The Medical Segmentation Decathlon

International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized t...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 4128 - 13
Main Authors Antonelli, Michela, Reinke, Annika, Bakas, Spyridon, Farahani, Keyvan, Kopp-Schneider, Annette, Landman, Bennett A., Litjens, Geert, Menze, Bjoern, Ronneberger, Olaf, Summers, Ronald M., van Ginneken, Bram, Bilello, Michel, Bilic, Patrick, Christ, Patrick F., Do, Richard K. G., Gollub, Marc J., Heckers, Stephan H., Huisman, Henkjan, Jarnagin, William R., McHugo, Maureen K., Napel, Sandy, Pernicka, Jennifer S. Golia, Rhode, Kawal, Tobon-Gomez, Catalina, Vorontsov, Eugene, Meakin, James A., Ourselin, Sebastien, Wiesenfarth, Manuel, Arbeláez, Pablo, Bae, Byeonguk, Chen, Sihong, Daza, Laura, Feng, Jianjiang, He, Baochun, Isensee, Fabian, Ji, Yuanfeng, Jia, Fucang, Kim, Ildoo, Maier-Hein, Klaus, Merhof, Dorit, Pai, Akshay, Park, Beomhee, Perslev, Mathias, Rezaiifar, Ramin, Rippel, Oliver, Sarasua, Ignacio, Shen, Wei, Son, Jaemin, Wachinger, Christian, Wang, Liansheng, Wang, Yan, Xia, Yingda, Xu, Daguang, Xu, Zhanwei, Zheng, Yefeng, Simpson, Amber L., Maier-Hein, Lena, Cardoso, M. Jorge
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.07.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-022-30695-9

Cover

Abstract International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)—a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training. International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a biomedical image segmentation challenge, showing that a method capable of performing well on multiple tasks will generalize well to a previously unseen task.
AbstractList International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)—a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training.International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a biomedical image segmentation challenge, showing that a method capable of performing well on multiple tasks will generalize well to a previously unseen task.
International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)—a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training. International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a biomedical image segmentation challenge, showing that a method capable of performing well on multiple tasks will generalize well to a previously unseen task.
International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a biomedical image segmentation challenge, showing that a method capable of performing well on multiple tasks will generalize well to a previously unseen task.
International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)-a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training.
International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)-a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training.International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)-a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training.
ArticleNumber 4128
Author Bilic, Patrick
Xu, Zhanwei
Chen, Sihong
Merhof, Dorit
Litjens, Geert
Xia, Yingda
Tobon-Gomez, Catalina
Sarasua, Ignacio
Zheng, Yefeng
Simpson, Amber L.
Park, Beomhee
Reinke, Annika
Arbeláez, Pablo
Bilello, Michel
Farahani, Keyvan
Xu, Daguang
Shen, Wei
Antonelli, Michela
van Ginneken, Bram
Vorontsov, Eugene
Kopp-Schneider, Annette
Menze, Bjoern
Son, Jaemin
Wang, Liansheng
Napel, Sandy
Landman, Bennett A.
Ji, Yuanfeng
Maier-Hein, Klaus
Rezaiifar, Ramin
Daza, Laura
Kim, Ildoo
Bae, Byeonguk
Ourselin, Sebastien
Wang, Yan
Gollub, Marc J.
Perslev, Mathias
Summers, Ronald M.
Jarnagin, William R.
He, Baochun
Rippel, Oliver
Pai, Akshay
Meakin, James A.
Isensee, Fabian
Ronneberger, Olaf
Do, Richard K. G.
Maier-Hein, Lena
Bakas, Spyridon
Heckers, Stephan H.
Jia, Fucang
Rhode, Kawal
Christ, Patrick F.
Pernicka, Jennifer S. Golia
Huisman, Henkjan
Wiesenfarth, Manuel
Cardoso, M. Jorge
Wachinger, Christian
Feng, Jianjiang
McHugo, Maureen K.
Author_xml – sequence: 1
  givenname: Michela
  orcidid: 0000-0002-3005-4523
  surname: Antonelli
  fullname: Antonelli, Michela
  email: michela.antonelli@kcl.ac.uk
  organization: School of Biomedical Engineering & Imaging Sciences, King’s College London
– sequence: 2
  givenname: Annika
  orcidid: 0000-0003-4363-1876
  surname: Reinke
  fullname: Reinke, Annika
  organization: Div. Computer Assisted Medical Interventions, German Cancer Research Center (DKFZ), HI Helmholtz Imaging, German Cancer Research Center (DKFZ), Faculty of Mathematics and Computer Science, University of Heidelberg
– sequence: 3
  givenname: Spyridon
  orcidid: 0000-0001-8734-6482
  surname: Bakas
  fullname: Bakas, Spyridon
  organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
– sequence: 4
  givenname: Keyvan
  surname: Farahani
  fullname: Farahani, Keyvan
  organization: Center for Biomedical Informatics and Information Technology, National Cancer Institute (NIH)
– sequence: 5
  givenname: Annette
  orcidid: 0000-0002-1810-0267
  surname: Kopp-Schneider
  fullname: Kopp-Schneider, Annette
  organization: Div. Biostatistics, German Cancer Research Center (DKFZ)
– sequence: 6
  givenname: Bennett A.
  orcidid: 0000-0001-5733-2127
  surname: Landman
  fullname: Landman, Bennett A.
  organization: Electrical Engineering and Computer Science, Vanderbilt University
– sequence: 7
  givenname: Geert
  orcidid: 0000-0003-1554-1291
  surname: Litjens
  fullname: Litjens, Geert
  organization: Radboud University Medical Center, Radboud Institute for Health Sciences
– sequence: 8
  givenname: Bjoern
  orcidid: 0000-0003-4136-5690
  surname: Menze
  fullname: Menze, Bjoern
  organization: Quantitative Biomedicine, University of Zurich
– sequence: 9
  givenname: Olaf
  surname: Ronneberger
  fullname: Ronneberger, Olaf
  organization: DeepMind
– sequence: 10
  givenname: Ronald M.
  surname: Summers
  fullname: Summers, Ronald M.
  organization: Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center (NIH)
– sequence: 11
  givenname: Bram
  surname: van Ginneken
  fullname: van Ginneken, Bram
  organization: Radboud University Medical Center, Radboud Institute for Health Sciences
– sequence: 12
  givenname: Michel
  surname: Bilello
  fullname: Bilello, Michel
  organization: Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania
– sequence: 13
  givenname: Patrick
  surname: Bilic
  fullname: Bilic, Patrick
  organization: Department of Informatics, Technische Universität München
– sequence: 14
  givenname: Patrick F.
  surname: Christ
  fullname: Christ, Patrick F.
  organization: Department of Informatics, Technische Universität München
– sequence: 15
  givenname: Richard K. G.
  orcidid: 0000-0002-6554-0310
  surname: Do
  fullname: Do, Richard K. G.
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center
– sequence: 16
  givenname: Marc J.
  surname: Gollub
  fullname: Gollub, Marc J.
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center
– sequence: 17
  givenname: Stephan H.
  surname: Heckers
  fullname: Heckers, Stephan H.
  organization: Department of Psychiatry & Behavioral Sciences, Vanderbilt University Medical Center
– sequence: 18
  givenname: Henkjan
  orcidid: 0000-0001-6753-3221
  surname: Huisman
  fullname: Huisman, Henkjan
  organization: Radboud University Medical Center, Radboud Institute for Health Sciences
– sequence: 19
  givenname: William R.
  surname: Jarnagin
  fullname: Jarnagin, William R.
  organization: Department of Surgery, Memorial Sloan Kettering Cancer Center
– sequence: 20
  givenname: Maureen K.
  surname: McHugo
  fullname: McHugo, Maureen K.
  organization: Department of Psychiatry & Behavioral Sciences, Vanderbilt University Medical Center
– sequence: 21
  givenname: Sandy
  orcidid: 0000-0002-6876-5507
  surname: Napel
  fullname: Napel, Sandy
  organization: Department of Radiology, Stanford University
– sequence: 22
  givenname: Jennifer S. Golia
  orcidid: 0000-0002-1076-7948
  surname: Pernicka
  fullname: Pernicka, Jennifer S. Golia
  organization: Department of Radiology, Memorial Sloan Kettering Cancer Center
– sequence: 23
  givenname: Kawal
  surname: Rhode
  fullname: Rhode, Kawal
  organization: School of Biomedical Engineering & Imaging Sciences, King’s College London
– sequence: 24
  givenname: Catalina
  surname: Tobon-Gomez
  fullname: Tobon-Gomez, Catalina
  organization: School of Biomedical Engineering & Imaging Sciences, King’s College London
– sequence: 25
  givenname: Eugene
  surname: Vorontsov
  fullname: Vorontsov, Eugene
  organization: Department of Computer Science and Software Engineering, École Polytechnique de Montréal
– sequence: 26
  givenname: James A.
  surname: Meakin
  fullname: Meakin, James A.
  organization: Radboud University Medical Center, Radboud Institute for Health Sciences
– sequence: 27
  givenname: Sebastien
  surname: Ourselin
  fullname: Ourselin, Sebastien
  organization: School of Biomedical Engineering & Imaging Sciences, King’s College London
– sequence: 28
  givenname: Manuel
  surname: Wiesenfarth
  fullname: Wiesenfarth, Manuel
  organization: Div. Biostatistics, German Cancer Research Center (DKFZ)
– sequence: 29
  givenname: Pablo
  surname: Arbeláez
  fullname: Arbeláez, Pablo
  organization: Universidad de los Andes
– sequence: 30
  givenname: Byeonguk
  orcidid: 0000-0003-2309-8517
  surname: Bae
  fullname: Bae, Byeonguk
  organization: VUNO Inc
– sequence: 31
  givenname: Sihong
  surname: Chen
  fullname: Chen, Sihong
  organization: Tencent Jarvis Lab
– sequence: 32
  givenname: Laura
  surname: Daza
  fullname: Daza, Laura
  organization: Universidad de los Andes
– sequence: 33
  givenname: Jianjiang
  orcidid: 0000-0002-5940-0063
  surname: Feng
  fullname: Feng, Jianjiang
  organization: Department of Automation, Tsinghua University
– sequence: 34
  givenname: Baochun
  surname: He
  fullname: He, Baochun
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– sequence: 35
  givenname: Fabian
  surname: Isensee
  fullname: Isensee, Fabian
  organization: HI Applied Computer Vision Lab, Division of Medical Image Computing, German Cancer Research Center (DKFZ)
– sequence: 36
  givenname: Yuanfeng
  surname: Ji
  fullname: Ji, Yuanfeng
  organization: Department of Computer Science, Xiamen University
– sequence: 37
  givenname: Fucang
  orcidid: 0000-0003-0075-979X
  surname: Jia
  fullname: Jia, Fucang
  organization: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
– sequence: 38
  givenname: Ildoo
  surname: Kim
  fullname: Kim, Ildoo
  organization: Kakao Brain
– sequence: 39
  givenname: Klaus
  orcidid: 0000-0002-6626-2463
  surname: Maier-Hein
  fullname: Maier-Hein, Klaus
  organization: Cerebriu A/S, Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital
– sequence: 40
  givenname: Dorit
  orcidid: 0000-0002-1672-2185
  surname: Merhof
  fullname: Merhof, Dorit
  organization: Institute of Imaging & Computer Vision, RWTH Aachen University, Fraunhofer Institute for Digital Medicine MEVIS
– sequence: 41
  givenname: Akshay
  surname: Pai
  fullname: Pai, Akshay
  organization: Cerebriu A/S, Department of Computer Science, University of Copenhagen
– sequence: 42
  givenname: Beomhee
  surname: Park
  fullname: Park, Beomhee
  organization: VUNO Inc
– sequence: 43
  givenname: Mathias
  orcidid: 0000-0002-0358-4692
  surname: Perslev
  fullname: Perslev, Mathias
  organization: Department of Computer Science, University of Copenhagen
– sequence: 44
  givenname: Ramin
  surname: Rezaiifar
  fullname: Rezaiifar, Ramin
  organization: MaaDoTaa.com
– sequence: 45
  givenname: Oliver
  surname: Rippel
  fullname: Rippel, Oliver
  organization: Institute of Imaging & Computer Vision, RWTH Aachen University
– sequence: 46
  givenname: Ignacio
  surname: Sarasua
  fullname: Sarasua, Ignacio
  organization: Lab for Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent Psychiatry, University Hospital
– sequence: 47
  givenname: Wei
  surname: Shen
  fullname: Shen, Wei
  organization: MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
– sequence: 48
  givenname: Jaemin
  surname: Son
  fullname: Son, Jaemin
  organization: VUNO Inc
– sequence: 49
  givenname: Christian
  surname: Wachinger
  fullname: Wachinger, Christian
  organization: Lab for Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent Psychiatry, University Hospital
– sequence: 50
  givenname: Liansheng
  surname: Wang
  fullname: Wang, Liansheng
  organization: Department of Computer Science, Xiamen University
– sequence: 51
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University
– sequence: 52
  givenname: Yingda
  surname: Xia
  fullname: Xia, Yingda
  organization: Johns Hopkins University
– sequence: 53
  givenname: Daguang
  surname: Xu
  fullname: Xu, Daguang
  organization: NVIDIA
– sequence: 54
  givenname: Zhanwei
  orcidid: 0000-0003-0225-7662
  surname: Xu
  fullname: Xu, Zhanwei
  organization: Department of Automation, Tsinghua University
– sequence: 55
  givenname: Yefeng
  orcidid: 0000-0003-2195-2847
  surname: Zheng
  fullname: Zheng, Yefeng
  organization: Tencent Jarvis Lab
– sequence: 56
  givenname: Amber L.
  surname: Simpson
  fullname: Simpson, Amber L.
  organization: School of Computing/Department of Biomedical and Molecular Sciences, Queen’s University
– sequence: 57
  givenname: Lena
  surname: Maier-Hein
  fullname: Maier-Hein, Lena
  organization: Div. Computer Assisted Medical Interventions, German Cancer Research Center (DKFZ), HI Helmholtz Imaging, German Cancer Research Center (DKFZ), Faculty of Mathematics and Computer Science, University of Heidelberg, Medical Faculty, University of Heidelberg
– sequence: 58
  givenname: M. Jorge
  orcidid: 0000-0003-1284-2558
  surname: Cardoso
  fullname: Cardoso, M. Jorge
  organization: School of Biomedical Engineering & Imaging Sciences, King’s College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35840566$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URB7kB1igEWyyafCr_dggRYFApCAWhLVVbVfPeNTTDnYPEn-PJ52EJIt4Y8u-91SV7yHZG9OIhLxh9AOjwnwskkmlG8p5I6iybWNfkANOJWuY5mLvwXmfHJeypnUJy4yUr8i-aI2krVIH5N3VChffMUQPw-InLjc4TjDFNC4-o4dpNaTxNXnZw1Dw-HY_Ir_Ov1ydfWsuf3y9ODu9bHwr6dRoZVEGG4z2SnZdb6TwNLQKLbOCCQQQRioI1Jhegfc-6K4PnUYBApgO4ohczNyQYO2uc9xA_usSRHdzkfLSQZ6iH9B1vNOtNLbjHKTBHqQPCrHnHYINSlfWp5l1ve02GHydKsPwCPr4ZYwrt0x_nOWmknkFnNwCcvq9xTK5TSwehwFGTNviuLKMttzKtkrfP5Gu0zaP9at2KloT0tpW1duHHd23chdFFfBZ4HMqJWN_L2HU7SJ3c-SuAt1N5G5HNU9MPs751ani8LxVzNZS64xLzP_bfsb1D-FCvws
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126602
crossref_primary_10_1016_j_media_2023_102937
crossref_primary_10_1590_0100_6991e_20233696edit01_en
crossref_primary_10_1109_ACCESS_2024_3456674
crossref_primary_10_1016_j_compmedimag_2025_102510
crossref_primary_10_1016_j_compmedimag_2024_102356
crossref_primary_10_1109_TPAMI_2024_3436105
crossref_primary_10_1117_1_JMI_10_5_054001
crossref_primary_10_1109_ACCESS_2023_3310400
crossref_primary_10_1016_j_compbiomed_2024_109633
crossref_primary_10_1016_j_eswa_2025_126609
crossref_primary_10_1186_s41747_023_00344_x
crossref_primary_10_1016_j_compbiomed_2024_108547
crossref_primary_10_1109_TMI_2023_3243069
crossref_primary_10_1186_s12911_024_02722_w
crossref_primary_10_1002_mp_16825
crossref_primary_10_1016_j_simpa_2023_100583
crossref_primary_10_1002_mp_16703
crossref_primary_10_1364_OPTCON_515294
crossref_primary_10_1038_s43588_024_00662_z
crossref_primary_10_1038_s41597_024_03890_0
crossref_primary_10_1109_TMI_2023_3273158
crossref_primary_10_1109_ACCESS_2023_3331118
crossref_primary_10_1109_JBHI_2024_3422177
crossref_primary_10_1016_j_media_2023_102826
crossref_primary_10_1016_j_compbiomed_2024_108794
crossref_primary_10_1007_s00261_024_04715_9
crossref_primary_10_3390_bioengineering9080343
crossref_primary_10_1038_s41598_025_85632_9
crossref_primary_10_1088_1402_4896_adadc8
crossref_primary_10_1007_s00521_025_11137_1
crossref_primary_10_3390_app142210151
crossref_primary_10_1186_s12938_024_01299_9
crossref_primary_10_1007_s10278_024_01090_1
crossref_primary_10_1016_j_bspc_2024_106464
crossref_primary_10_1007_s40747_024_01625_7
crossref_primary_10_1016_j_bspc_2023_105079
crossref_primary_10_1109_JBHI_2023_3344392
crossref_primary_10_3390_cancers15194829
crossref_primary_10_1109_TMI_2024_3354673
crossref_primary_10_1109_TCSII_2022_3181132
crossref_primary_10_1038_s41598_024_53997_y
crossref_primary_10_1016_j_artmed_2022_102476
crossref_primary_10_1016_j_xcrm_2025_102032
crossref_primary_10_1038_s41698_024_00754_z
crossref_primary_10_3390_data8050079
crossref_primary_10_1007_s11548_022_02730_z
crossref_primary_10_1038_s41592_023_01885_0
crossref_primary_10_1016_j_asoc_2024_111919
crossref_primary_10_1016_j_ejmp_2023_102595
crossref_primary_10_1016_j_media_2023_102957
crossref_primary_10_1016_j_media_2023_102958
crossref_primary_10_1590_0100_6991e_20233696edit01
crossref_primary_10_1117_1_JEI_33_6_063002
crossref_primary_10_7759_cureus_75476
crossref_primary_10_3389_fbioe_2023_1133090
crossref_primary_10_1007_s10140_022_02099_1
crossref_primary_10_1186_s12880_024_01253_0
crossref_primary_10_1109_TMI_2024_3362879
crossref_primary_10_1109_JBHI_2023_3294278
crossref_primary_10_1007_s42001_024_00275_6
crossref_primary_10_2214_AJR_23_29674
crossref_primary_10_1016_j_inffus_2022_12_013
crossref_primary_10_1038_s41597_024_03986_7
crossref_primary_10_1109_JIOT_2024_3424660
crossref_primary_10_1007_s12539_023_00583_x
crossref_primary_10_1016_j_media_2023_102830
crossref_primary_10_3390_e26020166
crossref_primary_10_3389_fncom_2024_1365727
crossref_primary_10_1088_1361_6560_ad388a
crossref_primary_10_3389_fradi_2023_1241651
crossref_primary_10_1007_s00521_024_10144_y
crossref_primary_10_3390_s23073420
crossref_primary_10_1038_s43586_023_00198_y
crossref_primary_10_1007_s40710_025_00747_5
crossref_primary_10_1038_s41598_025_90339_y
crossref_primary_10_1016_j_compbiomed_2024_108331
crossref_primary_10_1016_j_media_2023_102967
crossref_primary_10_1016_j_compmedimag_2024_102488
crossref_primary_10_1016_j_zemedi_2023_05_001
crossref_primary_10_1016_j_patcog_2024_110528
crossref_primary_10_1109_TUFFC_2023_3255843
crossref_primary_10_1016_j_eswa_2024_124838
crossref_primary_10_1007_s00530_024_01263_6
crossref_primary_10_1007_s42058_024_00145_0
crossref_primary_10_1109_TNSE_2023_3332810
crossref_primary_10_1016_j_media_2025_103458
crossref_primary_10_3390_diagnostics14131332
crossref_primary_10_1155_2023_4229924
crossref_primary_10_1016_j_media_2024_103392
crossref_primary_10_3389_fradi_2023_1202412
crossref_primary_10_1007_s10278_024_01099_6
crossref_primary_10_3390_genes14091742
crossref_primary_10_3390_life12101570
crossref_primary_10_1016_j_cmpb_2022_106818
crossref_primary_10_1109_TMI_2024_3431916
crossref_primary_10_2214_AJR_24_31076
crossref_primary_10_3390_electronics13234697
crossref_primary_10_1016_j_ejmp_2025_104911
crossref_primary_10_1016_j_cmpb_2023_107624
crossref_primary_10_1016_j_bspc_2025_107744
crossref_primary_10_1109_JBHI_2024_3467279
crossref_primary_10_1055_a_2133_2138
crossref_primary_10_1016_j_media_2024_103301
crossref_primary_10_1177_20552076251314546
crossref_primary_10_1016_j_bspc_2024_106926
crossref_primary_10_3390_app15042222
crossref_primary_10_1038_s42256_024_00912_9
crossref_primary_10_1109_TCI_2023_3318993
crossref_primary_10_1007_s11548_024_03217_9
crossref_primary_10_1148_radiol_233029
crossref_primary_10_1016_j_eswa_2024_126364
crossref_primary_10_1109_JBHI_2024_3454760
crossref_primary_10_1016_j_metrad_2023_100007
crossref_primary_10_1109_JBHI_2024_3381844
crossref_primary_10_3389_fninf_2022_933230
crossref_primary_10_3389_fnins_2022_1009581
crossref_primary_10_1016_j_bea_2023_100076
crossref_primary_10_1109_TMI_2024_3395349
crossref_primary_10_1109_TEVC_2024_3353182
crossref_primary_10_1109_TMI_2024_3493456
crossref_primary_10_1016_j_compbiomed_2024_108238
crossref_primary_10_3390_diagnostics13040651
crossref_primary_10_1109_TPAMI_2024_3452629
crossref_primary_10_1016_j_acra_2024_06_015
crossref_primary_10_1016_j_nicl_2024_103668
crossref_primary_10_47093_2218_7332_2023_14_1_39_49
crossref_primary_10_1109_JIOT_2023_3325822
crossref_primary_10_1016_j_intonc_2024_12_001
crossref_primary_10_1109_TCSII_2023_3291168
crossref_primary_10_1109_ACCESS_2022_3141021
crossref_primary_10_1109_JBHI_2024_3360239
crossref_primary_10_3390_bioengineering9090467
crossref_primary_10_1038_s44172_024_00287_0
crossref_primary_10_3390_diagnostics13030546
crossref_primary_10_1117_1_JMI_11_6_064002
crossref_primary_10_1016_j_mex_2024_102995
crossref_primary_10_1016_j_wneu_2024_06_026
crossref_primary_10_1371_journal_pone_0299099
crossref_primary_10_1016_j_compbiomed_2024_108120
crossref_primary_10_1109_JBHI_2024_3392488
crossref_primary_10_3390_diagnostics14040438
crossref_primary_10_1016_j_compbiomed_2024_108125
crossref_primary_10_1109_TMI_2024_3368531
crossref_primary_10_1093_plcell_koae250
crossref_primary_10_1007_s11227_024_06198_3
crossref_primary_10_1016_j_jisa_2023_103628
crossref_primary_10_3390_math11234868
crossref_primary_10_3390_electronics12214411
crossref_primary_10_1016_j_neucom_2024_127315
crossref_primary_10_1016_j_compeleceng_2024_109654
crossref_primary_10_1002_ima_22836
crossref_primary_10_1109_JBHI_2023_3329111
crossref_primary_10_1007_s11042_024_20318_4
crossref_primary_10_1007_s10278_024_01159_x
crossref_primary_10_1016_j_cag_2024_104014
crossref_primary_10_1109_TMI_2023_3270140
crossref_primary_10_3389_fphy_2024_1257512
crossref_primary_10_1007_s10278_023_00854_5
crossref_primary_10_1016_j_neucom_2024_128881
crossref_primary_10_1016_j_softx_2024_101673
crossref_primary_10_1016_j_metrad_2024_100102
crossref_primary_10_1016_j_compbiomed_2024_108250
crossref_primary_10_1038_s43856_024_00452_8
crossref_primary_10_24835_1607_0763_1483
crossref_primary_10_1016_j_isci_2025_111974
crossref_primary_10_1016_j_neunet_2025_107396
crossref_primary_10_1016_j_compmedimag_2024_102441
crossref_primary_10_3390_cancers16244268
crossref_primary_10_1371_journal_pone_0299623
crossref_primary_10_1016_j_radi_2024_12_018
crossref_primary_10_1097_RCT_0000000000001641
crossref_primary_10_1038_s42256_024_00864_0
crossref_primary_10_1109_TMI_2022_3225667
crossref_primary_10_1007_s10278_024_01173_z
crossref_primary_10_1038_s41597_024_04176_1
crossref_primary_10_1016_j_joen_2024_07_012
crossref_primary_10_56714_bjrs_50_2_3
crossref_primary_10_1016_j_media_2025_103499
crossref_primary_10_3390_drones7050287
crossref_primary_10_1016_j_eswa_2024_124070
crossref_primary_10_1038_s41597_024_03977_8
crossref_primary_10_1016_j_ijrobp_2023_05_034
crossref_primary_10_1109_TUFFC_2023_3289621
crossref_primary_10_1016_j_media_2025_103494
crossref_primary_10_1016_j_bpj_2024_02_019
crossref_primary_10_1109_JBHI_2023_3327726
crossref_primary_10_1016_S2589_7500_24_00154_7
crossref_primary_10_1016_j_eswa_2024_125874
crossref_primary_10_1016_j_patcog_2024_110375
crossref_primary_10_1148_ryai_240353
crossref_primary_10_1016_j_bspc_2024_106172
crossref_primary_10_1007_s42979_022_01166_1
crossref_primary_10_1109_JBHI_2024_3406871
crossref_primary_10_1016_j_cmpb_2022_107147
crossref_primary_10_1016_j_acra_2024_01_004
crossref_primary_10_1109_ACCESS_2024_3424569
crossref_primary_10_1109_ACCESS_2025_3548431
crossref_primary_10_1109_TMI_2023_3326188
crossref_primary_10_1016_j_media_2025_103501
crossref_primary_10_1016_j_bspc_2024_106849
crossref_primary_10_1002_acm2_14474
crossref_primary_10_1109_TMI_2023_3336534
crossref_primary_10_3390_app13010084
crossref_primary_10_1109_TIM_2023_3293887
crossref_primary_10_3389_fncom_2024_1523973
crossref_primary_10_1016_j_compmedimag_2023_102239
crossref_primary_10_1016_j_media_2023_103069
crossref_primary_10_1109_JBHI_2023_3305644
crossref_primary_10_1109_TRPMS_2023_3265863
crossref_primary_10_1016_j_compmedimag_2023_102241
crossref_primary_10_1038_s41592_023_02151_z
crossref_primary_10_1109_TAI_2023_3346833
crossref_primary_10_3390_bioengineering10050506
crossref_primary_10_3389_fphys_2024_1478347
crossref_primary_10_1016_j_compbiomed_2024_109009
crossref_primary_10_1038_s41592_023_01879_y
crossref_primary_10_1007_s10278_024_01131_9
crossref_primary_10_1109_ACCESS_2024_3496723
crossref_primary_10_1007_s10489_023_05032_2
crossref_primary_10_1093_jnen_nlad040
crossref_primary_10_1109_ACCESS_2025_3548563
crossref_primary_10_1016_j_compbiomed_2023_107578
crossref_primary_10_3389_fradi_2025_1493783
crossref_primary_10_1109_ACCESS_2024_3520594
crossref_primary_10_1007_s11517_024_03052_9
crossref_primary_10_1016_j_diii_2023_09_006
crossref_primary_10_1016_j_media_2022_102488
crossref_primary_10_1109_TSMC_2024_3489029
crossref_primary_10_1007_s10278_024_01226_3
crossref_primary_10_1109_ACCESS_2023_3281832
crossref_primary_10_1038_s41598_024_77582_5
crossref_primary_10_1148_rg_230180
crossref_primary_10_1109_ACCESS_2024_3450961
crossref_primary_10_1088_2632_2153_ad7f24
crossref_primary_10_3390_cancers14010101
crossref_primary_10_1016_j_jdent_2024_105130
crossref_primary_10_1038_s41597_024_03090_w
crossref_primary_10_1109_TPAMI_2023_3289667
crossref_primary_10_1002_mp_17423
crossref_primary_10_1016_j_canlet_2025_217438
crossref_primary_10_1007_s11517_024_03119_7
crossref_primary_10_1007_s00521_024_10824_9
crossref_primary_10_1016_j_eswa_2023_122509
crossref_primary_10_1088_2057_1976_adaec3
crossref_primary_10_1016_j_media_2024_103321
crossref_primary_10_1016_j_compbiomed_2023_107228
crossref_primary_10_12968_hmed_2024_0312
crossref_primary_10_1007_s10851_024_01172_3
crossref_primary_10_1109_JBHI_2022_3225205
crossref_primary_10_1016_j_media_2024_103324
crossref_primary_10_1088_2057_1976_adaec7
crossref_primary_10_1093_braincomms_fcad118
crossref_primary_10_3390_cancers16020415
crossref_primary_10_1016_j_ejrad_2024_111534
crossref_primary_10_1038_s41597_023_02766_z
crossref_primary_10_1016_j_bspc_2023_104803
crossref_primary_10_1109_TRPMS_2024_3382318
crossref_primary_10_1007_s10278_024_01299_0
crossref_primary_10_1007_s10462_024_10966_1
crossref_primary_10_1016_j_clinimag_2022_11_003
crossref_primary_10_1007_s11548_023_02931_0
crossref_primary_10_1016_j_patcog_2024_110471
crossref_primary_10_3390_bioengineering11101014
crossref_primary_10_1016_j_media_2024_103201
crossref_primary_10_1007_s11042_023_17055_5
crossref_primary_10_1016_j_bspc_2025_107793
crossref_primary_10_1038_s41597_023_02864_y
crossref_primary_10_1016_j_eswa_2024_125522
crossref_primary_10_1016_j_compbiomed_2024_108057
crossref_primary_10_1016_j_inffus_2024_102741
crossref_primary_10_1109_TCE_2024_3406963
crossref_primary_10_1016_j_crad_2024_06_006
crossref_primary_10_1109_TMI_2024_3394033
crossref_primary_10_1016_j_compbiomed_2025_109723
crossref_primary_10_1016_j_bspc_2023_105331
crossref_primary_10_1016_j_phro_2025_100740
crossref_primary_10_1109_JBHI_2024_3461951
crossref_primary_10_1109_TASE_2023_3322710
crossref_primary_10_1016_j_media_2024_103310
crossref_primary_10_1587_transinf_2022EDP7058
crossref_primary_10_1007_s00371_024_03726_3
crossref_primary_10_1016_j_neucom_2025_129447
crossref_primary_10_1007_s00132_023_04393_3
crossref_primary_10_1002_jmri_29543
crossref_primary_10_3390_jimaging10110262
crossref_primary_10_3390_cancers15235496
crossref_primary_10_1002_mp_17090
crossref_primary_10_1016_j_neucom_2024_128690
crossref_primary_10_1016_j_metrad_2024_100082
crossref_primary_10_1038_s41597_023_02062_w
crossref_primary_10_1007_s11263_024_02328_9
crossref_primary_10_1016_j_neunet_2024_106294
crossref_primary_10_1038_s41597_024_03971_0
crossref_primary_10_1109_TIP_2024_3482175
crossref_primary_10_1016_j_csbj_2025_02_024
crossref_primary_10_1016_j_icte_2024_09_008
crossref_primary_10_1117_1_JMI_11_1_015002
crossref_primary_10_1016_j_media_2024_103260
crossref_primary_10_1016_j_bspc_2023_105834
crossref_primary_10_1016_j_media_2025_103545
crossref_primary_10_1148_radiol_230275
crossref_primary_10_3390_bioengineering10070828
crossref_primary_10_3390_math10193571
crossref_primary_10_3788_CJL240614
crossref_primary_10_1016_j_media_2024_103382
crossref_primary_10_1109_TPAMI_2024_3435571
crossref_primary_10_1117_1_JMI_11_4_044002
crossref_primary_10_1016_j_neunet_2024_106973
crossref_primary_10_1007_s10916_024_02115_6
crossref_primary_10_1016_j_ynirp_2025_100233
crossref_primary_10_1109_ACCESS_2024_3399628
crossref_primary_10_1002_mp_17713
crossref_primary_10_1016_j_asoc_2024_112255
crossref_primary_10_1016_j_cmpb_2022_106883
crossref_primary_10_1016_j_dsp_2022_103784
crossref_primary_10_1016_j_media_2024_103378
crossref_primary_10_1016_j_radonc_2025_110711
crossref_primary_10_3390_app13074445
crossref_primary_10_12677_jisp_2025_141006
crossref_primary_10_1016_j_media_2024_103370
crossref_primary_10_1016_j_media_2022_102680
crossref_primary_10_1016_j_neunet_2025_107414
crossref_primary_10_1109_TMI_2023_3313627
crossref_primary_10_1088_1361_6560_ad0d45
crossref_primary_10_1038_s41598_023_45466_9
crossref_primary_10_1016_j_media_2023_102879
crossref_primary_10_1038_s42256_024_00858_y
crossref_primary_10_1103_PhysRevResearch_6_013054
crossref_primary_10_1186_s13244_024_01784_8
crossref_primary_10_1038_s42256_023_00682_w
crossref_primary_10_1016_j_media_2024_103241
crossref_primary_10_1109_TMI_2024_3429340
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_1109_TIP_2025_3536208
crossref_primary_10_3389_frai_2024_1423535
crossref_primary_10_1016_j_media_2022_102597
crossref_primary_10_1016_j_yacr_2023_05_001
crossref_primary_10_1016_j_media_2022_102596
crossref_primary_10_1016_j_media_2023_102996
crossref_primary_10_1007_s11548_024_03165_4
crossref_primary_10_2967_jnumed_123_266574
crossref_primary_10_1002_acm2_70066
crossref_primary_10_1016_j_ejrad_2024_111297
crossref_primary_10_1016_j_media_2024_103125
crossref_primary_10_1177_05390184241297742
crossref_primary_10_1016_j_ekir_2023_10_029
crossref_primary_10_1016_j_neunet_2024_106831
crossref_primary_10_1007_s11547_025_01989_x
crossref_primary_10_1016_j_acra_2025_02_047
crossref_primary_10_1038_s43856_024_00709_2
crossref_primary_10_3389_fonc_2023_1137803
crossref_primary_10_1016_j_compbiomed_2024_108659
crossref_primary_10_1016_j_cmpb_2023_107453
crossref_primary_10_1109_TMI_2024_3462248
crossref_primary_10_1016_j_cmpb_2024_108038
crossref_primary_10_1016_j_imavis_2024_105246
crossref_primary_10_1109_TMI_2022_3224067
crossref_primary_10_3390_diagnostics12071690
crossref_primary_10_1016_j_neucom_2024_128014
crossref_primary_10_1038_s41598_025_93824_6
crossref_primary_10_3390_healthcare9080938
crossref_primary_10_1371_journal_pone_0311080
crossref_primary_10_1007_s11548_023_02968_1
crossref_primary_10_3390_math12244003
crossref_primary_10_1186_s12938_024_01212_4
Cites_doi 10.1016/j.media.2020.101796
10.1109/TMI.2015.2398818
10.1016/j.media.2020.101920
10.1093/biomet/30.1-2.81
10.1007/s00330-018-5695-5
10.1038/s41551-018-0195-0
10.2307/1932409
10.1038/sdata.2017.117
10.1016/j.media.2016.08.008
10.1016/j.cell.2020.01.021
10.1109/TMI.2014.2377694
10.1016/j.media.2016.07.004
10.1038/srep26286
10.1002/mrm.22931
10.1038/s41467-018-07619-7
10.1007/s00330-018-5748-9
10.1016/j.artmed.2008.07.020
10.1118/1.3357289
10.1016/j.knosys.2020.106622
10.2196/26151
10.1109/TMI.2021.3090082
10.1007/978-3-319-55524-9_14
10.1007/978-3-030-00937-3_45
10.1109/CVPR.2016.90
10.1109/ISBI.2018.8363547
10.1007/978-3-319-24574-4_28
10.1080/01621459.1993.10594284
10.1109/WACV45572.2020.9093608
10.1109/CVPR46437.2021.00578
10.1145/1015330.1015332
10.1109/3DV.2016.79
10.1038/s41598-020-79139-8
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-30695-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_b2b75489b22a48efa4cd6eef2bea9d67
PMC9287542
35840566
10_1038_s41467_022_30695_9
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Wellcome Trust
  grantid: WT203148
– fundername: NCI NIH HHS
  grantid: U01 CA242871
– fundername: Wellcome Trust
– fundername: NINDS NIH HHS
  grantid: R01 NS042645
– fundername: NCI NIH HHS
  grantid: U24 CA189523
– fundername: Wellcome Trust
  grantid: WT213038
– fundername: NIH HHS
  grantid: S10 OD023495
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-769e4d9d87c64bbf843c0d56e919313eaa3846ad088f6acccd7bfdb7e3a3a17d3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:34 EDT 2025
Thu Aug 21 14:02:00 EDT 2025
Fri Sep 05 04:52:31 EDT 2025
Wed Aug 13 11:11:51 EDT 2025
Thu Apr 03 07:04:38 EDT 2025
Tue Jul 01 00:58:19 EDT 2025
Thu Apr 24 22:52:20 EDT 2025
Fri Feb 21 02:38:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-769e4d9d87c64bbf843c0d56e919313eaa3846ad088f6acccd7bfdb7e3a3a17d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1672-2185
0000-0003-1284-2558
0000-0001-6753-3221
0000-0003-2195-2847
0000-0001-5733-2127
0000-0002-0358-4692
0000-0002-6626-2463
0000-0002-5940-0063
0000-0001-8734-6482
0000-0003-4363-1876
0000-0003-1554-1291
0000-0002-6876-5507
0000-0003-0225-7662
0000-0003-2309-8517
0000-0002-1810-0267
0000-0002-1076-7948
0000-0003-0075-979X
0000-0002-6554-0310
0000-0002-3005-4523
0000-0003-4136-5690
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-30695-9
PMID 35840566
PQID 2690022779
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_b2b75489b22a48efa4cd6eef2bea9d67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9287542
proquest_miscellaneous_2691052945
proquest_journals_2690022779
pubmed_primary_35840566
crossref_primary_10_1038_s41467_022_30695_9
crossref_citationtrail_10_1038_s41467_022_30695_9
springer_journals_10_1038_s41467_022_30695_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wiesenfarth (CR17) 2021; 11
Litjens (CR1) 2016; 6
Ayache, Duncan (CR4) 2016; 33
CR19
Campadelli, Casiraghi, Esposito (CR28) 2009; 45
Sirinukunwattana (CR29) 2017; 35
Poplin (CR2) 2018; 2
CR38
CR15
CR14
CR13
CR35
CR12
Re (CR30) 2011; 66
Assefa (CR6) 2010; 37
CR11
CR33
CR10
Bakas (CR37) 2017; 4
Maier-Hein (CR22) 2020; 66
Breslow, Clayton (CR24) 1993; 88
CR31
Elsken, Metzen, Hutter (CR32) 2019; 20
He, Zhao, Chu (CR16) 2021; 212
Kendall (CR18) 1938; 30
Joskowicz, Cohen, Caplan, Sosna (CR21) 2019; 29
Tobon-Gomez (CR39) 2015; 34
CR7
Stokes (CR3) 2020; 180
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (CR8) 2021; 18
CR27
CR25
CR23
CR45
CR44
CR43
CR20
CR42
Dice (CR9) 1945; 26
CR41
CR40
Maier-Hein (CR34) 2018; 9
Ross (CR26) 2021; 70
Menze (CR36) 2015; 34
Liang (CR5) 2019; 29
TJ Re (30695_CR30) 2011; 66
G Litjens (30695_CR1) 2016; 6
L Maier-Hein (30695_CR22) 2020; 66
T Elsken (30695_CR32) 2019; 20
K Sirinukunwattana (30695_CR29) 2017; 35
30695_CR19
M Wiesenfarth (30695_CR17) 2021; 11
N Ayache (30695_CR4) 2016; 33
P Campadelli (30695_CR28) 2009; 45
S Bakas (30695_CR37) 2017; 4
30695_CR40
30695_CR41
30695_CR20
30695_CR42
L Maier-Hein (30695_CR34) 2018; 9
30695_CR25
30695_CR27
F Isensee (30695_CR8) 2021; 18
30695_CR43
30695_CR44
30695_CR23
30695_CR45
S Liang (30695_CR5) 2019; 29
R Poplin (30695_CR2) 2018; 2
MG Kendall (30695_CR18) 1938; 30
LR Dice (30695_CR9) 1945; 26
X He (30695_CR16) 2021; 212
C Tobon-Gomez (30695_CR39) 2015; 34
JM Stokes (30695_CR3) 2020; 180
T Ross (30695_CR26) 2021; 70
30695_CR31
NE Breslow (30695_CR24) 1993; 88
D Assefa (30695_CR6) 2010; 37
30695_CR7
30695_CR14
30695_CR15
BH Menze (30695_CR36) 2015; 34
30695_CR38
L Joskowicz (30695_CR21) 2019; 29
30695_CR10
30695_CR11
30695_CR33
30695_CR12
30695_CR13
30695_CR35
References_xml – ident: CR45
– volume: 66
  start-page: 101796
  year: 2020
  ident: CR22
  article-title: Bias: transparent reporting of biomedical image analysis challenges
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101796
– volume: 34
  start-page: 1460
  year: 2015
  end-page: 1473
  ident: CR39
  article-title: Benchmark for algorithms segmenting the left atrium from 3d ct and mri datasets
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2015.2398818
– volume: 70
  start-page: 101920
  year: 2021
  ident: CR26
  article-title: Comparative validation of multi-instance instrument segmentation in endoscopy: results of the ROBUST-MIS 2019 challenge
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101920
– ident: CR43
– volume: 30
  start-page: 81
  year: 1938
  end-page: 93
  ident: CR18
  article-title: A new measure of rank correlation
  publication-title: Biometrika
  doi: 10.1093/biomet/30.1-2.81
– ident: CR14
– ident: CR12
– ident: CR10
– ident: CR33
– volume: 29
  start-page: 1391
  year: 2019
  end-page: 1399
  ident: CR21
  article-title: Inter-observer variability of manual contour delineation of structures in ct
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5695-5
– ident: CR35
– volume: 2
  start-page: 158
  year: 2018
  end-page: 164
  ident: CR2
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: CR9
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 4
  start-page: 1
  year: 2017
  end-page: 13
  ident: CR37
  article-title: Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.117
– ident: CR40
– ident: CR25
– ident: CR27
– ident: CR42
– ident: CR23
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  ident: CR8
  article-title: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Commun.
– volume: 35
  start-page: 489
  year: 2017
  end-page: 502
  ident: CR29
  article-title: Gland segmentation in colon histology images: the glas challenge contest
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.008
– volume: 180
  start-page: 688
  year: 2020
  end-page: 702
  ident: CR3
  article-title: A deep learning approach to antibiotic discovery
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.021
– ident: CR19
– ident: CR44
– volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: CR36
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2014.2377694
– volume: 88
  start-page: 9
  year: 1993
  end-page: 25
  ident: CR24
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J. Am. Stat. Assoc.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 21
  ident: CR32
  article-title: Neural architecture search: a survey
  publication-title: J. Mach. Learn. Res.
– ident: CR15
– ident: CR38
– volume: 33
  start-page: 1
  year: 2016
  end-page: 3
  ident: CR4
  article-title: 20th anniversary of the medical image analysis journal (media)
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.07.004
– ident: CR31
– ident: CR13
– volume: 6
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR1
  article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
  publication-title: Sci. Rep.
  doi: 10.1038/srep26286
– ident: CR11
– volume: 11
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR17
  article-title: Methods and open-source toolkit for analyzing and visualizing challenge results
  publication-title: Sci. Rep.
– volume: 66
  start-page: 1327
  year: 2011
  end-page: 1332
  ident: CR30
  article-title: Enhancing pancreatic adenocarcinoma delineation in diffusion derived intravoxel incoherent motion f-maps through automatic vessel and duct segmentation
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22931
– volume: 9
  year: 2018
  ident: CR34
  article-title: Why rankings of biomedical image analysis competitions should be interpreted with care
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07619-7
– ident: CR7
– volume: 29
  start-page: 1961
  year: 2019
  end-page: 1967
  ident: CR5
  article-title: Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5748-9
– volume: 45
  start-page: 185
  year: 2009
  end-page: 196
  ident: CR28
  article-title: Liver segmentation from computed tomography scans: a survey and a new algorithm
  publication-title: Artif. Intel. Med.
  doi: 10.1016/j.artmed.2008.07.020
– ident: CR41
– volume: 37
  start-page: 1722
  year: 2010
  end-page: 1736
  ident: CR6
  article-title: Robust texture features for response monitoring of glioblastoma multiforme on-weighted and-flair mr images: A preliminary investigation in terms of identification and segmentation
  publication-title: Med. Phys.
  doi: 10.1118/1.3357289
– ident: CR20
– volume: 212
  start-page: 106622
  year: 2021
  ident: CR16
  article-title: Automl: a survey of the state-of-the-art
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106622
– ident: 30695_CR40
– volume: 6
  start-page: 1
  year: 2016
  ident: 30695_CR1
  publication-title: Sci. Rep.
  doi: 10.1038/srep26286
– volume: 37
  start-page: 1722
  year: 2010
  ident: 30695_CR6
  publication-title: Med. Phys.
  doi: 10.1118/1.3357289
– volume: 30
  start-page: 81
  year: 1938
  ident: 30695_CR18
  publication-title: Biometrika
  doi: 10.1093/biomet/30.1-2.81
– ident: 30695_CR44
– ident: 30695_CR10
  doi: 10.2196/26151
– ident: 30695_CR27
  doi: 10.1109/TMI.2021.3090082
– ident: 30695_CR42
– volume: 66
  start-page: 1327
  year: 2011
  ident: 30695_CR30
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22931
– ident: 30695_CR45
  doi: 10.1007/978-3-319-55524-9_14
– volume: 26
  start-page: 297
  year: 1945
  ident: 30695_CR9
  publication-title: Ecology
  doi: 10.2307/1932409
– ident: 30695_CR20
  doi: 10.1007/978-3-030-00937-3_45
– volume: 9
  year: 2018
  ident: 30695_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07619-7
– ident: 30695_CR7
  doi: 10.1038/s41467-018-07619-7
– ident: 30695_CR15
  doi: 10.1109/CVPR.2016.90
– ident: 30695_CR19
– volume: 29
  start-page: 1391
  year: 2019
  ident: 30695_CR21
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5695-5
– volume: 66
  start-page: 101796
  year: 2020
  ident: 30695_CR22
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101796
– ident: 30695_CR38
– volume: 18
  start-page: 203
  year: 2021
  ident: 30695_CR8
  publication-title: Nat. Commun.
– ident: 30695_CR25
  doi: 10.1109/ISBI.2018.8363547
– ident: 30695_CR12
– volume: 70
  start-page: 101920
  year: 2021
  ident: 30695_CR26
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101920
– volume: 180
  start-page: 688
  year: 2020
  ident: 30695_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.021
– ident: 30695_CR11
  doi: 10.1007/978-3-319-24574-4_28
– volume: 212
  start-page: 106622
  year: 2021
  ident: 30695_CR16
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106622
– volume: 88
  start-page: 9
  year: 1993
  ident: 30695_CR24
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10594284
– volume: 34
  start-page: 1993
  year: 2015
  ident: 30695_CR36
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2014.2377694
– ident: 30695_CR41
– ident: 30695_CR14
  doi: 10.1109/WACV45572.2020.9093608
– ident: 30695_CR33
  doi: 10.1109/CVPR46437.2021.00578
– volume: 4
  start-page: 1
  year: 2017
  ident: 30695_CR37
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.117
– ident: 30695_CR13
  doi: 10.1145/1015330.1015332
– volume: 45
  start-page: 185
  year: 2009
  ident: 30695_CR28
  publication-title: Artif. Intel. Med.
  doi: 10.1016/j.artmed.2008.07.020
– ident: 30695_CR23
– volume: 29
  start-page: 1961
  year: 2019
  ident: 30695_CR5
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5748-9
– volume: 33
  start-page: 1
  year: 2016
  ident: 30695_CR4
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.07.004
– volume: 20
  start-page: 1
  year: 2019
  ident: 30695_CR32
  publication-title: J. Mach. Learn. Res.
– ident: 30695_CR31
– volume: 34
  start-page: 1460
  year: 2015
  ident: 30695_CR39
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2015.2398818
– ident: 30695_CR43
  doi: 10.1109/3DV.2016.79
– volume: 11
  start-page: 1
  year: 2021
  ident: 30695_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79139-8
– volume: 35
  start-page: 489
  year: 2017
  ident: 30695_CR29
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.008
– ident: 30695_CR35
– volume: 2
  start-page: 158
  year: 2018
  ident: 30695_CR2
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
SSID ssj0000391844
Score 2.752625
Snippet International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely...
International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Here, the authors present the results of a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4128
SubjectTerms 692/308/575
692/700/1421/2025
Algorithms
Humanities and Social Sciences
Hypotheses
Image analysis
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Medical imaging
multidisciplinary
Science
Science (multidisciplinary)
State-of-the-art reviews
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgR31ZXqeJNi22SJs3RJyLoRRe8hTxVWLui68F_7yTtrq7Pi9cmJdOZZPJNJ_kGoR1qtcLe8UxzLjKKVZUpUUCwonVg8wW3acL_jotLdtaj5zflzYdSX-FMWEMP3ChuX2PNAVULjbGilfOKGsuc81g7JSyL98hzkX8IpqIPJjAgpe0tmZxU-880-oR4eD1noUDhxE4UCfu_Q5lfD0t-ypjGjeh0Ds22CDI9aCSfR1OuXkDTTU3J10W0DYZP2_RLeuVuH9rLRXV67AJHa39QL6He6cn10VnWFkLIDACqYcaZcNQKW3HDqNa-osTktmROAPwqiFOKAIxQFjyGZ8oYY7n2gTeZKKIKbsky6tSD2q2itPQlZRZQAWGCeuME0SQPJHY6r1SlywQVI6VI07KEh2IVfRmz1aSSjSIlKFJGRUqRoN3xO48NR8avvQ-Drsc9A791fABWl63V5V9WT1B3ZCnZLrpniSHSD4yIHMbYGjfDcgk5EFW7wUvsU4TkJoUvXWkMO5aEABgDPMgSxCdMPiHqZEt9fxcpuQUEniXFCdobTY53sX5Wxdp_qGIdzeAwqwPZZ9lFneHTi9sAoDTUm3FNvAHtPQ45
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrZC4VLwJFBQQN4ia2I4dHxCi0KpCYoWASr1ZduwUpJL0sT3w75lxnFTLo9fYkeyZ8fgbj_0NwEvhnWVdUIVTSheC2aawusJgxTli80W32dJ5x6elPDgUH4_qow1YTm9h6Frl5BOjo_ZDS2fkOwzDOKK7U_rt6VlBVaMouzqV0LCptIJ_EynGbsAmuuS6XMDm7t7y85f51IX40Bsh0uuZkjc7FyL6inipvZRUuHBth4pE_v9Cn39fovwjkxo3qP3bsJWQZf5uNIU7sBH6u3BzrDX56x68QIPIU1om_xqOf6ZHR33-IRB368nQ34fD_b1v7w-KVCChaBForQoldRBe-0a1UjjXNYK3pa9l0AjLKh6s5QgvrEdP0kkUUeuV64hPmVtuK-X5A1j0Qx8eQV53tZAe0QKXWnRt0NzxksjtXNnYxtUZVJNQTJvYw6mIxYmJWWzemFGQBgVpoiCNzuDV_M_pyJ1xbe9dkvXck3iv44fh_NikZWQccwpjLO0Ys6IJnRWtlyF0zAWrvVQZbE-aMmkxXpgr08ng-dyMy4hyI7YPw2XsU1HSU-BMH46KnUfCEaQhTpQZqDWVrw11vaX_8T1SdWsMSGvBMng9GcfVsP4visfXz-IJ3GJkr0TvWW_DYnV-GZ4iNFq5Z8nefwMrnQqg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RRZV6QYUCTQsoVL21EYnt-HEsWxCqVC4tEjfLr1CkJVvB7qH_nrHzqBYoUq-xrUxmxs5nz_gbgI_MW0OaIAorhCoYMbIwqsLNirWRzReXTRfPO76f87ML9u2yvlwDMtyFSUn7idIyLdNDdtjRHUtTOuWelzzWF3wB61LQOnr1lE_Hc5XIeC4Z6-_HlFQ-MXTlH5So-p_Cl4_TJB_EStMv6PQ1bPTYMf_SSbsJa6HdgpddNck_b-ADmjzvAy_5j3B1018ravOvIbKzzubtNlycnvycnhV9CYTCIZRaFIKrwLzyUjjOrG0ko670NQ8KgVdFgzEUAYTxuFY03DjnvLBNZEymhppKeLoDk3behreQ103NuEc8QLlijQuKWlpG-jpbSiNtnUE1KEW7nh88lqmY6RSnplJ3itSoSJ0UqVUGn8Yxvzt2jGd7H0ddjz0js3V6ML-90r2ltSVW4C5KWUIMk6ExzHkeQkNsMMpzkcHeYCndT7c7TXCPH7kQBb7jcGzGiRKjH6YN82XqU8WwJsMv3e0MO0pCEYYhEuQZiBWTr4i62tJe_0pk3Aq3nDUjGXwenOOvWP9Wxbv_6_4eXpHov5HQs96DyeJ2GfYRDC3sQfL-e3BJAec
  priority: 102
  providerName: Springer Nature
Title The Medical Segmentation Decathlon
URI https://link.springer.com/article/10.1038/s41467-022-30695-9
https://www.ncbi.nlm.nih.gov/pubmed/35840566
https://www.proquest.com/docview/2690022779
https://www.proquest.com/docview/2691052945
https://pubmed.ncbi.nlm.nih.gov/PMC9287542
https://doaj.org/article/b2b75489b22a48efa4cd6eef2bea9d67
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ6C9oPEdGFVAvEGgsR07fkBTV1amSkyIUalvlr-yTSopdJ3E_nvOTlJUKDzwkkixLTvnO_tnn_07gJfMGU0qLzIjhMwY0WWmZY6LFWMCmy8Omzbsd3w85ScTNp4W0y3owh21ArzauLQL8aQmi9mbH99vDtHg3zVXxsu3VyyaezyX3uch9uA27EZ_UTjK18L9ODJTbAZj7d2ZzUX34DbFSRlxAV-bqiKj_yYY-udpyt9cqnGmGu3DnRZipoNGJ-7Clq_vwa0m6OTNfXiBmpG2_pn0zJ9_bW8f1el7H0hcZ_P6AUxGx1-GJ1kbKSGziLiWmeDSMyddKSxnxlQlo7bvCu4l4rOceq0p4gztcEipuLbWOmGqQKxMNdW5cPQh7NTz2j-GtKgKxh3CBsolq6yX1NB-YLkz_VKXpkgg74SibEsjHqJZzFR0Z9NSNTJVKFMVZapkAq9WZb41JBr_zH0UZL3KGQiw44f54ly19qQMMQIXW9IQolnpK82s495XxHgtHRcJHHQ9pTqlUoTLSJkosI7nq2S0p-Ak0bWfX8c8efB-MvzTR03HrlrSKUYCYq3L15q6nlJfXkTObokr04KRBF53yvGrWX8XxZP_rugp7JGg1YECtDiAneXi2j9D-LQ0PdgWU4HPcvShB7uDwfhsjO-j49NPn_HrkA97cWOiF23nJz6gG18
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IN4ECgQEJ4iatR07PlSI0lZb2q4QtFJvrh07LVLJlu5WqH-O38bYcVItj956jZ3EHs_Y8_B8A_CaWaNJ7URmhJAZI7rMtByisWKMR_PFbbPy_o7dMR_ts08HxcEC_OpyYfy1ym5PDBu1nVTeR75C0IzzcHdCvj_9kfmqUT662pXQ0LG0gl0NEGMxsWPbXfxEE266urWO6_2GkM2NvY-jLFYZyCrUVmaZ4NIxK20pKs6MqUtGq9wW3EnUbYbUaU3xjNYWxbHm-J_KClN7UGKqqR4KS_G7N2CReQfKABbXNsafv_ReHo-_XjIWs3VyWq5MWdibwiX6nPtCiXMnYigc8C9t9-9Lm39EbsOBuHkHbkdNNv3Qst5dWHDNPbjZ1ra8uA-vkAHTGAZKv7qj7zHJqUnXnceKPZk0D2D_Wkj1EAbNpHGPIS3qgnGL2gnlktWVk9TQ3IPpmbzUpSkSGHZEUVVEK_dFM05UiJrTUrWEVEhIFQipZAJv-3dOW6yOK3uveVr3PT3OdngwOTtSUWyVIUagTScNIZqVrtassty5mhinpeUigeVupVQU_qm6ZNUEXvbNKLY-FqMbNzkPfYY-yMpwpo_ahe1HQlEpRL2UJyDmlnxuqPMtzbfjAA0u0QAuGEngXcccl8P6PymeXD2LF3BrtLe7o3a2xttPYYl43vXQosUyDGZn5-4ZqmUz8zzyfgqH1y1uvwGLdElL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAgYDgBNEmtmPHB4SAZdVSqJCg0t5cv1KQSlK6W6H-NX4dY-dRLY_eeo2dyJmXZzzjbwCeMmc0qb3IjBAyY0RXmZYFBivGBDRfNJs2nHd83OGbu-z9vJyvwa_hLkwoqxxsYjTUrrXhjHxCMIwLcHdCTuq-LOLTdPbq8EcWOkiFTOvQTqMTkW1_8hPDt8XLrSny-hkhs3df3m5mfYeBzKKnsswEl5456SphOTOmrhi1uSu5l-jXFNRrTXF_1g5VsebaWuuEqQMgMdVUF8JR_O4FuCgoY6FthJiL8XwnIK9XjPX3dHJaTRYsWqVYPp_z0CJxZS-MLQP-5ef-Xa75R842boWza3C192HT153QXYc139yAS11Xy5Ob8ARFL-0TQOlnv_-9v97UpFMfUGIP2uYW7J4LoW7DetM2_i6kZV0y7tAvoVyy2npJDc0DjJ7JK12ZMoFiIIqyPU55aJdxoGK-nFaqI6RCQqpISCUTeD6-c9ihdJw5-02g9TgzIGzHB-3RvuoVVhliBEZz0hCiWeVrzazj3tfEeC0dFwlsDJxSvdov1KmQJvB4HEaFDVkY3fj2OM4pQnqV4Z_e6Rg7roSiO4geKU9ArLB8ZamrI823rxEUXGLoWzKSwItBOE6X9X9S3Dv7Lx7BZVQy9WFrZ_s-XCFBdAOmaLkB68ujY_8A_bGleRgFP4W989a034oTRuc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Medical+Segmentation+Decathlon&rft.jtitle=Nature+communications&rft.au=Antonelli%2C+Michela&rft.au=Reinke%2C+Annika&rft.au=Bakas%2C+Spyridon&rft.au=Farahani%2C+Keyvan&rft.date=2022-07-15&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-30695-9&rft_id=info%3Apmid%2F35840566&rft.externalDocID=PMC9287542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon