Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction
Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k -nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study...
Saved in:
| Published in | Scientific reports Vol. 12; no. 1; pp. 6256 - 11 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
15.04.2022
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-022-10358-x |
Cover
| Abstract | Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The
k
-nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics. |
|---|---|
| AbstractList | Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k-nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics.Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k-nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics. Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k -nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics. Abstract Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k-nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics. Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k-nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics. |
| ArticleNumber | 6256 |
| Author | Uddin, Shahadat Gide, Ergun Moni, Mohammad Ali Lu, Haohui Haque, Ibtisham |
| Author_xml | – sequence: 1 givenname: Shahadat surname: Uddin fullname: Uddin, Shahadat email: shahadat.uddin@sydney.edu.au organization: School of Project Management, Faculty of Engineering, The University of Sydney – sequence: 2 givenname: Ibtisham surname: Haque fullname: Haque, Ibtisham organization: School of Electrical and Information Engineering, Faculty of Engineering, The University of Sydney – sequence: 3 givenname: Haohui surname: Lu fullname: Lu, Haohui organization: School of Project Management, Faculty of Engineering, The University of Sydney – sequence: 4 givenname: Mohammad Ali surname: Moni fullname: Moni, Mohammad Ali organization: School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland – sequence: 5 givenname: Ergun surname: Gide fullname: Gide, Ergun organization: School of Engineering and Technology, CQUniversity (Sydney) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35428863$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstu1DAUjVARLaU_wAJFYlMWAT8TZ4OERjyqVmUDa-smvp5xldiDnRk6f4_nQWm7qMjG8fU5x-fe45fFkQ8ei-I1Je8p4epDElS2qiKMVXkvVXX7rDhhRMiKccaO7v0fF2cp3ZD8SdYK2r4ojrkUTKmanxSbWRiXEGFyayyXGG2II_geS_AwbJJLZbDlZeURIqap9Ojmiy6sYnl-eX39roRhHqKbFmPGm9JNqTTOWozop3IN0YHPpayZywkh5SsiGtdPLvhXxXMLQ8Kzw3pa_Pzy-cfsW3X1_evF7NNV1UtBpqqpDW8a7FpknNYdWGuMAEuhAS4axWq0dUe5tEQo7AwYpojpOmY6lIYyxU-Li72uCXCjl9GNEDc6gNO7QohzDXFy_YBaSqmwpa2lDQjoewVEcNqprm4Eb1vMWnyvtfJL2PyGYbgTpERvc9H7XHTORe9y0beZ9XHPWq66EU2fhxNheGDl4Yl3Cz0Pa92S3ICUWeD8IBDDr1XOQY8u9TgM4DGskma1pLUSkm-7ffsIepPTylnuUCSPULY0o97cd3Rn5e-7yAC1B_QxpBTR6t5NsI0tG3TD092yR9T_GtFhsCmD_RzjP9tPsP4AU9vwCQ |
| CitedBy_id | crossref_primary_10_3389_fendo_2023_1305473 crossref_primary_10_1063_5_0243298 crossref_primary_10_1007_s10115_024_02305_1 crossref_primary_10_3390_s24154829 crossref_primary_10_1051_e3sconf_202459502010 crossref_primary_10_3390_math12162487 crossref_primary_10_1016_j_sste_2023_100618 crossref_primary_10_1109_ACCESS_2024_3469869 crossref_primary_10_3390_s24237534 crossref_primary_10_1007_s11042_024_18348_z crossref_primary_10_1007_s12553_024_00835_w crossref_primary_10_3390_drones7080505 crossref_primary_10_1016_j_jer_2024_12_003 crossref_primary_10_1038_s41598_025_92277_1 crossref_primary_10_1038_s41598_024_67283_4 crossref_primary_10_1007_s00521_024_09770_3 crossref_primary_10_1007_s41019_024_00257_8 crossref_primary_10_4103_iju_iju_75_24 crossref_primary_10_1049_wss2_12100 crossref_primary_10_3390_diagnostics14040406 crossref_primary_10_1007_s11547_025_01949_5 crossref_primary_10_1016_j_cec_2024_100088 crossref_primary_10_1007_s44196_024_00409_8 crossref_primary_10_1007_s12553_023_00805_8 crossref_primary_10_1016_j_talanta_2024_127149 crossref_primary_10_1007_s00354_024_00286_x crossref_primary_10_35377_saucis___1516717 crossref_primary_10_1038_s41598_024_59436_2 crossref_primary_10_1155_2023_3913351 crossref_primary_10_3390_math12233787 crossref_primary_10_1007_s11227_024_06559_y crossref_primary_10_1109_ACCESS_2025_3547992 crossref_primary_10_3390_technologies12090163 crossref_primary_10_3390_healthcare11182483 crossref_primary_10_3390_math12223623 crossref_primary_10_3390_cancers16183205 crossref_primary_10_3390_foods13233860 crossref_primary_10_1109_ACCESS_2025_3530766 crossref_primary_10_1016_j_ecoenv_2024_117570 crossref_primary_10_1016_j_health_2024_100301 crossref_primary_10_1093_jas_skae220 crossref_primary_10_3390_ijms26020722 crossref_primary_10_1016_j_ab_2024_115546 crossref_primary_10_3390_w15183222 crossref_primary_10_1016_j_jbi_2024_104699 crossref_primary_10_1140_epjs_s11734_024_01413_x crossref_primary_10_3390_s22228615 crossref_primary_10_1590_2175_8239_jbn_2023_0135pt crossref_primary_10_1016_j_pdisas_2024_100398 crossref_primary_10_1016_j_ecolind_2025_113242 crossref_primary_10_17780_ksujes_1528386 crossref_primary_10_1007_s11042_023_17691_x crossref_primary_10_1016_j_pediatrneurol_2025_03_007 crossref_primary_10_1088_1741_2552_ad3f50 crossref_primary_10_3390_ijms25137049 crossref_primary_10_1109_ACCESS_2025_3538265 crossref_primary_10_1111_jep_14100 crossref_primary_10_1016_j_solener_2025_113399 crossref_primary_10_3390_molecules28165936 crossref_primary_10_1007_s00214_024_03159_0 crossref_primary_10_1016_j_cej_2024_151890 crossref_primary_10_1186_s12879_024_10297_0 crossref_primary_10_1016_j_prevetmed_2024_106158 crossref_primary_10_1016_j_bspc_2023_105844 crossref_primary_10_3390_agriengineering7030089 crossref_primary_10_1111_cns_14848 crossref_primary_10_1155_2023_6536768 crossref_primary_10_3389_fneur_2024_1441886 crossref_primary_10_1016_j_ins_2023_02_004 crossref_primary_10_54751_revistafoco_v16n6_104 crossref_primary_10_1080_10447318_2023_2175494 crossref_primary_10_3389_fphys_2023_1266084 crossref_primary_10_3389_fonc_2025_1552802 crossref_primary_10_1007_s13369_023_07854_1 crossref_primary_10_1080_10255842_2025_2475479 crossref_primary_10_3390_medicina61020188 crossref_primary_10_1016_j_jacomc_2024_100022 crossref_primary_10_1016_j_micpro_2024_105089 crossref_primary_10_1016_j_engfracmech_2024_110759 crossref_primary_10_3390_diagnostics14010013 crossref_primary_10_1051_itmconf_20257004030 crossref_primary_10_12693_APhysPolA_145_33 crossref_primary_10_1109_ACCESS_2024_3467996 crossref_primary_10_1007_s11042_024_20334_4 crossref_primary_10_1007_s00431_024_05925_5 crossref_primary_10_33769_aupse_1215962 crossref_primary_10_1007_s11468_024_02686_7 crossref_primary_10_1007_s41939_024_00674_2 crossref_primary_10_1007_s40808_025_02314_1 crossref_primary_10_1111_jfr3_13049 crossref_primary_10_1007_s11684_024_1085_3 crossref_primary_10_3390_covid4100107 crossref_primary_10_37380_jisib_v13i2_1084 crossref_primary_10_1007_s10489_023_05148_5 crossref_primary_10_1080_0886022X_2024_2438858 crossref_primary_10_3390_ijms26041746 crossref_primary_10_3390_math11040899 crossref_primary_10_1038_s41598_024_80210_x crossref_primary_10_3724_2096_7004_di_2024_0051 crossref_primary_10_3390_healthcare11071031 crossref_primary_10_3390_rs14122732 crossref_primary_10_1016_j_abst_2024_08_004 crossref_primary_10_13005_bpj_3031 crossref_primary_10_3390_ijerph20032380 crossref_primary_10_3390_electronics12183862 crossref_primary_10_3390_mca29050078 crossref_primary_10_1016_j_jfca_2024_106793 crossref_primary_10_3389_fpls_2023_1214801 crossref_primary_10_1088_1742_6596_2622_1_012010 crossref_primary_10_1109_ACCESS_2023_3246299 crossref_primary_10_12688_f1000research_138294_2 crossref_primary_10_33769_aupse_1417403 crossref_primary_10_1007_s00521_024_10565_9 crossref_primary_10_1016_j_fufo_2024_100500 crossref_primary_10_12688_f1000research_138294_1 crossref_primary_10_3390_agronomy13122976 crossref_primary_10_1016_j_aca_2023_340991 crossref_primary_10_2174_0115748936284044240108074937 crossref_primary_10_35940_ijitee_I9952_13090824 crossref_primary_10_1016_j_eja_2025_127579 crossref_primary_10_1016_j_jhazmat_2024_136135 crossref_primary_10_1016_j_cie_2024_110142 crossref_primary_10_3390_diagnostics13020287 crossref_primary_10_35377_saucis___1436915 crossref_primary_10_1109_ACCESS_2023_3312278 crossref_primary_10_1016_j_jclepro_2023_138925 crossref_primary_10_1016_j_rineng_2024_103135 crossref_primary_10_1016_j_cscm_2024_e03189 crossref_primary_10_3389_fncom_2024_1357607 crossref_primary_10_24003_emitter_v12i2_835 crossref_primary_10_1016_j_chemosphere_2024_142632 crossref_primary_10_1016_j_istruc_2025_108598 crossref_primary_10_3390_bioengineering10010045 crossref_primary_10_1186_s40001_024_01940_2 crossref_primary_10_1007_s40860_024_00240_0 crossref_primary_10_3390_ijms25052646 crossref_primary_10_1016_j_suscom_2024_101019 crossref_primary_10_1016_j_dsx_2024_103003 crossref_primary_10_1021_acsomega_3c03471 crossref_primary_10_1016_j_cmpb_2024_108489 crossref_primary_10_34288_jri_v6i4_344 crossref_primary_10_38124_ijisrt_IJISRT24MAY517 crossref_primary_10_1016_j_jhazmat_2023_132368 crossref_primary_10_3390_bioengineering12020150 crossref_primary_10_1002_ep_14494 crossref_primary_10_3390_biomedicines12020409 crossref_primary_10_1016_j_heliyon_2024_e33082 crossref_primary_10_16984_saufenbilder_1386568 crossref_primary_10_1109_JSEN_2024_3361158 crossref_primary_10_1109_ACCESS_2024_3407534 crossref_primary_10_3390_sci6040081 crossref_primary_10_3389_fpubh_2024_1357709 crossref_primary_10_1016_j_rineng_2024_103791 crossref_primary_10_1007_s11831_023_09904_1 crossref_primary_10_1186_s12967_025_06190_2 crossref_primary_10_1515_joc_2024_0234 crossref_primary_10_1038_s44320_024_00070_5 crossref_primary_10_1111_jebm_12548 crossref_primary_10_3390_horticulturae9121347 crossref_primary_10_1038_s41598_024_79036_4 crossref_primary_10_3390_w15244214 crossref_primary_10_1615_CritRevOncog_2024056447 crossref_primary_10_3390_app14114840 crossref_primary_10_1016_j_procs_2023_10_539 crossref_primary_10_3390_app13053033 crossref_primary_10_21015_vtse_v12i2_1811 crossref_primary_10_1016_j_eswa_2023_119696 crossref_primary_10_1080_09537287_2024_2320790 crossref_primary_10_55071_ticaretfbd_1544658 crossref_primary_10_1016_j_urolonc_2024_10_020 crossref_primary_10_1177_17442591241266836 crossref_primary_10_1007_s42979_023_02586_3 crossref_primary_10_3390_s24082637 crossref_primary_10_1016_j_jece_2025_115634 crossref_primary_10_1016_j_trac_2025_118196 crossref_primary_10_3390_jmse12111943 crossref_primary_10_1016_j_isci_2023_106144 crossref_primary_10_3390_app15020861 crossref_primary_10_3390_app14104130 crossref_primary_10_1016_j_future_2023_11_036 crossref_primary_10_3390_data9100119 crossref_primary_10_3390_s24196293 crossref_primary_10_3390_diagnostics15010026 crossref_primary_10_1007_s11042_023_17535_8 crossref_primary_10_1007_s13202_024_01900_w crossref_primary_10_1007_s11269_024_03885_x crossref_primary_10_3390_biomedicines12030472 crossref_primary_10_1016_j_engappai_2023_107055 crossref_primary_10_1016_j_aichem_2023_100006 crossref_primary_10_1007_s40098_024_00924_7 crossref_primary_10_1016_j_cscm_2025_e04475 crossref_primary_10_1016_j_asoc_2025_113070 crossref_primary_10_20535_ibb_2024_8_2_298201 crossref_primary_10_3390_app14135849 crossref_primary_10_3390_app13074312 crossref_primary_10_1177_00405175241310632 crossref_primary_10_3389_fpsyg_2024_1447968 crossref_primary_10_1007_s11042_024_19661_3 crossref_primary_10_3390_s23229217 crossref_primary_10_1186_s12884_025_07433_2 crossref_primary_10_1007_s00216_023_04740_5 crossref_primary_10_1038_s41598_025_85366_8 crossref_primary_10_1016_j_geoen_2023_212518 crossref_primary_10_3390_pr12091935 crossref_primary_10_1186_s13071_024_06618_6 crossref_primary_10_1038_s41598_023_34999_8 crossref_primary_10_1007_s11760_023_02672_2 crossref_primary_10_3390_plants12162893 crossref_primary_10_1038_s41598_024_59958_9 crossref_primary_10_1016_j_eswa_2025_126942 crossref_primary_10_1016_j_compbiomed_2024_108880 crossref_primary_10_1093_jcde_qwae030 crossref_primary_10_1186_s44147_023_00348_9 crossref_primary_10_1186_s12913_023_10418_6 crossref_primary_10_1016_j_uclim_2023_101570 crossref_primary_10_1016_j_jece_2025_115946 crossref_primary_10_1186_s12871_024_02842_w crossref_primary_10_1109_LSP_2023_3311956 crossref_primary_10_56809_icujtas_1433853 crossref_primary_10_1007_s10278_024_01297_2 crossref_primary_10_1016_j_ribaf_2024_102706 crossref_primary_10_32604_cmc_2023_039020 crossref_primary_10_1186_s12874_024_02273_8 crossref_primary_10_1016_j_fuel_2024_133299 crossref_primary_10_3390_app15073550 crossref_primary_10_3390_diagnostics14111152 crossref_primary_10_1016_j_wneu_2024_11_048 crossref_primary_10_1007_s00357_024_09471_5 crossref_primary_10_17979_ja_cea_2024_45_10813 crossref_primary_10_1021_acsomega_3c02195 crossref_primary_10_3390_app14177579 crossref_primary_10_1016_j_compbiomed_2023_107833 crossref_primary_10_3390_bios12080562 crossref_primary_10_1109_ACCESS_2024_3382539 crossref_primary_10_1590_2175_8239_jbn_2023_0135en |
| Cites_doi | 10.1186/s12911-019-1004-8 10.1038/nmeth.4551 10.1016/j.knosys.2020.106185 10.1109/TSMC.1985.6313426 10.1016/j.eswa.2018.08.021 10.1186/s12911-020-1023-5 10.1029/95WR02966 10.1016/j.cie.2021.107250 10.1080/08832329809601659 10.3390/fi13080193 10.1016/j.eswa.2021.116158 10.1016/j.procs.2018.01.125 10.1145/2641190.2641198 10.17706/IJCCE.2016.5.6.430-440 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-022-10358-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) ProQuest Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_5558e919f17a4acc8a0431b8b674399e 10.1038/s41598-022-10358-x PMC9012855 35428863 10_1038_s41598_022_10358_x |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c540t-76d377eb9e2316baffdd4af1a7a347826ef6b135f048ebdad280dbb2dbe5d1283 |
| IEDL.DBID | BENPR |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:52:38 EDT 2025 Sun Oct 26 02:56:42 EDT 2025 Tue Sep 30 15:51:29 EDT 2025 Thu Sep 04 16:01:30 EDT 2025 Tue Oct 07 09:18:50 EDT 2025 Mon Jul 21 06:00:58 EDT 2025 Thu Apr 24 23:12:48 EDT 2025 Wed Oct 01 04:54:04 EDT 2025 Fri Feb 21 02:40:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-76d377eb9e2316baffdd4af1a7a347826ef6b135f048ebdad280dbb2dbe5d1283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2650316591?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 35428863 |
| PQID | 2650316591 |
| PQPubID | 2041939 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5558e919f17a4acc8a0431b8b674399e unpaywall_primary_10_1038_s41598_022_10358_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_9012855 proquest_miscellaneous_2651684538 proquest_journals_2650316591 pubmed_primary_35428863 crossref_citationtrail_10_1038_s41598_022_10358_x crossref_primary_10_1038_s41598_022_10358_x springer_journals_10_1038_s41598_022_10358_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-15 |
| PublicationDateYYYYMMDD | 2022-04-15 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Keller, Gray, Givens (CR15) 1985; 15 Pan, Wang, Pan (CR9) 2020; 204 CR19 CR14 CR13 CR12 CR11 Chicco, Jurman (CR23) 2020; 20 Bzdok, Krzywinski, Altman (CR2) 2018; 15 Zhang, Li, Zong, Zhu, Cheng (CR4) 2017; 8 Abualigah (CR32) 2021; 157 Lall, Sharma (CR30) 1996; 32 Mahesh (CR3) 2020; 9 Cherif (CR10) 2018; 127 Lamba, Kumar (CR6) 2016; 5 Alkasassbeh, Altarawneh, Hassanat (CR16) 2015; 9 CR8 CR7 CR28 CR27 CR26 CR25 CR24 CR22 Lopez-Bernal, Balderas, Ponce, Molina (CR18) 2021; 13 CR21 CR20 Bhatia, Vandana (CR5) 2010; 8 Nagle (CR29) 1998; 74 Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (CR31) 2022; 191 Gou (CR17) 2019; 115 Uddin, Khan, Hossain, Moni (CR1) 2019; 19 10358_CR22 10358_CR21 10358_CR20 10358_CR26 10358_CR25 10358_CR24 D Chicco (10358_CR23) 2020; 20 10358_CR28 10358_CR27 W Cherif (10358_CR10) 2018; 127 L Abualigah (10358_CR31) 2022; 191 S Uddin (10358_CR1) 2019; 19 J Gou (10358_CR17) 2019; 115 L Abualigah (10358_CR32) 2021; 157 M Alkasassbeh (10358_CR16) 2015; 9 B Mahesh (10358_CR3) 2020; 9 10358_CR8 JM Keller (10358_CR15) 1985; 15 A Lamba (10358_CR6) 2016; 5 10358_CR7 D Bzdok (10358_CR2) 2018; 15 10358_CR11 U Lall (10358_CR30) 1996; 32 10358_CR14 10358_CR13 10358_CR12 S Zhang (10358_CR4) 2017; 8 10358_CR19 Z Pan (10358_CR9) 2020; 204 D Lopez-Bernal (10358_CR18) 2021; 13 B Nagle (10358_CR29) 1998; 74 N Bhatia (10358_CR5) 2010; 8 |
| References_xml | – ident: CR22 – ident: CR14 – volume: 19 start-page: 1 year: 2019 end-page: 16 ident: CR1 article-title: Comparing different supervised machine learning algorithms for disease prediction publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-019-1004-8 – ident: CR12 – volume: 15 start-page: 5 year: 2018 end-page: 6 ident: CR2 article-title: Machine learning: supervised methods publication-title: Nat. Methods doi: 10.1038/nmeth.4551 – volume: 204 start-page: 106185 year: 2020 ident: CR9 article-title: A new locally adaptive k-nearest neighbor algorithm based on discrimination class publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106185 – volume: 5 start-page: 430 year: 2016 end-page: 435 ident: CR6 article-title: Survey on KNN and its variants publication-title: Int. J. Adv. Res. Comput. Commun. Eng. – ident: CR8 – ident: CR25 – volume: 15 start-page: 580 year: 1985 end-page: 585 ident: CR15 article-title: A fuzzy k-nearest neighbor algorithm publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1985.6313426 – ident: CR27 – volume: 115 start-page: 356 year: 2019 end-page: 372 ident: CR17 article-title: A sgeneralised mean distance-based k-nearest neighbor classifier publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.021 – ident: CR21 – volume: 8 start-page: 1 year: 2010 end-page: 4 ident: CR5 article-title: Survey of nearest neighbor techniques publication-title: Int. J. Comput. Sci. Inf. Secur. – volume: 20 start-page: 1 year: 2020 end-page: 16 ident: CR23 article-title: Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-020-1023-5 – ident: CR19 – volume: 32 start-page: 679 year: 1996 end-page: 693 ident: CR30 article-title: A nearest neighbor bootstrap for resampling hydrologic time series publication-title: Water Resour. Res. doi: 10.1029/95WR02966 – volume: 8 start-page: 1 year: 2017 end-page: 19 ident: CR4 article-title: Learning k for kNN classification publication-title: ACM Trans. Intell. Syst. Technol. – ident: CR13 – ident: CR11 – volume: 157 start-page: 107250 year: 2021 ident: CR32 article-title: Aquila optimiser: A novel meta-heuristic soptimisation algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 9 start-page: 1 year: 2015 end-page: 6 ident: CR16 article-title: On enhancing the performance of nearest neighbour classifiers using hassanat distance metric publication-title: Can. J. Pure Appl. Sci. – volume: 74 start-page: 40 year: 1998 end-page: 43 ident: CR29 article-title: A proposal for dealing with grade inflation: The relative performance index publication-title: J. Educ. Bus. doi: 10.1080/08832329809601659 – volume: 13 start-page: 193 year: 2021 end-page: 206 ident: CR18 article-title: Education 4.0: Teaching the basics of KNN, LDA and simple perceptron algorithms for binary classification problems publication-title: Future Internet doi: 10.3390/fi13080193 – volume: 191 start-page: 116158 year: 2022 ident: CR31 article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimiser publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – ident: CR7 – volume: 9 start-page: 381 year: 2020 end-page: 386 ident: CR3 article-title: Machine learning algorithms—a review publication-title: Int. J. Sci. Res. – volume: 127 start-page: 293 year: 2018 end-page: 299 ident: CR10 article-title: Optimization of K-NN algorithm by clustering and reliability coefficients: Application to breast-cancer diagnosis publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.01.125 – ident: CR28 – ident: CR26 – ident: CR24 – ident: CR20 – ident: 10358_CR8 – ident: 10358_CR27 – ident: 10358_CR19 – ident: 10358_CR25 – volume: 19 start-page: 1 year: 2019 ident: 10358_CR1 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-019-1004-8 – volume: 9 start-page: 381 year: 2020 ident: 10358_CR3 publication-title: Int. J. Sci. Res. – volume: 9 start-page: 1 year: 2015 ident: 10358_CR16 publication-title: Can. J. Pure Appl. Sci. – volume: 191 start-page: 116158 year: 2022 ident: 10358_CR31 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 74 start-page: 40 year: 1998 ident: 10358_CR29 publication-title: J. Educ. Bus. doi: 10.1080/08832329809601659 – ident: 10358_CR13 – ident: 10358_CR21 doi: 10.1145/2641190.2641198 – ident: 10358_CR11 – volume: 20 start-page: 1 year: 2020 ident: 10358_CR23 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-020-1023-5 – volume: 204 start-page: 106185 year: 2020 ident: 10358_CR9 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106185 – ident: 10358_CR24 – volume: 32 start-page: 679 year: 1996 ident: 10358_CR30 publication-title: Water Resour. Res. doi: 10.1029/95WR02966 – ident: 10358_CR7 – volume: 127 start-page: 293 year: 2018 ident: 10358_CR10 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.01.125 – volume: 115 start-page: 356 year: 2019 ident: 10358_CR17 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.021 – volume: 157 start-page: 107250 year: 2021 ident: 10358_CR32 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 8 start-page: 1 year: 2010 ident: 10358_CR5 publication-title: Int. J. Comput. Sci. Inf. Secur. – ident: 10358_CR22 – ident: 10358_CR28 – ident: 10358_CR26 – ident: 10358_CR20 – volume: 15 start-page: 5 year: 2018 ident: 10358_CR2 publication-title: Nat. Methods doi: 10.1038/nmeth.4551 – volume: 13 start-page: 193 year: 2021 ident: 10358_CR18 publication-title: Future Internet doi: 10.3390/fi13080193 – ident: 10358_CR12 – ident: 10358_CR14 – volume: 5 start-page: 430 year: 2016 ident: 10358_CR6 publication-title: Int. J. Adv. Res. Comput. Commun. Eng. doi: 10.17706/IJCCE.2016.5.6.430-440 – volume: 15 start-page: 580 year: 1985 ident: 10358_CR15 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1985.6313426 – volume: 8 start-page: 1 year: 2017 ident: 10358_CR4 publication-title: ACM Trans. Intell. Syst. Technol. |
| SSID | ssj0000529419 |
| Score | 2.703585 |
| Snippet | Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The
k... Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The... Abstract Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge.... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6256 |
| SubjectTerms | 639/705/1041 692/699 Accuracy Algorithms Cluster Analysis Comparative analysis Health risks Humanities and Social Sciences Learning algorithms Machine Learning multidisciplinary Predictions Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQJQQcUHlvH8hIHEB01Xj9WPtIK6qKipyo1Jtlr700UrqJkg00_74zu5tNIlDhwDGxN_LOI_ONx_6GkPeFcjzwgUsh93CpyLxMjWYuZSLPNER4AMm4NfBtqM4vxdcrebXR6gvPhLX0wK3gjpGPKhpmSpY74YpCO6SD8dqrBkpH_PcdaLORTLWs3pkRzHS3ZAZcH88hUuFtMsi94LPU6e1WJGoI-_-EMn8_LNlXTJ-QR4tq6pa_3Hi8EZTOdsnTDk3Sz-1bPCMPYvWcPGz7Sy5fkOXpmtubTtdXBKjrqEjopKQXaYU8tvOaVrhNiruc9MPFcPiRuvGPyWxUX9_A_EBH9Zyu2qnU9Cfk2HiEhsJv0q7KQ6czLPugql-Sy7Mv30_P067XQloAZqvTXAWe59GbCIBPeVeWIQhXMpc7LgBFqFgqz7gsweOjDy5kehC8z4KPMkCM46_ITjWp4htCtQnGCBeVF0gWxyEHlb7MjMp9GaXPEsJWcrdFR0SO_TDGtimIc21bXVnQlW10ZW8T8ql_ZtrScNw7-wTV2c9ECu3mCzAs2xmW_ZthJeRgZQy28-u5zQDQgnykYQl51w-DR2KZxVVxsmjmMKUFRJKEvG5tp18Jl5DuacUTkm9Z1dZSt0eq0XXD-m0QSkiZkKOV_a2XdZ8ojnob_QfJ7f0Pye2Txxn6GTJiygOyU88W8RCgW-3fNl56B0Y2Pk0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIQQ8IL4GgYGMhBCIBZYPO_YDQjAxTUzrE5X2Ftmxs00Kadam0P733OWrVFQVj0kcyznf5X7ns38H8DoTOrLRofYx9tB-HBruKxloP4iTUKKHR5BMSwNnI3Eyjr-f8_Md6LfbdgKcbQztqJ7UeFp8WFwvP6PBf2qPjMuPM3RCdFAMwyq85tJfvKmufSosRQnYrsrGDbiJzktRdYezLgJo6b9DFQeqO06zubc1l9Uw-2-Co__uqhxSq3fh9rys9PK3Loq_vNfxfbjXwU72pdWTB7Djyodwqy1EuXwEy6MVCTirVmcJmO44S9gkZ6d-SYS3s5qVtJ5Ky6Hs7elo9I7p4gLlUF_-xPaWXdUz1tddqdkvDMZprw3DPlmXDmLVlPJDpBOPYXz87cfRid8VZfAzBHe1nwgbJYkzyiEyFEbnubWxzgOd6ChGuCFcLkwQ8Rx_Dc5YbUN5aI0JrXHcojOM9mC3nJTuKTCprFKxdsLExCoXYbDKTR4qkZjccRN6EPRyT7OOsZwKZxRpkzmPZNrOVYpzlTZzlS48eD-8U7V8HVtbf6XpHFoS13ZzYzK9SDvTTYkRzalA5UGiY51lUhMhkZFGNMGc82C_V4a01980ROSL8uEq8ODV8BhNl_IxunSTedMmEDJGl-PBk1Z3hpFEHONCKSIPkjWtWhvq-pPy6rKhB1eEOTj34KDXv9WwtoniYNDR_5Dcs-0f_RzuhGRBRIrJ92G3ns7dC0RvtXnZ2N8f0whBRg priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB-OHqI-iN-unhLBB8UuXjabbPJYD4-jh33Rg3sLySbrFeq2tFu1_72T_arLyaGv-SJkZpjfZDK_ALzJhWGOHZsYYw8Tp4nlsZLUxDTNEokeHkFyuBr4PBNnF-n0kl8ewLirhRnk72vq7g26mFAGhkETtnAZI2I8lKiYcgSHk8n0y7S_UwlZq5SqtjYGp3-4Pnngf2qa_r9hy-tPJPs86V24vS1XZvfTLBZ_uKLT-3CvxZBk0gj9ARz48iHcan6V3D2C3cme0Zus9oUBxLQEJGRZkPO4DOy1m4qU4XI03G2St-ez2TtiFt-W63l19R3HOzKvNqT7RKUiPzCyDg9nCK5J2twOWa1DsicI-DFcnH76enIWtz8sxDkitSrOhGNZ5q3yCPOENUXhXGoKajLDUsQOwhfCUsYLtHNvnXGJPHbWJs567tCzsScwKpelfwZEKqdUarywaaCIYxh5clskSmS28NwmEdDu3HXe0o-HXzAWuk6DM6kbWWmUla5lpX9F8L6fs2rIN24c_TGIsx8ZiLPrBtQn3dqhDvRmXlFV0MykJs-lCexCVlpRR2Y-gqNOGXRrzRudIIzF8-GKRvC670Y7DMkVU_rlth5DhUzRf0TwtNGdfieMY5AnBYsgG2jVYKvDnnJ-VXN9qwAgOI9g3Onffls3HcW419F_OLnn_7f6C7iTBIsKjJf8CEbVeutfIjSr7KvWIn8DGO0xjQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44HNAYCAj8QBiKXUcO87jmJgmJioeqBhPkR07W0VJojaFlb-ec75KYZrYa3KJnPPF9zvf-XcAL1OhmGEj5WPsofww0NyPJVU-DaNAoodHkOy2Bj6OxdEk_HDCT7ZAdGdh6qL9mtKyXqa76rC3C3Q07jAYhk50xLj0z4elya7BtuCIwQewPRl_2v_qOskhRvERJgTtCZkRkxc8vOGFarL-ixDmv4WSfbb0FtxY5qVa_VSz2R8O6fAOfOk-palD-TZcVnqY_vqL5fHq33oXbrcYlew3kvdgy-b34XrTtXL1AFYHa8ZwUq4PHhDVEpyQIiPHfu7YcRcVyd3mq9s7Ja-Ox-PXRM1Oi_m0OvuO8oZMqwXpmrRU5AdG7q4wh-A7SZs7IuXcJZOcAe3A5PD954Mjv-3g4KeIBCs_EoZFkdWxRRgptMoyY0KVURUpFiI2ETYTmjKe4TpitVEmkCOjdWC05QY9J3sIg7zI7WMgMjZxHCordOgo6BhGtlxnQSwinVmuAw9oN6NJ2tKbuy4bs6ROszOZNGpNUK1Jrdbk3IM3_TNlQ-5xqfQ7Zyi9pCPmri8U89OknbzE0afZmMYZjVSo0lQqx16kpRZ15Gc92O3MLGlXi0USIExG_fCYevCiv43_uUveqNwWy1qGChmif_LgUWOV_UgYxyBSCuZBtGGvG0PdvJNPz2ou8dgBFM492Ossez2sy1Sx11v_f2juydXEn8LNwBm_Y9TkuzCo5kv7DKFfpZ-3__lvg7BUXA priority: 102 providerName: Unpaywall |
| Title | Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction |
| URI | https://link.springer.com/article/10.1038/s41598-022-10358-x https://www.ncbi.nlm.nih.gov/pubmed/35428863 https://www.proquest.com/docview/2650316591 https://www.proquest.com/docview/2651684538 https://pubmed.ncbi.nlm.nih.gov/PMC9012855 https://www.nature.com/articles/s41598-022-10358-x.pdf https://doaj.org/article/5558e919f17a4acc8a0431b8b674399e |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5trRDwgPhNYFRG4gHEojVx7CQPCHXVpqnTogmoVJ4iu3a2SSUtbQrrf89dmqRUoIqXSo3dyrHvfN_d2d8BvB1LxQ3vKhd9D-UGvhZuHHnK9YLQj9DCI0im0MBFIs-GwWAkRnuQ1Hdh6FhlvSeWG7WZjilGfuQjlOCeFLH3afbDpapRlF2tS2ioqrSC-VhSjO1D2ydmrBa0j0-Sy89N1IXyWoEXV7dnujw6WqAFo1tm6JPhdxG5t1sWqiTy_xf6_PsQZZNJvQ93l_lMrX6pyeQPY3X6EB5UKJP11mLxCPZs_hjurOtOrp7Aqr_h_GazzdUBpiqKEjbN2LmbE7_tomA5hU8p-snenSfJe6YmVzgzxfV37G_YTbFgdZmVgv1E35uO1jD8T1Zlf9hsTukgEoGnMDw9-do_c6saDO4YsVzhhtLwMLQ6tggEpVZZZkygMk-FigeILqTNpPa4yHAnsNoo40ddo7VvtBUGbR9_Bq18mtsXwKLYxHGgrNQBkchx9E2FzvxYhjqzQvsOePW8p-OKoJzqZEzSMlHOo3S9VimuVVquVXrrwIfmN7M1PcfO3se0nE1PotYuH0znV2mlqSkRoNnYizMvVAHKVaSIf0hHWpa-m3XgoBaGtNL3RbqRTgfeNM2oqZR-UbmdLss-nowCtDAOPF_LTjMSLtANjCR3INySqq2hbrfkN9clG3hMEEMIBw5r-dsMa9dUHDYy-h8z93L3S7-Cez5pEHFgigNoFfOlfY1grdAd2A9HYQfavd7gy6BT6SM-7ct-pwyA4OdFEGHLMLnsffsN3SVDnw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwTGGAkkEAsWh1_JH6YEBubOrpVCG3S3oJdO9ukkpY2Zes_x9_GXZqkVKCKlz0mcSLHd75P3-8Ied1ThjveMiH4HiYUkZWhTpgJmYijBDQ8GMkYGjjqqvaJ-HwqT1fIr7oWBo9V1jKxFNRu0MMY-VYEpgRnSmr2YfgjxK5RmF2tW2iYqrWC2y4hxqrCjo6fXoILN94--AT0fhNF-3vHu-2w6jIQ9sBaKcJYOR7H3moPpo6yJsucEyZjJjZcgP5UPlOWcZkBr3vrjIuSlrM2ctZLB9Kdw3dvkDXBhQbnb21nr_vlaxPlwTyaYLqq1mnxZGsMGhOr2sAHhGuZhFcLGrFsHPAva_fvQ5tN5vY2WZ_kQzO9NP3-H8px_y65U1m19OOMDe-RFZ_fJzdnfS6nD8h0d44xTofzUgVqKkgUOshoJ8wRT3dc0BzDtRhtpW873e47avpnQIni_DuMd_SiGNO6rUtBf4Kvj0d5KHyTVtkmOhxh-glZ7iE5uRZqPCKr-SD3TwhNtNNaGK-sQNA6Dr6wtFmkVWwzL20UEFave9qrANGxL0c_LRPzPElntEqBVmlJq_QqIO-bd4YzOJClo3eQnM1IhPIubwxGZ2klGVIEXPOa6YzFRgAfJwbxjmxiVekr-oBs1MyQVvJlnM53Q0BeNY9BMmC6x-R-MCnHMJUI0GgBeTzjnWYmXILbmSgekHiBqxamuvgkvzgv0cc1mjRSBmSz5r_5tJYtxWbDo_-xck-X__RLst4-PjpMDw-6nWfkVoS7CfE35QZZLUYT_xwMxcK-qHYjJd-uWwD8Bgzce7o |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ9weEHcCA4wEEhOL2sSxEz8gBBvVRqHigUl9C3bsbJNKWtqUrX-NX8c5aZJSgSZe9tjGjVyf-8XfAXiRSc0t72ofYw_tR6ERvkoC7QdRHCZo4dFJptTA54HcP4w-DsVwA341d2GorbLRiZWituOMcuSdEF0JHkihgk5et0V82eu9nfzwaYIUVVqbcRpLFum7xSmGb7M3B3tI65dh2PvwdXffrycM-Bl6KqUfS8vj2Bnl0M2RRue5tZHOAx1rHqHtlC6XJuAiRz53xmobJl1rTGiNExY1O8f3XoLLMeeK2gnjYdzmd6iCFgWqvqfT5UlnhraS7rNh9IefReKfrdnCamTAv_zcv9s125rtDbg2LyZ6capHoz_MYu8W3Kz9WfZuyYC3YcMVd-DKcsLl4i4sdlfo4myyuqTAdA2GwsY56_sFIenOSlZQopbyrOxVfzDYZnp0hOdeHn_H9ZadlDPWDHQp2U-M8qmJh-E7WV1nYpMpFZ6I2e7B4YXQ4j5sFuPCPQSWKKtUpJ00EcHVcYyChclDJWOTO2FCD4Lm3NOshkKniRyjtCrJ8yRd0ipFWqUVrdIzD163v5ksgUDOXf2eyNmuJBDv6ovx9CitdUJKUGtOBSoPYh3pLEs0IR2ZxMgqSnQebDXMkNaaZZau5MCD5-1j1AlU6NGFG8-rNYFMIrRlHjxY8k67Ey4w4Ewk9yBe46q1ra4_KU6OK9xxRc6MEB7sNPy32tZ5R7HT8uh_nNyj8__0M7iKYp9-Ohj0H8P1kISJgDfFFmyW07l7gh5iaZ5Wosjg20XL_m-wlXlU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44HNAYCAj8QBiKXUcO87jmJgmJioeqBhPkR07W0VJojaFlb-ec75KYZrYa3KJnPPF9zvf-XcAL1OhmGEj5WPsofww0NyPJVU-DaNAoodHkOy2Bj6OxdEk_HDCT7ZAdGdh6qL9mtKyXqa76rC3C3Q07jAYhk50xLj0z4elya7BtuCIwQewPRl_2v_qOskhRvERJgTtCZkRkxc8vOGFarL-ixDmv4WSfbb0FtxY5qVa_VSz2R8O6fAOfOk-palD-TZcVnqY_vqL5fHq33oXbrcYlew3kvdgy-b34XrTtXL1AFYHa8ZwUq4PHhDVEpyQIiPHfu7YcRcVyd3mq9s7Ja-Ox-PXRM1Oi_m0OvuO8oZMqwXpmrRU5AdG7q4wh-A7SZs7IuXcJZOcAe3A5PD954Mjv-3g4KeIBCs_EoZFkdWxRRgptMoyY0KVURUpFiI2ETYTmjKe4TpitVEmkCOjdWC05QY9J3sIg7zI7WMgMjZxHCordOgo6BhGtlxnQSwinVmuAw9oN6NJ2tKbuy4bs6ROszOZNGpNUK1Jrdbk3IM3_TNlQ-5xqfQ7Zyi9pCPmri8U89OknbzE0afZmMYZjVSo0lQqx16kpRZ15Gc92O3MLGlXi0USIExG_fCYevCiv43_uUveqNwWy1qGChmif_LgUWOV_UgYxyBSCuZBtGGvG0PdvJNPz2ou8dgBFM492Ossez2sy1Sx11v_f2juydXEn8LNwBm_Y9TkuzCo5kv7DKFfpZ-3__lvg7BUXA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+performance+analysis+of+K-nearest+neighbour+%28KNN%29+algorithm+and+its+different+variants+for+disease+prediction&rft.jtitle=Scientific+reports&rft.au=Uddin+Shahadat&rft.au=Haque+Ibtisham&rft.au=Lu+Haohui&rft.au=Moni+Mohammad+Ali&rft.date=2022-04-15&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-10358-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |