Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction

Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k -nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 6256 - 11
Main Authors Uddin, Shahadat, Haque, Ibtisham, Lu, Haohui, Moni, Mohammad Ali, Gide, Ergun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.04.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-10358-x

Cover

Abstract Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k -nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics.
AbstractList Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k-nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics.Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k-nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics.
Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k -nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics.
Abstract Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k-nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics.
Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k-nearest neighbour (KNN) algorithm is the most frequently used among the wide range of machine learning algorithms. This paper presents a study on different KNN variants (Classic one, Adaptive, Locally adaptive, k-means clustering, Fuzzy, Mutual, Ensemble, Hassanat and Generalised mean distance) and their performance comparison for disease prediction. This study analysed these variants in-depth through implementations and experimentations using eight machine learning benchmark datasets obtained from Kaggle, UCI Machine learning repository and OpenML. The datasets were related to different disease contexts. We considered the performance measures of accuracy, precision and recall for comparative analysis. The average accuracy values of these variants ranged from 64.22% to 83.62%. The Hassanaat KNN showed the highest average accuracy (83.62%), followed by the ensemble approach KNN (82.34%). A relative performance index is also proposed based on each performance measure to assess each variant and compare the results. This study identified Hassanat KNN as the best performing variant based on the accuracy-based version of this index, followed by the ensemble approach KNN. This study also provided a relative comparison among KNN variants based on precision and recall measures. Finally, this paper summarises which KNN variant is the most promising candidate to follow under the consideration of three performance measures (accuracy, precision and recall) for disease prediction. Healthcare researchers and stakeholders could use the findings of this study to select the appropriate KNN variant for predictive disease risk analytics.
ArticleNumber 6256
Author Uddin, Shahadat
Gide, Ergun
Moni, Mohammad Ali
Lu, Haohui
Haque, Ibtisham
Author_xml – sequence: 1
  givenname: Shahadat
  surname: Uddin
  fullname: Uddin, Shahadat
  email: shahadat.uddin@sydney.edu.au
  organization: School of Project Management, Faculty of Engineering, The University of Sydney
– sequence: 2
  givenname: Ibtisham
  surname: Haque
  fullname: Haque, Ibtisham
  organization: School of Electrical and Information Engineering, Faculty of Engineering, The University of Sydney
– sequence: 3
  givenname: Haohui
  surname: Lu
  fullname: Lu, Haohui
  organization: School of Project Management, Faculty of Engineering, The University of Sydney
– sequence: 4
  givenname: Mohammad Ali
  surname: Moni
  fullname: Moni, Mohammad Ali
  organization: School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland
– sequence: 5
  givenname: Ergun
  surname: Gide
  fullname: Gide, Ergun
  organization: School of Engineering and Technology, CQUniversity (Sydney)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35428863$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUjVARLaU_wAJFYlMWAT8TZ4OERjyqVmUDa-smvp5xldiDnRk6f4_nQWm7qMjG8fU5x-fe45fFkQ8ei-I1Je8p4epDElS2qiKMVXkvVXX7rDhhRMiKccaO7v0fF2cp3ZD8SdYK2r4ojrkUTKmanxSbWRiXEGFyayyXGG2II_geS_AwbJJLZbDlZeURIqap9Ojmiy6sYnl-eX39roRhHqKbFmPGm9JNqTTOWozop3IN0YHPpayZywkh5SsiGtdPLvhXxXMLQ8Kzw3pa_Pzy-cfsW3X1_evF7NNV1UtBpqqpDW8a7FpknNYdWGuMAEuhAS4axWq0dUe5tEQo7AwYpojpOmY6lIYyxU-Li72uCXCjl9GNEDc6gNO7QohzDXFy_YBaSqmwpa2lDQjoewVEcNqprm4Eb1vMWnyvtfJL2PyGYbgTpERvc9H7XHTORe9y0beZ9XHPWq66EU2fhxNheGDl4Yl3Cz0Pa92S3ICUWeD8IBDDr1XOQY8u9TgM4DGskma1pLUSkm-7ffsIepPTylnuUCSPULY0o97cd3Rn5e-7yAC1B_QxpBTR6t5NsI0tG3TD092yR9T_GtFhsCmD_RzjP9tPsP4AU9vwCQ
CitedBy_id crossref_primary_10_3389_fendo_2023_1305473
crossref_primary_10_1063_5_0243298
crossref_primary_10_1007_s10115_024_02305_1
crossref_primary_10_3390_s24154829
crossref_primary_10_1051_e3sconf_202459502010
crossref_primary_10_3390_math12162487
crossref_primary_10_1016_j_sste_2023_100618
crossref_primary_10_1109_ACCESS_2024_3469869
crossref_primary_10_3390_s24237534
crossref_primary_10_1007_s11042_024_18348_z
crossref_primary_10_1007_s12553_024_00835_w
crossref_primary_10_3390_drones7080505
crossref_primary_10_1016_j_jer_2024_12_003
crossref_primary_10_1038_s41598_025_92277_1
crossref_primary_10_1038_s41598_024_67283_4
crossref_primary_10_1007_s00521_024_09770_3
crossref_primary_10_1007_s41019_024_00257_8
crossref_primary_10_4103_iju_iju_75_24
crossref_primary_10_1049_wss2_12100
crossref_primary_10_3390_diagnostics14040406
crossref_primary_10_1007_s11547_025_01949_5
crossref_primary_10_1016_j_cec_2024_100088
crossref_primary_10_1007_s44196_024_00409_8
crossref_primary_10_1007_s12553_023_00805_8
crossref_primary_10_1016_j_talanta_2024_127149
crossref_primary_10_1007_s00354_024_00286_x
crossref_primary_10_35377_saucis___1516717
crossref_primary_10_1038_s41598_024_59436_2
crossref_primary_10_1155_2023_3913351
crossref_primary_10_3390_math12233787
crossref_primary_10_1007_s11227_024_06559_y
crossref_primary_10_1109_ACCESS_2025_3547992
crossref_primary_10_3390_technologies12090163
crossref_primary_10_3390_healthcare11182483
crossref_primary_10_3390_math12223623
crossref_primary_10_3390_cancers16183205
crossref_primary_10_3390_foods13233860
crossref_primary_10_1109_ACCESS_2025_3530766
crossref_primary_10_1016_j_ecoenv_2024_117570
crossref_primary_10_1016_j_health_2024_100301
crossref_primary_10_1093_jas_skae220
crossref_primary_10_3390_ijms26020722
crossref_primary_10_1016_j_ab_2024_115546
crossref_primary_10_3390_w15183222
crossref_primary_10_1016_j_jbi_2024_104699
crossref_primary_10_1140_epjs_s11734_024_01413_x
crossref_primary_10_3390_s22228615
crossref_primary_10_1590_2175_8239_jbn_2023_0135pt
crossref_primary_10_1016_j_pdisas_2024_100398
crossref_primary_10_1016_j_ecolind_2025_113242
crossref_primary_10_17780_ksujes_1528386
crossref_primary_10_1007_s11042_023_17691_x
crossref_primary_10_1016_j_pediatrneurol_2025_03_007
crossref_primary_10_1088_1741_2552_ad3f50
crossref_primary_10_3390_ijms25137049
crossref_primary_10_1109_ACCESS_2025_3538265
crossref_primary_10_1111_jep_14100
crossref_primary_10_1016_j_solener_2025_113399
crossref_primary_10_3390_molecules28165936
crossref_primary_10_1007_s00214_024_03159_0
crossref_primary_10_1016_j_cej_2024_151890
crossref_primary_10_1186_s12879_024_10297_0
crossref_primary_10_1016_j_prevetmed_2024_106158
crossref_primary_10_1016_j_bspc_2023_105844
crossref_primary_10_3390_agriengineering7030089
crossref_primary_10_1111_cns_14848
crossref_primary_10_1155_2023_6536768
crossref_primary_10_3389_fneur_2024_1441886
crossref_primary_10_1016_j_ins_2023_02_004
crossref_primary_10_54751_revistafoco_v16n6_104
crossref_primary_10_1080_10447318_2023_2175494
crossref_primary_10_3389_fphys_2023_1266084
crossref_primary_10_3389_fonc_2025_1552802
crossref_primary_10_1007_s13369_023_07854_1
crossref_primary_10_1080_10255842_2025_2475479
crossref_primary_10_3390_medicina61020188
crossref_primary_10_1016_j_jacomc_2024_100022
crossref_primary_10_1016_j_micpro_2024_105089
crossref_primary_10_1016_j_engfracmech_2024_110759
crossref_primary_10_3390_diagnostics14010013
crossref_primary_10_1051_itmconf_20257004030
crossref_primary_10_12693_APhysPolA_145_33
crossref_primary_10_1109_ACCESS_2024_3467996
crossref_primary_10_1007_s11042_024_20334_4
crossref_primary_10_1007_s00431_024_05925_5
crossref_primary_10_33769_aupse_1215962
crossref_primary_10_1007_s11468_024_02686_7
crossref_primary_10_1007_s41939_024_00674_2
crossref_primary_10_1007_s40808_025_02314_1
crossref_primary_10_1111_jfr3_13049
crossref_primary_10_1007_s11684_024_1085_3
crossref_primary_10_3390_covid4100107
crossref_primary_10_37380_jisib_v13i2_1084
crossref_primary_10_1007_s10489_023_05148_5
crossref_primary_10_1080_0886022X_2024_2438858
crossref_primary_10_3390_ijms26041746
crossref_primary_10_3390_math11040899
crossref_primary_10_1038_s41598_024_80210_x
crossref_primary_10_3724_2096_7004_di_2024_0051
crossref_primary_10_3390_healthcare11071031
crossref_primary_10_3390_rs14122732
crossref_primary_10_1016_j_abst_2024_08_004
crossref_primary_10_13005_bpj_3031
crossref_primary_10_3390_ijerph20032380
crossref_primary_10_3390_electronics12183862
crossref_primary_10_3390_mca29050078
crossref_primary_10_1016_j_jfca_2024_106793
crossref_primary_10_3389_fpls_2023_1214801
crossref_primary_10_1088_1742_6596_2622_1_012010
crossref_primary_10_1109_ACCESS_2023_3246299
crossref_primary_10_12688_f1000research_138294_2
crossref_primary_10_33769_aupse_1417403
crossref_primary_10_1007_s00521_024_10565_9
crossref_primary_10_1016_j_fufo_2024_100500
crossref_primary_10_12688_f1000research_138294_1
crossref_primary_10_3390_agronomy13122976
crossref_primary_10_1016_j_aca_2023_340991
crossref_primary_10_2174_0115748936284044240108074937
crossref_primary_10_35940_ijitee_I9952_13090824
crossref_primary_10_1016_j_eja_2025_127579
crossref_primary_10_1016_j_jhazmat_2024_136135
crossref_primary_10_1016_j_cie_2024_110142
crossref_primary_10_3390_diagnostics13020287
crossref_primary_10_35377_saucis___1436915
crossref_primary_10_1109_ACCESS_2023_3312278
crossref_primary_10_1016_j_jclepro_2023_138925
crossref_primary_10_1016_j_rineng_2024_103135
crossref_primary_10_1016_j_cscm_2024_e03189
crossref_primary_10_3389_fncom_2024_1357607
crossref_primary_10_24003_emitter_v12i2_835
crossref_primary_10_1016_j_chemosphere_2024_142632
crossref_primary_10_1016_j_istruc_2025_108598
crossref_primary_10_3390_bioengineering10010045
crossref_primary_10_1186_s40001_024_01940_2
crossref_primary_10_1007_s40860_024_00240_0
crossref_primary_10_3390_ijms25052646
crossref_primary_10_1016_j_suscom_2024_101019
crossref_primary_10_1016_j_dsx_2024_103003
crossref_primary_10_1021_acsomega_3c03471
crossref_primary_10_1016_j_cmpb_2024_108489
crossref_primary_10_34288_jri_v6i4_344
crossref_primary_10_38124_ijisrt_IJISRT24MAY517
crossref_primary_10_1016_j_jhazmat_2023_132368
crossref_primary_10_3390_bioengineering12020150
crossref_primary_10_1002_ep_14494
crossref_primary_10_3390_biomedicines12020409
crossref_primary_10_1016_j_heliyon_2024_e33082
crossref_primary_10_16984_saufenbilder_1386568
crossref_primary_10_1109_JSEN_2024_3361158
crossref_primary_10_1109_ACCESS_2024_3407534
crossref_primary_10_3390_sci6040081
crossref_primary_10_3389_fpubh_2024_1357709
crossref_primary_10_1016_j_rineng_2024_103791
crossref_primary_10_1007_s11831_023_09904_1
crossref_primary_10_1186_s12967_025_06190_2
crossref_primary_10_1515_joc_2024_0234
crossref_primary_10_1038_s44320_024_00070_5
crossref_primary_10_1111_jebm_12548
crossref_primary_10_3390_horticulturae9121347
crossref_primary_10_1038_s41598_024_79036_4
crossref_primary_10_3390_w15244214
crossref_primary_10_1615_CritRevOncog_2024056447
crossref_primary_10_3390_app14114840
crossref_primary_10_1016_j_procs_2023_10_539
crossref_primary_10_3390_app13053033
crossref_primary_10_21015_vtse_v12i2_1811
crossref_primary_10_1016_j_eswa_2023_119696
crossref_primary_10_1080_09537287_2024_2320790
crossref_primary_10_55071_ticaretfbd_1544658
crossref_primary_10_1016_j_urolonc_2024_10_020
crossref_primary_10_1177_17442591241266836
crossref_primary_10_1007_s42979_023_02586_3
crossref_primary_10_3390_s24082637
crossref_primary_10_1016_j_jece_2025_115634
crossref_primary_10_1016_j_trac_2025_118196
crossref_primary_10_3390_jmse12111943
crossref_primary_10_1016_j_isci_2023_106144
crossref_primary_10_3390_app15020861
crossref_primary_10_3390_app14104130
crossref_primary_10_1016_j_future_2023_11_036
crossref_primary_10_3390_data9100119
crossref_primary_10_3390_s24196293
crossref_primary_10_3390_diagnostics15010026
crossref_primary_10_1007_s11042_023_17535_8
crossref_primary_10_1007_s13202_024_01900_w
crossref_primary_10_1007_s11269_024_03885_x
crossref_primary_10_3390_biomedicines12030472
crossref_primary_10_1016_j_engappai_2023_107055
crossref_primary_10_1016_j_aichem_2023_100006
crossref_primary_10_1007_s40098_024_00924_7
crossref_primary_10_1016_j_cscm_2025_e04475
crossref_primary_10_1016_j_asoc_2025_113070
crossref_primary_10_20535_ibb_2024_8_2_298201
crossref_primary_10_3390_app14135849
crossref_primary_10_3390_app13074312
crossref_primary_10_1177_00405175241310632
crossref_primary_10_3389_fpsyg_2024_1447968
crossref_primary_10_1007_s11042_024_19661_3
crossref_primary_10_3390_s23229217
crossref_primary_10_1186_s12884_025_07433_2
crossref_primary_10_1007_s00216_023_04740_5
crossref_primary_10_1038_s41598_025_85366_8
crossref_primary_10_1016_j_geoen_2023_212518
crossref_primary_10_3390_pr12091935
crossref_primary_10_1186_s13071_024_06618_6
crossref_primary_10_1038_s41598_023_34999_8
crossref_primary_10_1007_s11760_023_02672_2
crossref_primary_10_3390_plants12162893
crossref_primary_10_1038_s41598_024_59958_9
crossref_primary_10_1016_j_eswa_2025_126942
crossref_primary_10_1016_j_compbiomed_2024_108880
crossref_primary_10_1093_jcde_qwae030
crossref_primary_10_1186_s44147_023_00348_9
crossref_primary_10_1186_s12913_023_10418_6
crossref_primary_10_1016_j_uclim_2023_101570
crossref_primary_10_1016_j_jece_2025_115946
crossref_primary_10_1186_s12871_024_02842_w
crossref_primary_10_1109_LSP_2023_3311956
crossref_primary_10_56809_icujtas_1433853
crossref_primary_10_1007_s10278_024_01297_2
crossref_primary_10_1016_j_ribaf_2024_102706
crossref_primary_10_32604_cmc_2023_039020
crossref_primary_10_1186_s12874_024_02273_8
crossref_primary_10_1016_j_fuel_2024_133299
crossref_primary_10_3390_app15073550
crossref_primary_10_3390_diagnostics14111152
crossref_primary_10_1016_j_wneu_2024_11_048
crossref_primary_10_1007_s00357_024_09471_5
crossref_primary_10_17979_ja_cea_2024_45_10813
crossref_primary_10_1021_acsomega_3c02195
crossref_primary_10_3390_app14177579
crossref_primary_10_1016_j_compbiomed_2023_107833
crossref_primary_10_3390_bios12080562
crossref_primary_10_1109_ACCESS_2024_3382539
crossref_primary_10_1590_2175_8239_jbn_2023_0135en
Cites_doi 10.1186/s12911-019-1004-8
10.1038/nmeth.4551
10.1016/j.knosys.2020.106185
10.1109/TSMC.1985.6313426
10.1016/j.eswa.2018.08.021
10.1186/s12911-020-1023-5
10.1029/95WR02966
10.1016/j.cie.2021.107250
10.1080/08832329809601659
10.3390/fi13080193
10.1016/j.eswa.2021.116158
10.1016/j.procs.2018.01.125
10.1145/2641190.2641198
10.17706/IJCCE.2016.5.6.430-440
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-022-10358-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef



MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_5558e919f17a4acc8a0431b8b674399e
10.1038/s41598-022-10358-x
PMC9012855
35428863
10_1038_s41598_022_10358_x
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c540t-76d377eb9e2316baffdd4af1a7a347826ef6b135f048ebdad280dbb2dbe5d1283
IEDL.DBID BENPR
ISSN 2045-2322
IngestDate Fri Oct 03 12:52:38 EDT 2025
Sun Oct 26 02:56:42 EDT 2025
Tue Sep 30 15:51:29 EDT 2025
Thu Sep 04 16:01:30 EDT 2025
Tue Oct 07 09:18:50 EDT 2025
Mon Jul 21 06:00:58 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Wed Oct 01 04:54:04 EDT 2025
Fri Feb 21 02:40:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-76d377eb9e2316baffdd4af1a7a347826ef6b135f048ebdad280dbb2dbe5d1283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2650316591?pq-origsite=%requestingapplication%&accountid=15518
PMID 35428863
PQID 2650316591
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_5558e919f17a4acc8a0431b8b674399e
unpaywall_primary_10_1038_s41598_022_10358_x
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9012855
proquest_miscellaneous_2651684538
proquest_journals_2650316591
pubmed_primary_35428863
crossref_citationtrail_10_1038_s41598_022_10358_x
crossref_primary_10_1038_s41598_022_10358_x
springer_journals_10_1038_s41598_022_10358_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Keller, Gray, Givens (CR15) 1985; 15
Pan, Wang, Pan (CR9) 2020; 204
CR19
CR14
CR13
CR12
CR11
Chicco, Jurman (CR23) 2020; 20
Bzdok, Krzywinski, Altman (CR2) 2018; 15
Zhang, Li, Zong, Zhu, Cheng (CR4) 2017; 8
Abualigah (CR32) 2021; 157
Lall, Sharma (CR30) 1996; 32
Mahesh (CR3) 2020; 9
Cherif (CR10) 2018; 127
Lamba, Kumar (CR6) 2016; 5
Alkasassbeh, Altarawneh, Hassanat (CR16) 2015; 9
CR8
CR7
CR28
CR27
CR26
CR25
CR24
CR22
Lopez-Bernal, Balderas, Ponce, Molina (CR18) 2021; 13
CR21
CR20
Bhatia, Vandana (CR5) 2010; 8
Nagle (CR29) 1998; 74
Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (CR31) 2022; 191
Gou (CR17) 2019; 115
Uddin, Khan, Hossain, Moni (CR1) 2019; 19
10358_CR22
10358_CR21
10358_CR20
10358_CR26
10358_CR25
10358_CR24
D Chicco (10358_CR23) 2020; 20
10358_CR28
10358_CR27
W Cherif (10358_CR10) 2018; 127
L Abualigah (10358_CR31) 2022; 191
S Uddin (10358_CR1) 2019; 19
J Gou (10358_CR17) 2019; 115
L Abualigah (10358_CR32) 2021; 157
M Alkasassbeh (10358_CR16) 2015; 9
B Mahesh (10358_CR3) 2020; 9
10358_CR8
JM Keller (10358_CR15) 1985; 15
A Lamba (10358_CR6) 2016; 5
10358_CR7
D Bzdok (10358_CR2) 2018; 15
10358_CR11
U Lall (10358_CR30) 1996; 32
10358_CR14
10358_CR13
10358_CR12
S Zhang (10358_CR4) 2017; 8
10358_CR19
Z Pan (10358_CR9) 2020; 204
D Lopez-Bernal (10358_CR18) 2021; 13
B Nagle (10358_CR29) 1998; 74
N Bhatia (10358_CR5) 2010; 8
References_xml – ident: CR22
– ident: CR14
– volume: 19
  start-page: 1
  year: 2019
  end-page: 16
  ident: CR1
  article-title: Comparing different supervised machine learning algorithms for disease prediction
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-019-1004-8
– ident: CR12
– volume: 15
  start-page: 5
  year: 2018
  end-page: 6
  ident: CR2
  article-title: Machine learning: supervised methods
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4551
– volume: 204
  start-page: 106185
  year: 2020
  ident: CR9
  article-title: A new locally adaptive k-nearest neighbor algorithm based on discrimination class
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106185
– volume: 5
  start-page: 430
  year: 2016
  end-page: 435
  ident: CR6
  article-title: Survey on KNN and its variants
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
– ident: CR8
– ident: CR25
– volume: 15
  start-page: 580
  year: 1985
  end-page: 585
  ident: CR15
  article-title: A fuzzy k-nearest neighbor algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1985.6313426
– ident: CR27
– volume: 115
  start-page: 356
  year: 2019
  end-page: 372
  ident: CR17
  article-title: A sgeneralised mean distance-based k-nearest neighbor classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.021
– ident: CR21
– volume: 8
  start-page: 1
  year: 2010
  end-page: 4
  ident: CR5
  article-title: Survey of nearest neighbor techniques
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 16
  ident: CR23
  article-title: Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-020-1023-5
– ident: CR19
– volume: 32
  start-page: 679
  year: 1996
  end-page: 693
  ident: CR30
  article-title: A nearest neighbor bootstrap for resampling hydrologic time series
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR02966
– volume: 8
  start-page: 1
  year: 2017
  end-page: 19
  ident: CR4
  article-title: Learning k for kNN classification
  publication-title: ACM Trans. Intell. Syst. Technol.
– ident: CR13
– ident: CR11
– volume: 157
  start-page: 107250
  year: 2021
  ident: CR32
  article-title: Aquila optimiser: A novel meta-heuristic soptimisation algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 9
  start-page: 1
  year: 2015
  end-page: 6
  ident: CR16
  article-title: On enhancing the performance of nearest neighbour classifiers using hassanat distance metric
  publication-title: Can. J. Pure Appl. Sci.
– volume: 74
  start-page: 40
  year: 1998
  end-page: 43
  ident: CR29
  article-title: A proposal for dealing with grade inflation: The relative performance index
  publication-title: J. Educ. Bus.
  doi: 10.1080/08832329809601659
– volume: 13
  start-page: 193
  year: 2021
  end-page: 206
  ident: CR18
  article-title: Education 4.0: Teaching the basics of KNN, LDA and simple perceptron algorithms for binary classification problems
  publication-title: Future Internet
  doi: 10.3390/fi13080193
– volume: 191
  start-page: 116158
  year: 2022
  ident: CR31
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimiser
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– ident: CR7
– volume: 9
  start-page: 381
  year: 2020
  end-page: 386
  ident: CR3
  article-title: Machine learning algorithms—a review
  publication-title: Int. J. Sci. Res.
– volume: 127
  start-page: 293
  year: 2018
  end-page: 299
  ident: CR10
  article-title: Optimization of K-NN algorithm by clustering and reliability coefficients: Application to breast-cancer diagnosis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.01.125
– ident: CR28
– ident: CR26
– ident: CR24
– ident: CR20
– ident: 10358_CR8
– ident: 10358_CR27
– ident: 10358_CR19
– ident: 10358_CR25
– volume: 19
  start-page: 1
  year: 2019
  ident: 10358_CR1
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-019-1004-8
– volume: 9
  start-page: 381
  year: 2020
  ident: 10358_CR3
  publication-title: Int. J. Sci. Res.
– volume: 9
  start-page: 1
  year: 2015
  ident: 10358_CR16
  publication-title: Can. J. Pure Appl. Sci.
– volume: 191
  start-page: 116158
  year: 2022
  ident: 10358_CR31
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 74
  start-page: 40
  year: 1998
  ident: 10358_CR29
  publication-title: J. Educ. Bus.
  doi: 10.1080/08832329809601659
– ident: 10358_CR13
– ident: 10358_CR21
  doi: 10.1145/2641190.2641198
– ident: 10358_CR11
– volume: 20
  start-page: 1
  year: 2020
  ident: 10358_CR23
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-020-1023-5
– volume: 204
  start-page: 106185
  year: 2020
  ident: 10358_CR9
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106185
– ident: 10358_CR24
– volume: 32
  start-page: 679
  year: 1996
  ident: 10358_CR30
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR02966
– ident: 10358_CR7
– volume: 127
  start-page: 293
  year: 2018
  ident: 10358_CR10
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.01.125
– volume: 115
  start-page: 356
  year: 2019
  ident: 10358_CR17
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.021
– volume: 157
  start-page: 107250
  year: 2021
  ident: 10358_CR32
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 8
  start-page: 1
  year: 2010
  ident: 10358_CR5
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– ident: 10358_CR22
– ident: 10358_CR28
– ident: 10358_CR26
– ident: 10358_CR20
– volume: 15
  start-page: 5
  year: 2018
  ident: 10358_CR2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4551
– volume: 13
  start-page: 193
  year: 2021
  ident: 10358_CR18
  publication-title: Future Internet
  doi: 10.3390/fi13080193
– ident: 10358_CR12
– ident: 10358_CR14
– volume: 5
  start-page: 430
  year: 2016
  ident: 10358_CR6
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
  doi: 10.17706/IJCCE.2016.5.6.430-440
– volume: 15
  start-page: 580
  year: 1985
  ident: 10358_CR15
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1985.6313426
– volume: 8
  start-page: 1
  year: 2017
  ident: 10358_CR4
  publication-title: ACM Trans. Intell. Syst. Technol.
SSID ssj0000529419
Score 2.703585
Snippet Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The k...
Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge. The...
Abstract Disease risk prediction is a rising challenge in the medical domain. Researchers have widely used machine learning algorithms to solve this challenge....
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6256
SubjectTerms 639/705/1041
692/699
Accuracy
Algorithms
Cluster Analysis
Comparative analysis
Health risks
Humanities and Social Sciences
Learning algorithms
Machine Learning
multidisciplinary
Predictions
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQJQQcUHlvH8hIHEB01Xj9WPtIK6qKipyo1Jtlr700UrqJkg00_74zu5tNIlDhwDGxN_LOI_ONx_6GkPeFcjzwgUsh93CpyLxMjWYuZSLPNER4AMm4NfBtqM4vxdcrebXR6gvPhLX0wK3gjpGPKhpmSpY74YpCO6SD8dqrBkpH_PcdaLORTLWs3pkRzHS3ZAZcH88hUuFtMsi94LPU6e1WJGoI-_-EMn8_LNlXTJ-QR4tq6pa_3Hi8EZTOdsnTDk3Sz-1bPCMPYvWcPGz7Sy5fkOXpmtubTtdXBKjrqEjopKQXaYU8tvOaVrhNiruc9MPFcPiRuvGPyWxUX9_A_EBH9Zyu2qnU9Cfk2HiEhsJv0q7KQ6czLPugql-Sy7Mv30_P067XQloAZqvTXAWe59GbCIBPeVeWIQhXMpc7LgBFqFgqz7gsweOjDy5kehC8z4KPMkCM46_ITjWp4htCtQnGCBeVF0gWxyEHlb7MjMp9GaXPEsJWcrdFR0SO_TDGtimIc21bXVnQlW10ZW8T8ql_ZtrScNw7-wTV2c9ECu3mCzAs2xmW_ZthJeRgZQy28-u5zQDQgnykYQl51w-DR2KZxVVxsmjmMKUFRJKEvG5tp18Jl5DuacUTkm9Z1dZSt0eq0XXD-m0QSkiZkKOV_a2XdZ8ojnob_QfJ7f0Pye2Txxn6GTJiygOyU88W8RCgW-3fNl56B0Y2Pk0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIQQ8IL4GgYGMhBCIBZYPO_YDQjAxTUzrE5X2Ftmxs00Kadam0P733OWrVFQVj0kcyznf5X7ns38H8DoTOrLRofYx9tB-HBruKxloP4iTUKKHR5BMSwNnI3Eyjr-f8_Md6LfbdgKcbQztqJ7UeFp8WFwvP6PBf2qPjMuPM3RCdFAMwyq85tJfvKmufSosRQnYrsrGDbiJzktRdYezLgJo6b9DFQeqO06zubc1l9Uw-2-Co__uqhxSq3fh9rys9PK3Loq_vNfxfbjXwU72pdWTB7Djyodwqy1EuXwEy6MVCTirVmcJmO44S9gkZ6d-SYS3s5qVtJ5Ky6Hs7elo9I7p4gLlUF_-xPaWXdUz1tddqdkvDMZprw3DPlmXDmLVlPJDpBOPYXz87cfRid8VZfAzBHe1nwgbJYkzyiEyFEbnubWxzgOd6ChGuCFcLkwQ8Rx_Dc5YbUN5aI0JrXHcojOM9mC3nJTuKTCprFKxdsLExCoXYbDKTR4qkZjccRN6EPRyT7OOsZwKZxRpkzmPZNrOVYpzlTZzlS48eD-8U7V8HVtbf6XpHFoS13ZzYzK9SDvTTYkRzalA5UGiY51lUhMhkZFGNMGc82C_V4a01980ROSL8uEq8ODV8BhNl_IxunSTedMmEDJGl-PBk1Z3hpFEHONCKSIPkjWtWhvq-pPy6rKhB1eEOTj34KDXv9WwtoniYNDR_5Dcs-0f_RzuhGRBRIrJ92G3ns7dC0RvtXnZ2N8f0whBRg
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB-OHqI-iN-unhLBB8UuXjabbPJYD4-jh33Rg3sLySbrFeq2tFu1_72T_arLyaGv-SJkZpjfZDK_ALzJhWGOHZsYYw8Tp4nlsZLUxDTNEokeHkFyuBr4PBNnF-n0kl8ewLirhRnk72vq7g26mFAGhkETtnAZI2I8lKiYcgSHk8n0y7S_UwlZq5SqtjYGp3-4Pnngf2qa_r9hy-tPJPs86V24vS1XZvfTLBZ_uKLT-3CvxZBk0gj9ARz48iHcan6V3D2C3cme0Zus9oUBxLQEJGRZkPO4DOy1m4qU4XI03G2St-ez2TtiFt-W63l19R3HOzKvNqT7RKUiPzCyDg9nCK5J2twOWa1DsicI-DFcnH76enIWtz8sxDkitSrOhGNZ5q3yCPOENUXhXGoKajLDUsQOwhfCUsYLtHNvnXGJPHbWJs567tCzsScwKpelfwZEKqdUarywaaCIYxh5clskSmS28NwmEdDu3HXe0o-HXzAWuk6DM6kbWWmUla5lpX9F8L6fs2rIN24c_TGIsx8ZiLPrBtQn3dqhDvRmXlFV0MykJs-lCexCVlpRR2Y-gqNOGXRrzRudIIzF8-GKRvC670Y7DMkVU_rlth5DhUzRf0TwtNGdfieMY5AnBYsgG2jVYKvDnnJ-VXN9qwAgOI9g3Onffls3HcW419F_OLnn_7f6C7iTBIsKjJf8CEbVeutfIjSr7KvWIn8DGO0xjQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44HNAYCAj8QBiKXUcO87jmJgmJioeqBhPkR07W0VJojaFlb-ec75KYZrYa3KJnPPF9zvf-XcAL1OhmGEj5WPsofww0NyPJVU-DaNAoodHkOy2Bj6OxdEk_HDCT7ZAdGdh6qL9mtKyXqa76rC3C3Q07jAYhk50xLj0z4elya7BtuCIwQewPRl_2v_qOskhRvERJgTtCZkRkxc8vOGFarL-ixDmv4WSfbb0FtxY5qVa_VSz2R8O6fAOfOk-palD-TZcVnqY_vqL5fHq33oXbrcYlew3kvdgy-b34XrTtXL1AFYHa8ZwUq4PHhDVEpyQIiPHfu7YcRcVyd3mq9s7Ja-Ox-PXRM1Oi_m0OvuO8oZMqwXpmrRU5AdG7q4wh-A7SZs7IuXcJZOcAe3A5PD954Mjv-3g4KeIBCs_EoZFkdWxRRgptMoyY0KVURUpFiI2ETYTmjKe4TpitVEmkCOjdWC05QY9J3sIg7zI7WMgMjZxHCordOgo6BhGtlxnQSwinVmuAw9oN6NJ2tKbuy4bs6ROszOZNGpNUK1Jrdbk3IM3_TNlQ-5xqfQ7Zyi9pCPmri8U89OknbzE0afZmMYZjVSo0lQqx16kpRZ15Gc92O3MLGlXi0USIExG_fCYevCiv43_uUveqNwWy1qGChmif_LgUWOV_UgYxyBSCuZBtGGvG0PdvJNPz2ou8dgBFM492Ossez2sy1Sx11v_f2juydXEn8LNwBm_Y9TkuzCo5kv7DKFfpZ-3__lvg7BUXA
  priority: 102
  providerName: Unpaywall
Title Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction
URI https://link.springer.com/article/10.1038/s41598-022-10358-x
https://www.ncbi.nlm.nih.gov/pubmed/35428863
https://www.proquest.com/docview/2650316591
https://www.proquest.com/docview/2651684538
https://pubmed.ncbi.nlm.nih.gov/PMC9012855
https://www.nature.com/articles/s41598-022-10358-x.pdf
https://doaj.org/article/5558e919f17a4acc8a0431b8b674399e
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5trRDwgPhNYFRG4gHEojVx7CQPCHXVpqnTogmoVJ4iu3a2SSUtbQrrf89dmqRUoIqXSo3dyrHvfN_d2d8BvB1LxQ3vKhd9D-UGvhZuHHnK9YLQj9DCI0im0MBFIs-GwWAkRnuQ1Hdh6FhlvSeWG7WZjilGfuQjlOCeFLH3afbDpapRlF2tS2ioqrSC-VhSjO1D2ydmrBa0j0-Sy89N1IXyWoEXV7dnujw6WqAFo1tm6JPhdxG5t1sWqiTy_xf6_PsQZZNJvQ93l_lMrX6pyeQPY3X6EB5UKJP11mLxCPZs_hjurOtOrp7Aqr_h_GazzdUBpiqKEjbN2LmbE7_tomA5hU8p-snenSfJe6YmVzgzxfV37G_YTbFgdZmVgv1E35uO1jD8T1Zlf9hsTukgEoGnMDw9-do_c6saDO4YsVzhhtLwMLQ6tggEpVZZZkygMk-FigeILqTNpPa4yHAnsNoo40ddo7VvtBUGbR9_Bq18mtsXwKLYxHGgrNQBkchx9E2FzvxYhjqzQvsOePW8p-OKoJzqZEzSMlHOo3S9VimuVVquVXrrwIfmN7M1PcfO3se0nE1PotYuH0znV2mlqSkRoNnYizMvVAHKVaSIf0hHWpa-m3XgoBaGtNL3RbqRTgfeNM2oqZR-UbmdLss-nowCtDAOPF_LTjMSLtANjCR3INySqq2hbrfkN9clG3hMEEMIBw5r-dsMa9dUHDYy-h8z93L3S7-Cez5pEHFgigNoFfOlfY1grdAd2A9HYQfavd7gy6BT6SM-7ct-pwyA4OdFEGHLMLnsffsN3SVDnw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwTGGAkkEAsWh1_JH6YEBubOrpVCG3S3oJdO9ukkpY2Zes_x9_GXZqkVKCKlz0mcSLHd75P3-8Ied1ThjveMiH4HiYUkZWhTpgJmYijBDQ8GMkYGjjqqvaJ-HwqT1fIr7oWBo9V1jKxFNRu0MMY-VYEpgRnSmr2YfgjxK5RmF2tW2iYqrWC2y4hxqrCjo6fXoILN94--AT0fhNF-3vHu-2w6jIQ9sBaKcJYOR7H3moPpo6yJsucEyZjJjZcgP5UPlOWcZkBr3vrjIuSlrM2ctZLB9Kdw3dvkDXBhQbnb21nr_vlaxPlwTyaYLqq1mnxZGsMGhOr2sAHhGuZhFcLGrFsHPAva_fvQ5tN5vY2WZ_kQzO9NP3-H8px_y65U1m19OOMDe-RFZ_fJzdnfS6nD8h0d44xTofzUgVqKkgUOshoJ8wRT3dc0BzDtRhtpW873e47avpnQIni_DuMd_SiGNO6rUtBf4Kvj0d5KHyTVtkmOhxh-glZ7iE5uRZqPCKr-SD3TwhNtNNaGK-sQNA6Dr6wtFmkVWwzL20UEFave9qrANGxL0c_LRPzPElntEqBVmlJq_QqIO-bd4YzOJClo3eQnM1IhPIubwxGZ2klGVIEXPOa6YzFRgAfJwbxjmxiVekr-oBs1MyQVvJlnM53Q0BeNY9BMmC6x-R-MCnHMJUI0GgBeTzjnWYmXILbmSgekHiBqxamuvgkvzgv0cc1mjRSBmSz5r_5tJYtxWbDo_-xck-X__RLst4-PjpMDw-6nWfkVoS7CfE35QZZLUYT_xwMxcK-qHYjJd-uWwD8Bgzce7o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ9weEHcCA4wEEhOL2sSxEz8gBBvVRqHigUl9C3bsbJNKWtqUrX-NX8c5aZJSgSZe9tjGjVyf-8XfAXiRSc0t72ofYw_tR6ERvkoC7QdRHCZo4dFJptTA54HcP4w-DsVwA341d2GorbLRiZWituOMcuSdEF0JHkihgk5et0V82eu9nfzwaYIUVVqbcRpLFum7xSmGb7M3B3tI65dh2PvwdXffrycM-Bl6KqUfS8vj2Bnl0M2RRue5tZHOAx1rHqHtlC6XJuAiRz53xmobJl1rTGiNExY1O8f3XoLLMeeK2gnjYdzmd6iCFgWqvqfT5UlnhraS7rNh9IefReKfrdnCamTAv_zcv9s125rtDbg2LyZ6capHoz_MYu8W3Kz9WfZuyYC3YcMVd-DKcsLl4i4sdlfo4myyuqTAdA2GwsY56_sFIenOSlZQopbyrOxVfzDYZnp0hOdeHn_H9ZadlDPWDHQp2U-M8qmJh-E7WV1nYpMpFZ6I2e7B4YXQ4j5sFuPCPQSWKKtUpJ00EcHVcYyChclDJWOTO2FCD4Lm3NOshkKniRyjtCrJ8yRd0ipFWqUVrdIzD163v5ksgUDOXf2eyNmuJBDv6ovx9CitdUJKUGtOBSoPYh3pLEs0IR2ZxMgqSnQebDXMkNaaZZau5MCD5-1j1AlU6NGFG8-rNYFMIrRlHjxY8k67Ey4w4Ewk9yBe46q1ra4_KU6OK9xxRc6MEB7sNPy32tZ5R7HT8uh_nNyj8__0M7iKYp9-Ohj0H8P1kISJgDfFFmyW07l7gh5iaZ5Wosjg20XL_m-wlXlU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44HNAYCAj8QBiKXUcO87jmJgmJioeqBhPkR07W0VJojaFlb-ec75KYZrYa3KJnPPF9zvf-XcAL1OhmGEj5WPsofww0NyPJVU-DaNAoodHkOy2Bj6OxdEk_HDCT7ZAdGdh6qL9mtKyXqa76rC3C3Q07jAYhk50xLj0z4elya7BtuCIwQewPRl_2v_qOskhRvERJgTtCZkRkxc8vOGFarL-ixDmv4WSfbb0FtxY5qVa_VSz2R8O6fAOfOk-palD-TZcVnqY_vqL5fHq33oXbrcYlew3kvdgy-b34XrTtXL1AFYHa8ZwUq4PHhDVEpyQIiPHfu7YcRcVyd3mq9s7Ja-Ox-PXRM1Oi_m0OvuO8oZMqwXpmrRU5AdG7q4wh-A7SZs7IuXcJZOcAe3A5PD954Mjv-3g4KeIBCs_EoZFkdWxRRgptMoyY0KVURUpFiI2ETYTmjKe4TpitVEmkCOjdWC05QY9J3sIg7zI7WMgMjZxHCordOgo6BhGtlxnQSwinVmuAw9oN6NJ2tKbuy4bs6ROszOZNGpNUK1Jrdbk3IM3_TNlQ-5xqfQ7Zyi9pCPmri8U89OknbzE0afZmMYZjVSo0lQqx16kpRZ15Gc92O3MLGlXi0USIExG_fCYevCiv43_uUveqNwWy1qGChmif_LgUWOV_UgYxyBSCuZBtGGvG0PdvJNPz2ou8dgBFM492Ossez2sy1Sx11v_f2juydXEn8LNwBm_Y9TkuzCo5kv7DKFfpZ-3__lvg7BUXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+performance+analysis+of+K-nearest+neighbour+%28KNN%29+algorithm+and+its+different+variants+for+disease+prediction&rft.jtitle=Scientific+reports&rft.au=Uddin+Shahadat&rft.au=Haque+Ibtisham&rft.au=Lu+Haohui&rft.au=Moni+Mohammad+Ali&rft.date=2022-04-15&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-10358-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon