAn optimized C 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{6}$$\end{document}D 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{6}$$\end{document} detector for studies of resonance-dominated (n,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}) cross-sectionsNuclear Instruments and Methods in Physics Research A20034964254362003NIMPA.496..425P1:CAS:528:DC%2BD38XpvVWqtbk%3D10.1016/S0168-9002(02)01749-7
– reference: VerburgJMShihHASecoJSimulation of prompt gamma-ray emission during proton radiotherapyPhysics in Medicine and Biology201257545954722012PMB....57.5459V1:CAS:528:DC%2BC38XhsF2rt7nM10.1088/0031-9155/57/17/545922864267
– reference: Everett, D. Gamma-radiation imaging system based on the compton effect. Proc. Inst. Electri. Eng.124, 995–1000 (5) (1977).
– reference: Domingo-PardoCReview and new concepts for neutron-capture measurements of astrophysical interestJournal of Physics: Conference Series202016680120131:CAS:528:DC%2BB3cXisVSqs7bK10.1088/1742-6596/1668/1/012013
– reference: KataokaJHandy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arraysNuclear Instruments and Methods in Physics Research A20137324034072013NIMPA.732..403K1:CAS:528:DC%2BC3sXhtFCgsLjO10.1016/j.nima.2013.07.018
– reference: Plompen, A. J. M. et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur. Phys. J. A56, 181. https://doi.org/10.1140/epja/s10050-020-00141-9 (2020).
– reference: Lerendegui-MarcoJGeant4 simulation of the n\_TOF-EAR2 neutron beam: Characteristics and prospectsThe European Physical Journal A2016521002016EPJA...52..100L1:CAS:528:DC%2BC28XmtlShsrs%3D10.1140/epja/i2016-16100-8
– reference: Balibrea-CorreaJMachine Learning aided 3D-position reconstruction in large LaCl3 crystalsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment202110011652491:CAS:528:DC%2BB3MXnvVGit78%3D10.1016/j.nima.2021.165249
– reference: MuñozEProton range verification with macaco ii compton camera enhanced by a neural network for event selectionScientific Reports20211193252021NatSR..11.9325M1:CAS:528:DC%2BB3MXhtVartb7K10.1038/s41598-021-88812-5339273248085220
– reference: Aldawood, S. et al. Development of a Compton camera for prompt-gamma medical imaging. Radiat. Phys. Chem.140, 190–197, https://doi.org/10.1016/j.radphyschem.2017.01.024 (2017).
– reference: KimSMFully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemesPhysics in Medicine and Biology201055500750272010PMB....55.5007K10.1088/0031-9155/55/17/00920702926
– reference: GEANT4 Reference Physics Lists. https://geant4.web.cern.ch/node/155.
– reference: ParajuliRKAnnihilation gamma imaging for carbon ion beam range monitoring using Si/CdTe Compton cameraPhysics in Medicine & Biology2019640550032019PMB....64e5003P1:CAS:528:DC%2BC1MXhtlWmt7bO10.1088/1361-6560/ab00b2
– reference: AndreyevACellerAOzsahinISitekAResolution recovery for Compton camera using origin ensemble algorithmMedical Physics20164348662016MedPh..43.4866A1:STN:280:DC%2BC2s3nsF2jtg%3D%3D10.1118/1.4959551274879044967076
– reference: VerburgJMSecoJProton range verification through prompt gamma-ray spectroscopyPhysics in Medicine and Biology201459708971062014PMB....59.7089V1:CAS:528:DC%2BC2cXitVyit7jJ10.1088/0031-9155/59/23/708925365362
– reference: Di FrancescoATOFPET 2: A high-performance circuit for PET time-of-flightNuclear Instruments and Methods in Physics Research A20168241941952016NIMPA.824..194D1:CAS:528:DC%2BC2MXhvVyhurrN10.1016/j.nima.2015.11.036
– reference: Chollet, F. et al. Keras. https://keras.io (2015).
– reference: Babiano, V. et al. First i-TED demonstrator: A Compton imager with Dynamic Electronic Collimation. Nuclear Instrum. Methods Phys. Res. A953, 163228. https://doi.org/10.1016/j.nima.2019.163228 (2020).
– reference: Krimmer, J., Dauvergne, D., Létang, J. & Testa, E. Prompt-gamma monitoring in hadrontherapy: A review. Nuclear Instrum. Methods Phys. Res. Sect. A: Acceler. Spectrom. Detect. Assoc. Equip.878, 58–73. https://doi.org/10.1016/j.nima.2017.07.063 (2018).
– reference: LlosáGFirst Images of a Three-Layer Compton Telescope Prototype for Treatment Monitoring in Hadron TherapyFrontiers in Oncology20166142016NYASA1376...14L10.3389/fonc.2016.00014268706934735841
– reference: DraegerE3D prompt gamma imaging for proton beam range verificationPhysics in Medicine & Biology2018630350192018PMB....63c5019D1:CAS:528:DC%2BC1cXitFOmurbM10.1088/1361-6560/aaa203
– reference: FontanaMMonitoring Ion Beam Therapy With a Compton Camera: Simulation Studies of the Clinical FeasibilityIEEE Transactions on Radiation and Plasma Medical Sciences2020421823210.1109/TRPMS.2019.2933985
– reference: Wilderman, S. J., Clinthorne, N. H., Fessler, J. A. & Rogers, W. L. List-mode maximum likelihood reconstruction of Compton scatter camera images in nuclear medicine. In 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255), vol. 3, 1716–1720. https://doi.org/10.1109/NSSMIC.1998.773871 (1998).
– reference: PeraliIPrompt gamma imaging of proton pencil beams at clinical dose ratePhysics in Medicine and Biology201459584958712014PMB....59.5849P1:STN:280:DC%2BC2M%2FpslOnsA%3D%3D10.1088/0031-9155/59/19/584925207724
– reference: McCleskeyMEvaluation of a multistage CdZnTe Compton camera for prompt γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} imaging for proton therapyNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20157851631692015NIMPA.785..163M1:CAS:528:DC%2BC2MXjs1Wlu78%3D10.1016/j.nima.2015.02.030
– reference: Taya, T. et al. First demonstration of real-time gamma imaging by using a handheld Compton camera for particle therapy. Nuclear Instrum. Methods Phys. Res. Sect.A Acceler. Spectrom. Detect. Assoc. Equip.831, 355–361. https://doi.org/10.1016/j.nima.2016.04.028 (2016).
– reference: Hueso-GonzálezFFirst test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facilityPhysics in Medicine and Biology201560624762722015PMB....60.6247H10.1088/0031-9155/60/16/624726237433
– reference: Hueso-GonzálezFCompton Camera and Prompt Gamma Ray Timing: Two Methods for In Vivo Range Assessment in Proton TherapyFrontiers in Oncology201668010.3389/fonc.2016.00080271484734829070
– reference: BiegunAKTime-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation studyPhysics in Medicine and Biology201257642964442012PMB....57.6429B10.1088/0031-9155/57/20/642922996154
– reference: MendozaECano-OttDKoiTGuerreroCNew Standard Evaluated Neutron Cross Section Libraries for the GEANT4 Code and First VerificationIEEE Transactions on Nuclear Science201461235723642014ITNS...61.2357M1:CAS:528:DC%2BC2cXhvFGmtLzJ10.1109/TNS.2014.2335538
– reference: SmeetsJPrompt gamma imaging with a slit camera for real-time range control in proton therapyPhysics in Medicine and Biology201257337134052012PMB....57.3371S1:CAS:528:DC%2BC38XhtF2isrjJ10.1088/0031-9155/57/11/337122572603
– reference: FedorovASensitivity of GAGG based scintillation neutron detector with SiPM readoutNuclear Engineering and Technology202052230623121:CAS:528:DC%2BB3cXhs1CqsrzE10.1016/j.net.2020.03.012
– reference: PintoMAssessment of Geant4 Prompt-Gamma Emission Yields in the Context of Proton Therapy MonitoringFrontiers in Oncology20166102016FrCh....4...10P10.3389/fonc.2016.00010268589374729887
– reference: Babiano, V. et al.γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-Ray position reconstruction in large monolithic LaCl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document}(Ce) crystals with SiPM readout. Nuclear Instrum. Methods Phys. Res. A931, 1–22. https://doi.org/10.1016/j.nima.2019.03.079 (2019).
– reference: Golnik, C. et al. Tests of a Compton imaging prototype in a monoenergetic 4.44 MeV photon field—A benchmark setup for prompt gamma-ray imaging devices. J. Instrum.11, P06009–P06009. https://doi.org/10.1088/1748-0221/11/06/p06009 (2016).
– reference: KraanACRange Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo ModelingFrontiers in Oncology2015515010.3389/fonc.2015.00150262175864493660
– reference: MoteabbedMEspañaSPaganettiHMonte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapyPhysics in Medicine and Biology201156106310822011PMB....56.1063M1:STN:280:DC%2BC3M7mtV2msQ%3D%3D10.1088/0031-9155/56/4/01221263174
– reference: MinC-HKimCHYounM-YKimJ-WPrompt gamma measurements for locating the dose falloff region in the proton therapyApplied Physics Letters2006891835172006ApPhL..89r3517M1:CAS:528:DC%2BD28Xht1WrsbfF10.1063/1.2378561
– reference: Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, 785–794. https://doi.org/10.1145/2939672.2939785 (ACM, New York, NY, USA, 2016).
– reference: PedregosaFScikit-learn: Machine Learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189
– reference: GarcíaARMACACO II test-beam with high energy photonsPhysics in Medicine & Biology2020652450272020PMB....65x5027R1:CAS:528:DC%2BB3MXlslCqtrg%3D10.1088/1361-6560/abc5cd
– reference: TomitaniTHirasawaMImage reconstruction from limited angle Compton camera dataPhysics in Medicine and Biology200247212921452002PMB....47.2129T1:STN:280:DC%2BD38zntlSjtw%3D%3D10.1088/0031-9155/47/12/30912118605
– reference: Koide, A. et al. Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera. Sci. Rep.8, 8116. https://doi.org/10.1038/s41598-018-26591-2 (2018).
– reference: KleinONishinaYÜber die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von DiracZeitschrift für Physik1929528538681929ZPhy...52..853K10.1007/BF0136645355.0532.04
– reference: NickollsJBuckIGarlandMSkadronKScalable Parallel Programming with CUDAQueue20086405310.1145/1365490.1365500
– reference: Hueso-González, F., Rabe, M., Ruggieri, T. A., Bortfeld, T. & Verburg, J. M. A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy. Phys. Med. Biol.63, 185019–185019, https://doi.org/10.1088/1361-6560/aad513 (2018).
– reference: WrońskaAPrompt gamma imaging in proton therapy - status, challenges and developmentsJournal of Physics: Conference Series202015610120211:CAS:528:DC%2BB3cXhvFKrt73J10.1088/1742-6596/1561/1/012021
– reference: PriegnitzMMeasurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiationPhysics in Medicine and Biology201560484948712015PMB....60.4849P1:STN:280:DC%2BC2MbhslWrsA%3D%3D10.1088/0031-9155/60/12/484926057897
– reference: Knopf, A.-C. & Lomax, A. In vivo proton range verification: a review. Phys. Med. iol., https://doi.org/10.1088/0031-9155/58/15/r131 (2013).
– reference: Domingo-PardoCi-TED: A novel concept for high-sensitivity (n,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}) cross-section measurementsNuclear Instruments and Methods in Physics Research A201682578862016NIMPA.825...78D1:CAS:528:DC%2BC28XmsFyqu7Y%3D10.1016/j.nima.2016.04.002
– reference: RohlingHRequirements for a Compton camera for in-vivo range verification of proton therapyPhysics in Medicine and Biology201762279528112017PMB....62.2795R1:STN:280:DC%2BC1c3msFenuw%3D%3D10.1088/1361-6560/aa606828195562
– reference: WildermanSJRogersWLKnollGFEngdahlJCFast algorithm for list mode back-projection of Compton scatter camera dataIEEE Transactions on Nuclear Science1998459579621998ITNS...45..957W10.1109/23.682685
– reference: YaoZXiaoYChenZWangBHouQCompton-based prompt gamma imaging using ordered origin ensemble algorithm with resolution recovery in proton therapyScientific Reports2019911332019NatSR...9.1133Y1:CAS:528:DC%2BC1MXns1Ogt7c%3D10.1038/s41598-018-37623-2307186716361882
– reference: Babiano, V. & Lerendegui-Marco, J. Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques. Eur. Phys. J. A (2021).
– reference: PolfJCAverySMackinDSBeddarSImaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verificationPhysics in Medicine and Biology201560708570992015PMB....60.7085P1:CAS:528:DC%2BC28XkvFWitrk%3D10.1088/0031-9155/60/18/708526317610
– reference: Ytre-HaugeKSSkjerdalKMattinglyJMericIA Monte Carlo feasibility study for neutron based real-time range verification in proton therapyScientific Reports2019920112019NatSR...9.2011Y1:CAS:528:DC%2BC1MXnslemtrY%3D10.1038/s41598-019-38611-w307658086376014
– reference: GuerreroCPerformance of the neutron time-of-flight facility n\_TOF at CERNEuropean Physical Journal A201349272013EPJA...49...27G1:CAS:528:DC%2BC3sXltFSnurg%3D10.1140/epja/i2013-13027-6
– reference: Cambraia Lopes, P. et al. Simulation of proton range monitoring in an anthropomorphic phantom using multi-slat collimators and time-of-flight detection of prompt-gamma quanta. Phys. Med.54, 1–14. https://doi.org/10.1016/j.ejmp.2018.09.001 (2018).
– reference: OllerosPOn the performance of large monolithic LaCl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document}(Ce) crystals coupled to pixelated silicon photosensorsJournal of Instrumentation201813P03014P030141:CAS:528:DC%2BC1cXit1amt7bI10.1088/1748-0221/13/03/p03014
– reference: Lo MeoSGEANT4 simulations of the n\_TOF spallation source and their benchmarkingThe European Physical Journal A2015511602015EPJA...51..160L1:CAS:528:DC%2BC2MXitVemtbnE10.1140/epja/i2015-15160-6
– reference: Paganetti, H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol.. https://doi.org/10.1088/0031-9155/57/11/R99 (2012).
– reference: Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org.
– reference: High-sensitivitY Measurements of key stellar Nucleo-Synthesis reactions (HYMNS). ERC Consolidator Grant, Agreement No. 681740, PI C. Domingo-Pardo .
– reference: Chadwick, M. et al. ENDF/B-VII.1 Nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data. Nuclear Data Sheets112, 2887–2996. https://doi.org/10.1016/j.nds.2011.11.002 (2011).
– reference: GolnikCRange assessment in particle therapy based on promptγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray timing measurementsPhysics in Medicine and Biology201459539954222014PMB....59.5399G1:CAS:528:DC%2BC2cXitVWqsL%2FO10.1088/0031-9155/59/18/539925157685
– volume: 6
  start-page: 80
  year: 2016
  ident: 6126_CR16
  publication-title: Frontiers in Oncology
  doi: 10.3389/fonc.2016.00080
– volume: 52
  start-page: 2306
  year: 2020
  ident: 6126_CR52
  publication-title: Nuclear Engineering and Technology
  doi: 10.1016/j.net.2020.03.012
– volume: 1561
  start-page: 012021
  year: 2020
  ident: 6126_CR17
  publication-title: Journal of Physics: Conference Series
  doi: 10.1088/1742-6596/1561/1/012021
– ident: 6126_CR55
– ident: 6126_CR60
  doi: 10.1109/NSSMIC.2011.6154457
– ident: 6126_CR59
– ident: 6126_CR22
  doi: 10.1016/j.nima.2016.04.028
– volume: 51
  start-page: 160
  year: 2015
  ident: 6126_CR64
  publication-title: The European Physical Journal A
  doi: 10.1140/epja/i2015-15160-6
– volume: 9
  start-page: 1133
  year: 2019
  ident: 6126_CR37
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-37623-2
– volume: 785
  start-page: 163
  year: 2015
  ident: 6126_CR20
  publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
  doi: 10.1016/j.nima.2015.02.030
– volume: 49
  start-page: 27
  year: 2013
  ident: 6126_CR32
  publication-title: European Physical Journal A
  doi: 10.1140/epja/i2013-13027-6
– volume: 6
  start-page: 10
  year: 2016
  ident: 6126_CR48
  publication-title: Frontiers in Oncology
  doi: 10.3389/fonc.2016.00010
– ident: 6126_CR65
  doi: 10.1109/NSSMIC.1998.773871
– ident: 6126_CR63
  doi: 10.1140/epja/s10050-020-00141-9
– volume: 5
  start-page: 150
  year: 2015
  ident: 6126_CR2
  publication-title: Frontiers in Oncology
  doi: 10.3389/fonc.2015.00150
– volume: 45
  start-page: 957
  year: 1998
  ident: 6126_CR67
  publication-title: IEEE Transactions on Nuclear Science
  doi: 10.1109/23.682685
– volume: 45
  start-page: 957
  year: 1998
  ident: 6126_CR44
  publication-title: IEEE Transactions on Nuclear Science
  doi: 10.1109/23.682685
– ident: 6126_CR50
– volume: 61
  start-page: 2357
  year: 2014
  ident: 6126_CR62
  publication-title: IEEE Transactions on Nuclear Science
  doi: 10.1109/TNS.2014.2335538
– ident: 6126_CR30
  doi: 10.1016/j.nima.2014.11.042
– volume: 62
  start-page: 2795
  year: 2017
  ident: 6126_CR31
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/1361-6560/aa6068
– ident: 6126_CR71
– ident: 6126_CR40
  doi: 10.1016/j.nima.2019.163228
– volume: 52
  start-page: 100
  year: 2016
  ident: 6126_CR43
  publication-title: The European Physical Journal A
  doi: 10.1140/epja/i2016-16100-8
– ident: 6126_CR70
  doi: 10.1145/2939672.2939785
– ident: 6126_CR42
  doi: 10.1016/j.nima.2019.03.079
– volume: 64
  start-page: 055003
  year: 2019
  ident: 6126_CR27
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/1361-6560/ab00b2
– volume: 47
  start-page: 2129
  year: 2002
  ident: 6126_CR46
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/47/12/309
– volume: 11
  start-page: 9325
  year: 2021
  ident: 6126_CR51
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-88812-5
– volume: 65
  start-page: 245027
  year: 2020
  ident: 6126_CR29
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/1361-6560/abc5cd
– ident: 6126_CR23
  doi: 10.1016/j.radphyschem.2017.01.024
– volume: 6
  start-page: 14
  year: 2016
  ident: 6126_CR25
  publication-title: Frontiers in Oncology
  doi: 10.3389/fonc.2016.00014
– volume: 1001
  start-page: 165249
  year: 2021
  ident: 6126_CR34
  publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
  doi: 10.1016/j.nima.2021.165249
– volume: 824
  start-page: 194
  year: 2016
  ident: 6126_CR56
  publication-title: Nuclear Instruments and Methods in Physics Research A
  doi: 10.1016/j.nima.2015.11.036
– volume: 6
  start-page: 40
  year: 2008
  ident: 6126_CR54
  publication-title: Queue
  doi: 10.1145/1365490.1365500
– ident: 6126_CR3
  doi: 10.1088/0031-9155/57/11/R99
– volume: 732
  start-page: 403
  year: 2013
  ident: 6126_CR57
  publication-title: Nuclear Instruments and Methods in Physics Research A
  doi: 10.1016/j.nima.2013.07.018
– volume: 9
  start-page: 2011
  year: 2019
  ident: 6126_CR6
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-38611-w
– ident: 6126_CR21
  doi: 10.1088/1748-0221/11/06/p06009
– volume: 59
  start-page: 5849
  year: 2014
  ident: 6126_CR13
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/59/19/5849
– volume: 13
  start-page: P03014
  year: 2018
  ident: 6126_CR41
  publication-title: Journal of Instrumentation
  doi: 10.1088/1748-0221/13/03/p03014
– ident: 6126_CR61
  doi: 10.1016/j.nds.2011.11.002
– ident: 6126_CR24
  doi: 10.1038/s41598-018-26591-2
– ident: 6126_CR53
  doi: 10.1016/j.ejmp.2018.09.001
– volume: 4
  start-page: 218
  year: 2020
  ident: 6126_CR28
  publication-title: IEEE Transactions on Radiation and Plasma Medical Sciences
  doi: 10.1109/TRPMS.2019.2933985
– volume: 825
  start-page: 78
  year: 2016
  ident: 6126_CR38
  publication-title: Nuclear Instruments and Methods in Physics Research A
  doi: 10.1016/j.nima.2016.04.002
– volume: 60
  start-page: 1845
  year: 2015
  ident: 6126_CR18
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/60/5/1845
– volume: 89
  start-page: 183517
  year: 2006
  ident: 6126_CR7
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2378561
– volume: 56
  start-page: 1063
  year: 2011
  ident: 6126_CR5
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/56/4/012
– volume: 912
  start-page: 20
  year: 2018
  ident: 6126_CR58
  publication-title: Nuclear Instruments and Methods in Physics Research A
  doi: 10.1016/j.nima.2017.10.009
– volume: 52
  start-page: 853
  year: 1929
  ident: 6126_CR68
  publication-title: Zeitschrift für Physik
  doi: 10.1007/BF01366453
– ident: 6126_CR4
  doi: 10.1016/j.nima.2017.07.063
– volume: 60
  start-page: 7085
  year: 2015
  ident: 6126_CR19
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/60/18/7085
– volume: 63
  start-page: 035019
  year: 2018
  ident: 6126_CR26
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/1361-6560/aaa203
– volume: 57
  start-page: 5459
  year: 2012
  ident: 6126_CR47
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/57/17/5459
– volume: 43
  start-page: 4866
  year: 2016
  ident: 6126_CR45
  publication-title: Medical Physics
  doi: 10.1118/1.4959551
– ident: 6126_CR1
  doi: 10.1088/0031-9155/58/15/r131
– volume: 835
  start-page: 186
  year: 2016
  ident: 6126_CR49
  publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
  doi: 10.1016/j.nima.2016.06.125
– ident: 6126_CR11
  doi: 10.1088/1361-6560/aad513
– volume: 55
  start-page: 5007
  year: 2010
  ident: 6126_CR66
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/55/17/009
– volume: 1668
  start-page: 012013
  year: 2020
  ident: 6126_CR35
  publication-title: Journal of Physics: Conference Series
  doi: 10.1088/1742-6596/1668/1/012013
– volume: 12
  start-page: 2825
  year: 2011
  ident: 6126_CR69
  publication-title: Journal of Machine Learning Research
– volume: 59
  start-page: 5399
  year: 2014
  ident: 6126_CR8
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/59/18/5399
– volume: 57
  start-page: 6429
  year: 2012
  ident: 6126_CR36
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/57/20/6429
– volume: 59
  start-page: 7089
  year: 2014
  ident: 6126_CR10
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/59/23/7089
– volume: 57
  start-page: 3371
  year: 2012
  ident: 6126_CR12
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/57/11/3371
– volume: 496
  start-page: 425
  year: 2003
  ident: 6126_CR33
  publication-title: Nuclear Instruments and Methods in Physics Research A
  doi: 10.1016/S0168-9002(02)01749-7
– volume: 60
  start-page: 6247
  year: 2015
  ident: 6126_CR9
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/60/16/6247
– ident: 6126_CR39
– volume: 60
  start-page: 4849
  year: 2015
  ident: 6126_CR14
  publication-title: Physics in Medicine and Biology
  doi: 10.1088/0031-9155/60/12/4849
– ident: 6126_CR15
  doi: 10.1049/piee.1977.0203
– reference: 35260763 - Sci Rep. 2022 Mar 8;12(1):4102. doi: 10.1038/s41598-022-08155-7
SSID ssj0000529419
Score 2.4374356
Snippet Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of...
Abstract Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2735
SubjectTerms 639/766/387/1126
639/766/930/2735
692/4028/67/1059/485
Cameras
Crystals
Diagnostic Imaging
Efficiency
Humanities and Social Sciences
Image processing
Image Processing, Computer-Assisted
Learning algorithms
Machine Learning
multidisciplinary
Nuclear physics
Phantoms, Imaging
Proton Therapy
Protons
Radiation therapy
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQdSD-LZ1lQje3LDpvHNUcRkEPe3C3kLnpQOzPcvODDL_3iTd0-6grB68dqch_aWK-opUfQXwVvnYRkIcJjQIzE1I2ASucBA5G_G-9brW5nz5Kmdn_PO5OL826qvUhA3ywANwx8rxqBRxNOVg77R0nkfNg3JtJ6TnVb2UaHMtmRpUvanhrRm7ZAjTx6scqUo3Wc69SlSXWO5FoirY_yeW-Xux5HRjeg_ubPrLbvujWyyuBaWTB3B_ZJPo_fAXD-FW7B_B7WG-5PYxzE5rUewKXdSSyYjGGRHfUBGGDCgTxgUu0-XRVekxQPOLOrMIzXtU9BuWPRras7ZP4Ozk0-nHGR5HJ2CfKdgaa6qiD4QlL4OKVGivI0-RaOWMcUF4FXNO3HEdjQw0MEWLjLyMXsTWSa3ZUzjol318Digx1iWdOE_59FLrcoIjQ6eZz9QhCdo10O5gtH7UFS_jLRa23m8zbQfobYbeVuitbODd9M3loKpx4-oP5XSmlUURuz7IdmJHO7F_s5MGDndna0c3XVkqqRG0SPw18GZ6nR2s3Jp0fVxuyhpGDCWG6AaeDaYw7YSJVqnM2RpQe0ayt9X9N_38exXx1jpzV8UbONqZ069t3QTF0WRy_4Dci_-B3Eu4S6vbUNyqQzhYX23iq8zE1u51dbqfqiwr8g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7ULaI-iPdGq4zgmx06mcwtDyJWWhbBRaSFvoXMJe3CNln3Qtl_78zkUhdl8TWZwOTMOZlvcs75PoAP0rjUEaIxoZZjltsK55ZJbLk_jRiTGhVrc75PxPiCfbvkl3sw6XthQlll_02MH2rbmPCP_JgKmnMa2Ng-z3_hoBoVsqu9hEbZSSvYT5Fi7B7s08CMNYL9k9PJj5_DX5eQ12Jp3nXPkEwdL_0OFrrM_Jks7PYCi60dKhL5_wt9_l1EOWRSH8GDdT0vN7flbPbHZnX2BB53KBN9ad3iKey5-hncb3UnN89hfB6LZZfoJpZSOtRpR1yhQBhpkQeSMxxU59Ei9B6g6U3UMkLTGgVeh6ZGbdvW5gVcnJ2efx3jTlIBGw_NVlhR6YwlWWWElY5yZZRjlSNK6jzXlhvp_Fm5ZMrlwlKbSRro5YUz3KVaKJW9hFHd1O4AUJVlZaUqxiq_qlWq_cFH2FJlxkOKitMygbQ3Y2E6vvEgezErYt47U0Vr-sKbvoimL0QCH4dn5i3bxs7RJ2F1hpGBKTteaBZXRRd4hdTMSUk0rTxY1Epow5xiVuq05MIwnsBhv7ZFF77L4s7ZEng_3PaBF7IpZe2adRiTkZySnKgEXrWuMMwk46mUHsslILecZGuq23fq6XUk91bKY1rJEjjq3eluWrtMcTS43H9Y7vXul34DD2kMCIpTeQij1WLt3nrstdLvuoD6DehPKeM
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UiqgP4r2jVSL4ZqMzmVwfRFQsi1CfutC3MLlMXZjO1r1Q99-bZC66uBR9nSRDODmH8x2S830Ar4X1hc9zg3PiGKbK1Vg5KrBjoRqxtrAyvc05-cYnU_r1jJ3twSB31BtwubO0i3pS00Xz9uePzYcQ8O-7lnH5bhmSUGwUC2VVTNgc8xtwM2QqFaUcTnq433F9E0UL1ffO7F66lZ8Sjf8u7Pn3E8rxHvUu3F63l9XmqmqaP1LV8X2412NM9LFzigew59uHcKtTndw8gslpeiq7RBfpIaVHvXLEOYp0kQ4FGNngqDmPFrHzAM0ukpIRmrUosjrMW9Q1bW0ew_T4y-nnCe4FFbANwGyFJRHeurysLXfCEyat9LT2uRRGKeOYFT5UyhWVXnFHXClIJJfn3jJfGC5l-QT223nrDwDVZVnVsqa0DmdaFyaUPdxVsrQBUNSMVBkUgxm17dnGo-hFo9Otdyl1Z3odTK-T6TXP4M245rLj2rh29qd4OuPMyJOdPswX57oPOy0M9ULkhtQBKhrJjaVeUidMUTFuKcvgcDhbPfieJpwoRiLxXwavxuEQdvEupWr9fB3nlLkiwcVkBk87Vxh3UrJCiIDkMhBbTrK11e2RdvY9UXtLGRCtoBkcDe70e1vXmeJodLl_sNyz__v7c7hDUoAQXIhD2F8t1v5FQGIr8zKF1y876Sq4
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwJsSKMhI3KiXxPErx4KoVkhUHLqinKL41a7YZlf7EFp-PbbzgIWqotd4LNnjceYbeeYbgDdC28ymqcIpMQzTwjhcGCqwYT4a0TrTMubmfD7hozH9dMbOdoB3tTAxaT9SWsbfdJcd9m7pHU0oBvOhU3DKHPPh3LhbsMuZx-AD2B2ffDn6FjrJeYyCPUwgbYVMmssrJm95oUjWfxXC_DdRsn8tvQt31vW82vyoptM_HNLxffjabaXJQ_k-XK_UUP_8i-Xx5nt9APdajIqOGsmHsGPrR3C76Vq5eQyj05hqu0SXMRHTorbzxDkKdJMGeRg6xaFnPVqEygU0uYydkNCkRoEVYlajpuhr8wTGxx9PP4xw25ABaw_sVlgSYbVJc6e5EZYwqaWlzqZSqKJQhmlhfaRdUWkLbojJBQnk9NxqZjPFpcyfwqCe1fYZIJfnlZOOUudtwmXKh03cVDLXHpA4RqoEsu6ASt2ylYemGdMyvprnsmy0VHotlVFLJU_gbT9n3nB1XCv9Ppx7Lxl4tuOH2eK8bM-iFIpaIVJFnIeaSnKlqZXUCJVVjGvKEjjorKZsL_-yJJwUjATiwARe98P-2oa3mKq2s3WQydOCpEUqE9hvjKxfSc4yITwSTEBsmd_WUrdH6slFpAaX0iNiQRM47Az197KuU8Vhb8z_obnnNxN_AXsk2jLBmTiAwWqxti89klupV-21_QXufECP
  priority: 102
  providerName: Unpaywall
Title Towards machine learning aided real-time range imaging in proton therapy
URI https://link.springer.com/article/10.1038/s41598-022-06126-6
https://www.ncbi.nlm.nih.gov/pubmed/35177663
https://www.proquest.com/docview/2629528671
https://www.proquest.com/docview/2630920908
https://pubmed.ncbi.nlm.nih.gov/PMC8854574
https://www.nature.com/articles/s41598-022-06126-6.pdf
https://doaj.org/article/7b4e770b2f154b86bc4e84d7b1a56c45
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals [open access]
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central : All journals [free access]
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal: Open Access Journals [open access]
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_alLHtYex73rqgwd5WM1vWlx_T0BICDWVrIHsy1oe3QOqUJmHkv99JdryFjrK92GBJRpzu0E-6u98BfJTGpS5JdJxQy2OW2yrOLZOx5XgaMSY1KsTmXEzEaMrGMz47gJNdLsye_z5Qd69wi_FpYHho8tuxiMUhHClUTNWDo8Fg_HXc3al4rxVL8zY3Bod_vjt4b_8JNP1_w5Z3QyQ7P-ljeLipb8rtz3Kx-GMrOn8KT1oMSQbNoj-DA1c_hwdNVcntCxhdhVDYFbkOgZKOtJUhvhNPB2kJwsRF7GvKk1ufWUDm16FSEZnXxLM2LGvSJGVtX8L0_OxqOIrbggmxQeC1jhWVztgkq4yw0lGujHKscomSOs-15UY6PAmXTLlcWGozST15vHCGu1QLpbJX0KuXtXsDpMqyslIVYxWuWZVqPNYIW6rMIGCoOC0jSHdiLEzLJu6LWiyK4NXOVNGIvkDRF0H0hYjgUzfmpuHSuLf3qV-drqfnwQ4fUD2K1qwKqZmTMtG0QiioldCGOcWs1GnJhWE8guPd2hatca4KKmjOqSf2i-BD14xm5X0lZe2WG98nS3Ka5ImK4HWjCt1MMp5KiUgtArmnJHtT3W-p5z8CdbdSiFgli-Bkp06_p3WfKE46lfsHyb39v7-_g0c0GAiNU3kMvfXtxr1HpLXWfTiUM9lvzQzfp2eTyy_4dSiG_XB7gc8LprBlOrkcfPsF7LAk4Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqhwQLwJFDASnKjVxHZs51AhCq22tF0h1Eq9hfiRstI2u-xD1f45fhu28ygr0IpLr4kTOeMZ-5vM4wN4K7RNbBwrHBOTYpaZEmeGCWxS541onWgZcnNO-rx3xr6cp-dr8KuthfFple2eGDZqM9L-H_kO4SRLie_G9mH8E3vWKB9dbSk0ioZaweyGFmNNYceRXVw5F266e_jZrfc7Qg72Tz_1cMMygLVDKzMsibDaxLTU3AhLUqmlZaWNpVBZpkyqhXXuY8GkzbghhgriO65zq1ObKC4lde-9BRuMssw5fxt7-_2v37q_PD6OxpKsqdaJqdyZuhPTV7U5H9CjC4750okYiAP-hXb_TtrsIrd3YXNejYvFVTEc_nE4HtyHew2qRR9rNXwAa7Z6CLdrnsvFI-idhuTcKboMqZsWNVwVF8g3qDTIAdch9iz3aOJrHdDgMnAnoUGFfB-JUYXqMrHFYzi7EeE-gfVqVNlngEpKi1KWjJVOi8pEOUeLm0JS7SBMmZIigqQVY66b_uaeZmOYhzg7lXkt-tyJPg-iz3kE77tnxnV3j5Wj9_zqdCN9Z-5wYTS5yBtDz4ViVohYkdKBUyW50sxKZoRKipRrlkaw1a5t3mwX0_xauSN40912hu6jN0VlR3M_hsYZibNYRvC0VoVuJjRNhHDYMQKxpCRLU12-Uw1-hGbiUjoMLVgE2606XU9rlSi2O5X7D8k9X_3Rr2Gzd3pynB8f9o9ewB0SjIPgRGzB-mwyty8d7pupV41xIfh-0_b8G1jDZvU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRWwHxFoCBYwEJxpN4j0HhIAymlKoOLTS3ExiO-1I08wwi6r5a_w6bGcpI9CIS6-JEznP79nfy1s-gNdC29QmSREn2LCYZqaMM0NFbJjzRrROtQy5Od-O-OCEfhmy4Rb8amthfFpluyeGjdpMtP9H3sMcZwz7bmy9skmL-L7ffz_9GXsGKR9pbek0ahU5tKsL577N3x3su7V-g3H_8_GnQdwwDMTaIZVFLLGw2iSk1NwIi5nU0tLSJlIUWVYYpoV1rmNOpc24wYYI7Lutc6uZTQsuJXHvvQbXBSGZTycUQ9H93_ERNJpmTZ1OQmRv7s5KX8_mvD-PK3jM187CQBnwL5z7d7pmF7O9A7eW1TRfXeTj8R_HYv8e3G3wLPpQK-B92LLVA7hRM1yuHsLgOKTlztF5SNq0qGGpOEW-NaVBDrKOY89vj2a-ygGNzgNrEhpVyHeQmFSoLhBbPYKTKxHtY9iuJpV9AqgkJC9lSWnp9KdMC-dicZNLoh14KRnOI0hbMSrddDb3BBtjFSLsRKpa9MqJXgXRKx7B2-6Zad3XY-Poj351upG-J3e4MJmdqsbElSioFSIpcOlgaSF5oamV1IgizRnXlEWw266tajaKubpU6whedbedifu4TV7ZydKPIUmGkyyREezUqtDNhLBUCIcaIxBrSrI21fU71egstBGX0qFnQSPYa9XpclqbRLHXqdx_SO7p5o9-CTedFauvB0eHz-A2DraB41TswvZitrTPHeBbFC-CZSH4cdWm_Bt1j2SP
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwJsSKMhI3KiXxPErx4KoVkhUHLqinKL41a7YZlf7EFp-PbbzgIWqotd4LNnjceYbeeYbgDdC28ymqcIpMQzTwjhcGCqwYT4a0TrTMubmfD7hozH9dMbOdoB3tTAxaT9SWsbfdJcd9m7pHU0oBvOhU3DKHPPh3LhbsMuZx-AD2B2ffDn6FjrJeYyCPUwgbYVMmssrJm95oUjWfxXC_DdRsn8tvQt31vW82vyoptM_HNLxffjabaXJQ_k-XK_UUP_8i-Xx5nt9APdajIqOGsmHsGPrR3C76Vq5eQyj05hqu0SXMRHTorbzxDkKdJMGeRg6xaFnPVqEygU0uYydkNCkRoEVYlajpuhr8wTGxx9PP4xw25ABaw_sVlgSYbVJc6e5EZYwqaWlzqZSqKJQhmlhfaRdUWkLbojJBQnk9NxqZjPFpcyfwqCe1fYZIJfnlZOOUudtwmXKh03cVDLXHpA4RqoEsu6ASt2ylYemGdMyvprnsmy0VHotlVFLJU_gbT9n3nB1XCv9Ppx7Lxl4tuOH2eK8bM-iFIpaIVJFnIeaSnKlqZXUCJVVjGvKEjjorKZsL_-yJJwUjATiwARe98P-2oa3mKq2s3WQydOCpEUqE9hvjKxfSc4yITwSTEBsmd_WUrdH6slFpAaX0iNiQRM47Az197KuU8Vhb8z_obnnNxN_AXsk2jLBmTiAwWqxti89klupV-21_QXufECP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+machine+learning+aided+real-time+range+imaging+in+proton+therapy&rft.jtitle=Scientific+reports&rft.au=Lerendegui-Marco%2C+Jorge&rft.au=Balibrea-Correa%2C+Javier&rft.au=Babiano-Su%C3%A1rez%2C+V%C3%ADctor&rft.au=Ladarescu%2C+Ion&rft.date=2022-02-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-06126-6&rft.externalDocID=10_1038_s41598_022_06126_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon