The Medical Segmentation Decathlon
International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized t...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 4128 - 13 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.07.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-022-30695-9 |
Cover
Abstract | International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)—a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training.
International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a biomedical image segmentation challenge, showing that a method capable of performing well on multiple tasks will generalize well to a previously unseen task. |
---|---|
AbstractList | International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)—a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training.International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a biomedical image segmentation challenge, showing that a method capable of performing well on multiple tasks will generalize well to a previously unseen task. International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)—a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training. International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a biomedical image segmentation challenge, showing that a method capable of performing well on multiple tasks will generalize well to a previously unseen task. International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a biomedical image segmentation challenge, showing that a method capable of performing well on multiple tasks will generalize well to a previously unseen task. International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)-a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training. International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)-a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training.International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)-a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training. |
ArticleNumber | 4128 |
Author | Bilic, Patrick Xu, Zhanwei Chen, Sihong Merhof, Dorit Litjens, Geert Xia, Yingda Tobon-Gomez, Catalina Sarasua, Ignacio Zheng, Yefeng Simpson, Amber L. Park, Beomhee Reinke, Annika Arbeláez, Pablo Bilello, Michel Farahani, Keyvan Xu, Daguang Shen, Wei Antonelli, Michela van Ginneken, Bram Vorontsov, Eugene Kopp-Schneider, Annette Menze, Bjoern Son, Jaemin Wang, Liansheng Napel, Sandy Landman, Bennett A. Ji, Yuanfeng Maier-Hein, Klaus Rezaiifar, Ramin Daza, Laura Kim, Ildoo Bae, Byeonguk Ourselin, Sebastien Wang, Yan Gollub, Marc J. Perslev, Mathias Summers, Ronald M. Jarnagin, William R. He, Baochun Rippel, Oliver Pai, Akshay Meakin, James A. Isensee, Fabian Ronneberger, Olaf Do, Richard K. G. Maier-Hein, Lena Bakas, Spyridon Heckers, Stephan H. Jia, Fucang Rhode, Kawal Christ, Patrick F. Pernicka, Jennifer S. Golia Huisman, Henkjan Wiesenfarth, Manuel Cardoso, M. Jorge Wachinger, Christian Feng, Jianjiang McHugo, Maureen K. |
Author_xml | – sequence: 1 givenname: Michela orcidid: 0000-0002-3005-4523 surname: Antonelli fullname: Antonelli, Michela email: michela.antonelli@kcl.ac.uk organization: School of Biomedical Engineering & Imaging Sciences, King’s College London – sequence: 2 givenname: Annika orcidid: 0000-0003-4363-1876 surname: Reinke fullname: Reinke, Annika organization: Div. Computer Assisted Medical Interventions, German Cancer Research Center (DKFZ), HI Helmholtz Imaging, German Cancer Research Center (DKFZ), Faculty of Mathematics and Computer Science, University of Heidelberg – sequence: 3 givenname: Spyridon orcidid: 0000-0001-8734-6482 surname: Bakas fullname: Bakas, Spyridon organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania – sequence: 4 givenname: Keyvan surname: Farahani fullname: Farahani, Keyvan organization: Center for Biomedical Informatics and Information Technology, National Cancer Institute (NIH) – sequence: 5 givenname: Annette orcidid: 0000-0002-1810-0267 surname: Kopp-Schneider fullname: Kopp-Schneider, Annette organization: Div. Biostatistics, German Cancer Research Center (DKFZ) – sequence: 6 givenname: Bennett A. orcidid: 0000-0001-5733-2127 surname: Landman fullname: Landman, Bennett A. organization: Electrical Engineering and Computer Science, Vanderbilt University – sequence: 7 givenname: Geert orcidid: 0000-0003-1554-1291 surname: Litjens fullname: Litjens, Geert organization: Radboud University Medical Center, Radboud Institute for Health Sciences – sequence: 8 givenname: Bjoern orcidid: 0000-0003-4136-5690 surname: Menze fullname: Menze, Bjoern organization: Quantitative Biomedicine, University of Zurich – sequence: 9 givenname: Olaf surname: Ronneberger fullname: Ronneberger, Olaf organization: DeepMind – sequence: 10 givenname: Ronald M. surname: Summers fullname: Summers, Ronald M. organization: Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center (NIH) – sequence: 11 givenname: Bram surname: van Ginneken fullname: van Ginneken, Bram organization: Radboud University Medical Center, Radboud Institute for Health Sciences – sequence: 12 givenname: Michel surname: Bilello fullname: Bilello, Michel organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania – sequence: 13 givenname: Patrick surname: Bilic fullname: Bilic, Patrick organization: Department of Informatics, Technische Universität München – sequence: 14 givenname: Patrick F. surname: Christ fullname: Christ, Patrick F. organization: Department of Informatics, Technische Universität München – sequence: 15 givenname: Richard K. G. orcidid: 0000-0002-6554-0310 surname: Do fullname: Do, Richard K. G. organization: Department of Radiology, Memorial Sloan Kettering Cancer Center – sequence: 16 givenname: Marc J. surname: Gollub fullname: Gollub, Marc J. organization: Department of Radiology, Memorial Sloan Kettering Cancer Center – sequence: 17 givenname: Stephan H. surname: Heckers fullname: Heckers, Stephan H. organization: Department of Psychiatry & Behavioral Sciences, Vanderbilt University Medical Center – sequence: 18 givenname: Henkjan orcidid: 0000-0001-6753-3221 surname: Huisman fullname: Huisman, Henkjan organization: Radboud University Medical Center, Radboud Institute for Health Sciences – sequence: 19 givenname: William R. surname: Jarnagin fullname: Jarnagin, William R. organization: Department of Surgery, Memorial Sloan Kettering Cancer Center – sequence: 20 givenname: Maureen K. surname: McHugo fullname: McHugo, Maureen K. organization: Department of Psychiatry & Behavioral Sciences, Vanderbilt University Medical Center – sequence: 21 givenname: Sandy orcidid: 0000-0002-6876-5507 surname: Napel fullname: Napel, Sandy organization: Department of Radiology, Stanford University – sequence: 22 givenname: Jennifer S. Golia orcidid: 0000-0002-1076-7948 surname: Pernicka fullname: Pernicka, Jennifer S. Golia organization: Department of Radiology, Memorial Sloan Kettering Cancer Center – sequence: 23 givenname: Kawal surname: Rhode fullname: Rhode, Kawal organization: School of Biomedical Engineering & Imaging Sciences, King’s College London – sequence: 24 givenname: Catalina surname: Tobon-Gomez fullname: Tobon-Gomez, Catalina organization: School of Biomedical Engineering & Imaging Sciences, King’s College London – sequence: 25 givenname: Eugene surname: Vorontsov fullname: Vorontsov, Eugene organization: Department of Computer Science and Software Engineering, École Polytechnique de Montréal – sequence: 26 givenname: James A. surname: Meakin fullname: Meakin, James A. organization: Radboud University Medical Center, Radboud Institute for Health Sciences – sequence: 27 givenname: Sebastien surname: Ourselin fullname: Ourselin, Sebastien organization: School of Biomedical Engineering & Imaging Sciences, King’s College London – sequence: 28 givenname: Manuel surname: Wiesenfarth fullname: Wiesenfarth, Manuel organization: Div. Biostatistics, German Cancer Research Center (DKFZ) – sequence: 29 givenname: Pablo surname: Arbeláez fullname: Arbeláez, Pablo organization: Universidad de los Andes – sequence: 30 givenname: Byeonguk orcidid: 0000-0003-2309-8517 surname: Bae fullname: Bae, Byeonguk organization: VUNO Inc – sequence: 31 givenname: Sihong surname: Chen fullname: Chen, Sihong organization: Tencent Jarvis Lab – sequence: 32 givenname: Laura surname: Daza fullname: Daza, Laura organization: Universidad de los Andes – sequence: 33 givenname: Jianjiang orcidid: 0000-0002-5940-0063 surname: Feng fullname: Feng, Jianjiang organization: Department of Automation, Tsinghua University – sequence: 34 givenname: Baochun surname: He fullname: He, Baochun organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences – sequence: 35 givenname: Fabian surname: Isensee fullname: Isensee, Fabian organization: HI Applied Computer Vision Lab, Division of Medical Image Computing, German Cancer Research Center (DKFZ) – sequence: 36 givenname: Yuanfeng surname: Ji fullname: Ji, Yuanfeng organization: Department of Computer Science, Xiamen University – sequence: 37 givenname: Fucang orcidid: 0000-0003-0075-979X surname: Jia fullname: Jia, Fucang organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences – sequence: 38 givenname: Ildoo surname: Kim fullname: Kim, Ildoo organization: Kakao Brain – sequence: 39 givenname: Klaus orcidid: 0000-0002-6626-2463 surname: Maier-Hein fullname: Maier-Hein, Klaus organization: Cerebriu A/S, Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital – sequence: 40 givenname: Dorit orcidid: 0000-0002-1672-2185 surname: Merhof fullname: Merhof, Dorit organization: Institute of Imaging & Computer Vision, RWTH Aachen University, Fraunhofer Institute for Digital Medicine MEVIS – sequence: 41 givenname: Akshay surname: Pai fullname: Pai, Akshay organization: Cerebriu A/S, Department of Computer Science, University of Copenhagen – sequence: 42 givenname: Beomhee surname: Park fullname: Park, Beomhee organization: VUNO Inc – sequence: 43 givenname: Mathias orcidid: 0000-0002-0358-4692 surname: Perslev fullname: Perslev, Mathias organization: Department of Computer Science, University of Copenhagen – sequence: 44 givenname: Ramin surname: Rezaiifar fullname: Rezaiifar, Ramin organization: MaaDoTaa.com – sequence: 45 givenname: Oliver surname: Rippel fullname: Rippel, Oliver organization: Institute of Imaging & Computer Vision, RWTH Aachen University – sequence: 46 givenname: Ignacio surname: Sarasua fullname: Sarasua, Ignacio organization: Lab for Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent Psychiatry, University Hospital – sequence: 47 givenname: Wei surname: Shen fullname: Shen, Wei organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University – sequence: 48 givenname: Jaemin surname: Son fullname: Son, Jaemin organization: VUNO Inc – sequence: 49 givenname: Christian surname: Wachinger fullname: Wachinger, Christian organization: Lab for Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent Psychiatry, University Hospital – sequence: 50 givenname: Liansheng surname: Wang fullname: Wang, Liansheng organization: Department of Computer Science, Xiamen University – sequence: 51 givenname: Yan surname: Wang fullname: Wang, Yan organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University – sequence: 52 givenname: Yingda surname: Xia fullname: Xia, Yingda organization: Johns Hopkins University – sequence: 53 givenname: Daguang surname: Xu fullname: Xu, Daguang organization: NVIDIA – sequence: 54 givenname: Zhanwei orcidid: 0000-0003-0225-7662 surname: Xu fullname: Xu, Zhanwei organization: Department of Automation, Tsinghua University – sequence: 55 givenname: Yefeng orcidid: 0000-0003-2195-2847 surname: Zheng fullname: Zheng, Yefeng organization: Tencent Jarvis Lab – sequence: 56 givenname: Amber L. surname: Simpson fullname: Simpson, Amber L. organization: School of Computing/Department of Biomedical and Molecular Sciences, Queen’s University – sequence: 57 givenname: Lena surname: Maier-Hein fullname: Maier-Hein, Lena organization: Div. Computer Assisted Medical Interventions, German Cancer Research Center (DKFZ), HI Helmholtz Imaging, German Cancer Research Center (DKFZ), Faculty of Mathematics and Computer Science, University of Heidelberg, Medical Faculty, University of Heidelberg – sequence: 58 givenname: M. Jorge orcidid: 0000-0003-1284-2558 surname: Cardoso fullname: Cardoso, M. Jorge organization: School of Biomedical Engineering & Imaging Sciences, King’s College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35840566$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuFDEQRS0URB7kB1igEWyyafCr_dggRYFApCAWhLVVbVfPeNTTDnYPEn-PJ52EJIt4Y8u-91SV7yHZG9OIhLxh9AOjwnwskkmlG8p5I6iybWNfkANOJWuY5mLvwXmfHJeypnUJy4yUr8i-aI2krVIH5N3VChffMUQPw-InLjc4TjDFNC4-o4dpNaTxNXnZw1Dw-HY_Ir_Ov1ydfWsuf3y9ODu9bHwr6dRoZVEGG4z2SnZdb6TwNLQKLbOCCQQQRioI1Jhegfc-6K4PnUYBApgO4ohczNyQYO2uc9xA_usSRHdzkfLSQZ6iH9B1vNOtNLbjHKTBHqQPCrHnHYINSlfWp5l1ve02GHydKsPwCPr4ZYwrt0x_nOWmknkFnNwCcvq9xTK5TSwehwFGTNviuLKMttzKtkrfP5Gu0zaP9at2KloT0tpW1duHHd23chdFFfBZ4HMqJWN_L2HU7SJ3c-SuAt1N5G5HNU9MPs751ani8LxVzNZS64xLzP_bfsb1D-FCvws |
CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126602 crossref_primary_10_1016_j_media_2023_102937 crossref_primary_10_1590_0100_6991e_20233696edit01_en crossref_primary_10_1109_ACCESS_2024_3456674 crossref_primary_10_1016_j_compmedimag_2025_102510 crossref_primary_10_1016_j_compmedimag_2024_102356 crossref_primary_10_1109_TPAMI_2024_3436105 crossref_primary_10_1117_1_JMI_10_5_054001 crossref_primary_10_1109_ACCESS_2023_3310400 crossref_primary_10_1016_j_compbiomed_2024_109633 crossref_primary_10_1016_j_eswa_2025_126609 crossref_primary_10_1186_s41747_023_00344_x crossref_primary_10_1016_j_compbiomed_2024_108547 crossref_primary_10_1109_TMI_2023_3243069 crossref_primary_10_1186_s12911_024_02722_w crossref_primary_10_1002_mp_16825 crossref_primary_10_1016_j_simpa_2023_100583 crossref_primary_10_1002_mp_16703 crossref_primary_10_1364_OPTCON_515294 crossref_primary_10_1038_s43588_024_00662_z crossref_primary_10_1038_s41597_024_03890_0 crossref_primary_10_1109_TMI_2023_3273158 crossref_primary_10_1109_ACCESS_2023_3331118 crossref_primary_10_1109_JBHI_2024_3422177 crossref_primary_10_1016_j_media_2023_102826 crossref_primary_10_1016_j_compbiomed_2024_108794 crossref_primary_10_1007_s00261_024_04715_9 crossref_primary_10_3390_bioengineering9080343 crossref_primary_10_1038_s41598_025_85632_9 crossref_primary_10_1088_1402_4896_adadc8 crossref_primary_10_1007_s00521_025_11137_1 crossref_primary_10_3390_app142210151 crossref_primary_10_1186_s12938_024_01299_9 crossref_primary_10_1007_s10278_024_01090_1 crossref_primary_10_1016_j_bspc_2024_106464 crossref_primary_10_1007_s40747_024_01625_7 crossref_primary_10_1016_j_bspc_2023_105079 crossref_primary_10_1109_JBHI_2023_3344392 crossref_primary_10_3390_cancers15194829 crossref_primary_10_1109_TMI_2024_3354673 crossref_primary_10_1109_TCSII_2022_3181132 crossref_primary_10_1038_s41598_024_53997_y crossref_primary_10_1016_j_artmed_2022_102476 crossref_primary_10_1016_j_xcrm_2025_102032 crossref_primary_10_1038_s41698_024_00754_z crossref_primary_10_3390_data8050079 crossref_primary_10_1007_s11548_022_02730_z crossref_primary_10_1038_s41592_023_01885_0 crossref_primary_10_1016_j_asoc_2024_111919 crossref_primary_10_1016_j_ejmp_2023_102595 crossref_primary_10_1016_j_media_2023_102957 crossref_primary_10_1016_j_media_2023_102958 crossref_primary_10_1590_0100_6991e_20233696edit01 crossref_primary_10_1117_1_JEI_33_6_063002 crossref_primary_10_7759_cureus_75476 crossref_primary_10_3389_fbioe_2023_1133090 crossref_primary_10_1007_s10140_022_02099_1 crossref_primary_10_1186_s12880_024_01253_0 crossref_primary_10_1109_TMI_2024_3362879 crossref_primary_10_1109_JBHI_2023_3294278 crossref_primary_10_1007_s42001_024_00275_6 crossref_primary_10_2214_AJR_23_29674 crossref_primary_10_1016_j_inffus_2022_12_013 crossref_primary_10_1038_s41597_024_03986_7 crossref_primary_10_1109_JIOT_2024_3424660 crossref_primary_10_1007_s12539_023_00583_x crossref_primary_10_1016_j_media_2023_102830 crossref_primary_10_3390_e26020166 crossref_primary_10_3389_fncom_2024_1365727 crossref_primary_10_1088_1361_6560_ad388a crossref_primary_10_3389_fradi_2023_1241651 crossref_primary_10_1007_s00521_024_10144_y crossref_primary_10_3390_s23073420 crossref_primary_10_1038_s43586_023_00198_y crossref_primary_10_1007_s40710_025_00747_5 crossref_primary_10_1038_s41598_025_90339_y crossref_primary_10_1016_j_compbiomed_2024_108331 crossref_primary_10_1016_j_media_2023_102967 crossref_primary_10_1016_j_compmedimag_2024_102488 crossref_primary_10_1016_j_zemedi_2023_05_001 crossref_primary_10_1016_j_patcog_2024_110528 crossref_primary_10_1109_TUFFC_2023_3255843 crossref_primary_10_1016_j_eswa_2024_124838 crossref_primary_10_1007_s00530_024_01263_6 crossref_primary_10_1007_s42058_024_00145_0 crossref_primary_10_1109_TNSE_2023_3332810 crossref_primary_10_1016_j_media_2025_103458 crossref_primary_10_3390_diagnostics14131332 crossref_primary_10_1155_2023_4229924 crossref_primary_10_1016_j_media_2024_103392 crossref_primary_10_3389_fradi_2023_1202412 crossref_primary_10_1007_s10278_024_01099_6 crossref_primary_10_3390_genes14091742 crossref_primary_10_3390_life12101570 crossref_primary_10_1016_j_cmpb_2022_106818 crossref_primary_10_1109_TMI_2024_3431916 crossref_primary_10_2214_AJR_24_31076 crossref_primary_10_3390_electronics13234697 crossref_primary_10_1016_j_ejmp_2025_104911 crossref_primary_10_1016_j_cmpb_2023_107624 crossref_primary_10_1016_j_bspc_2025_107744 crossref_primary_10_1109_JBHI_2024_3467279 crossref_primary_10_1055_a_2133_2138 crossref_primary_10_1016_j_media_2024_103301 crossref_primary_10_1177_20552076251314546 crossref_primary_10_1016_j_bspc_2024_106926 crossref_primary_10_3390_app15042222 crossref_primary_10_1038_s42256_024_00912_9 crossref_primary_10_1109_TCI_2023_3318993 crossref_primary_10_1007_s11548_024_03217_9 crossref_primary_10_1148_radiol_233029 crossref_primary_10_1016_j_eswa_2024_126364 crossref_primary_10_1109_JBHI_2024_3454760 crossref_primary_10_1016_j_metrad_2023_100007 crossref_primary_10_1109_JBHI_2024_3381844 crossref_primary_10_3389_fninf_2022_933230 crossref_primary_10_3389_fnins_2022_1009581 crossref_primary_10_1016_j_bea_2023_100076 crossref_primary_10_1109_TMI_2024_3395349 crossref_primary_10_1109_TEVC_2024_3353182 crossref_primary_10_1109_TMI_2024_3493456 crossref_primary_10_1016_j_compbiomed_2024_108238 crossref_primary_10_3390_diagnostics13040651 crossref_primary_10_1109_TPAMI_2024_3452629 crossref_primary_10_1016_j_acra_2024_06_015 crossref_primary_10_1016_j_nicl_2024_103668 crossref_primary_10_47093_2218_7332_2023_14_1_39_49 crossref_primary_10_1109_JIOT_2023_3325822 crossref_primary_10_1016_j_intonc_2024_12_001 crossref_primary_10_1109_TCSII_2023_3291168 crossref_primary_10_1109_ACCESS_2022_3141021 crossref_primary_10_1109_JBHI_2024_3360239 crossref_primary_10_3390_bioengineering9090467 crossref_primary_10_1038_s44172_024_00287_0 crossref_primary_10_3390_diagnostics13030546 crossref_primary_10_1117_1_JMI_11_6_064002 crossref_primary_10_1016_j_mex_2024_102995 crossref_primary_10_1016_j_wneu_2024_06_026 crossref_primary_10_1371_journal_pone_0299099 crossref_primary_10_1016_j_compbiomed_2024_108120 crossref_primary_10_1109_JBHI_2024_3392488 crossref_primary_10_3390_diagnostics14040438 crossref_primary_10_1016_j_compbiomed_2024_108125 crossref_primary_10_1109_TMI_2024_3368531 crossref_primary_10_1093_plcell_koae250 crossref_primary_10_1007_s11227_024_06198_3 crossref_primary_10_1016_j_jisa_2023_103628 crossref_primary_10_3390_math11234868 crossref_primary_10_3390_electronics12214411 crossref_primary_10_1016_j_neucom_2024_127315 crossref_primary_10_1016_j_compeleceng_2024_109654 crossref_primary_10_1002_ima_22836 crossref_primary_10_1109_JBHI_2023_3329111 crossref_primary_10_1007_s11042_024_20318_4 crossref_primary_10_1007_s10278_024_01159_x crossref_primary_10_1016_j_cag_2024_104014 crossref_primary_10_1109_TMI_2023_3270140 crossref_primary_10_3389_fphy_2024_1257512 crossref_primary_10_1007_s10278_023_00854_5 crossref_primary_10_1016_j_neucom_2024_128881 crossref_primary_10_1016_j_softx_2024_101673 crossref_primary_10_1016_j_metrad_2024_100102 crossref_primary_10_1016_j_compbiomed_2024_108250 crossref_primary_10_1038_s43856_024_00452_8 crossref_primary_10_24835_1607_0763_1483 crossref_primary_10_1016_j_isci_2025_111974 crossref_primary_10_1016_j_neunet_2025_107396 crossref_primary_10_1016_j_compmedimag_2024_102441 crossref_primary_10_3390_cancers16244268 crossref_primary_10_1371_journal_pone_0299623 crossref_primary_10_1016_j_radi_2024_12_018 crossref_primary_10_1097_RCT_0000000000001641 crossref_primary_10_1038_s42256_024_00864_0 crossref_primary_10_1109_TMI_2022_3225667 crossref_primary_10_1007_s10278_024_01173_z crossref_primary_10_1038_s41597_024_04176_1 crossref_primary_10_1016_j_joen_2024_07_012 crossref_primary_10_56714_bjrs_50_2_3 crossref_primary_10_1016_j_media_2025_103499 crossref_primary_10_3390_drones7050287 crossref_primary_10_1016_j_eswa_2024_124070 crossref_primary_10_1038_s41597_024_03977_8 crossref_primary_10_1016_j_ijrobp_2023_05_034 crossref_primary_10_1109_TUFFC_2023_3289621 crossref_primary_10_1016_j_media_2025_103494 crossref_primary_10_1016_j_bpj_2024_02_019 crossref_primary_10_1109_JBHI_2023_3327726 crossref_primary_10_1016_S2589_7500_24_00154_7 crossref_primary_10_1016_j_eswa_2024_125874 crossref_primary_10_1016_j_patcog_2024_110375 crossref_primary_10_1148_ryai_240353 crossref_primary_10_1016_j_bspc_2024_106172 crossref_primary_10_1007_s42979_022_01166_1 crossref_primary_10_1109_JBHI_2024_3406871 crossref_primary_10_1016_j_cmpb_2022_107147 crossref_primary_10_1016_j_acra_2024_01_004 crossref_primary_10_1109_ACCESS_2024_3424569 crossref_primary_10_1109_ACCESS_2025_3548431 crossref_primary_10_1109_TMI_2023_3326188 crossref_primary_10_1016_j_media_2025_103501 crossref_primary_10_1016_j_bspc_2024_106849 crossref_primary_10_1002_acm2_14474 crossref_primary_10_1109_TMI_2023_3336534 crossref_primary_10_3390_app13010084 crossref_primary_10_1109_TIM_2023_3293887 crossref_primary_10_3389_fncom_2024_1523973 crossref_primary_10_1016_j_compmedimag_2023_102239 crossref_primary_10_1016_j_media_2023_103069 crossref_primary_10_1109_JBHI_2023_3305644 crossref_primary_10_1109_TRPMS_2023_3265863 crossref_primary_10_1016_j_compmedimag_2023_102241 crossref_primary_10_1038_s41592_023_02151_z crossref_primary_10_1109_TAI_2023_3346833 crossref_primary_10_3390_bioengineering10050506 crossref_primary_10_3389_fphys_2024_1478347 crossref_primary_10_1016_j_compbiomed_2024_109009 crossref_primary_10_1038_s41592_023_01879_y crossref_primary_10_1007_s10278_024_01131_9 crossref_primary_10_1109_ACCESS_2024_3496723 crossref_primary_10_1007_s10489_023_05032_2 crossref_primary_10_1093_jnen_nlad040 crossref_primary_10_1109_ACCESS_2025_3548563 crossref_primary_10_1016_j_compbiomed_2023_107578 crossref_primary_10_3389_fradi_2025_1493783 crossref_primary_10_1109_ACCESS_2024_3520594 crossref_primary_10_1007_s11517_024_03052_9 crossref_primary_10_1016_j_diii_2023_09_006 crossref_primary_10_1016_j_media_2022_102488 crossref_primary_10_1109_TSMC_2024_3489029 crossref_primary_10_1007_s10278_024_01226_3 crossref_primary_10_1109_ACCESS_2023_3281832 crossref_primary_10_1038_s41598_024_77582_5 crossref_primary_10_1148_rg_230180 crossref_primary_10_1109_ACCESS_2024_3450961 crossref_primary_10_1088_2632_2153_ad7f24 crossref_primary_10_3390_cancers14010101 crossref_primary_10_1016_j_jdent_2024_105130 crossref_primary_10_1038_s41597_024_03090_w crossref_primary_10_1109_TPAMI_2023_3289667 crossref_primary_10_1002_mp_17423 crossref_primary_10_1016_j_canlet_2025_217438 crossref_primary_10_1007_s11517_024_03119_7 crossref_primary_10_1007_s00521_024_10824_9 crossref_primary_10_1016_j_eswa_2023_122509 crossref_primary_10_1088_2057_1976_adaec3 crossref_primary_10_1016_j_media_2024_103321 crossref_primary_10_1016_j_compbiomed_2023_107228 crossref_primary_10_12968_hmed_2024_0312 crossref_primary_10_1007_s10851_024_01172_3 crossref_primary_10_1109_JBHI_2022_3225205 crossref_primary_10_1016_j_media_2024_103324 crossref_primary_10_1088_2057_1976_adaec7 crossref_primary_10_1093_braincomms_fcad118 crossref_primary_10_3390_cancers16020415 crossref_primary_10_1016_j_ejrad_2024_111534 crossref_primary_10_1038_s41597_023_02766_z crossref_primary_10_1016_j_bspc_2023_104803 crossref_primary_10_1109_TRPMS_2024_3382318 crossref_primary_10_1007_s10278_024_01299_0 crossref_primary_10_1007_s10462_024_10966_1 crossref_primary_10_1016_j_clinimag_2022_11_003 crossref_primary_10_1007_s11548_023_02931_0 crossref_primary_10_1016_j_patcog_2024_110471 crossref_primary_10_3390_bioengineering11101014 crossref_primary_10_1016_j_media_2024_103201 crossref_primary_10_1007_s11042_023_17055_5 crossref_primary_10_1016_j_bspc_2025_107793 crossref_primary_10_1038_s41597_023_02864_y crossref_primary_10_1016_j_eswa_2024_125522 crossref_primary_10_1016_j_compbiomed_2024_108057 crossref_primary_10_1016_j_inffus_2024_102741 crossref_primary_10_1109_TCE_2024_3406963 crossref_primary_10_1016_j_crad_2024_06_006 crossref_primary_10_1109_TMI_2024_3394033 crossref_primary_10_1016_j_compbiomed_2025_109723 crossref_primary_10_1016_j_bspc_2023_105331 crossref_primary_10_1016_j_phro_2025_100740 crossref_primary_10_1109_JBHI_2024_3461951 crossref_primary_10_1109_TASE_2023_3322710 crossref_primary_10_1016_j_media_2024_103310 crossref_primary_10_1587_transinf_2022EDP7058 crossref_primary_10_1007_s00371_024_03726_3 crossref_primary_10_1016_j_neucom_2025_129447 crossref_primary_10_1007_s00132_023_04393_3 crossref_primary_10_1002_jmri_29543 crossref_primary_10_3390_jimaging10110262 crossref_primary_10_3390_cancers15235496 crossref_primary_10_1002_mp_17090 crossref_primary_10_1016_j_neucom_2024_128690 crossref_primary_10_1016_j_metrad_2024_100082 crossref_primary_10_1038_s41597_023_02062_w crossref_primary_10_1007_s11263_024_02328_9 crossref_primary_10_1016_j_neunet_2024_106294 crossref_primary_10_1038_s41597_024_03971_0 crossref_primary_10_1109_TIP_2024_3482175 crossref_primary_10_1016_j_csbj_2025_02_024 crossref_primary_10_1016_j_icte_2024_09_008 crossref_primary_10_1117_1_JMI_11_1_015002 crossref_primary_10_1016_j_media_2024_103260 crossref_primary_10_1016_j_bspc_2023_105834 crossref_primary_10_1016_j_media_2025_103545 crossref_primary_10_1148_radiol_230275 crossref_primary_10_3390_bioengineering10070828 crossref_primary_10_3390_math10193571 crossref_primary_10_3788_CJL240614 crossref_primary_10_1016_j_media_2024_103382 crossref_primary_10_1109_TPAMI_2024_3435571 crossref_primary_10_1117_1_JMI_11_4_044002 crossref_primary_10_1016_j_neunet_2024_106973 crossref_primary_10_1007_s10916_024_02115_6 crossref_primary_10_1016_j_ynirp_2025_100233 crossref_primary_10_1109_ACCESS_2024_3399628 crossref_primary_10_1002_mp_17713 crossref_primary_10_1016_j_asoc_2024_112255 crossref_primary_10_1016_j_cmpb_2022_106883 crossref_primary_10_1016_j_dsp_2022_103784 crossref_primary_10_1016_j_media_2024_103378 crossref_primary_10_1016_j_radonc_2025_110711 crossref_primary_10_3390_app13074445 crossref_primary_10_12677_jisp_2025_141006 crossref_primary_10_1016_j_media_2024_103370 crossref_primary_10_1016_j_media_2022_102680 crossref_primary_10_1016_j_neunet_2025_107414 crossref_primary_10_1109_TMI_2023_3313627 crossref_primary_10_1088_1361_6560_ad0d45 crossref_primary_10_1038_s41598_023_45466_9 crossref_primary_10_1016_j_media_2023_102879 crossref_primary_10_1038_s42256_024_00858_y crossref_primary_10_1103_PhysRevResearch_6_013054 crossref_primary_10_1186_s13244_024_01784_8 crossref_primary_10_1038_s42256_023_00682_w crossref_primary_10_1016_j_media_2024_103241 crossref_primary_10_1109_TMI_2024_3429340 crossref_primary_10_1016_j_compbiomed_2023_107268 crossref_primary_10_1109_TIP_2025_3536208 crossref_primary_10_3389_frai_2024_1423535 crossref_primary_10_1016_j_media_2022_102597 crossref_primary_10_1016_j_yacr_2023_05_001 crossref_primary_10_1016_j_media_2022_102596 crossref_primary_10_1016_j_media_2023_102996 crossref_primary_10_1007_s11548_024_03165_4 crossref_primary_10_2967_jnumed_123_266574 crossref_primary_10_1002_acm2_70066 crossref_primary_10_1016_j_ejrad_2024_111297 crossref_primary_10_1016_j_media_2024_103125 crossref_primary_10_1177_05390184241297742 crossref_primary_10_1016_j_ekir_2023_10_029 crossref_primary_10_1016_j_neunet_2024_106831 crossref_primary_10_1007_s11547_025_01989_x crossref_primary_10_1016_j_acra_2025_02_047 crossref_primary_10_1038_s43856_024_00709_2 crossref_primary_10_3389_fonc_2023_1137803 crossref_primary_10_1016_j_compbiomed_2024_108659 crossref_primary_10_1016_j_cmpb_2023_107453 crossref_primary_10_1109_TMI_2024_3462248 crossref_primary_10_1016_j_cmpb_2024_108038 crossref_primary_10_1016_j_imavis_2024_105246 crossref_primary_10_1109_TMI_2022_3224067 crossref_primary_10_3390_diagnostics12071690 crossref_primary_10_1016_j_neucom_2024_128014 crossref_primary_10_1038_s41598_025_93824_6 crossref_primary_10_3390_healthcare9080938 crossref_primary_10_1371_journal_pone_0311080 crossref_primary_10_1007_s11548_023_02968_1 crossref_primary_10_3390_math12244003 crossref_primary_10_1186_s12938_024_01212_4 |
Cites_doi | 10.1016/j.media.2020.101796 10.1109/TMI.2015.2398818 10.1016/j.media.2020.101920 10.1093/biomet/30.1-2.81 10.1007/s00330-018-5695-5 10.1038/s41551-018-0195-0 10.2307/1932409 10.1038/sdata.2017.117 10.1016/j.media.2016.08.008 10.1016/j.cell.2020.01.021 10.1109/TMI.2014.2377694 10.1016/j.media.2016.07.004 10.1038/srep26286 10.1002/mrm.22931 10.1038/s41467-018-07619-7 10.1007/s00330-018-5748-9 10.1016/j.artmed.2008.07.020 10.1118/1.3357289 10.1016/j.knosys.2020.106622 10.2196/26151 10.1109/TMI.2021.3090082 10.1007/978-3-319-55524-9_14 10.1007/978-3-030-00937-3_45 10.1109/CVPR.2016.90 10.1109/ISBI.2018.8363547 10.1007/978-3-319-24574-4_28 10.1080/01621459.1993.10594284 10.1109/WACV45572.2020.9093608 10.1109/CVPR46437.2021.00578 10.1145/1015330.1015332 10.1109/3DV.2016.79 10.1038/s41598-020-79139-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-30695-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_b2b75489b22a48efa4cd6eef2bea9d67 PMC9287542 35840566 10_1038_s41467_022_30695_9 |
Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Wellcome Trust grantid: WT203148 – fundername: NCI NIH HHS grantid: U01 CA242871 – fundername: Wellcome Trust – fundername: NINDS NIH HHS grantid: R01 NS042645 – fundername: NCI NIH HHS grantid: U24 CA189523 – fundername: Wellcome Trust grantid: WT213038 – fundername: NIH HHS grantid: S10 OD023495 – fundername: NCI NIH HHS grantid: P30 CA008748 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-769e4d9d87c64bbf843c0d56e919313eaa3846ad088f6acccd7bfdb7e3a3a17d3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:34 EDT 2025 Thu Aug 21 14:02:00 EDT 2025 Fri Sep 05 04:52:31 EDT 2025 Wed Aug 13 11:11:51 EDT 2025 Thu Apr 03 07:04:38 EDT 2025 Tue Jul 01 00:58:19 EDT 2025 Thu Apr 24 22:52:20 EDT 2025 Fri Feb 21 02:38:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-769e4d9d87c64bbf843c0d56e919313eaa3846ad088f6acccd7bfdb7e3a3a17d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1672-2185 0000-0003-1284-2558 0000-0001-6753-3221 0000-0003-2195-2847 0000-0001-5733-2127 0000-0002-0358-4692 0000-0002-6626-2463 0000-0002-5940-0063 0000-0001-8734-6482 0000-0003-4363-1876 0000-0003-1554-1291 0000-0002-6876-5507 0000-0003-0225-7662 0000-0003-2309-8517 0000-0002-1810-0267 0000-0002-1076-7948 0000-0003-0075-979X 0000-0002-6554-0310 0000-0002-3005-4523 0000-0003-4136-5690 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-30695-9 |
PMID | 35840566 |
PQID | 2690022779 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b2b75489b22a48efa4cd6eef2bea9d67 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9287542 proquest_miscellaneous_2691052945 proquest_journals_2690022779 pubmed_primary_35840566 crossref_primary_10_1038_s41467_022_30695_9 crossref_citationtrail_10_1038_s41467_022_30695_9 springer_journals_10_1038_s41467_022_30695_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-15 |
PublicationDateYYYYMMDD | 2022-07-15 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wiesenfarth (CR17) 2021; 11 Litjens (CR1) 2016; 6 Ayache, Duncan (CR4) 2016; 33 CR19 Campadelli, Casiraghi, Esposito (CR28) 2009; 45 Sirinukunwattana (CR29) 2017; 35 Poplin (CR2) 2018; 2 CR38 CR15 CR14 CR13 CR35 CR12 Re (CR30) 2011; 66 Assefa (CR6) 2010; 37 CR11 CR33 CR10 Bakas (CR37) 2017; 4 Maier-Hein (CR22) 2020; 66 Breslow, Clayton (CR24) 1993; 88 CR31 Elsken, Metzen, Hutter (CR32) 2019; 20 He, Zhao, Chu (CR16) 2021; 212 Kendall (CR18) 1938; 30 Joskowicz, Cohen, Caplan, Sosna (CR21) 2019; 29 Tobon-Gomez (CR39) 2015; 34 CR7 Stokes (CR3) 2020; 180 Isensee, Jaeger, Kohl, Petersen, Maier-Hein (CR8) 2021; 18 CR27 CR25 CR23 CR45 CR44 CR43 CR20 CR42 Dice (CR9) 1945; 26 CR41 CR40 Maier-Hein (CR34) 2018; 9 Ross (CR26) 2021; 70 Menze (CR36) 2015; 34 Liang (CR5) 2019; 29 TJ Re (30695_CR30) 2011; 66 G Litjens (30695_CR1) 2016; 6 L Maier-Hein (30695_CR22) 2020; 66 T Elsken (30695_CR32) 2019; 20 K Sirinukunwattana (30695_CR29) 2017; 35 30695_CR19 M Wiesenfarth (30695_CR17) 2021; 11 N Ayache (30695_CR4) 2016; 33 P Campadelli (30695_CR28) 2009; 45 S Bakas (30695_CR37) 2017; 4 30695_CR40 30695_CR41 30695_CR20 30695_CR42 L Maier-Hein (30695_CR34) 2018; 9 30695_CR25 30695_CR27 F Isensee (30695_CR8) 2021; 18 30695_CR43 30695_CR44 30695_CR23 30695_CR45 S Liang (30695_CR5) 2019; 29 R Poplin (30695_CR2) 2018; 2 MG Kendall (30695_CR18) 1938; 30 LR Dice (30695_CR9) 1945; 26 X He (30695_CR16) 2021; 212 C Tobon-Gomez (30695_CR39) 2015; 34 JM Stokes (30695_CR3) 2020; 180 T Ross (30695_CR26) 2021; 70 30695_CR31 NE Breslow (30695_CR24) 1993; 88 D Assefa (30695_CR6) 2010; 37 30695_CR7 30695_CR14 30695_CR15 BH Menze (30695_CR36) 2015; 34 30695_CR38 L Joskowicz (30695_CR21) 2019; 29 30695_CR10 30695_CR11 30695_CR33 30695_CR12 30695_CR13 30695_CR35 |
References_xml | – ident: CR45 – volume: 66 start-page: 101796 year: 2020 ident: CR22 article-title: Bias: transparent reporting of biomedical image analysis challenges publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101796 – volume: 34 start-page: 1460 year: 2015 end-page: 1473 ident: CR39 article-title: Benchmark for algorithms segmenting the left atrium from 3d ct and mri datasets publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2015.2398818 – volume: 70 start-page: 101920 year: 2021 ident: CR26 article-title: Comparative validation of multi-instance instrument segmentation in endoscopy: results of the ROBUST-MIS 2019 challenge publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101920 – ident: CR43 – volume: 30 start-page: 81 year: 1938 end-page: 93 ident: CR18 article-title: A new measure of rank correlation publication-title: Biometrika doi: 10.1093/biomet/30.1-2.81 – ident: CR14 – ident: CR12 – ident: CR10 – ident: CR33 – volume: 29 start-page: 1391 year: 2019 end-page: 1399 ident: CR21 article-title: Inter-observer variability of manual contour delineation of structures in ct publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5695-5 – ident: CR35 – volume: 2 start-page: 158 year: 2018 end-page: 164 ident: CR2 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: CR9 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 4 start-page: 1 year: 2017 end-page: 13 ident: CR37 article-title: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features publication-title: Sci. Data doi: 10.1038/sdata.2017.117 – ident: CR40 – ident: CR25 – ident: CR27 – ident: CR42 – ident: CR23 – volume: 18 start-page: 203 year: 2021 end-page: 211 ident: CR8 article-title: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Commun. – volume: 35 start-page: 489 year: 2017 end-page: 502 ident: CR29 article-title: Gland segmentation in colon histology images: the glas challenge contest publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.08.008 – volume: 180 start-page: 688 year: 2020 end-page: 702 ident: CR3 article-title: A deep learning approach to antibiotic discovery publication-title: Cell doi: 10.1016/j.cell.2020.01.021 – ident: CR19 – ident: CR44 – volume: 34 start-page: 1993 year: 2015 end-page: 2024 ident: CR36 article-title: The multimodal brain tumor image segmentation benchmark (brats) publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2014.2377694 – volume: 88 start-page: 9 year: 1993 end-page: 25 ident: CR24 article-title: Approximate inference in generalized linear mixed models publication-title: J. Am. Stat. Assoc. – volume: 20 start-page: 1 year: 2019 end-page: 21 ident: CR32 article-title: Neural architecture search: a survey publication-title: J. Mach. Learn. Res. – ident: CR15 – ident: CR38 – volume: 33 start-page: 1 year: 2016 end-page: 3 ident: CR4 article-title: 20th anniversary of the medical image analysis journal (media) publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.07.004 – ident: CR31 – ident: CR13 – volume: 6 start-page: 1 year: 2016 end-page: 11 ident: CR1 article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis publication-title: Sci. Rep. doi: 10.1038/srep26286 – ident: CR11 – volume: 11 start-page: 1 year: 2021 end-page: 15 ident: CR17 article-title: Methods and open-source toolkit for analyzing and visualizing challenge results publication-title: Sci. Rep. – volume: 66 start-page: 1327 year: 2011 end-page: 1332 ident: CR30 article-title: Enhancing pancreatic adenocarcinoma delineation in diffusion derived intravoxel incoherent motion f-maps through automatic vessel and duct segmentation publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22931 – volume: 9 year: 2018 ident: CR34 article-title: Why rankings of biomedical image analysis competitions should be interpreted with care publication-title: Nat. Commun. doi: 10.1038/s41467-018-07619-7 – ident: CR7 – volume: 29 start-page: 1961 year: 2019 end-page: 1967 ident: CR5 article-title: Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5748-9 – volume: 45 start-page: 185 year: 2009 end-page: 196 ident: CR28 article-title: Liver segmentation from computed tomography scans: a survey and a new algorithm publication-title: Artif. Intel. Med. doi: 10.1016/j.artmed.2008.07.020 – ident: CR41 – volume: 37 start-page: 1722 year: 2010 end-page: 1736 ident: CR6 article-title: Robust texture features for response monitoring of glioblastoma multiforme on-weighted and-flair mr images: A preliminary investigation in terms of identification and segmentation publication-title: Med. Phys. doi: 10.1118/1.3357289 – ident: CR20 – volume: 212 start-page: 106622 year: 2021 ident: CR16 article-title: Automl: a survey of the state-of-the-art publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106622 – ident: 30695_CR40 – volume: 6 start-page: 1 year: 2016 ident: 30695_CR1 publication-title: Sci. Rep. doi: 10.1038/srep26286 – volume: 37 start-page: 1722 year: 2010 ident: 30695_CR6 publication-title: Med. Phys. doi: 10.1118/1.3357289 – volume: 30 start-page: 81 year: 1938 ident: 30695_CR18 publication-title: Biometrika doi: 10.1093/biomet/30.1-2.81 – ident: 30695_CR44 – ident: 30695_CR10 doi: 10.2196/26151 – ident: 30695_CR27 doi: 10.1109/TMI.2021.3090082 – ident: 30695_CR42 – volume: 66 start-page: 1327 year: 2011 ident: 30695_CR30 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22931 – ident: 30695_CR45 doi: 10.1007/978-3-319-55524-9_14 – volume: 26 start-page: 297 year: 1945 ident: 30695_CR9 publication-title: Ecology doi: 10.2307/1932409 – ident: 30695_CR20 doi: 10.1007/978-3-030-00937-3_45 – volume: 9 year: 2018 ident: 30695_CR34 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07619-7 – ident: 30695_CR7 doi: 10.1038/s41467-018-07619-7 – ident: 30695_CR15 doi: 10.1109/CVPR.2016.90 – ident: 30695_CR19 – volume: 29 start-page: 1391 year: 2019 ident: 30695_CR21 publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5695-5 – volume: 66 start-page: 101796 year: 2020 ident: 30695_CR22 publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101796 – ident: 30695_CR38 – volume: 18 start-page: 203 year: 2021 ident: 30695_CR8 publication-title: Nat. Commun. – ident: 30695_CR25 doi: 10.1109/ISBI.2018.8363547 – ident: 30695_CR12 – volume: 70 start-page: 101920 year: 2021 ident: 30695_CR26 publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101920 – volume: 180 start-page: 688 year: 2020 ident: 30695_CR3 publication-title: Cell doi: 10.1016/j.cell.2020.01.021 – ident: 30695_CR11 doi: 10.1007/978-3-319-24574-4_28 – volume: 212 start-page: 106622 year: 2021 ident: 30695_CR16 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106622 – volume: 88 start-page: 9 year: 1993 ident: 30695_CR24 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10594284 – volume: 34 start-page: 1993 year: 2015 ident: 30695_CR36 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2014.2377694 – ident: 30695_CR41 – ident: 30695_CR14 doi: 10.1109/WACV45572.2020.9093608 – ident: 30695_CR33 doi: 10.1109/CVPR46437.2021.00578 – volume: 4 start-page: 1 year: 2017 ident: 30695_CR37 publication-title: Sci. Data doi: 10.1038/sdata.2017.117 – ident: 30695_CR13 doi: 10.1145/1015330.1015332 – volume: 45 start-page: 185 year: 2009 ident: 30695_CR28 publication-title: Artif. Intel. Med. doi: 10.1016/j.artmed.2008.07.020 – ident: 30695_CR23 – volume: 29 start-page: 1961 year: 2019 ident: 30695_CR5 publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5748-9 – volume: 33 start-page: 1 year: 2016 ident: 30695_CR4 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.07.004 – volume: 20 start-page: 1 year: 2019 ident: 30695_CR32 publication-title: J. Mach. Learn. Res. – ident: 30695_CR31 – volume: 34 start-page: 1460 year: 2015 ident: 30695_CR39 publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2015.2398818 – ident: 30695_CR43 doi: 10.1109/3DV.2016.79 – volume: 11 start-page: 1 year: 2021 ident: 30695_CR17 publication-title: Sci. Rep. doi: 10.1038/s41598-020-79139-8 – volume: 35 start-page: 489 year: 2017 ident: 30695_CR29 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.08.008 – ident: 30695_CR35 – volume: 2 start-page: 158 year: 2018 ident: 30695_CR2 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 |
SSID | ssj0000391844 |
Score | 2.752625 |
Snippet | International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely... International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4128 |
SubjectTerms | 692/308/575 692/700/1421/2025 Algorithms Humanities and Social Sciences Hypotheses Image analysis Image processing Image Processing, Computer-Assisted - methods Image segmentation Medical imaging multidisciplinary Science Science (multidisciplinary) State-of-the-art reviews Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgR31ZXqeJNi22SJs3RJyLoRRe8hTxVWLui68F_7yTtrq7Pi9cmJdOZZPJNJ_kGoR1qtcLe8UxzLjKKVZUpUUCwonVg8wW3acL_jotLdtaj5zflzYdSX-FMWEMP3ChuX2PNAVULjbGilfOKGsuc81g7JSyL98hzkX8IpqIPJjAgpe0tmZxU-880-oR4eD1noUDhxE4UCfu_Q5lfD0t-ypjGjeh0Ds22CDI9aCSfR1OuXkDTTU3J10W0DYZP2_RLeuVuH9rLRXV67AJHa39QL6He6cn10VnWFkLIDACqYcaZcNQKW3HDqNa-osTktmROAPwqiFOKAIxQFjyGZ8oYY7n2gTeZKKIKbsky6tSD2q2itPQlZRZQAWGCeuME0SQPJHY6r1SlywQVI6VI07KEh2IVfRmz1aSSjSIlKFJGRUqRoN3xO48NR8avvQ-Drsc9A791fABWl63V5V9WT1B3ZCnZLrpniSHSD4yIHMbYGjfDcgk5EFW7wUvsU4TkJoUvXWkMO5aEABgDPMgSxCdMPiHqZEt9fxcpuQUEniXFCdobTY53sX5Wxdp_qGIdzeAwqwPZZ9lFneHTi9sAoDTUm3FNvAHtPQ45 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrZC4VLwJFBQQN4ia2I4dHxCi0KpCYoWASr1ZduwUpJL0sT3w75lxnFTLo9fYkeyZ8fgbj_0NwEvhnWVdUIVTSheC2aawusJgxTli80W32dJ5x6elPDgUH4_qow1YTm9h6Frl5BOjo_ZDS2fkOwzDOKK7U_rt6VlBVaMouzqV0LCptIJ_EynGbsAmuuS6XMDm7t7y85f51IX40Bsh0uuZkjc7FyL6inipvZRUuHBth4pE_v9Cn39fovwjkxo3qP3bsJWQZf5uNIU7sBH6u3BzrDX56x68QIPIU1om_xqOf6ZHR33-IRB368nQ34fD_b1v7w-KVCChaBForQoldRBe-0a1UjjXNYK3pa9l0AjLKh6s5QgvrEdP0kkUUeuV64hPmVtuK-X5A1j0Qx8eQV53tZAe0QKXWnRt0NzxksjtXNnYxtUZVJNQTJvYw6mIxYmJWWzemFGQBgVpoiCNzuDV_M_pyJ1xbe9dkvXck3iv44fh_NikZWQccwpjLO0Ys6IJnRWtlyF0zAWrvVQZbE-aMmkxXpgr08ng-dyMy4hyI7YPw2XsU1HSU-BMH46KnUfCEaQhTpQZqDWVrw11vaX_8T1SdWsMSGvBMng9GcfVsP4visfXz-IJ3GJkr0TvWW_DYnV-GZ4iNFq5Z8nefwMrnQqg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRZV6QYUCTQsoVL21EYnt-HEsWxCqVC4tEjfLr1CkJVvB7qH_nrHzqBYoUq-xrUxmxs5nz_gbgI_MW0OaIAorhCoYMbIwqsLNirWRzReXTRfPO76f87ML9u2yvlwDMtyFSUn7idIyLdNDdtjRHUtTOuWelzzWF3wB61LQOnr1lE_Hc5XIeC4Z6-_HlFQ-MXTlH5So-p_Cl4_TJB_EStMv6PQ1bPTYMf_SSbsJa6HdgpddNck_b-ADmjzvAy_5j3B1018ravOvIbKzzubtNlycnvycnhV9CYTCIZRaFIKrwLzyUjjOrG0ko670NQ8KgVdFgzEUAYTxuFY03DjnvLBNZEymhppKeLoDk3behreQ103NuEc8QLlijQuKWlpG-jpbSiNtnUE1KEW7nh88lqmY6RSnplJ3itSoSJ0UqVUGn8Yxvzt2jGd7H0ddjz0js3V6ML-90r2ltSVW4C5KWUIMk6ExzHkeQkNsMMpzkcHeYCndT7c7TXCPH7kQBb7jcGzGiRKjH6YN82XqU8WwJsMv3e0MO0pCEYYhEuQZiBWTr4i62tJe_0pk3Aq3nDUjGXwenOOvWP9Wxbv_6_4eXpHov5HQs96DyeJ2GfYRDC3sQfL-e3BJAec priority: 102 providerName: Springer Nature |
Title | The Medical Segmentation Decathlon |
URI | https://link.springer.com/article/10.1038/s41467-022-30695-9 https://www.ncbi.nlm.nih.gov/pubmed/35840566 https://www.proquest.com/docview/2690022779 https://www.proquest.com/docview/2691052945 https://pubmed.ncbi.nlm.nih.gov/PMC9287542 https://doaj.org/article/b2b75489b22a48efa4cd6eef2bea9d67 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ6C9oPEdGFVAvEGgsR07fkBTV1amSkyIUalvlr-yTSopdJ3E_nvOTlJUKDzwkkixLTvnO_tnn_07gJfMGU0qLzIjhMwY0WWmZY6LFWMCmy8Omzbsd3w85ScTNp4W0y3owh21ArzauLQL8aQmi9mbH99vDtHg3zVXxsu3VyyaezyX3uch9uA27EZ_UTjK18L9ODJTbAZj7d2ZzUX34DbFSRlxAV-bqiKj_yYY-udpyt9cqnGmGu3DnRZipoNGJ-7Clq_vwa0m6OTNfXiBmpG2_pn0zJ9_bW8f1el7H0hcZ_P6AUxGx1-GJ1kbKSGziLiWmeDSMyddKSxnxlQlo7bvCu4l4rOceq0p4gztcEipuLbWOmGqQKxMNdW5cPQh7NTz2j-GtKgKxh3CBsolq6yX1NB-YLkz_VKXpkgg74SibEsjHqJZzFR0Z9NSNTJVKFMVZapkAq9WZb41JBr_zH0UZL3KGQiw44f54ly19qQMMQIXW9IQolnpK82s495XxHgtHRcJHHQ9pTqlUoTLSJkosI7nq2S0p-Ak0bWfX8c8efB-MvzTR03HrlrSKUYCYq3L15q6nlJfXkTObokr04KRBF53yvGrWX8XxZP_rugp7JGg1YECtDiAneXi2j9D-LQ0PdgWU4HPcvShB7uDwfhsjO-j49NPn_HrkA97cWOiF23nJz6gG18 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IN4ECgQEJ4iatR07PlSI0lZb2q4QtFJvrh07LVLJlu5WqH-O38bYcVItj956jZ3EHs_Y8_B8A_CaWaNJ7URmhJAZI7rMtByisWKMR_PFbbPy_o7dMR_ts08HxcEC_OpyYfy1ym5PDBu1nVTeR75C0IzzcHdCvj_9kfmqUT662pXQ0LG0gl0NEGMxsWPbXfxEE266urWO6_2GkM2NvY-jLFYZyCrUVmaZ4NIxK20pKs6MqUtGq9wW3EnUbYbUaU3xjNYWxbHm-J_KClN7UGKqqR4KS_G7N2CReQfKABbXNsafv_ReHo-_XjIWs3VyWq5MWdibwiX6nPtCiXMnYigc8C9t9-9Lm39EbsOBuHkHbkdNNv3Qst5dWHDNPbjZ1ra8uA-vkAHTGAZKv7qj7zHJqUnXnceKPZk0D2D_Wkj1EAbNpHGPIS3qgnGL2gnlktWVk9TQ3IPpmbzUpSkSGHZEUVVEK_dFM05UiJrTUrWEVEhIFQipZAJv-3dOW6yOK3uveVr3PT3OdngwOTtSUWyVIUagTScNIZqVrtassty5mhinpeUigeVupVQU_qm6ZNUEXvbNKLY-FqMbNzkPfYY-yMpwpo_ahe1HQlEpRL2UJyDmlnxuqPMtzbfjAA0u0QAuGEngXcccl8P6PymeXD2LF3BrtLe7o3a2xttPYYl43vXQosUyDGZn5-4ZqmUz8zzyfgqH1y1uvwGLdElL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAgYDgBNEmtmPHB4SAZdVSqJCg0t5cv1KQSlK6W6H-NX4dY-dRLY_eeo2dyJmXZzzjbwCeMmc0qb3IjBAyY0RXmZYFBivGBDRfNJs2nHd83OGbu-z9vJyvwa_hLkwoqxxsYjTUrrXhjHxCMIwLcHdCTuq-LOLTdPbq8EcWOkiFTOvQTqMTkW1_8hPDt8XLrSny-hkhs3df3m5mfYeBzKKnsswEl5456SphOTOmrhi1uSu5l-jXFNRrTXF_1g5VsebaWuuEqQMgMdVUF8JR_O4FuCgoY6FthJiL8XwnIK9XjPX3dHJaTRYsWqVYPp_z0CJxZS-MLQP-5ef-Xa75R842boWza3C192HT153QXYc139yAS11Xy5Ob8ARFL-0TQOlnv_-9v97UpFMfUGIP2uYW7J4LoW7DetM2_i6kZV0y7tAvoVyy2npJDc0DjJ7JK12ZMoFiIIqyPU55aJdxoGK-nFaqI6RCQqpISCUTeD6-c9ihdJw5-02g9TgzIGzHB-3RvuoVVhliBEZz0hCiWeVrzazj3tfEeC0dFwlsDJxSvdov1KmQJvB4HEaFDVkY3fj2OM4pQnqV4Z_e6Rg7roSiO4geKU9ArLB8ZamrI823rxEUXGLoWzKSwItBOE6X9X9S3Dv7Lx7BZVQy9WFrZ_s-XCFBdAOmaLkB68ujY_8A_bGleRgFP4W989a034oTRuc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Medical+Segmentation+Decathlon&rft.jtitle=Nature+communications&rft.au=Antonelli%2C+Michela&rft.au=Reinke%2C+Annika&rft.au=Bakas%2C+Spyridon&rft.au=Farahani%2C+Keyvan&rft.date=2022-07-15&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-30695-9&rft_id=info%3Apmid%2F35840566&rft.externalDocID=PMC9287542 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |