Towards machine learning aided real-time range imaging in proton therapy
Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED i...
Saved in:
| Published in | Scientific reports Vol. 12; no. 1; pp. 2735 - 17 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
17.02.2022
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-022-06126-6 |
Cover
| Abstract | Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by
γ
-ray energies spanning up to 5–6 MeV, rather low
γ
-ray emission yields and very intense neutron induced
γ
-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high
γ
-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl
3
crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr
3
. Its high time-resolution (CRT
∼
500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl
3
monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV
γ
-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10
8
protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy
γ
-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2. |
|---|---|
| AbstractList | Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by
γ
-ray energies spanning up to 5–6 MeV, rather low
γ
-ray emission yields and very intense neutron induced
γ
-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high
γ
-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl
3
crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr
3
. Its high time-resolution (CRT
∼
500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl
3
monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV
γ
-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10
8
protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy
γ
-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2. Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by $$\gamma $$ γ -ray energies spanning up to 5–6 MeV, rather low $$\gamma $$ γ -ray emission yields and very intense neutron induced $$\gamma $$ γ -ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high $$\gamma $$ γ -ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl $$_{3}$$ 3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr $$_{3}$$ 3 . Its high time-resolution (CRT $$\sim $$ ∼ 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl $$_{3}$$ 3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV $$\gamma $$ γ -ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10 $$^{8}$$ 8 protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy $$\gamma $$ γ -rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2. Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by γ-ray energies spanning up to 5–6 MeV, rather low γ-ray emission yields and very intense neutron induced γ-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high γ-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr3. Its high time-resolution (CRT ∼ 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV γ-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 108 protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy γ-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2. Abstract Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by $$\gamma $$ γ -ray energies spanning up to 5–6 MeV, rather low $$\gamma $$ γ -ray emission yields and very intense neutron induced $$\gamma $$ γ -ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high $$\gamma $$ γ -ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl $$_{3}$$ 3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr $$_{3}$$ 3 . Its high time-resolution (CRT $$\sim $$ ∼ 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl $$_{3}$$ 3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV $$\gamma $$ γ -ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10 $$^{8}$$ 8 protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy $$\gamma $$ γ -rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2. Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by [Formula: see text]-ray energies spanning up to 5-6 MeV, rather low [Formula: see text]-ray emission yields and very intense neutron induced [Formula: see text]-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high [Formula: see text]-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl[Formula: see text] crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr[Formula: see text]. Its high time-resolution (CRT [Formula: see text] 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl[Formula: see text] monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV [Formula: see text]-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10[Formula: see text] protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy [Formula: see text]-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2. Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by $$\gamma $$ γ-ray energies spanning up to 5–6 MeV, rather low $$\gamma $$ γ-ray emission yields and very intense neutron induced $$\gamma $$ γ-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high $$\gamma $$ γ-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl $$_{3}$$ 3 crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr $$_{3}$$ 3. Its high time-resolution (CRT $$\sim $$ ∼ 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl $$_{3}$$ 3 monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV $$\gamma $$ γ-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10 $$^{8}$$ 8 protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy $$\gamma $$ γ-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2. Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by [Formula: see text]-ray energies spanning up to 5-6 MeV, rather low [Formula: see text]-ray emission yields and very intense neutron induced [Formula: see text]-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high [Formula: see text]-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl[Formula: see text] crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr[Formula: see text]. Its high time-resolution (CRT [Formula: see text] 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl[Formula: see text] monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV [Formula: see text]-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10[Formula: see text] protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy [Formula: see text]-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2.Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of the i-TED detector for proton-range monitoring, based on the results of the first Monte Carlo study of its applicability to this field. i-TED is an array of Compton cameras, that have been specifically designed for neutron-capture nuclear physics experiments, which are characterized by [Formula: see text]-ray energies spanning up to 5-6 MeV, rather low [Formula: see text]-ray emission yields and very intense neutron induced [Formula: see text]-ray backgrounds. Our developments to cope with these three aspects are concomitant with those required in the field of hadron therapy, especially in terms of high efficiency for real-time monitoring, low sensitivity to neutron backgrounds and reliable performance at the high [Formula: see text]-ray energies. We find that signal-to-background ratios can be appreciably improved with i-TED thanks to its light-weight design and the low neutron-capture cross sections of its LaCl[Formula: see text] crystals, when compared to other similar systems based on LYSO, CdZnTe or LaBr[Formula: see text]. Its high time-resolution (CRT [Formula: see text] 500 ps) represents an additional advantage for background suppression when operated in pulsed HT mode. Each i-TED Compton module features two detection planes of very large LaCl[Formula: see text] monolithic crystals, thereby achieving a high efficiency in coincidence of 0.2% for a point-like 1 MeV [Formula: see text]-ray source at 5 cm distance. This leads to sufficient statistics for reliable image reconstruction with an array of four i-TED detectors assuming clinical intensities of 10[Formula: see text] protons per treatment point. The use of a two-plane design instead of three-planes has been preferred owing to the higher attainable efficiency for double time-coincidences than for threefold events. The loss of full-energy events for high energy [Formula: see text]-rays is compensated by means of machine-learning based algorithms, which allow one to enhance the signal-to-total ratio up to a factor of 2. |
| ArticleNumber | 2735 |
| Author | Lerendegui-Marco, Jorge Domingo-Pardo, César Babiano-Suárez, Víctor Ladarescu, Ion Balibrea-Correa, Javier |
| Author_xml | – sequence: 1 givenname: Jorge surname: Lerendegui-Marco fullname: Lerendegui-Marco, Jorge email: jorge.lerendegui@ific.uv.es organization: Instituto de Física Corpuscular, CSIC-University of Valencia – sequence: 2 givenname: Javier surname: Balibrea-Correa fullname: Balibrea-Correa, Javier organization: Instituto de Física Corpuscular, CSIC-University of Valencia – sequence: 3 givenname: Víctor surname: Babiano-Suárez fullname: Babiano-Suárez, Víctor organization: Instituto de Física Corpuscular, CSIC-University of Valencia – sequence: 4 givenname: Ion surname: Ladarescu fullname: Ladarescu, Ion organization: Instituto de Física Corpuscular, CSIC-University of Valencia – sequence: 5 givenname: César surname: Domingo-Pardo fullname: Domingo-Pardo, César organization: Instituto de Física Corpuscular, CSIC-University of Valencia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35177663$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1r3DAUNCWlSdP8gR6KoZde3EqyvnwplNA2gUAv6VnI0rNXiy25kt2w_77aePN5CBUIPfRmhnkjvS2OfPBQFO8x-oxRLb8kilkjK0RIhTgmvOKvihOCKKtITcjRo_q4OEtpi_JipKG4eVMc1wwLwXl9UlxchxsdbSpHbTbOQzmAjt75vtTOgi0j6KGa3Qhl1L6H0o2633edL6cY5uDLeQNRT7t3xetODwnODudp8fvH9-vzi-rq18_L829XlWEUzZUkAoxFdWe4FUCYNBJoB0iKtmlay4wAQYmmEhpuia0F4TRvMAxwy6WsT4vLVdcGvVVTzIbiTgXt1O1FiL3ScXZmACVaCkKglnSY0Vby1lCQ1IoWa8YNZVmrXrUWP-ndjR6Ge0GM1D5mtcascszqNmbFM-vrypqWdgRrwM9RD0-sPO14t1F9-KukZJQJmgU-HQRi-LNAmtXokoFh0B7CkhThNWoIatB-2o_PoNuwRJ8DzijSMCK5wBn14bGjeyt3z5wBcgWYGFKK0CnjZj27sDfohpenJc-o_xXRIdiUwfnbxAfbL7D-AS0W28o |
| CitedBy_id | crossref_primary_10_1088_1361_6560_acf5c2 crossref_primary_10_1140_epjti_s40485_024_00108_w crossref_primary_10_1140_epjp_s13360_024_05664_4 crossref_primary_10_1063_5_0213950 crossref_primary_10_1088_1361_6560_ad2e6a crossref_primary_10_1051_epjconf_202328401018 crossref_primary_10_33769_aupse_1417403 crossref_primary_10_1140_epjp_s13360_022_03414_y |
| Cites_doi | 10.3389/fonc.2016.00080 10.1016/j.net.2020.03.012 10.1088/1742-6596/1561/1/012021 10.1109/NSSMIC.2011.6154457 10.1016/j.nima.2016.04.028 10.1140/epja/i2015-15160-6 10.1038/s41598-018-37623-2 10.1016/j.nima.2015.02.030 10.1140/epja/i2013-13027-6 10.3389/fonc.2016.00010 10.1109/NSSMIC.1998.773871 10.1140/epja/s10050-020-00141-9 10.3389/fonc.2015.00150 10.1109/23.682685 10.1109/TNS.2014.2335538 10.1016/j.nima.2014.11.042 10.1088/1361-6560/aa6068 10.1016/j.nima.2019.163228 10.1140/epja/i2016-16100-8 10.1145/2939672.2939785 10.1016/j.nima.2019.03.079 10.1088/1361-6560/ab00b2 10.1088/0031-9155/47/12/309 10.1038/s41598-021-88812-5 10.1088/1361-6560/abc5cd 10.1016/j.radphyschem.2017.01.024 10.3389/fonc.2016.00014 10.1016/j.nima.2021.165249 10.1016/j.nima.2015.11.036 10.1145/1365490.1365500 10.1088/0031-9155/57/11/R99 10.1016/j.nima.2013.07.018 10.1038/s41598-019-38611-w 10.1088/1748-0221/11/06/p06009 10.1088/0031-9155/59/19/5849 10.1088/1748-0221/13/03/p03014 10.1016/j.nds.2011.11.002 10.1038/s41598-018-26591-2 10.1016/j.ejmp.2018.09.001 10.1109/TRPMS.2019.2933985 10.1016/j.nima.2016.04.002 10.1088/0031-9155/60/5/1845 10.1063/1.2378561 10.1088/0031-9155/56/4/012 10.1016/j.nima.2017.10.009 10.1007/BF01366453 10.1016/j.nima.2017.07.063 10.1088/0031-9155/60/18/7085 10.1088/1361-6560/aaa203 10.1088/0031-9155/57/17/5459 10.1118/1.4959551 10.1088/0031-9155/58/15/r131 10.1016/j.nima.2016.06.125 10.1088/1361-6560/aad513 10.1088/0031-9155/55/17/009 10.1088/1742-6596/1668/1/012013 10.1088/0031-9155/59/18/5399 10.1088/0031-9155/57/20/6429 10.1088/0031-9155/59/23/7089 10.1088/0031-9155/57/11/3371 10.1016/S0168-9002(02)01749-7 10.1088/0031-9155/60/16/6247 10.1088/0031-9155/60/12/4849 10.1049/piee.1977.0203 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. corrected publication 2022 2022. The Author(s). The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022, corrected publication 2022 |
| Copyright_xml | – notice: The Author(s) 2022. corrected publication 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022, corrected publication 2022 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-022-06126-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_7b4e770b2f154b86bc4e84d7b1a56c45 10.1038/s41598-022-06126-6 PMC8854574 35177663 10_1038_s41598_022_06126_6 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Consejo Superior de Investigaciones Cient├¡ficas grantid: PIE-201750I26 funderid: http://dx.doi.org/10.13039/501100003339 – fundername: H2020 European Research Council grantid: ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740 funderid: http://dx.doi.org/10.13039/100010663 – fundername: Ministerio de Ciencia e Innovaci├│n grantid: PID2019-104714GB-C21 funderid: http://dx.doi.org/10.13039/501100004837 – fundername: ; grantid: ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740; ERC Consolidator Grant project HYMNS, Grant No. 681740 – fundername: ; grantid: PIE-201750I26 – fundername: ; grantid: PID2019-104714GB-C21 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c540t-827ecd03fc6d7e258c8e4fe087b99bd5c7e742a48e96d2d37264726ec5e1b6883 |
| IEDL.DBID | AAJSJ |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:41:35 EDT 2025 Sun Oct 26 04:14:53 EDT 2025 Tue Sep 30 16:00:19 EDT 2025 Thu Sep 04 19:51:56 EDT 2025 Tue Oct 07 08:02:13 EDT 2025 Mon Jul 21 06:06:15 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Wed Oct 01 02:18:18 EDT 2025 Fri Feb 21 02:36:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-827ecd03fc6d7e258c8e4fe087b99bd5c7e742a48e96d2d37264726ec5e1b6883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doi.org/10.1038%2Fs41598-022-06126-6 |
| PMID | 35177663 |
| PQID | 2629528671 |
| PQPubID | 2041939 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7b4e770b2f154b86bc4e84d7b1a56c45 unpaywall_primary_10_1038_s41598_022_06126_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8854574 proquest_miscellaneous_2630920908 proquest_journals_2629528671 pubmed_primary_35177663 crossref_citationtrail_10_1038_s41598_022_06126_6 crossref_primary_10_1038_s41598_022_06126_6 springer_journals_10_1038_s41598_022_06126_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-17 |
| PublicationDateYYYYMMDD | 2022-02-17 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | GolnikCRange assessment in particle therapy based on promptγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray timing measurementsPhysics in Medicine and Biology201459539954222014PMB....59.5399G1:CAS:528:DC%2BC2cXitVWqsL%2FO10.1088/0031-9155/59/18/539925157685 GuerreroCPerformance of the neutron time-of-flight facility n\_TOF at CERNEuropean Physical Journal A201349272013EPJA...49...27G1:CAS:528:DC%2BC3sXltFSnurg%3D10.1140/epja/i2013-13027-6 McCleskeyMEvaluation of a multistage CdZnTe Compton camera for prompt γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} imaging for proton therapyNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20157851631692015NIMPA.785..163M1:CAS:528:DC%2BC2MXjs1Wlu78%3D10.1016/j.nima.2015.02.030 Aldawood, S. et al. Development of a Compton camera for prompt-gamma medical imaging. Radiat. Phys. Chem.140, 190–197, https://doi.org/10.1016/j.radphyschem.2017.01.024 (2017). High-sensitivitY Measurements of key stellar Nucleo-Synthesis reactions (HYMNS). ERC Consolidator Grant, Agreement No. 681740, PI C. Domingo-Pardo . LlosáGFirst Images of a Three-Layer Compton Telescope Prototype for Treatment Monitoring in Hadron TherapyFrontiers in Oncology20166142016NYASA1376...14L10.3389/fonc.2016.00014268706934735841 YaoZXiaoYChenZWangBHouQCompton-based prompt gamma imaging using ordered origin ensemble algorithm with resolution recovery in proton therapyScientific Reports2019911332019NatSR...9.1133Y1:CAS:528:DC%2BC1MXns1Ogt7c%3D10.1038/s41598-018-37623-2307186716361882 Wilderman, S. J., Clinthorne, N. H., Fessler, J. A. & Rogers, W. L. List-mode maximum likelihood reconstruction of Compton scatter camera images in nuclear medicine. In 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255), vol. 3, 1716–1720. https://doi.org/10.1109/NSSMIC.1998.773871 (1998). Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, 785–794. https://doi.org/10.1145/2939672.2939785 (ACM, New York, NY, USA, 2016). Domingo-PardoCi-TED: A novel concept for high-sensitivity (n,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}) cross-section measurementsNuclear Instruments and Methods in Physics Research A201682578862016NIMPA.825...78D1:CAS:528:DC%2BC28XmsFyqu7Y%3D10.1016/j.nima.2016.04.002 KraanACRange Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo ModelingFrontiers in Oncology2015515010.3389/fonc.2015.00150262175864493660 SmeetsJPrompt gamma imaging with a slit camera for real-time range control in proton therapyPhysics in Medicine and Biology201257337134052012PMB....57.3371S1:CAS:528:DC%2BC38XhtF2isrjJ10.1088/0031-9155/57/11/337122572603 Babiano, V. et al.γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-Ray position reconstruction in large monolithic LaCl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document}(Ce) crystals with SiPM readout. Nuclear Instrum. Methods Phys. Res. A931, 1–22. https://doi.org/10.1016/j.nima.2019.03.079 (2019). Ytre-HaugeKSSkjerdalKMattinglyJMericIA Monte Carlo feasibility study for neutron based real-time range verification in proton therapyScientific Reports2019920112019NatSR...9.2011Y1:CAS:528:DC%2BC1MXnslemtrY%3D10.1038/s41598-019-38611-w307658086376014 GarcíaARMACACO II test-beam with high energy photonsPhysics in Medicine & Biology2020652450272020PMB....65x5027R1:CAS:528:DC%2BB3MXlslCqtrg%3D10.1088/1361-6560/abc5cd MuñozEProton range verification with macaco ii compton camera enhanced by a neural network for event selectionScientific Reports20211193252021NatSR..11.9325M1:CAS:528:DC%2BB3MXhtVartb7K10.1038/s41598-021-88812-5339273248085220 BiegunAKTime-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation studyPhysics in Medicine and Biology201257642964442012PMB....57.6429B10.1088/0031-9155/57/20/642922996154 Knopf, A.-C. & Lomax, A. In vivo proton range verification: a review. Phys. Med. iol., https://doi.org/10.1088/0031-9155/58/15/r131 (2013). PeraliIPrompt gamma imaging of proton pencil beams at clinical dose ratePhysics in Medicine and Biology201459584958712014PMB....59.5849P1:STN:280:DC%2BC2M%2FpslOnsA%3D%3D10.1088/0031-9155/59/19/584925207724 KimSMFully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemesPhysics in Medicine and Biology201055500750272010PMB....55.5007K10.1088/0031-9155/55/17/00920702926 Paganetti, H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol.. https://doi.org/10.1088/0031-9155/57/11/R99 (2012). KataokaJHandy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arraysNuclear Instruments and Methods in Physics Research A20137324034072013NIMPA.732..403K1:CAS:528:DC%2BC3sXhtFCgsLjO10.1016/j.nima.2013.07.018 Everett, D. Gamma-radiation imaging system based on the compton effect. Proc. Inst. Electri. Eng.124, 995–1000 (5) (1977). Chollet, F. et al. Keras. https://keras.io (2015). MinC-HKimCHYounM-YKimJ-WPrompt gamma measurements for locating the dose falloff region in the proton therapyApplied Physics Letters2006891835172006ApPhL..89r3517M1:CAS:528:DC%2BD28Xht1WrsbfF10.1063/1.2378561 FontanaMMonitoring Ion Beam Therapy With a Compton Camera: Simulation Studies of the Clinical FeasibilityIEEE Transactions on Radiation and Plasma Medical Sciences2020421823210.1109/TRPMS.2019.2933985 VerburgJMSecoJProton range verification through prompt gamma-ray spectroscopyPhysics in Medicine and Biology201459708971062014PMB....59.7089V1:CAS:528:DC%2BC2cXitVyit7jJ10.1088/0031-9155/59/23/708925365362 Hueso-GonzálezFCompton Camera and Prompt Gamma Ray Timing: Two Methods for In Vivo Range Assessment in Proton TherapyFrontiers in Oncology201668010.3389/fonc.2016.00080271484734829070 Hueso-GonzálezFFirst test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facilityPhysics in Medicine and Biology201560624762722015PMB....60.6247H10.1088/0031-9155/60/16/624726237433 Taya, T. et al. First demonstration of real-time gamma imaging by using a handheld Compton camera for particle therapy. Nuclear Instrum. Methods Phys. Res. Sect.A Acceler. Spectrom. Detect. Assoc. Equip.831, 355–361. https://doi.org/10.1016/j.nima.2016.04.028 (2016). MoteabbedMEspañaSPaganettiHMonte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapyPhysics in Medicine and Biology201156106310822011PMB....56.1063M1:STN:280:DC%2BC3M7mtV2msQ%3D%3D10.1088/0031-9155/56/4/01221263174 PedregosaFScikit-learn: Machine Learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189 Krimmer, J., Dauvergne, D., Létang, J. & Testa, E. Prompt-gamma monitoring in hadrontherapy: A review. Nuclear Instrum. Methods Phys. Res. Sect. A: Acceler. Spectrom. Detect. Assoc. Equip.878, 58–73. https://doi.org/10.1016/j.nima.2017.07.063 (2018). Di FrancescoATOFPET 2: A high-performance circuit for PET time-of-flightNuclear Instruments and Methods in Physics Research A20168241941952016NIMPA.824..194D1:CAS:528:DC%2BC2MXhvVyhurrN10.1016/j.nima.2015.11.036 WildermanSFast algorithm for list mode back-projection of Compton scatter camera dataIEEE Transactions on Nuclear Science1998459579621998ITNS...45..957W10.1109/23.682685 WildermanSJRogersWLKnollGFEngdahlJCFast algorithm for list mode back-projection of Compton scatter camera dataIEEE Transactions on Nuclear Science1998459579621998ITNS...45..957W10.1109/23.682685 Plompen, A. J. M. et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur. Phys. J. A56, 181. https://doi.org/10.1140/epja/s10050-020-00141-9 (2020). OllerosPOn the performance of large monolithic LaCl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document}(Ce) crystals coupled to pixelated silicon photosensorsJournal of Instrumentation201813P03014P030141:CAS:528:DC%2BC1cXit1amt7bI10.1088/1748-0221/13/03/p03014 AllisonJRecent developments in Geant4Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20168351862252016NIMPA.835..186A1:CAS:528:DC%2BC28XhtFymsbbJ10.1016/j.nima.2016.06.125 Balibrea-CorreaJMachine Learning aided 3D-position reconstruction in large LaCl3 crystalsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment202110011652491:CAS:528:DC%2BB3MXnvVGit78%3D10.1016/j.nima.2021.165249 VerburgJMShihHASecoJSimulation of prompt gamma-ray emission during proton radiotherapyPhysics in Medicine and Biolog JM Verburg (6126_CR47) 2012; 57 C Guerrero (6126_CR32) 2013; 49 6126_CR70 6126_CR71 6126_CR30 AC Kraan (6126_CR2) 2015; 5 J Kataoka (6126_CR57) 2013; 732 JC Polf (6126_CR19) 2015; 60 M Pinto (6126_CR48) 2016; 6 J Smeets (6126_CR12) 2012; 57 6126_CR39 M Priegnitz (6126_CR14) 2015; 60 Y Nagao (6126_CR58) 2018; 912 F Hueso-González (6126_CR9) 2015; 60 6126_CR1 6126_CR40 6126_CR3 T Tomitani (6126_CR46) 2002; 47 S Wilderman (6126_CR67) 1998; 45 6126_CR4 6126_CR42 A Fedorov (6126_CR52) 2020; 52 M Fontana (6126_CR28) 2020; 4 J Lerendegui-Marco (6126_CR43) 2016; 52 A Di Francesco (6126_CR56) 2016; 824 O Klein (6126_CR68) 1929; 52 AK Biegun (6126_CR36) 2012; 57 Z Yao (6126_CR37) 2019; 9 J Allison (6126_CR49) 2016; 835 H Rohling (6126_CR31) 2017; 62 P Olleros (6126_CR41) 2018; 13 F Pedregosa (6126_CR69) 2011; 12 F Hueso-González (6126_CR16) 2016; 6 G Llosá (6126_CR25) 2016; 6 E Muñoz (6126_CR51) 2021; 11 E Draeger (6126_CR26) 2018; 63 6126_CR50 C Domingo-Pardo (6126_CR38) 2016; 825 6126_CR53 C-H Min (6126_CR7) 2006; 89 6126_CR11 6126_CR55 AR García (6126_CR29) 2020; 65 6126_CR15 6126_CR59 A Wrońska (6126_CR17) 2020; 1561 RK Parajuli (6126_CR27) 2019; 64 E Mendoza (6126_CR62) 2014; 61 M Moteabbed (6126_CR5) 2011; 56 JM Verburg (6126_CR10) 2014; 59 R Plag (6126_CR33) 2003; 496 SM Kim (6126_CR66) 2010; 55 6126_CR60 6126_CR61 S Lo Meo (6126_CR64) 2015; 51 6126_CR63 I Perali (6126_CR13) 2014; 59 6126_CR21 6126_CR65 6126_CR22 6126_CR23 C Golnik (6126_CR8) 2014; 59 6126_CR24 J Balibrea-Correa (6126_CR34) 2021; 1001 KS Ytre-Hauge (6126_CR6) 2019; 9 C Domingo-Pardo (6126_CR35) 2020; 1668 SJ Wilderman (6126_CR44) 1998; 45 J Nickolls (6126_CR54) 2008; 6 PG Ortega (6126_CR18) 2015; 60 A Andreyev (6126_CR45) 2016; 43 M McCleskey (6126_CR20) 2015; 785 35260763 - Sci Rep. 2022 Mar 8;12(1):4102. doi: 10.1038/s41598-022-08155-7 |
| References_xml | – reference: Mendoza, E., Sansaloni, F., Arce, P., Cano-Ott, D. & Lagares, J. I. A new physics model for the charged particle transport with Geant4. In 2011 IEEE Nuclear Science Symposium Conference Record, 2242–2244, https://doi.org/10.1109/NSSMIC.2011.6154457 (2011). – reference: WildermanSFast algorithm for list mode back-projection of Compton scatter camera dataIEEE Transactions on Nuclear Science1998459579621998ITNS...45..957W10.1109/23.682685 – reference: Krimmer, J. et al. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accelera. Spectrom. Detect. Assoc. Equip.787, 98–101, https://doi.org/10.1016/j.nima.2014.11.042 (2015). – reference: AllisonJRecent developments in Geant4Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20168351862252016NIMPA.835..186A1:CAS:528:DC%2BC28XhtFymsbbJ10.1016/j.nima.2016.06.125 – reference: OrtegaPGNoise evaluation of Compton camera imaging for proton therapyPhysics in Medicine and Biology201560184518632015PMB....60.1845O1:CAS:528:DC%2BC2MXjt1Cmu7Y%3D10.1088/0031-9155/60/5/184525658644 – reference: NagaoYYamaguchiMKawachiNWatabeHDevelopment of a cost-effective Compton camera using a positron emission tomography data acquisition systemNuclear Instruments and Methods in Physics Research A201891220232018NIMPA.912...20N1:CAS:528:DC%2BC2sXhvVWlu7nF10.1016/j.nima.2017.10.009 – reference: PlagRAn optimized C 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{6}$$\end{document}D 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{6}$$\end{document} detector for studies of resonance-dominated (n,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}) cross-sectionsNuclear Instruments and Methods in Physics Research A20034964254362003NIMPA.496..425P1:CAS:528:DC%2BD38XpvVWqtbk%3D10.1016/S0168-9002(02)01749-7 – reference: VerburgJMShihHASecoJSimulation of prompt gamma-ray emission during proton radiotherapyPhysics in Medicine and Biology201257545954722012PMB....57.5459V1:CAS:528:DC%2BC38XhsF2rt7nM10.1088/0031-9155/57/17/545922864267 – reference: Everett, D. Gamma-radiation imaging system based on the compton effect. Proc. Inst. Electri. Eng.124, 995–1000 (5) (1977). – reference: Domingo-PardoCReview and new concepts for neutron-capture measurements of astrophysical interestJournal of Physics: Conference Series202016680120131:CAS:528:DC%2BB3cXisVSqs7bK10.1088/1742-6596/1668/1/012013 – reference: KataokaJHandy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arraysNuclear Instruments and Methods in Physics Research A20137324034072013NIMPA.732..403K1:CAS:528:DC%2BC3sXhtFCgsLjO10.1016/j.nima.2013.07.018 – reference: Plompen, A. J. M. et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur. Phys. J. A56, 181. https://doi.org/10.1140/epja/s10050-020-00141-9 (2020). – reference: Lerendegui-MarcoJGeant4 simulation of the n\_TOF-EAR2 neutron beam: Characteristics and prospectsThe European Physical Journal A2016521002016EPJA...52..100L1:CAS:528:DC%2BC28XmtlShsrs%3D10.1140/epja/i2016-16100-8 – reference: Balibrea-CorreaJMachine Learning aided 3D-position reconstruction in large LaCl3 crystalsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment202110011652491:CAS:528:DC%2BB3MXnvVGit78%3D10.1016/j.nima.2021.165249 – reference: MuñozEProton range verification with macaco ii compton camera enhanced by a neural network for event selectionScientific Reports20211193252021NatSR..11.9325M1:CAS:528:DC%2BB3MXhtVartb7K10.1038/s41598-021-88812-5339273248085220 – reference: Aldawood, S. et al. Development of a Compton camera for prompt-gamma medical imaging. Radiat. Phys. Chem.140, 190–197, https://doi.org/10.1016/j.radphyschem.2017.01.024 (2017). – reference: KimSMFully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemesPhysics in Medicine and Biology201055500750272010PMB....55.5007K10.1088/0031-9155/55/17/00920702926 – reference: GEANT4 Reference Physics Lists. https://geant4.web.cern.ch/node/155. – reference: ParajuliRKAnnihilation gamma imaging for carbon ion beam range monitoring using Si/CdTe Compton cameraPhysics in Medicine & Biology2019640550032019PMB....64e5003P1:CAS:528:DC%2BC1MXhtlWmt7bO10.1088/1361-6560/ab00b2 – reference: AndreyevACellerAOzsahinISitekAResolution recovery for Compton camera using origin ensemble algorithmMedical Physics20164348662016MedPh..43.4866A1:STN:280:DC%2BC2s3nsF2jtg%3D%3D10.1118/1.4959551274879044967076 – reference: VerburgJMSecoJProton range verification through prompt gamma-ray spectroscopyPhysics in Medicine and Biology201459708971062014PMB....59.7089V1:CAS:528:DC%2BC2cXitVyit7jJ10.1088/0031-9155/59/23/708925365362 – reference: Di FrancescoATOFPET 2: A high-performance circuit for PET time-of-flightNuclear Instruments and Methods in Physics Research A20168241941952016NIMPA.824..194D1:CAS:528:DC%2BC2MXhvVyhurrN10.1016/j.nima.2015.11.036 – reference: Chollet, F. et al. Keras. https://keras.io (2015). – reference: Babiano, V. et al. First i-TED demonstrator: A Compton imager with Dynamic Electronic Collimation. Nuclear Instrum. Methods Phys. Res. A953, 163228. https://doi.org/10.1016/j.nima.2019.163228 (2020). – reference: Krimmer, J., Dauvergne, D., Létang, J. & Testa, E. Prompt-gamma monitoring in hadrontherapy: A review. Nuclear Instrum. Methods Phys. Res. Sect. A: Acceler. Spectrom. Detect. Assoc. Equip.878, 58–73. https://doi.org/10.1016/j.nima.2017.07.063 (2018). – reference: LlosáGFirst Images of a Three-Layer Compton Telescope Prototype for Treatment Monitoring in Hadron TherapyFrontiers in Oncology20166142016NYASA1376...14L10.3389/fonc.2016.00014268706934735841 – reference: DraegerE3D prompt gamma imaging for proton beam range verificationPhysics in Medicine & Biology2018630350192018PMB....63c5019D1:CAS:528:DC%2BC1cXitFOmurbM10.1088/1361-6560/aaa203 – reference: FontanaMMonitoring Ion Beam Therapy With a Compton Camera: Simulation Studies of the Clinical FeasibilityIEEE Transactions on Radiation and Plasma Medical Sciences2020421823210.1109/TRPMS.2019.2933985 – reference: Wilderman, S. J., Clinthorne, N. H., Fessler, J. A. & Rogers, W. L. List-mode maximum likelihood reconstruction of Compton scatter camera images in nuclear medicine. In 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255), vol. 3, 1716–1720. https://doi.org/10.1109/NSSMIC.1998.773871 (1998). – reference: PeraliIPrompt gamma imaging of proton pencil beams at clinical dose ratePhysics in Medicine and Biology201459584958712014PMB....59.5849P1:STN:280:DC%2BC2M%2FpslOnsA%3D%3D10.1088/0031-9155/59/19/584925207724 – reference: McCleskeyMEvaluation of a multistage CdZnTe Compton camera for prompt γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} imaging for proton therapyNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment20157851631692015NIMPA.785..163M1:CAS:528:DC%2BC2MXjs1Wlu78%3D10.1016/j.nima.2015.02.030 – reference: Taya, T. et al. First demonstration of real-time gamma imaging by using a handheld Compton camera for particle therapy. Nuclear Instrum. Methods Phys. Res. Sect.A Acceler. Spectrom. Detect. Assoc. Equip.831, 355–361. https://doi.org/10.1016/j.nima.2016.04.028 (2016). – reference: Hueso-GonzálezFFirst test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facilityPhysics in Medicine and Biology201560624762722015PMB....60.6247H10.1088/0031-9155/60/16/624726237433 – reference: Hueso-GonzálezFCompton Camera and Prompt Gamma Ray Timing: Two Methods for In Vivo Range Assessment in Proton TherapyFrontiers in Oncology201668010.3389/fonc.2016.00080271484734829070 – reference: BiegunAKTime-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation studyPhysics in Medicine and Biology201257642964442012PMB....57.6429B10.1088/0031-9155/57/20/642922996154 – reference: MendozaECano-OttDKoiTGuerreroCNew Standard Evaluated Neutron Cross Section Libraries for the GEANT4 Code and First VerificationIEEE Transactions on Nuclear Science201461235723642014ITNS...61.2357M1:CAS:528:DC%2BC2cXhvFGmtLzJ10.1109/TNS.2014.2335538 – reference: SmeetsJPrompt gamma imaging with a slit camera for real-time range control in proton therapyPhysics in Medicine and Biology201257337134052012PMB....57.3371S1:CAS:528:DC%2BC38XhtF2isrjJ10.1088/0031-9155/57/11/337122572603 – reference: FedorovASensitivity of GAGG based scintillation neutron detector with SiPM readoutNuclear Engineering and Technology202052230623121:CAS:528:DC%2BB3cXhs1CqsrzE10.1016/j.net.2020.03.012 – reference: PintoMAssessment of Geant4 Prompt-Gamma Emission Yields in the Context of Proton Therapy MonitoringFrontiers in Oncology20166102016FrCh....4...10P10.3389/fonc.2016.00010268589374729887 – reference: Babiano, V. et al.γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-Ray position reconstruction in large monolithic LaCl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document}(Ce) crystals with SiPM readout. Nuclear Instrum. Methods Phys. Res. A931, 1–22. https://doi.org/10.1016/j.nima.2019.03.079 (2019). – reference: Golnik, C. et al. Tests of a Compton imaging prototype in a monoenergetic 4.44 MeV photon field—A benchmark setup for prompt gamma-ray imaging devices. J. Instrum.11, P06009–P06009. https://doi.org/10.1088/1748-0221/11/06/p06009 (2016). – reference: KraanACRange Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo ModelingFrontiers in Oncology2015515010.3389/fonc.2015.00150262175864493660 – reference: MoteabbedMEspañaSPaganettiHMonte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapyPhysics in Medicine and Biology201156106310822011PMB....56.1063M1:STN:280:DC%2BC3M7mtV2msQ%3D%3D10.1088/0031-9155/56/4/01221263174 – reference: MinC-HKimCHYounM-YKimJ-WPrompt gamma measurements for locating the dose falloff region in the proton therapyApplied Physics Letters2006891835172006ApPhL..89r3517M1:CAS:528:DC%2BD28Xht1WrsbfF10.1063/1.2378561 – reference: Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, 785–794. https://doi.org/10.1145/2939672.2939785 (ACM, New York, NY, USA, 2016). – reference: PedregosaFScikit-learn: Machine Learning in PythonJournal of Machine Learning Research2011122825283028543481280.68189 – reference: GarcíaARMACACO II test-beam with high energy photonsPhysics in Medicine & Biology2020652450272020PMB....65x5027R1:CAS:528:DC%2BB3MXlslCqtrg%3D10.1088/1361-6560/abc5cd – reference: TomitaniTHirasawaMImage reconstruction from limited angle Compton camera dataPhysics in Medicine and Biology200247212921452002PMB....47.2129T1:STN:280:DC%2BD38zntlSjtw%3D%3D10.1088/0031-9155/47/12/30912118605 – reference: Koide, A. et al. Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera. Sci. Rep.8, 8116. https://doi.org/10.1038/s41598-018-26591-2 (2018). – reference: KleinONishinaYÜber die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von DiracZeitschrift für Physik1929528538681929ZPhy...52..853K10.1007/BF0136645355.0532.04 – reference: NickollsJBuckIGarlandMSkadronKScalable Parallel Programming with CUDAQueue20086405310.1145/1365490.1365500 – reference: Hueso-González, F., Rabe, M., Ruggieri, T. A., Bortfeld, T. & Verburg, J. M. A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy. Phys. Med. Biol.63, 185019–185019, https://doi.org/10.1088/1361-6560/aad513 (2018). – reference: WrońskaAPrompt gamma imaging in proton therapy - status, challenges and developmentsJournal of Physics: Conference Series202015610120211:CAS:528:DC%2BB3cXhvFKrt73J10.1088/1742-6596/1561/1/012021 – reference: PriegnitzMMeasurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiationPhysics in Medicine and Biology201560484948712015PMB....60.4849P1:STN:280:DC%2BC2MbhslWrsA%3D%3D10.1088/0031-9155/60/12/484926057897 – reference: Knopf, A.-C. & Lomax, A. In vivo proton range verification: a review. Phys. Med. iol., https://doi.org/10.1088/0031-9155/58/15/r131 (2013). – reference: Domingo-PardoCi-TED: A novel concept for high-sensitivity (n,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}) cross-section measurementsNuclear Instruments and Methods in Physics Research A201682578862016NIMPA.825...78D1:CAS:528:DC%2BC28XmsFyqu7Y%3D10.1016/j.nima.2016.04.002 – reference: RohlingHRequirements for a Compton camera for in-vivo range verification of proton therapyPhysics in Medicine and Biology201762279528112017PMB....62.2795R1:STN:280:DC%2BC1c3msFenuw%3D%3D10.1088/1361-6560/aa606828195562 – reference: WildermanSJRogersWLKnollGFEngdahlJCFast algorithm for list mode back-projection of Compton scatter camera dataIEEE Transactions on Nuclear Science1998459579621998ITNS...45..957W10.1109/23.682685 – reference: YaoZXiaoYChenZWangBHouQCompton-based prompt gamma imaging using ordered origin ensemble algorithm with resolution recovery in proton therapyScientific Reports2019911332019NatSR...9.1133Y1:CAS:528:DC%2BC1MXns1Ogt7c%3D10.1038/s41598-018-37623-2307186716361882 – reference: Babiano, V. & Lerendegui-Marco, J. Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques. Eur. Phys. J. A (2021). – reference: PolfJCAverySMackinDSBeddarSImaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verificationPhysics in Medicine and Biology201560708570992015PMB....60.7085P1:CAS:528:DC%2BC28XkvFWitrk%3D10.1088/0031-9155/60/18/708526317610 – reference: Ytre-HaugeKSSkjerdalKMattinglyJMericIA Monte Carlo feasibility study for neutron based real-time range verification in proton therapyScientific Reports2019920112019NatSR...9.2011Y1:CAS:528:DC%2BC1MXnslemtrY%3D10.1038/s41598-019-38611-w307658086376014 – reference: GuerreroCPerformance of the neutron time-of-flight facility n\_TOF at CERNEuropean Physical Journal A201349272013EPJA...49...27G1:CAS:528:DC%2BC3sXltFSnurg%3D10.1140/epja/i2013-13027-6 – reference: Cambraia Lopes, P. et al. Simulation of proton range monitoring in an anthropomorphic phantom using multi-slat collimators and time-of-flight detection of prompt-gamma quanta. Phys. Med.54, 1–14. https://doi.org/10.1016/j.ejmp.2018.09.001 (2018). – reference: OllerosPOn the performance of large monolithic LaCl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document}(Ce) crystals coupled to pixelated silicon photosensorsJournal of Instrumentation201813P03014P030141:CAS:528:DC%2BC1cXit1amt7bI10.1088/1748-0221/13/03/p03014 – reference: Lo MeoSGEANT4 simulations of the n\_TOF spallation source and their benchmarkingThe European Physical Journal A2015511602015EPJA...51..160L1:CAS:528:DC%2BC2MXitVemtbnE10.1140/epja/i2015-15160-6 – reference: Paganetti, H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol.. https://doi.org/10.1088/0031-9155/57/11/R99 (2012). – reference: Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org. – reference: High-sensitivitY Measurements of key stellar Nucleo-Synthesis reactions (HYMNS). ERC Consolidator Grant, Agreement No. 681740, PI C. Domingo-Pardo . – reference: Chadwick, M. et al. ENDF/B-VII.1 Nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data. Nuclear Data Sheets112, 2887–2996. https://doi.org/10.1016/j.nds.2011.11.002 (2011). – reference: GolnikCRange assessment in particle therapy based on promptγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-ray timing measurementsPhysics in Medicine and Biology201459539954222014PMB....59.5399G1:CAS:528:DC%2BC2cXitVWqsL%2FO10.1088/0031-9155/59/18/539925157685 – volume: 6 start-page: 80 year: 2016 ident: 6126_CR16 publication-title: Frontiers in Oncology doi: 10.3389/fonc.2016.00080 – volume: 52 start-page: 2306 year: 2020 ident: 6126_CR52 publication-title: Nuclear Engineering and Technology doi: 10.1016/j.net.2020.03.012 – volume: 1561 start-page: 012021 year: 2020 ident: 6126_CR17 publication-title: Journal of Physics: Conference Series doi: 10.1088/1742-6596/1561/1/012021 – ident: 6126_CR55 – ident: 6126_CR60 doi: 10.1109/NSSMIC.2011.6154457 – ident: 6126_CR59 – ident: 6126_CR22 doi: 10.1016/j.nima.2016.04.028 – volume: 51 start-page: 160 year: 2015 ident: 6126_CR64 publication-title: The European Physical Journal A doi: 10.1140/epja/i2015-15160-6 – volume: 9 start-page: 1133 year: 2019 ident: 6126_CR37 publication-title: Scientific Reports doi: 10.1038/s41598-018-37623-2 – volume: 785 start-page: 163 year: 2015 ident: 6126_CR20 publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment doi: 10.1016/j.nima.2015.02.030 – volume: 49 start-page: 27 year: 2013 ident: 6126_CR32 publication-title: European Physical Journal A doi: 10.1140/epja/i2013-13027-6 – volume: 6 start-page: 10 year: 2016 ident: 6126_CR48 publication-title: Frontiers in Oncology doi: 10.3389/fonc.2016.00010 – ident: 6126_CR65 doi: 10.1109/NSSMIC.1998.773871 – ident: 6126_CR63 doi: 10.1140/epja/s10050-020-00141-9 – volume: 5 start-page: 150 year: 2015 ident: 6126_CR2 publication-title: Frontiers in Oncology doi: 10.3389/fonc.2015.00150 – volume: 45 start-page: 957 year: 1998 ident: 6126_CR67 publication-title: IEEE Transactions on Nuclear Science doi: 10.1109/23.682685 – volume: 45 start-page: 957 year: 1998 ident: 6126_CR44 publication-title: IEEE Transactions on Nuclear Science doi: 10.1109/23.682685 – ident: 6126_CR50 – volume: 61 start-page: 2357 year: 2014 ident: 6126_CR62 publication-title: IEEE Transactions on Nuclear Science doi: 10.1109/TNS.2014.2335538 – ident: 6126_CR30 doi: 10.1016/j.nima.2014.11.042 – volume: 62 start-page: 2795 year: 2017 ident: 6126_CR31 publication-title: Physics in Medicine and Biology doi: 10.1088/1361-6560/aa6068 – ident: 6126_CR71 – ident: 6126_CR40 doi: 10.1016/j.nima.2019.163228 – volume: 52 start-page: 100 year: 2016 ident: 6126_CR43 publication-title: The European Physical Journal A doi: 10.1140/epja/i2016-16100-8 – ident: 6126_CR70 doi: 10.1145/2939672.2939785 – ident: 6126_CR42 doi: 10.1016/j.nima.2019.03.079 – volume: 64 start-page: 055003 year: 2019 ident: 6126_CR27 publication-title: Physics in Medicine & Biology doi: 10.1088/1361-6560/ab00b2 – volume: 47 start-page: 2129 year: 2002 ident: 6126_CR46 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/47/12/309 – volume: 11 start-page: 9325 year: 2021 ident: 6126_CR51 publication-title: Scientific Reports doi: 10.1038/s41598-021-88812-5 – volume: 65 start-page: 245027 year: 2020 ident: 6126_CR29 publication-title: Physics in Medicine & Biology doi: 10.1088/1361-6560/abc5cd – ident: 6126_CR23 doi: 10.1016/j.radphyschem.2017.01.024 – volume: 6 start-page: 14 year: 2016 ident: 6126_CR25 publication-title: Frontiers in Oncology doi: 10.3389/fonc.2016.00014 – volume: 1001 start-page: 165249 year: 2021 ident: 6126_CR34 publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment doi: 10.1016/j.nima.2021.165249 – volume: 824 start-page: 194 year: 2016 ident: 6126_CR56 publication-title: Nuclear Instruments and Methods in Physics Research A doi: 10.1016/j.nima.2015.11.036 – volume: 6 start-page: 40 year: 2008 ident: 6126_CR54 publication-title: Queue doi: 10.1145/1365490.1365500 – ident: 6126_CR3 doi: 10.1088/0031-9155/57/11/R99 – volume: 732 start-page: 403 year: 2013 ident: 6126_CR57 publication-title: Nuclear Instruments and Methods in Physics Research A doi: 10.1016/j.nima.2013.07.018 – volume: 9 start-page: 2011 year: 2019 ident: 6126_CR6 publication-title: Scientific Reports doi: 10.1038/s41598-019-38611-w – ident: 6126_CR21 doi: 10.1088/1748-0221/11/06/p06009 – volume: 59 start-page: 5849 year: 2014 ident: 6126_CR13 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/59/19/5849 – volume: 13 start-page: P03014 year: 2018 ident: 6126_CR41 publication-title: Journal of Instrumentation doi: 10.1088/1748-0221/13/03/p03014 – ident: 6126_CR61 doi: 10.1016/j.nds.2011.11.002 – ident: 6126_CR24 doi: 10.1038/s41598-018-26591-2 – ident: 6126_CR53 doi: 10.1016/j.ejmp.2018.09.001 – volume: 4 start-page: 218 year: 2020 ident: 6126_CR28 publication-title: IEEE Transactions on Radiation and Plasma Medical Sciences doi: 10.1109/TRPMS.2019.2933985 – volume: 825 start-page: 78 year: 2016 ident: 6126_CR38 publication-title: Nuclear Instruments and Methods in Physics Research A doi: 10.1016/j.nima.2016.04.002 – volume: 60 start-page: 1845 year: 2015 ident: 6126_CR18 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/60/5/1845 – volume: 89 start-page: 183517 year: 2006 ident: 6126_CR7 publication-title: Applied Physics Letters doi: 10.1063/1.2378561 – volume: 56 start-page: 1063 year: 2011 ident: 6126_CR5 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/56/4/012 – volume: 912 start-page: 20 year: 2018 ident: 6126_CR58 publication-title: Nuclear Instruments and Methods in Physics Research A doi: 10.1016/j.nima.2017.10.009 – volume: 52 start-page: 853 year: 1929 ident: 6126_CR68 publication-title: Zeitschrift für Physik doi: 10.1007/BF01366453 – ident: 6126_CR4 doi: 10.1016/j.nima.2017.07.063 – volume: 60 start-page: 7085 year: 2015 ident: 6126_CR19 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/60/18/7085 – volume: 63 start-page: 035019 year: 2018 ident: 6126_CR26 publication-title: Physics in Medicine & Biology doi: 10.1088/1361-6560/aaa203 – volume: 57 start-page: 5459 year: 2012 ident: 6126_CR47 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/57/17/5459 – volume: 43 start-page: 4866 year: 2016 ident: 6126_CR45 publication-title: Medical Physics doi: 10.1118/1.4959551 – ident: 6126_CR1 doi: 10.1088/0031-9155/58/15/r131 – volume: 835 start-page: 186 year: 2016 ident: 6126_CR49 publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment doi: 10.1016/j.nima.2016.06.125 – ident: 6126_CR11 doi: 10.1088/1361-6560/aad513 – volume: 55 start-page: 5007 year: 2010 ident: 6126_CR66 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/55/17/009 – volume: 1668 start-page: 012013 year: 2020 ident: 6126_CR35 publication-title: Journal of Physics: Conference Series doi: 10.1088/1742-6596/1668/1/012013 – volume: 12 start-page: 2825 year: 2011 ident: 6126_CR69 publication-title: Journal of Machine Learning Research – volume: 59 start-page: 5399 year: 2014 ident: 6126_CR8 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/59/18/5399 – volume: 57 start-page: 6429 year: 2012 ident: 6126_CR36 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/57/20/6429 – volume: 59 start-page: 7089 year: 2014 ident: 6126_CR10 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/59/23/7089 – volume: 57 start-page: 3371 year: 2012 ident: 6126_CR12 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/57/11/3371 – volume: 496 start-page: 425 year: 2003 ident: 6126_CR33 publication-title: Nuclear Instruments and Methods in Physics Research A doi: 10.1016/S0168-9002(02)01749-7 – volume: 60 start-page: 6247 year: 2015 ident: 6126_CR9 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/60/16/6247 – ident: 6126_CR39 – volume: 60 start-page: 4849 year: 2015 ident: 6126_CR14 publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/60/12/4849 – ident: 6126_CR15 doi: 10.1049/piee.1977.0203 – reference: 35260763 - Sci Rep. 2022 Mar 8;12(1):4102. doi: 10.1038/s41598-022-08155-7 |
| SSID | ssj0000529419 |
| Score | 2.4374356 |
| Snippet | Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous aspects of... Abstract Compton imaging represents a promising technique for range verification in proton therapy treatments. In this work, we report on the advantageous... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2735 |
| SubjectTerms | 639/766/387/1126 639/766/930/2735 692/4028/67/1059/485 Cameras Crystals Diagnostic Imaging Efficiency Humanities and Social Sciences Image processing Image Processing, Computer-Assisted Learning algorithms Machine Learning multidisciplinary Nuclear physics Phantoms, Imaging Proton Therapy Protons Radiation therapy Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQdSD-LZ1lQje3LDpvHNUcRkEPe3C3kLnpQOzPcvODDL_3iTd0-6grB68dqch_aWK-opUfQXwVvnYRkIcJjQIzE1I2ASucBA5G_G-9brW5nz5Kmdn_PO5OL826qvUhA3ywANwx8rxqBRxNOVg77R0nkfNg3JtJ6TnVb2UaHMtmRpUvanhrRm7ZAjTx6scqUo3Wc69SlSXWO5FoirY_yeW-Xux5HRjeg_ubPrLbvujWyyuBaWTB3B_ZJPo_fAXD-FW7B_B7WG-5PYxzE5rUewKXdSSyYjGGRHfUBGGDCgTxgUu0-XRVekxQPOLOrMIzXtU9BuWPRras7ZP4Ozk0-nHGR5HJ2CfKdgaa6qiD4QlL4OKVGivI0-RaOWMcUF4FXNO3HEdjQw0MEWLjLyMXsTWSa3ZUzjol318Digx1iWdOE_59FLrcoIjQ6eZz9QhCdo10O5gtH7UFS_jLRa23m8zbQfobYbeVuitbODd9M3loKpx4-oP5XSmlUURuz7IdmJHO7F_s5MGDndna0c3XVkqqRG0SPw18GZ6nR2s3Jp0fVxuyhpGDCWG6AaeDaYw7YSJVqnM2RpQe0ayt9X9N_38exXx1jpzV8UbONqZ069t3QTF0WRy_4Dci_-B3Eu4S6vbUNyqQzhYX23iq8zE1u51dbqfqiwr8g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7ULaI-iPdGq4zgmx06mcwtDyJWWhbBRaSFvoXMJe3CNln3Qtl_78zkUhdl8TWZwOTMOZlvcs75PoAP0rjUEaIxoZZjltsK55ZJbLk_jRiTGhVrc75PxPiCfbvkl3sw6XthQlll_02MH2rbmPCP_JgKmnMa2Ng-z3_hoBoVsqu9hEbZSSvYT5Fi7B7s08CMNYL9k9PJj5_DX5eQ12Jp3nXPkEwdL_0OFrrM_Jks7PYCi60dKhL5_wt9_l1EOWRSH8GDdT0vN7flbPbHZnX2BB53KBN9ad3iKey5-hncb3UnN89hfB6LZZfoJpZSOtRpR1yhQBhpkQeSMxxU59Ei9B6g6U3UMkLTGgVeh6ZGbdvW5gVcnJ2efx3jTlIBGw_NVlhR6YwlWWWElY5yZZRjlSNK6jzXlhvp_Fm5ZMrlwlKbSRro5YUz3KVaKJW9hFHd1O4AUJVlZaUqxiq_qlWq_cFH2FJlxkOKitMygbQ3Y2E6vvEgezErYt47U0Vr-sKbvoimL0QCH4dn5i3bxs7RJ2F1hpGBKTteaBZXRRd4hdTMSUk0rTxY1Epow5xiVuq05MIwnsBhv7ZFF77L4s7ZEng_3PaBF7IpZe2adRiTkZySnKgEXrWuMMwk46mUHsslILecZGuq23fq6XUk91bKY1rJEjjq3eluWrtMcTS43H9Y7vXul34DD2kMCIpTeQij1WLt3nrstdLvuoD6DehPKeM priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UiqgP4r2jVSL4ZqMzmVwfRFQsi1CfutC3MLlMXZjO1r1Q99-bZC66uBR9nSRDODmH8x2S830Ar4X1hc9zg3PiGKbK1Vg5KrBjoRqxtrAyvc05-cYnU_r1jJ3twSB31BtwubO0i3pS00Xz9uePzYcQ8O-7lnH5bhmSUGwUC2VVTNgc8xtwM2QqFaUcTnq433F9E0UL1ffO7F66lZ8Sjf8u7Pn3E8rxHvUu3F63l9XmqmqaP1LV8X2412NM9LFzigew59uHcKtTndw8gslpeiq7RBfpIaVHvXLEOYp0kQ4FGNngqDmPFrHzAM0ukpIRmrUosjrMW9Q1bW0ew_T4y-nnCe4FFbANwGyFJRHeurysLXfCEyat9LT2uRRGKeOYFT5UyhWVXnFHXClIJJfn3jJfGC5l-QT223nrDwDVZVnVsqa0DmdaFyaUPdxVsrQBUNSMVBkUgxm17dnGo-hFo9Otdyl1Z3odTK-T6TXP4M245rLj2rh29qd4OuPMyJOdPswX57oPOy0M9ULkhtQBKhrJjaVeUidMUTFuKcvgcDhbPfieJpwoRiLxXwavxuEQdvEupWr9fB3nlLkiwcVkBk87Vxh3UrJCiIDkMhBbTrK11e2RdvY9UXtLGRCtoBkcDe70e1vXmeJodLl_sNyz__v7c7hDUoAQXIhD2F8t1v5FQGIr8zKF1y876Sq4 priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwJsSKMhI3KiXxPErx4KoVkhUHLqinKL41a7YZlf7EFp-PbbzgIWqotd4LNnjceYbeeYbgDdC28ymqcIpMQzTwjhcGCqwYT4a0TrTMubmfD7hozH9dMbOdoB3tTAxaT9SWsbfdJcd9m7pHU0oBvOhU3DKHPPh3LhbsMuZx-AD2B2ffDn6FjrJeYyCPUwgbYVMmssrJm95oUjWfxXC_DdRsn8tvQt31vW82vyoptM_HNLxffjabaXJQ_k-XK_UUP_8i-Xx5nt9APdajIqOGsmHsGPrR3C76Vq5eQyj05hqu0SXMRHTorbzxDkKdJMGeRg6xaFnPVqEygU0uYydkNCkRoEVYlajpuhr8wTGxx9PP4xw25ABaw_sVlgSYbVJc6e5EZYwqaWlzqZSqKJQhmlhfaRdUWkLbojJBQnk9NxqZjPFpcyfwqCe1fYZIJfnlZOOUudtwmXKh03cVDLXHpA4RqoEsu6ASt2ylYemGdMyvprnsmy0VHotlVFLJU_gbT9n3nB1XCv9Ppx7Lxl4tuOH2eK8bM-iFIpaIVJFnIeaSnKlqZXUCJVVjGvKEjjorKZsL_-yJJwUjATiwARe98P-2oa3mKq2s3WQydOCpEUqE9hvjKxfSc4yITwSTEBsmd_WUrdH6slFpAaX0iNiQRM47Az197KuU8Vhb8z_obnnNxN_AXsk2jLBmTiAwWqxti89klupV-21_QXufECP priority: 102 providerName: Unpaywall |
| Title | Towards machine learning aided real-time range imaging in proton therapy |
| URI | https://link.springer.com/article/10.1038/s41598-022-06126-6 https://www.ncbi.nlm.nih.gov/pubmed/35177663 https://www.proquest.com/docview/2629528671 https://www.proquest.com/docview/2630920908 https://pubmed.ncbi.nlm.nih.gov/PMC8854574 https://www.nature.com/articles/s41598-022-06126-6.pdf https://doaj.org/article/7b4e770b2f154b86bc4e84d7b1a56c45 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central : All journals [free access] customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal: Open Access Journals [open access] customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_alLHtYex73rqgwd5WM1vWlx_T0BICDWVrIHsy1oe3QOqUJmHkv99JdryFjrK92GBJRpzu0E-6u98BfJTGpS5JdJxQy2OW2yrOLZOx5XgaMSY1KsTmXEzEaMrGMz47gJNdLsye_z5Qd69wi_FpYHho8tuxiMUhHClUTNWDo8Fg_HXc3al4rxVL8zY3Bod_vjt4b_8JNP1_w5Z3QyQ7P-ljeLipb8rtz3Kx-GMrOn8KT1oMSQbNoj-DA1c_hwdNVcntCxhdhVDYFbkOgZKOtJUhvhNPB2kJwsRF7GvKk1ufWUDm16FSEZnXxLM2LGvSJGVtX8L0_OxqOIrbggmxQeC1jhWVztgkq4yw0lGujHKscomSOs-15UY6PAmXTLlcWGozST15vHCGu1QLpbJX0KuXtXsDpMqyslIVYxWuWZVqPNYIW6rMIGCoOC0jSHdiLEzLJu6LWiyK4NXOVNGIvkDRF0H0hYjgUzfmpuHSuLf3qV-drqfnwQ4fUD2K1qwKqZmTMtG0QiioldCGOcWs1GnJhWE8guPd2hatca4KKmjOqSf2i-BD14xm5X0lZe2WG98nS3Ka5ImK4HWjCt1MMp5KiUgtArmnJHtT3W-p5z8CdbdSiFgli-Bkp06_p3WfKE46lfsHyb39v7-_g0c0GAiNU3kMvfXtxr1HpLXWfTiUM9lvzQzfp2eTyy_4dSiG_XB7gc8LprBlOrkcfPsF7LAk4Q |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqhwQLwJFDASnKjVxHZs51AhCq22tF0h1Eq9hfiRstI2u-xD1f45fhu28ygr0IpLr4kTOeMZ-5vM4wN4K7RNbBwrHBOTYpaZEmeGCWxS541onWgZcnNO-rx3xr6cp-dr8KuthfFple2eGDZqM9L-H_kO4SRLie_G9mH8E3vWKB9dbSk0ioZaweyGFmNNYceRXVw5F266e_jZrfc7Qg72Tz_1cMMygLVDKzMsibDaxLTU3AhLUqmlZaWNpVBZpkyqhXXuY8GkzbghhgriO65zq1ObKC4lde-9BRuMssw5fxt7-_2v37q_PD6OxpKsqdaJqdyZuhPTV7U5H9CjC4750okYiAP-hXb_TtrsIrd3YXNejYvFVTEc_nE4HtyHew2qRR9rNXwAa7Z6CLdrnsvFI-idhuTcKboMqZsWNVwVF8g3qDTIAdch9iz3aOJrHdDgMnAnoUGFfB-JUYXqMrHFYzi7EeE-gfVqVNlngEpKi1KWjJVOi8pEOUeLm0JS7SBMmZIigqQVY66b_uaeZmOYhzg7lXkt-tyJPg-iz3kE77tnxnV3j5Wj9_zqdCN9Z-5wYTS5yBtDz4ViVohYkdKBUyW50sxKZoRKipRrlkaw1a5t3mwX0_xauSN40912hu6jN0VlR3M_hsYZibNYRvC0VoVuJjRNhHDYMQKxpCRLU12-Uw1-hGbiUjoMLVgE2606XU9rlSi2O5X7D8k9X_3Rr2Gzd3pynB8f9o9ewB0SjIPgRGzB-mwyty8d7pupV41xIfh-0_b8G1jDZvU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRWwHxFoCBYwEJxpN4j0HhIAymlKoOLTS3ExiO-1I08wwi6r5a_w6bGcpI9CIS6-JEznP79nfy1s-gNdC29QmSREn2LCYZqaMM0NFbJjzRrROtQy5Od-O-OCEfhmy4Rb8amthfFpluyeGjdpMtP9H3sMcZwz7bmy9skmL-L7ffz_9GXsGKR9pbek0ahU5tKsL577N3x3su7V-g3H_8_GnQdwwDMTaIZVFLLGw2iSk1NwIi5nU0tLSJlIUWVYYpoV1rmNOpc24wYYI7Lutc6uZTQsuJXHvvQbXBSGZTycUQ9H93_ERNJpmTZ1OQmRv7s5KX8_mvD-PK3jM187CQBnwL5z7d7pmF7O9A7eW1TRfXeTj8R_HYv8e3G3wLPpQK-B92LLVA7hRM1yuHsLgOKTlztF5SNq0qGGpOEW-NaVBDrKOY89vj2a-ygGNzgNrEhpVyHeQmFSoLhBbPYKTKxHtY9iuJpV9AqgkJC9lSWnp9KdMC-dicZNLoh14KRnOI0hbMSrddDb3BBtjFSLsRKpa9MqJXgXRKx7B2-6Zad3XY-Poj351upG-J3e4MJmdqsbElSioFSIpcOlgaSF5oamV1IgizRnXlEWw266tajaKubpU6whedbedifu4TV7ZydKPIUmGkyyREezUqtDNhLBUCIcaIxBrSrI21fU71egstBGX0qFnQSPYa9XpclqbRLHXqdx_SO7p5o9-CTedFauvB0eHz-A2DraB41TswvZitrTPHeBbFC-CZSH4cdWm_Bt1j2SP |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwJsSKMhI3KiXxPErx4KoVkhUHLqinKL41a7YZlf7EFp-PbbzgIWqotd4LNnjceYbeeYbgDdC28ymqcIpMQzTwjhcGCqwYT4a0TrTMubmfD7hozH9dMbOdoB3tTAxaT9SWsbfdJcd9m7pHU0oBvOhU3DKHPPh3LhbsMuZx-AD2B2ffDn6FjrJeYyCPUwgbYVMmssrJm95oUjWfxXC_DdRsn8tvQt31vW82vyoptM_HNLxffjabaXJQ_k-XK_UUP_8i-Xx5nt9APdajIqOGsmHsGPrR3C76Vq5eQyj05hqu0SXMRHTorbzxDkKdJMGeRg6xaFnPVqEygU0uYydkNCkRoEVYlajpuhr8wTGxx9PP4xw25ABaw_sVlgSYbVJc6e5EZYwqaWlzqZSqKJQhmlhfaRdUWkLbojJBQnk9NxqZjPFpcyfwqCe1fYZIJfnlZOOUudtwmXKh03cVDLXHpA4RqoEsu6ASt2ylYemGdMyvprnsmy0VHotlVFLJU_gbT9n3nB1XCv9Ppx7Lxl4tuOH2eK8bM-iFIpaIVJFnIeaSnKlqZXUCJVVjGvKEjjorKZsL_-yJJwUjATiwARe98P-2oa3mKq2s3WQydOCpEUqE9hvjKxfSc4yITwSTEBsmd_WUrdH6slFpAaX0iNiQRM47Az197KuU8Vhb8z_obnnNxN_AXsk2jLBmTiAwWqxti89klupV-21_QXufECP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+machine+learning+aided+real-time+range+imaging+in+proton+therapy&rft.jtitle=Scientific+reports&rft.au=Lerendegui-Marco%2C+Jorge&rft.au=Balibrea-Correa%2C+Javier&rft.au=Babiano-Su%C3%A1rez%2C+V%C3%ADctor&rft.au=Ladarescu%2C+Ion&rft.date=2022-02-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-06126-6&rft.externalDocID=10_1038_s41598_022_06126_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |