Local computational methods to improve the interpretability and analysis of cryo-EM maps
Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B -factors and electron density occupancies and are typically B -factor sharpened to improve their contrast and interpretability at high-resolutions. However, ‘over-sharpening’ due to the application of a single glob...
Saved in:
| Published in | Nature communications Vol. 12; no. 1; pp. 1240 - 12 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
23.02.2021
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2041-1723 2041-1723 |
| DOI | 10.1038/s41467-021-21509-5 |
Cover
| Abstract | Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of
B
-factors and electron density occupancies and are typically
B
-factor sharpened to improve their contrast and interpretability at high-resolutions. However, ‘over-sharpening’ due to the application of a single global
B
-factor can distort processed maps causing connected densities to appear broken and disconnected. This issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose 1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map distortions and 2) methods to obtain local
B
-factors and electron density occupancy maps. These algorithms have as common link the use of the spiral phase transformation and are called LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability and analysis of obtained reconstructions.
Here, the authors present two local methods for analyzing cryo-EM maps: LocSpiral and LocBSharpen that enhance high-resolution features of cryoEM maps, while preventing map distortions. They also introduce LocBFactor and LocOccupancy, which allow obtaining local
B
-factors and electron density occupancy maps from cryo-EM reconstructions and the authors demonstrate that these methods improve the interpretability and analysis of cryo-EM maps using different test cases among them recent SARS-CoV-2 spike glycoprotein structures. |
|---|---|
| AbstractList | Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B-factors and electron density occupancies and are typically B-factor sharpened to improve their contrast and interpretability at high-resolutions. However, ‘over-sharpening’ due to the application of a single global B-factor can distort processed maps causing connected densities to appear broken and disconnected. This issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose 1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map distortions and 2) methods to obtain local B-factors and electron density occupancy maps. These algorithms have as common link the use of the spiral phase transformation and are called LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability and analysis of obtained reconstructions. Here, the authors present two local methods for analyzing cryo-EM maps: LocSpiral and LocBSharpen that enhance high-resolution features of cryoEM maps, while preventing map distortions. They also introduce LocBFactor and LocOccupancy, which allow obtaining local B-factors and electron density occupancy maps from cryo-EM reconstructions and the authors demonstrate that these methods improve the interpretability and analysis of cryo-EM maps using different test cases among them recent SARS-CoV-2 spike glycoprotein structures. Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B -factors and electron density occupancies and are typically B -factor sharpened to improve their contrast and interpretability at high-resolutions. However, ‘over-sharpening’ due to the application of a single global B -factor can distort processed maps causing connected densities to appear broken and disconnected. This issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose 1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map distortions and 2) methods to obtain local B -factors and electron density occupancy maps. These algorithms have as common link the use of the spiral phase transformation and are called LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability and analysis of obtained reconstructions. Here, the authors present two local methods for analyzing cryo-EM maps: LocSpiral and LocBSharpen that enhance high-resolution features of cryoEM maps, while preventing map distortions. They also introduce LocBFactor and LocOccupancy, which allow obtaining local B -factors and electron density occupancy maps from cryo-EM reconstructions and the authors demonstrate that these methods improve the interpretability and analysis of cryo-EM maps using different test cases among them recent SARS-CoV-2 spike glycoprotein structures. Here, the authors present two local methods for analyzing cryo-EM maps: LocSpiral and LocBSharpen that enhance high-resolution features of cryoEM maps, while preventing map distortions. They also introduce LocBFactor and LocOccupancy, which allow obtaining local B-factors and electron density occupancy maps from cryo-EM reconstructions and the authors demonstrate that these methods improve the interpretability and analysis of cryo-EM maps using different test cases among them recent SARS-CoV-2 spike glycoprotein structures. Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B-factors and electron density occupancies and are typically B-factor sharpened to improve their contrast and interpretability at high-resolutions. However, 'over-sharpening' due to the application of a single global B-factor can distort processed maps causing connected densities to appear broken and disconnected. This issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose 1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map distortions and 2) methods to obtain local B-factors and electron density occupancy maps. These algorithms have as common link the use of the spiral phase transformation and are called LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability and analysis of obtained reconstructions. Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B -factors and electron density occupancies and are typically B -factor sharpened to improve their contrast and interpretability at high-resolutions. However, ‘over-sharpening’ due to the application of a single global B -factor can distort processed maps causing connected densities to appear broken and disconnected. This issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose 1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map distortions and 2) methods to obtain local B -factors and electron density occupancy maps. These algorithms have as common link the use of the spiral phase transformation and are called LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability and analysis of obtained reconstructions. Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B-factors and electron density occupancies and are typically B-factor sharpened to improve their contrast and interpretability at high-resolutions. However, 'over-sharpening' due to the application of a single global B-factor can distort processed maps causing connected densities to appear broken and disconnected. This issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose 1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map distortions and 2) methods to obtain local B-factors and electron density occupancy maps. These algorithms have as common link the use of the spiral phase transformation and are called LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability and analysis of obtained reconstructions.Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B-factors and electron density occupancies and are typically B-factor sharpened to improve their contrast and interpretability at high-resolutions. However, 'over-sharpening' due to the application of a single global B-factor can distort processed maps causing connected densities to appear broken and disconnected. This issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose 1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map distortions and 2) methods to obtain local B-factors and electron density occupancy maps. These algorithms have as common link the use of the spiral phase transformation and are called LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability and analysis of obtained reconstructions. |
| ArticleNumber | 1240 |
| Author | Wrapp, Daniel Khalifa, Ahmad A. Z. Adinarayanan, Swathi Vargas, Javier Gomez-Blanco, Josue McLellan, Jason S. Sanchez-Garcia, Ruben Bui, Khanh Huy Kaur, Satinder |
| Author_xml | – sequence: 1 givenname: Satinder surname: Kaur fullname: Kaur, Satinder organization: Departament of Anatomy and Cell Biology, McGill University 3640 Rue University – sequence: 2 givenname: Josue surname: Gomez-Blanco fullname: Gomez-Blanco, Josue organization: Departament of Anatomy and Cell Biology, McGill University 3640 Rue University – sequence: 3 givenname: Ahmad A. Z. surname: Khalifa fullname: Khalifa, Ahmad A. Z. organization: Departament of Anatomy and Cell Biology, McGill University 3640 Rue University – sequence: 4 givenname: Swathi surname: Adinarayanan fullname: Adinarayanan, Swathi organization: Departament of Anatomy and Cell Biology, McGill University 3640 Rue University – sequence: 5 givenname: Ruben orcidid: 0000-0001-6156-3542 surname: Sanchez-Garcia fullname: Sanchez-Garcia, Ruben organization: Biocomputing Unit, Centro Nacional de Biotecnología-CSIC C/Darwin 3 – sequence: 6 givenname: Daniel orcidid: 0000-0002-0538-9647 surname: Wrapp fullname: Wrapp, Daniel organization: Department of Molecular Biosciences, The University of Texas at Austin – sequence: 7 givenname: Jason S. orcidid: 0000-0003-3991-542X surname: McLellan fullname: McLellan, Jason S. organization: Department of Molecular Biosciences, The University of Texas at Austin – sequence: 8 givenname: Khanh Huy orcidid: 0000-0003-2814-9889 surname: Bui fullname: Bui, Khanh Huy organization: Departament of Anatomy and Cell Biology, McGill University 3640 Rue University – sequence: 9 givenname: Javier orcidid: 0000-0001-7519-6106 surname: Vargas fullname: Vargas, Javier email: jvargas@fis.ucm.es organization: Departmento de Óptica, Universidad Complutense de Madrid |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33623015$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUctu1DAUjVARfdAfYIEisWET8DOON0ioKrTSIDYgsbMc52bGIycOttNq_h53MpS2iwpLlh_3nOPjc0-Lo9GPUBRvMPqAEW0-RoZZLSpEcEUwR7LiL4oTghiusCD06MH-uDiPcYvyoBI3jL0qjimtCUWYnxS_Vt5oVxo_THPSyfoxnwZIG9_FMvnSDlPwN1CmDZR2TBCmAEm31tm0K_XY5andLtpY-r40Yeery2_loKf4unjZaxfh_LCeFT-_XP64uKpW379eX3xeVYYzlCohMBaCMiBdh-qaItMAoZwYQWumJW1aWeOWdi1IAdD1nPZtK_o6V7huGqBnxfWi23m9VVOwgw475bVV-wsf1kqHZI0DRSRp-gZ3XS0N68FIDr0krOFcC5Hfylp00ZrHSe9utXP3ghipu9jVErvKsat97Ipn1qeFNc3tAJ2BMQXtHll5XBntRq39jRISkVqgLPD-IBD87xliUoONBpzTI_g5KsIkRYgQhDP03RPo1s8ht2CPIqyWmN4Jvn3o6N7K37ZnQLMATPAxBuiVsUv3s0Hrnv8teUL9r4gOwcYMHtcQ_tl-hvUHGenhTw |
| CitedBy_id | crossref_primary_10_3389_fphar_2022_939555 crossref_primary_10_1107_S2059798321007233 crossref_primary_10_1038_s41467_022_28510_6 crossref_primary_10_1038_s41594_021_00632_3 crossref_primary_10_1107_S2053230X25001098 crossref_primary_10_1016_j_cell_2024_06_041 crossref_primary_10_3389_fmolb_2024_1404885 crossref_primary_10_1093_bib_bbad405 crossref_primary_10_1021_acs_nanolett_4c00915 crossref_primary_10_1016_j_cell_2022_10_020 crossref_primary_10_1038_s42003_021_02399_1 crossref_primary_10_1021_acs_chemrev_1c00850 crossref_primary_10_1038_s41586_021_03641_w crossref_primary_10_1039_D3CP00163F crossref_primary_10_3389_fmicb_2022_870938 crossref_primary_10_1038_s41467_024_51799_4 crossref_primary_10_1107_S205327332100752X crossref_primary_10_1016_j_jbc_2023_105109 crossref_primary_10_1093_bioinformatics_btaf092 crossref_primary_10_1093_nar_gkae374 crossref_primary_10_1038_s41586_022_05573_5 crossref_primary_10_1093_micmic_ozac009 crossref_primary_10_1364_OE_444675 crossref_primary_10_3390_ijms25073959 crossref_primary_10_1016_j_str_2024_04_017 crossref_primary_10_3389_fcimb_2023_1135013 crossref_primary_10_3389_fphys_2022_760404 crossref_primary_10_1107_S2052252524005918 crossref_primary_10_1038_s41586_023_06690_5 crossref_primary_10_3390_toxins14010014 crossref_primary_10_1093_nar_gkad015 crossref_primary_10_1126_sciadv_abj9537 crossref_primary_10_1126_sciadv_adl3214 crossref_primary_10_1126_sciadv_abq6353 crossref_primary_10_1038_s41594_023_00980_2 crossref_primary_10_1038_s41467_023_39031_1 |
| Cites_doi | 10.1016/S0076-6879(03)74014-2 10.1364/JOSAA.18.001862 10.1016/j.optcom.2003.07.014 10.1107/S2059798318006551 10.1016/j.str.2010.05.008 10.1093/nar/gkq880 10.5281/zenodo.4452060 10.7554/eLife.52760 10.7554/eLife.18722 10.1107/S2059798319011471 10.1038/nmeth.2727 10.1016/j.str.2017.12.018 10.1093/bioinformatics/btz671 10.1016/j.cell.2016.11.020 10.1093/acprof:oso/9780199559046.001.0001 10.1261/rna.075846.120 10.1016/j.jmb.2003.07.013 10.1016/j.optcom.2011.04.059 10.1016/j.jsb.2013.07.015 10.1038/s41467-019-13742-w 10.1107/S2059798318004655 10.1016/j.jsb.2019.09.014 10.1016/j.jsb.2019.07.009 10.1016/j.cell.2020.03.061 10.1038/s41586-020-2186-z 10.7554/eLife.27131 10.1016/j.jsb.2014.11.010 10.1364/OL.36.003485 10.1364/AO.49.002409 10.1364/AO.51.007362 10.1016/j.cell.2020.02.058 10.1093/nar/gkz571 10.1038/nmeth.3541 10.1126/science.abb2507 10.1016/j.jsb.2012.12.006 10.1038/nmeth.3806 10.1083/jcb.201907210 10.1016/bs.mie.2016.05.033 10.1073/pnas.1911119116 10.1016/j.jsb.2008.05.010 10.1038/nature22799 10.1016/j.str.2019.11.005 10.1364/JOSAA.20.000925 10.1107/S2059798318009324 10.1364/AO.51.005903 10.1016/S0076-6879(10)82002-6 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41467-021-21509-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database ProQuest Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_2928f81dd69c4fec95ef924855a77a93 10.1038/s41467-021-21509-5 PMC7902670 33623015 10_1038_s41467_021_21509_5 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: The Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovación) through «Proyectos I+D+i» 2019 - Modalidades «Retos Investigación» Reference: PID2019-108850RA-I00) and a Ramón y Cajal fellowship to Javier Vargas with Reference: RYC2018-024087-I – fundername: ; |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM 4.4 ADTOC BAPOH CAG COF EJD LGEZI LOTEE NADUK NXXTH UNPAY |
| ID | FETCH-LOGICAL-c540t-77117734e2dd06630c8e2352c7364a938b961b3dbe97eedf53fbb7f69385a88e3 |
| IEDL.DBID | M48 |
| ISSN | 2041-1723 |
| IngestDate | Tue Oct 14 19:08:31 EDT 2025 Sun Oct 26 03:56:16 EDT 2025 Tue Sep 30 16:58:53 EDT 2025 Fri Sep 05 12:47:04 EDT 2025 Tue Oct 07 07:00:35 EDT 2025 Mon Jul 21 06:01:50 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Wed Oct 01 04:56:25 EDT 2025 Fri Feb 21 02:39:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-77117734e2dd06630c8e2352c7364a938b961b3dbe97eedf53fbb7f69385a88e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0538-9647 0000-0003-3991-542X 0000-0003-2814-9889 0000-0001-6156-3542 0000-0001-7519-6106 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-21509-5 |
| PMID | 33623015 |
| PQID | 2492469130 |
| PQPubID | 546298 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2928f81dd69c4fec95ef924855a77a93 unpaywall_primary_10_1038_s41467_021_21509_5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7902670 proquest_miscellaneous_2493002201 proquest_journals_2492469130 pubmed_primary_33623015 crossref_citationtrail_10_1038_s41467_021_21509_5 crossref_primary_10_1038_s41467_021_21509_5 springer_journals_10_1038_s41467_021_21509_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-23 |
| PublicationDateYYYYMMDD | 2021-02-23 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | FernandezJJLuqueDCastonJRCarrascosaJLSharpening high resolution information in single particle electron cryomicroscopyJ. Struct. Biol.20081641701751:STN:280:DC%2BD1cnhsVersA%3D%3D10.1016/j.jsb.2008.05.010 WangQLipid interactions of a ciliary membrane trp channel: simulation and structural studies of polycystin-2Structure202028169184.e1651:CAS:528:DC%2BC1MXit12kurfN318063537001106 Antonio QuirogaJServinMIsotropic n-dimensional fringe pattern normalizationOpt. Commun.20032242212272003OptCo.224..221A10.1016/j.optcom.2003.07.014 Kaur, S. et al. Local computational methods to improve the interpretability and analysis of cryo-EM maps. https://doi.org/10.5281/zenodo.4452060 (2021). Wandzik, J. M. et al. A structure-based model for the complete transcription cycle of influenza polymerase. Cellhttps://doi.org/10.1016/j.cell.2020.03.061 (2020). Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of cryo-EM maps. eLife6, https://doi.org/10.7554/eLife.27131 (2017). AfoninePVReal-space refinement in PHENIX for cryo-EM and crystallographyActa Crystallogr. D Struct. Biol.2018745315441:CAS:528:DC%2BC1cXhtV2ltbzP10.1107/S2059798318006551 VargasJQuirogaJASorzanoCOEstradaJCCarazoJMTwo-step interferometry by a regularized optical flow algorithmOpt. Lett.201136348534872011OptL...36.3485V1:STN:280:DC%2BC3MfgslWhsg%3D%3D10.1364/OL.36.003485 Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife5, https://doi.org/10.7554/eLife.18722 (2016). LawsonCLEMDataBank.org: unified data resource for CryoEMNucleic Acids Res.201139D456D4641:CAS:528:DC%2BC3sXivF2ls70%3D10.1093/nar/gkq880 WrappDCryo-EM structure of the 2019-nCoV spike in the prefusion conformationScience2020367126012632020Sci...367.1260W1:CAS:528:DC%2BB3cXkvFemt70%3D10.1126/science.abb2507 ServinMQuirogaJAMarroquinJLGeneral n-dimensional quadrature transform and its application to interferogram demodulationJ. Opt. Soc. Am. A2003209259342003OSAJ...20..925S197251810.1364/JOSAA.20.000925 Razi, A. et al. Role of Era in assembly and homeostasis of the ribosomal small subunit. Nucleic Acids Res.https://doi.org/10.1093/nar/gkz571 (2019). LiebschnerDMacromolecular structure determination using X-rays, neutrons and electrons: recent developments in PhenixActa Crystallogr. D Struct. Biol.2019758618771:CAS:528:DC%2BC1MXhvFWkurrO10.1107/S2059798319011471 Gutmann, T. et al. Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. J. Cell Biol.219, https://doi.org/10.1083/jcb.201907210 (2020). VargasJFASTDEF: fast defocus and astigmatism estimation for high-throughput transmission electron microscopyJ. Struct. Biol.20131811361481:STN:280:DC%2BC3s3ktFWjsw%3D%3D10.1016/j.jsb.2012.12.006 YangMCryo-electron microscopy structures of ArnA, a key enzyme for polymyxin resistance, revealed unexpected oligomerizations and domain movementsJ. Struct. Biol.201920843501:CAS:528:DC%2BC1MXhsVCgsL3I10.1016/j.jsb.2019.07.009 Gomez-BlancoJKaurSOrtegaJVargasJA robust approach to ab initio cryo-electron microscopy initial volume determinationJ. Struct. Biol.20192081073971:CAS:528:DC%2BC1MXhvV2iurzN10.1016/j.jsb.2019.09.014 VargasJShack-Hartmann centroid detection using the spiral phase transformAppl. Opt.201251736273672012ApOpt..51.7362V1:CAS:528:DC%2BC3sXjs1agsA%3D%3D10.1364/AO.51.007362 Ge, P. et al. Action of a minimal contractile bactericidal nanomachine. Naturehttps://doi.org/10.1038/s41586-020-2186-z (2020). PenczekPAImage restoration in cryo-electron microscopyMethods Enzymol.2010482357210.1016/S0076-6879(10)82002-6 VargasJParticle quality assessment and sorting for automatic and semiautomatic particle-picking techniquesJ. Struct. Biol.20131833423531:STN:280:DC%2BC3sfosVGnsg%3D%3D10.1016/j.jsb.2013.07.015 ScheresSHSemi-automated selection of cryo-EM particles in RELION-1.3J. Struct. Biol.20151891141222015JMoSt1099..114S1:CAS:528:DC%2BC2cXitV2ms7bI10.1016/j.jsb.2014.11.010 Ramirez-Aportela, E. et al. Automatic local resolution-based sharpening of cryo-EM maps. Bioinformatics36, 765–772 (2020). TerwilligerTCSobolevOVAfoninePVAdamsPDAutomated map sharpening by maximization of detail and connectivityActa Crystallogr. D Struct. Biol.2018745455591:CAS:528:DC%2BC1cXhtV2ltbzO10.1107/S2059798318004655 MurshudovGNRefinement of atomic structures against cryo-EM mapsMethods Enzymol.20165792773051:CAS:528:DC%2BC1MXmtlKnu7w%3D10.1016/bs.mie.2016.05.033 KucukelbirASigworthFJTagareHDQuantifying the local resolution of cryo-EM density mapsNat. Methods20141163651:CAS:528:DC%2BC3sXhslCmsLrN10.1038/nmeth.2727 BaradBAEMRinger: side chain-directed model and map validation for 3D cryo-electron microscopyNat. Methods2015129439461:CAS:528:DC%2BC2MXhtlCksbzO10.1038/nmeth.3541 VilasJLMonoRes: automatic and accurate estimation of local resolution for electron microscopy mapsStructure201826337344.e3341:CAS:528:DC%2BC1cXitl2qsbs%3D10.1016/j.str.2017.12.018 VargasJGonzález-FernandezLQuirogaJuanABelenguerTShack–Hartmann centroid detection method based on high dynamic range imaging and normalization techniquesAppl. Opt.201049240924162010ApOpt..49.2409V10.1364/AO.49.002409 RosenthalPBHendersonROptimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopyJ. Mol. Biol.20033337217451:CAS:528:DC%2BD3sXot1Gkt7k%3D10.1016/j.jmb.2003.07.013 AfoninePVNew tools for the analysis and validation of cryo-EM maps and atomic modelsActa Crystallogr. D Struct. Biol.2018748148401:CAS:528:DC%2BC1cXhs1OrsLzF10.1107/S2059798318009324 VargasJRestrepoRQuirogaJABelenguerTHigh dynamic range imaging method for interferometryOpt. Commun.2011284414141452011OptCo.284.4141V1:CAS:528:DC%2BC3MXntVSgs7o%3D10.1016/j.optcom.2011.04.059 LarkinKGBoneDJOldfieldMANatural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transformJ. Opt. Soc. Am. A200118186218702001OSAJ...18.1862L1:STN:280:DC%2BD3Mvkt1Witw%3D%3D10.1364/JOSAA.18.001862 Sherwood, D., Cooper, J. & Sherwood, D. Crystals, X-rays, and Proteins: Comprehensive Protein Crystallography (2011). VilasJLTagareHDVargasJCarazoJMSorzanoCOSMeasuring local-directional resolution and local anisotropy in cryo-EM mapsNat. Commun.2020112020NatCo..11...55V1:CAS:528:DC%2BB3cXlslWmsw%3D%3D10.1038/s41467-019-13742-w Khalifa, A. A. Z. et al. The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications. eLife9, https://doi.org/10.7554/eLife.52760 (2020). PlaschkaCLinPCNagaiKStructure of a pre-catalytic spliceosomeNature20175466176212017Natur.546..617P1:CAS:528:DC%2BC2sXhtVymsLrL10.1038/nature22799 IudinAKorirPKSalavert-TorresJKleywegtGJPatwardhanAEMPIAR: a public archive for raw electron microscopy image dataNat. Methods2016133873881:CAS:528:DC%2BC28XksFCrtbc%3D10.1038/nmeth.3806 Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cellhttps://doi.org/10.1016/j.cell.2020.02.058 (2020). Ichikawa, M. et al. Tubulin lattice in cilia is in a stressed form regulated by microtubule inner proteins. J. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.1911119116 (2019). Jahagirdar, D. et al. Alternative conformations and motions adopted by 30S ribosomal subunits visualized by cryo-electron microscopy. RNA26, 2017–2030 (2020). VargasJQuirogaJASorzanoCOEstradaJCServinMMultiplicative phase-shifting interferometry using optical flowAppl. Opt.201251590359082012ApOpt..51.5903V1:STN:280:DC%2BC38fptlOkug%3D%3D10.1364/AO.51.005903 WinnMDMurshudovGNPapizMZMacromolecular TLS refinement in REFMAC at moderate resolutionsMethods Enzymol.20033743003211:CAS:528:DC%2BD2cXotlynsg%3D%3D10.1016/S0076-6879(03)74014-2 LiaoHYFrankJDefinition and estimation of resolution in single-particle reconstructionsStructure2010187687751:CAS:528:DC%2BC3cXptVClt7o%3D10.1016/j.str.2010.05.008 DavisJHModular assembly of the bacterial large ribosomal subunitCell201616716101622 e16151:CAS:528:DC%2BC28XitVSms7bN10.1016/j.cell.2016.11.020 J Antonio Quiroga (21509_CR37) 2003; 224 C Plaschka (21509_CR4) 2017; 546 JL Vilas (21509_CR34) 2018; 26 GN Murshudov (21509_CR10) 2016; 579 21509_CR46 21509_CR28 D Liebschner (21509_CR14) 2019; 75 A Iudin (21509_CR21) 2016; 13 21509_CR29 J Gomez-Blanco (21509_CR22) 2019; 208 KG Larkin (21509_CR36) 2001; 18 BA Barad (21509_CR24) 2015; 12 MD Winn (21509_CR15) 2003; 374 21509_CR2 21509_CR1 A Kucukelbir (21509_CR23) 2014; 11 J Vargas (21509_CR40) 2010; 49 JL Vilas (21509_CR44) 2020; 11 21509_CR5 TC Terwilliger (21509_CR9) 2018; 74 JJ Fernandez (21509_CR7) 2008; 164 PV Afonine (21509_CR18) 2018; 74 CL Lawson (21509_CR26) 2011; 39 J Vargas (21509_CR35) 2011; 284 J Vargas (21509_CR39) 2012; 51 J Vargas (21509_CR38) 2011; 36 21509_CR13 21509_CR12 21509_CR19 HY Liao (21509_CR17) 2010; 18 D Wrapp (21509_CR27) 2020; 367 J Vargas (21509_CR43) 2013; 181 M Servin (21509_CR45) 2003; 20 21509_CR30 21509_CR11 21509_CR33 J Vargas (21509_CR41) 2012; 51 JH Davis (21509_CR3) 2016; 167 21509_CR32 SH Scheres (21509_CR8) 2015; 189 PA Penczek (21509_CR16) 2010; 482 PB Rosenthal (21509_CR6) 2003; 333 PV Afonine (21509_CR25) 2018; 74 Q Wang (21509_CR20) 2020; 28 M Yang (21509_CR31) 2019; 208 J Vargas (21509_CR42) 2013; 183 |
| References_xml | – reference: ScheresSHSemi-automated selection of cryo-EM particles in RELION-1.3J. Struct. Biol.20151891141222015JMoSt1099..114S1:CAS:528:DC%2BC2cXitV2ms7bI10.1016/j.jsb.2014.11.010 – reference: LiebschnerDMacromolecular structure determination using X-rays, neutrons and electrons: recent developments in PhenixActa Crystallogr. D Struct. Biol.2019758618771:CAS:528:DC%2BC1MXhvFWkurrO10.1107/S2059798319011471 – reference: Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife5, https://doi.org/10.7554/eLife.18722 (2016). – reference: VargasJRestrepoRQuirogaJABelenguerTHigh dynamic range imaging method for interferometryOpt. Commun.2011284414141452011OptCo.284.4141V1:CAS:528:DC%2BC3MXntVSgs7o%3D10.1016/j.optcom.2011.04.059 – reference: VargasJGonzález-FernandezLQuirogaJuanABelenguerTShack–Hartmann centroid detection method based on high dynamic range imaging and normalization techniquesAppl. Opt.201049240924162010ApOpt..49.2409V10.1364/AO.49.002409 – reference: RosenthalPBHendersonROptimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopyJ. Mol. Biol.20033337217451:CAS:528:DC%2BD3sXot1Gkt7k%3D10.1016/j.jmb.2003.07.013 – reference: LarkinKGBoneDJOldfieldMANatural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transformJ. Opt. Soc. Am. A200118186218702001OSAJ...18.1862L1:STN:280:DC%2BD3Mvkt1Witw%3D%3D10.1364/JOSAA.18.001862 – reference: ServinMQuirogaJAMarroquinJLGeneral n-dimensional quadrature transform and its application to interferogram demodulationJ. Opt. Soc. Am. A2003209259342003OSAJ...20..925S197251810.1364/JOSAA.20.000925 – reference: AfoninePVReal-space refinement in PHENIX for cryo-EM and crystallographyActa Crystallogr. D Struct. Biol.2018745315441:CAS:528:DC%2BC1cXhtV2ltbzP10.1107/S2059798318006551 – reference: Gutmann, T. et al. Cryo-EM structure of the complete and ligand-saturated insulin receptor ectodomain. J. Cell Biol.219, https://doi.org/10.1083/jcb.201907210 (2020). – reference: FernandezJJLuqueDCastonJRCarrascosaJLSharpening high resolution information in single particle electron cryomicroscopyJ. Struct. Biol.20081641701751:STN:280:DC%2BD1cnhsVersA%3D%3D10.1016/j.jsb.2008.05.010 – reference: Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of cryo-EM maps. eLife6, https://doi.org/10.7554/eLife.27131 (2017). – reference: Gomez-BlancoJKaurSOrtegaJVargasJA robust approach to ab initio cryo-electron microscopy initial volume determinationJ. Struct. Biol.20192081073971:CAS:528:DC%2BC1MXhvV2iurzN10.1016/j.jsb.2019.09.014 – reference: DavisJHModular assembly of the bacterial large ribosomal subunitCell201616716101622 e16151:CAS:528:DC%2BC28XitVSms7bN10.1016/j.cell.2016.11.020 – reference: VargasJShack-Hartmann centroid detection using the spiral phase transformAppl. Opt.201251736273672012ApOpt..51.7362V1:CAS:528:DC%2BC3sXjs1agsA%3D%3D10.1364/AO.51.007362 – reference: Wandzik, J. M. et al. A structure-based model for the complete transcription cycle of influenza polymerase. Cellhttps://doi.org/10.1016/j.cell.2020.03.061 (2020). – reference: KucukelbirASigworthFJTagareHDQuantifying the local resolution of cryo-EM density mapsNat. Methods20141163651:CAS:528:DC%2BC3sXhslCmsLrN10.1038/nmeth.2727 – reference: IudinAKorirPKSalavert-TorresJKleywegtGJPatwardhanAEMPIAR: a public archive for raw electron microscopy image dataNat. Methods2016133873881:CAS:528:DC%2BC28XksFCrtbc%3D10.1038/nmeth.3806 – reference: Ichikawa, M. et al. Tubulin lattice in cilia is in a stressed form regulated by microtubule inner proteins. J. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.1911119116 (2019). – reference: VargasJQuirogaJASorzanoCOEstradaJCServinMMultiplicative phase-shifting interferometry using optical flowAppl. Opt.201251590359082012ApOpt..51.5903V1:STN:280:DC%2BC38fptlOkug%3D%3D10.1364/AO.51.005903 – reference: VilasJLTagareHDVargasJCarazoJMSorzanoCOSMeasuring local-directional resolution and local anisotropy in cryo-EM mapsNat. Commun.2020112020NatCo..11...55V1:CAS:528:DC%2BB3cXlslWmsw%3D%3D10.1038/s41467-019-13742-w – reference: VilasJLMonoRes: automatic and accurate estimation of local resolution for electron microscopy mapsStructure201826337344.e3341:CAS:528:DC%2BC1cXitl2qsbs%3D10.1016/j.str.2017.12.018 – reference: LawsonCLEMDataBank.org: unified data resource for CryoEMNucleic Acids Res.201139D456D4641:CAS:528:DC%2BC3sXivF2ls70%3D10.1093/nar/gkq880 – reference: VargasJFASTDEF: fast defocus and astigmatism estimation for high-throughput transmission electron microscopyJ. Struct. Biol.20131811361481:STN:280:DC%2BC3s3ktFWjsw%3D%3D10.1016/j.jsb.2012.12.006 – reference: Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cellhttps://doi.org/10.1016/j.cell.2020.02.058 (2020). – reference: VargasJParticle quality assessment and sorting for automatic and semiautomatic particle-picking techniquesJ. Struct. Biol.20131833423531:STN:280:DC%2BC3sfosVGnsg%3D%3D10.1016/j.jsb.2013.07.015 – reference: TerwilligerTCSobolevOVAfoninePVAdamsPDAutomated map sharpening by maximization of detail and connectivityActa Crystallogr. D Struct. Biol.2018745455591:CAS:528:DC%2BC1cXhtV2ltbzO10.1107/S2059798318004655 – reference: Razi, A. et al. Role of Era in assembly and homeostasis of the ribosomal small subunit. Nucleic Acids Res.https://doi.org/10.1093/nar/gkz571 (2019). – reference: WangQLipid interactions of a ciliary membrane trp channel: simulation and structural studies of polycystin-2Structure202028169184.e1651:CAS:528:DC%2BC1MXit12kurfN318063537001106 – reference: VargasJQuirogaJASorzanoCOEstradaJCCarazoJMTwo-step interferometry by a regularized optical flow algorithmOpt. Lett.201136348534872011OptL...36.3485V1:STN:280:DC%2BC3MfgslWhsg%3D%3D10.1364/OL.36.003485 – reference: Ramirez-Aportela, E. et al. Automatic local resolution-based sharpening of cryo-EM maps. Bioinformatics36, 765–772 (2020). – reference: Sherwood, D., Cooper, J. & Sherwood, D. Crystals, X-rays, and Proteins: Comprehensive Protein Crystallography (2011). – reference: PenczekPAImage restoration in cryo-electron microscopyMethods Enzymol.2010482357210.1016/S0076-6879(10)82002-6 – reference: WrappDCryo-EM structure of the 2019-nCoV spike in the prefusion conformationScience2020367126012632020Sci...367.1260W1:CAS:528:DC%2BB3cXkvFemt70%3D10.1126/science.abb2507 – reference: MurshudovGNRefinement of atomic structures against cryo-EM mapsMethods Enzymol.20165792773051:CAS:528:DC%2BC1MXmtlKnu7w%3D10.1016/bs.mie.2016.05.033 – reference: BaradBAEMRinger: side chain-directed model and map validation for 3D cryo-electron microscopyNat. Methods2015129439461:CAS:528:DC%2BC2MXhtlCksbzO10.1038/nmeth.3541 – reference: Ge, P. et al. Action of a minimal contractile bactericidal nanomachine. Naturehttps://doi.org/10.1038/s41586-020-2186-z (2020). – reference: Jahagirdar, D. et al. Alternative conformations and motions adopted by 30S ribosomal subunits visualized by cryo-electron microscopy. RNA26, 2017–2030 (2020). – reference: AfoninePVNew tools for the analysis and validation of cryo-EM maps and atomic modelsActa Crystallogr. D Struct. Biol.2018748148401:CAS:528:DC%2BC1cXhs1OrsLzF10.1107/S2059798318009324 – reference: LiaoHYFrankJDefinition and estimation of resolution in single-particle reconstructionsStructure2010187687751:CAS:528:DC%2BC3cXptVClt7o%3D10.1016/j.str.2010.05.008 – reference: Khalifa, A. A. Z. et al. The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications. eLife9, https://doi.org/10.7554/eLife.52760 (2020). – reference: WinnMDMurshudovGNPapizMZMacromolecular TLS refinement in REFMAC at moderate resolutionsMethods Enzymol.20033743003211:CAS:528:DC%2BD2cXotlynsg%3D%3D10.1016/S0076-6879(03)74014-2 – reference: Kaur, S. et al. Local computational methods to improve the interpretability and analysis of cryo-EM maps. https://doi.org/10.5281/zenodo.4452060 (2021). – reference: YangMCryo-electron microscopy structures of ArnA, a key enzyme for polymyxin resistance, revealed unexpected oligomerizations and domain movementsJ. Struct. Biol.201920843501:CAS:528:DC%2BC1MXhsVCgsL3I10.1016/j.jsb.2019.07.009 – reference: PlaschkaCLinPCNagaiKStructure of a pre-catalytic spliceosomeNature20175466176212017Natur.546..617P1:CAS:528:DC%2BC2sXhtVymsLrL10.1038/nature22799 – reference: Antonio QuirogaJServinMIsotropic n-dimensional fringe pattern normalizationOpt. Commun.20032242212272003OptCo.224..221A10.1016/j.optcom.2003.07.014 – volume: 374 start-page: 300 year: 2003 ident: 21509_CR15 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(03)74014-2 – volume: 18 start-page: 1862 year: 2001 ident: 21509_CR36 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.18.001862 – volume: 224 start-page: 221 year: 2003 ident: 21509_CR37 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2003.07.014 – volume: 74 start-page: 531 year: 2018 ident: 21509_CR25 publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798318006551 – volume: 18 start-page: 768 year: 2010 ident: 21509_CR17 publication-title: Structure doi: 10.1016/j.str.2010.05.008 – volume: 39 start-page: D456 year: 2011 ident: 21509_CR26 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq880 – ident: 21509_CR46 doi: 10.5281/zenodo.4452060 – ident: 21509_CR29 doi: 10.7554/eLife.52760 – ident: 21509_CR19 doi: 10.7554/eLife.18722 – volume: 75 start-page: 861 year: 2019 ident: 21509_CR14 publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798319011471 – volume: 11 start-page: 63 year: 2014 ident: 21509_CR23 publication-title: Nat. Methods doi: 10.1038/nmeth.2727 – volume: 26 start-page: 337 year: 2018 ident: 21509_CR34 publication-title: Structure doi: 10.1016/j.str.2017.12.018 – ident: 21509_CR12 doi: 10.1093/bioinformatics/btz671 – volume: 167 start-page: 1610 year: 2016 ident: 21509_CR3 publication-title: Cell doi: 10.1016/j.cell.2016.11.020 – ident: 21509_CR13 doi: 10.1093/acprof:oso/9780199559046.001.0001 – ident: 21509_CR33 doi: 10.1261/rna.075846.120 – volume: 333 start-page: 721 year: 2003 ident: 21509_CR6 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.07.013 – volume: 284 start-page: 4141 year: 2011 ident: 21509_CR35 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2011.04.059 – volume: 183 start-page: 342 year: 2013 ident: 21509_CR42 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.07.015 – volume: 11 year: 2020 ident: 21509_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13742-w – volume: 74 start-page: 545 year: 2018 ident: 21509_CR9 publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798318004655 – volume: 208 start-page: 107397 year: 2019 ident: 21509_CR22 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2019.09.014 – volume: 208 start-page: 43 year: 2019 ident: 21509_CR31 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2019.07.009 – ident: 21509_CR1 doi: 10.1016/j.cell.2020.03.061 – ident: 21509_CR2 doi: 10.1038/s41586-020-2186-z – ident: 21509_CR11 doi: 10.7554/eLife.27131 – volume: 189 start-page: 114 year: 2015 ident: 21509_CR8 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2014.11.010 – volume: 36 start-page: 3485 year: 2011 ident: 21509_CR38 publication-title: Opt. Lett. doi: 10.1364/OL.36.003485 – volume: 49 start-page: 2409 year: 2010 ident: 21509_CR40 publication-title: Appl. Opt. doi: 10.1364/AO.49.002409 – volume: 51 start-page: 7362 year: 2012 ident: 21509_CR41 publication-title: Appl. Opt. doi: 10.1364/AO.51.007362 – ident: 21509_CR28 doi: 10.1016/j.cell.2020.02.058 – ident: 21509_CR5 doi: 10.1093/nar/gkz571 – volume: 12 start-page: 943 year: 2015 ident: 21509_CR24 publication-title: Nat. Methods doi: 10.1038/nmeth.3541 – volume: 367 start-page: 1260 year: 2020 ident: 21509_CR27 publication-title: Science doi: 10.1126/science.abb2507 – volume: 181 start-page: 136 year: 2013 ident: 21509_CR43 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.12.006 – volume: 13 start-page: 387 year: 2016 ident: 21509_CR21 publication-title: Nat. Methods doi: 10.1038/nmeth.3806 – ident: 21509_CR32 doi: 10.1083/jcb.201907210 – volume: 579 start-page: 277 year: 2016 ident: 21509_CR10 publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2016.05.033 – ident: 21509_CR30 doi: 10.1073/pnas.1911119116 – volume: 164 start-page: 170 year: 2008 ident: 21509_CR7 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2008.05.010 – volume: 546 start-page: 617 year: 2017 ident: 21509_CR4 publication-title: Nature doi: 10.1038/nature22799 – volume: 28 start-page: 169 year: 2020 ident: 21509_CR20 publication-title: Structure doi: 10.1016/j.str.2019.11.005 – volume: 20 start-page: 925 year: 2003 ident: 21509_CR45 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.20.000925 – volume: 74 start-page: 814 year: 2018 ident: 21509_CR18 publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798318009324 – volume: 51 start-page: 5903 year: 2012 ident: 21509_CR39 publication-title: Appl. Opt. doi: 10.1364/AO.51.005903 – volume: 482 start-page: 35 year: 2010 ident: 21509_CR16 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(10)82002-6 |
| SSID | ssj0000391844 |
| Score | 2.5534692 |
| Snippet | Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of
B
-factors and electron density occupancies and are typically
B
-factor... Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B-factors and electron density occupancies and are typically B-factor... Here, the authors present two local methods for analyzing cryo-EM maps: LocSpiral and LocBSharpen that enhance high-resolution features of cryoEM maps, while... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1240 |
| SubjectTerms | 101/28 631/1647/328/1259 631/1647/794 631/45/535 631/535/1258/1259 Algorithms Computer applications Electron density Electron microscopy Electrons Glycoproteins High resolution Humanities and Social Sciences multidisciplinary Occupancy Phase transitions Science Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 Sharpening Spike glycoprotein |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoLQ5lKaPxG1SVOitMfFaki0d25IQQtJTA3sTsizThY297IOw_74zktfdpSXNoQdfLBnLMyPNJ8_oG4BP0gvrEDmkJXcyFXakKb5bp8rLOic-b1_Reeeb78Xlrbgay_FWqS_KCYv0wFFwZ7nOVYOgqi60E413WvpGBx4uW5ZWB57PTOmtzVRYg7nGrYvoT8lkXJ0tRFgTKCMBvVymU7njiQJh_99Q5p_JkkPEdB-erdqZXd_b6XTLKV28hBc9mmRf4lccwBPfvoKnsb7k-jWMr8lTMRcqN_R__VisGb1gy45Nwh8FzxAEssmQfRjSZdfMtjVekbKEdQ1z83WXnt-wOztbvIHbi_Mf3y7TvpRC6hCSLRFDU3CWC5_XNYGMzCmfI_ZyJS8ESlFVuhhVvK68LtFrNpI3VVU2BbZIq5Tnb2Gv7Vp_BMzpvM4z7QrpUSG4CRVKOItK5TpzDecJjDZiNa7nGadyF1MT4t1cmagKg6owQRVGJvB5eGYWWTYe7P2VtDX0JIbscAPtxvR2Y_5lNwkcb3Rt-mm7MESfKAo01iyBj0MzTjiKotjWd6vQhxPyyUYJHEbTGEbCEQ7giokjLHeMZmeouy3t5Gcg9S411QLD955uzOv3sB4Sxelggo-Q3Lv_Ibn38DynaUTn-vkx7C3nK3-CyGxZfQiT8BeyEjEa priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bixMxFD6sXUR9EO9bXSWCb-6w00kykzyIuNJlEbeIuNC3kMlktFBnur0g_feek7msRSk-9KVJaSbn9k3OyXcA3kgvrEPkEGXcyUjYkab8bhEpL4uE-Lx9TvedLyfpxZX4NJXTA5h0d2GorLLzicFRF7WjM_JTYrbDVzl0ue8X1xF1jaLsatdCw7atFYp3gWLsFhwmxIw1gMOz8eTL1_7UhfjQlRDt7ZmYq9OVCL6CKhUw-sU6kjsRKhD5_wt9_l1E2WdS78GdTbWw2192Pv8jWJ0_gPstymQfGrV4CAe-egS3m76T28cw_UwRjLnQ0aE9DWRNL-kVW9dsFk4aPENwyGZ9VWIoo90yWxX4aahMWF0yt9zW0fiS_bSL1RO4Oh9_-3gRtS0WIodQbY3YmpK2XPikKAh8xE75BDGZy3gqrOYq1-ko50XudYbRtJS8zPOsTHFEWqU8fwqDqq78ETCnkyKJtUuld6LEl1OhhLMobK5jV3I-hFG3rca1_OPUBmNuQh6cK9OIwqAoTBCFkUN42_9m0bBv7J19RtLqZxJzdviiXn43rSGaRCeqRJBepBqX6Z2WvtSB181mGT7xEI47WZvWnFfmRvmG8LofRkOk7IqtfL0Jczghong0hGeNavQr4QgT0JPiCrMdpdlZ6u5INfsRyL4zTT3C8H9POvW6Wda-rTjpVfA_du75_od-AXcTMhC6yc-PYbBebvxLxGLr_FVrYL8B6H8vFw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NTgh4QPwmsCEj8UYj0thO7McybZoqxgtM6pvlOI6o1CXV2gr1v-fOSQPR0LQ99CW204vvLvfFZ38H8El6YR0ihzjnTsbCTjTld8tYeVmmxOftCzrvfPE9O78Us7mcH8B4fxZmkL8P1N1rEZyZthJgeEp0LB_AoULDVCM4nE5nP2b9mgqxnSshurMxOPzLzcGD-BNo-v-HLW9ukezzpE_g0bZe2d1vu1z-E4rOnsHTDkOyaav053Dg6xfwsK0quXsJ828Un5gL9Rq6tT7WVopes03DFmEdwTOEfmzR7zkMm2R3zNYl_lqiEtZUzF3vmvj0gl3Z1foVXJ6d_jw5j7sCCrFDILZB5EwpWS58WpYELRKnfIqIy-U8E1ZzVehsUvCy8DrHWFlJXhVFXmXYIq1Snr-GUd3U_i0wp9MyTbTLpHeiwk9PoYSzqEquE1dxHsFkP63GdeziVORiaUKWmyvTqsKgKkxQhZERfO7HrFpujVt7fyVt9T2JFztcQHMxnZuZVKeqQgheZhrF9E5LX-nA2mbzHJ84gqO9rk3nrGtDpIkiQxNNIvjYN6ObUe7E1r7Zhj6c8E4yieBNaxq9JBxBAL4nUcJ8YDQDUYct9eJXoPLONVUAw_8d783rr1i3TcW4N8E7zNy7-939PTxOyWHo3D4_gtHmeuuPEXltig-dw_0BITojPg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTojxwPcgMJCReGMpSfyR-HGgTRNiEw9UlCfLcZxRUZKqTYXKX8_Z-YDCNLGHvNQX5Xw5-37NnX8H8Ipbpg0ihzClhodMx9Lld4sws7xIHJ-3zd1557NzcTph76d8ugOiPwvji_Y9paXfpvvqsDcr5pe0KyjAIBXJkI8XRXkDdgVHDD6C3cn5x6MvrpNcxOIQozLtTshENLvk5q0o5Mn6L0OY_xZKDtnS23BrXS305oeez_8ISCd34XM_lbYO5dt43eRj8_Mvlsfrz_Ue3OkwKjlqJe_Djq0ewM22a-XmIUw_uPhHjO8H0X1LJG0n6hVpajLz3yksQWhJZkNNoy_C3RBdFXi1RCikLolZburw-Ix814vVI5icHH96dxp2DRpCg0CvQWTuUr6U2aQoHHSJTGYTRHQmpYJpSbNcijinRW5lirG45LTM87QUOMJ1llm6D6OqruwTIEYmRRJJI7g1rMS_tixjRqOrUBmZktIA4v6FKdOxl7smGnPls-g0U63VFFpNeaspHsDr4Z5Fy91xpfRb5weDpOPd9j_UywvVvRuVyCQrEeIXQqKa1khuS-lZ4XSa4owDOOi9SHWbwUo5UkYmcAlEAbwchnEZu9yMrmy99jLU4akoDuBx63SDJhRBBu7DqGG65Y5bqm6PVLOvnio8la7DGD73sHfc32pdZYrDwbn_w3JPryf-DPYS59uOF4AewKhZru1zRHZN_qJbxr8AWXdFxQ priority: 102 providerName: Unpaywall |
| Title | Local computational methods to improve the interpretability and analysis of cryo-EM maps |
| URI | https://link.springer.com/article/10.1038/s41467-021-21509-5 https://www.ncbi.nlm.nih.gov/pubmed/33623015 https://www.proquest.com/docview/2492469130 https://www.proquest.com/docview/2493002201 https://pubmed.ncbi.nlm.nih.gov/PMC7902670 https://www.nature.com/articles/s41467-021-21509-5.pdf https://doaj.org/article/2928f81dd69c4fec95ef924855a77a93 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: ADMLS dateStart: 20121101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: NAO dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Health & Medical Collection (via ProQuest) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 8FG dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2041-1723 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M48 dateStart: 20101001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: AAJSJ dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: C6C dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB7tIcTygLgpLJWReGPDJrGdxA8IdauWVUWrFVCpPEWO40ClblJ6CPLvGTsHVFQreEgjxW46ncPz2WPPALzimkmFyMEJqeIOk54w8d3UiTRPfZPPWyfmvPN4ElxO2WjGZwfQlDuqGbjeO7Uz9aSmq8Wbn9_Ld2jwb6sj49H5mllzN5sN0IG5wuGHcIyeSphSDuMa7tuRmQqc0JhAs-8yz0HfTetzNPtfs-OrbEr_fTj07-2UbUz1Dtze5ktZ_pCLxR9ua3gP7tZ4k_QqBbkPBzp_ALeqCpTlQ5h9ML6MKFvboV4XJFVV6TXZFGRu1xw0QZhI5u3-RLuhtiQyT_GqkpqQIiNqVRbOYEyu5XL9CKbDwef-pVMXW3AUgrYNomwTvqVM-2lqYIirIu0jOlMhDZgUNEpE4CU0TbQI0a9mnGZJEmYBtnAZRZo-hqO8yPVTIEr4qe8KFXCtWIbTVBYxJVHsVLgqo7QDXsPWWNWZyE1BjEVsI-I0iitRxCiK2Ioi5h143X5nWeXhuLH3hZFW29Pk0LYPitXXuDbJ2Bd-lCFcTwOBZGoluM6EzfAmwxD_cQdOG1nHjV7GJsEiC1Cd3Q68bJvRJE2cRea62No-1GAj1-vAk0o1WkooAgYcU5HCcEdpdkjdbcnn32za71CYamH4u2eNev0m6yZWnLUq-A-ce_ZffH4OJ76xF3PEn57C0Wa11S8QpG2SLhyGsxA_o-H7Lhz3eqNPI7xfDCZXH_FpP-h37fJH11ootkwnV70vvwBaxznJ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VItRyQLxaAgWMBCe6arL2PnxAiEerlCY9tVJuxuv1QqSwG7KJqv1T_EZmvI8SgSIuPeQSe5NZz9Oe8TcArwMrtMHIwYu4CTyhB5Lyu6kX2yD1Cc_bJnTfeXweDi_Fl0kw2YJf7V0YKqtsbaIz1Glh6Iz8iJDtcCuHJvf9_KdHXaMou9q20KjF4sxWV7hlK9-dfkb-vvH9k-OLT0Ov6SrgGYxOlhhOUp6SC-unKfnbvomtj2GIiXgotORxIsNBwtPEyggdSBbwLEmiLMSRQMex5fi7t-C24GhLUH-iSdSd6RDaeixEczenz-OjUjhLRHUQ6Fv70gvW_J9rE_Cv2PbvEs0uT3sXdlb5XFdXejb7wxWe3Id7TQzLPtRC9wC2bP4Q7tRdLatHMBmRf2TG9YtozhpZ3am6ZMuCTd05hmUYerJpV_PoinQrpvMUPzVQCisyZhZV4R2P2Q89Lx_D5Y0s9R5s50VunwAz0k_9vjRhYI3IcOsrYmE0ihKXfZNx3oNBu6zKNOjm1GRjplyWnceqZoVCVijHChX04G33zLzG9tg4-yNxq5tJuNzui2LxTTVqrnzpxxluAdJQIpnWyMBm0qHG6SjCN-7BQctr1RiLUl2Ldg9edcOo5pS70bktVm4OCRyGaz3Yr0Wjo4RjEIJ2GimM1oRmjdT1kXz63UGJR5I6kOH_HrbidU3WpqU47ETwP1bu6eaXfgk7w4vxSI1Oz8-ewa5PykKYAfwAtpeLlX2OUd8yeeFUjcHXm9bt304jZKY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4ti3gdEG8KCxgJTmzUNHbi-IAQsFvtsg9xYKXejOM4UKkkpQ-t-tf4dcw4j6UCVVz20EvttBPP67NnPAPwKnbCWEQOgeQ2DoQZKIrv5kHq4jyiet4uo_vOJ6fJwZn4NIpHW_CrvQtDaZWtTfSGOq8snZH3qbIdbuXQ5PaLJi3i897w3fRnQB2kKNLattOoReTIrc5x-zZ_e7iHvH4dRcP9Lx8PgqbDQGARqSwQWlLMkgsX5Tn53tCmLkJIYiVPhFE8zVQyyHieOSXRmRQxL7JMFgmOxCZNHcffvQJXJeeK0gnlSHbnO1R5PRWiuacT8rQ_F94qUU4E-tlQBfGaL_QtA_6Fc_9O1-xitrfgxrKcmtW5mUz-cIvDO3C7wbPsfS2Ad2HLlffgWt3hcnUfRsfkK5n1vSOac0dWd62es0XFxv5MwzGEoWzc5T_6hN0VM2WOn7poCqsKZmerKtg_YT_MdP4Azi5lqR_CdlmV7jEwq6I8CpVNYmdFgdtgkQprUKy4Cm3BeQ8G7bJq21Q6p4YbE-0j7jzVNSs0skJ7Vui4B2-6Z6Z1nY-Nsz8Qt7qZVKPbf1HNvulG5XWkorTA7UCeKCTTWRW7QvkKckZKfOMe7LS81o3hmOsLMe_By24YVZ7iOKZ01dLP4YS9wkEPHtWi0VHCEZCgzUYK5ZrQrJG6PlKOv_uy4lJRNzL8391WvC7I2rQUu50I_sfKPdn80i_gOmq1Pj48PXoKNyPSFSofwHdgezFbumcIABfZc69pDL5etmr_BmvsaOk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTojxwPcgMJCReGMpSfyR-HGgTRNiEw9UlCfLcZxRUZKqTYXKX8_Z-YDCNLGHvNQX5Xw5-37NnX8H8Ipbpg0ihzClhodMx9Lld4sws7xIHJ-3zd1557NzcTph76d8ugOiPwvji_Y9paXfpvvqsDcr5pe0KyjAIBXJkI8XRXkDdgVHDD6C3cn5x6MvrpNcxOIQozLtTshENLvk5q0o5Mn6L0OY_xZKDtnS23BrXS305oeez_8ISCd34XM_lbYO5dt43eRj8_Mvlsfrz_Ue3OkwKjlqJe_Djq0ewM22a-XmIUw_uPhHjO8H0X1LJG0n6hVpajLz3yksQWhJZkNNoy_C3RBdFXi1RCikLolZburw-Ix814vVI5icHH96dxp2DRpCg0CvQWTuUr6U2aQoHHSJTGYTRHQmpYJpSbNcijinRW5lirG45LTM87QUOMJ1llm6D6OqruwTIEYmRRJJI7g1rMS_tixjRqOrUBmZktIA4v6FKdOxl7smGnPls-g0U63VFFpNeaspHsDr4Z5Fy91xpfRb5weDpOPd9j_UywvVvRuVyCQrEeIXQqKa1khuS-lZ4XSa4owDOOi9SHWbwUo5UkYmcAlEAbwchnEZu9yMrmy99jLU4akoDuBx63SDJhRBBu7DqGG65Y5bqm6PVLOvnio8la7DGD73sHfc32pdZYrDwbn_w3JPryf-DPYS59uOF4AewKhZru1zRHZN_qJbxr8AWXdFxQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+computational+methods+to+improve+the+interpretability+and+analysis+of+cryo-EM+maps&rft.jtitle=Nature+communications&rft.au=Kaur%2C+Satinder&rft.au=Gomez-Blanco%2C+Josue&rft.au=Khalifa%2C+Ahmad+A.+Z.&rft.au=Adinarayanan%2C+Swathi&rft.date=2021-02-23&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-21509-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_021_21509_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |