Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images
Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subje...
Saved in:
| Published in | Nature communications Vol. 12; no. 1; pp. 6311 - 13 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
02.11.2021
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2041-1723 2041-1723 |
| DOI | 10.1038/s41467-021-26643-8 |
Cover
| Abstract | Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008,
P
value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010,
P
value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice.
Machine-assisted recognition of colorectal cancer has been mainly focused on supervised deep learning that suffers from a significant bottleneck of requiring massive amounts of labeled data. Here, the authors propose a semi-supervised model based on the mean teacher architecture that provides pathological predictions at both patch- and patient-levels. |
|---|---|
| AbstractList | Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008,
P
value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010,
P
value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice.
Machine-assisted recognition of colorectal cancer has been mainly focused on supervised deep learning that suffers from a significant bottleneck of requiring massive amounts of labeled data. Here, the authors propose a semi-supervised model based on the mean teacher architecture that provides pathological predictions at both patch- and patient-levels. Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice. Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice.Machine-assisted recognition of colorectal cancer has been mainly focused on supervised deep learning that suffers from a significant bottleneck of requiring massive amounts of labeled data. Here, the authors propose a semi-supervised model based on the mean teacher architecture that provides pathological predictions at both patch- and patient-levels. Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice.Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice. Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice. Machine-assisted recognition of colorectal cancer has been mainly focused on supervised deep learning that suffers from a significant bottleneck of requiring massive amounts of labeled data. Here, the authors propose a semi-supervised model based on the mean teacher architecture that provides pathological predictions at both patch- and patient-levels. |
| ArticleNumber | 6311 |
| Author | Xie, Ting Meng, Xiang-He Deng, Hong-Wen Wang, Kuan-Song Meng, Run-Qi Shi, Xing-Hua Yu, Gang Sun, Kai Wu, Chong Xiao, Hong-Mei Xu, Chao |
| Author_xml | – sequence: 1 givenname: Gang orcidid: 0000-0003-3599-8985 surname: Yu fullname: Yu, Gang organization: Department of Biomedical Engineering, School of Basic Medical Science, Central South University – sequence: 2 givenname: Kai orcidid: 0000-0002-6232-2094 surname: Sun fullname: Sun, Kai organization: Department of Biomedical Engineering, School of Basic Medical Science, Central South University – sequence: 3 givenname: Chao orcidid: 0000-0002-3821-6187 surname: Xu fullname: Xu, Chao organization: Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center – sequence: 4 givenname: Xing-Hua orcidid: 0000-0003-4662-3177 surname: Shi fullname: Shi, Xing-Hua organization: Department of Computer & Information Sciences, College of Science and Technology, Temple University – sequence: 5 givenname: Chong orcidid: 0000-0002-8400-1785 surname: Wu fullname: Wu, Chong organization: Department of Statistics, Florida State University – sequence: 6 givenname: Ting orcidid: 0000-0001-8742-3855 surname: Xie fullname: Xie, Ting organization: Department of Biomedical Engineering, School of Basic Medical Science, Central South University – sequence: 7 givenname: Run-Qi orcidid: 0000-0001-7833-4666 surname: Meng fullname: Meng, Run-Qi organization: Electronic Information Science and Technology, School of Physics and Electronics, Central South University – sequence: 8 givenname: Xiang-He orcidid: 0000-0001-8731-2899 surname: Meng fullname: Meng, Xiang-He organization: Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University – sequence: 9 givenname: Kuan-Song orcidid: 0000-0002-7828-2648 surname: Wang fullname: Wang, Kuan-Song email: 375527162@qq.com organization: Department of Pathology, Xiangya Hospital, School of Basic Medical Science, Central South University – sequence: 10 givenname: Hong-Mei orcidid: 0000-0002-8121-9498 surname: Xiao fullname: Xiao, Hong-Mei email: hmxiao@csu.edu.cn organization: Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University – sequence: 11 givenname: Hong-Wen orcidid: 0000-0002-0387-8818 surname: Deng fullname: Deng, Hong-Wen email: hdeng2@tulane.edu organization: Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Deming Department of Medicine, Tulane Center of Biomedical Informatics and Genomics, Tulane University School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34728629$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAUjFARLaV_gAOKxIVLwN-xL0hVxUelSlzgbL04L1mvsvZiJ6367_F2l9L2UOGLreeZ8fjNe10dhRiwqt5S8pESrj9lQYVqG8Jow5QSvNEvqhNGBG1oy_jRg_NxdZbzmpTFDdVCvKqOuWiZVsycVO7cuSXBjHVCF8fgZx9DHYfaxSmW0gxT7SA4TPWNn1d1xo1v8rLFdO0z9nWPuK0nhBR8GOtC3cK8KtTRu8L0Gxgxv6leDjBlPDvsp9Wvr19-Xnxvrn58u7w4v2qcFGRupNOaix40mM4IhppIR3FgXSs1tgKgRdWb1oDhKAfolHaAUhLXES16x_hpdbnX7SOs7TaV19OtjeDtXSGm0UKavZvQKtMpYKTlIKXooAc1tIJyasxApBakaPG91hK2cHsD03QvSIndJWD3CdiSgL1LwOrC-rxnbZdug73DMCeYHll5fBP8yo7x2mqpuOG0CHw4CKT4e8E8243PDqcJAsYlWyYNJ0wbYwr0_RPoOi4plAbvUFQrpcXO0buHju6t_J2AAtB7gEsx54SDdX6G3RQUg356_rfsCfW_WnRobC7gMGL6Z_sZ1h_jBuaa |
| CitedBy_id | crossref_primary_10_3390_bioengineering11100978 crossref_primary_10_1016_j_eclinm_2023_101834 crossref_primary_10_3389_fonc_2024_1365364 crossref_primary_10_1186_s12885_025_13740_w crossref_primary_10_1186_s13020_024_00963_5 crossref_primary_10_3389_fonc_2022_856575 crossref_primary_10_1016_S2589_7500_23_00027_4 crossref_primary_10_1177_10732748231222109 crossref_primary_10_3390_diagnostics12040837 crossref_primary_10_1007_s00761_023_01359_0 crossref_primary_10_1038_s41698_024_00539_4 crossref_primary_10_3390_electronics12051167 crossref_primary_10_1016_S2589_7500_23_00148_6 crossref_primary_10_3389_froh_2025_1443313 crossref_primary_10_1186_s12967_024_04915_3 crossref_primary_10_1016_j_eswa_2025_126640 crossref_primary_10_1016_j_dld_2024_11_001 crossref_primary_10_3390_brainsci15010030 crossref_primary_10_1016_j_lfs_2024_122634 crossref_primary_10_1177_15330338241301297 crossref_primary_10_3390_diagnostics13193115 crossref_primary_10_1016_j_modpat_2023_100118 crossref_primary_10_15212_RADSCI_2022_0007 crossref_primary_10_1109_JBHI_2023_3237137 crossref_primary_10_1360_TB_2024_0088 crossref_primary_10_1007_s11517_025_03291_4 crossref_primary_10_3389_fbinf_2023_1159381 crossref_primary_10_1016_j_jpi_2022_100159 crossref_primary_10_3390_jimaging9020050 crossref_primary_10_1109_TCE_2024_3371995 crossref_primary_10_1016_j_compbiomed_2022_105499 crossref_primary_10_3390_diagnostics14050528 crossref_primary_10_3389_fphar_2022_929755 crossref_primary_10_26599_BDMA_2024_9020057 crossref_primary_10_1038_s41467_024_46764_0 crossref_primary_10_1038_s41467_024_50369_y crossref_primary_10_1158_2159_8290_CD_23_1199 crossref_primary_10_1016_j_jhepr_2024_101198 crossref_primary_10_2196_52073 crossref_primary_10_3390_molecules29133164 crossref_primary_10_1016_j_modpat_2023_100327 crossref_primary_10_3389_fonc_2022_960984 crossref_primary_10_1007_s00261_024_04770_2 crossref_primary_10_1016_j_cmpb_2023_107446 crossref_primary_10_1159_000539010 crossref_primary_10_1038_s41598_024_71302_9 crossref_primary_10_3389_fonc_2023_1094869 crossref_primary_10_59717_j_xinn_med_2024_100069 crossref_primary_10_1021_acs_biomac_3c01452 crossref_primary_10_1021_acsmaterialslett_4c01267 crossref_primary_10_35377_saucis___1564497 crossref_primary_10_3389_fmed_2023_1128084 crossref_primary_10_3390_cancers14102489 crossref_primary_10_1155_2024_5562890 crossref_primary_10_37349_etat_2023_00119 crossref_primary_10_1111_jgh_16661 crossref_primary_10_1016_j_eswa_2024_124242 crossref_primary_10_1016_j_dajour_2023_100177 crossref_primary_10_1016_j_eswa_2024_124114 crossref_primary_10_1016_j_future_2024_107578 crossref_primary_10_1007_s00535_023_02025_3 crossref_primary_10_1016_j_eswa_2024_124838 crossref_primary_10_1109_ACCESS_2023_3346894 crossref_primary_10_3390_cancers14153707 crossref_primary_10_1038_s41467_023_37179_4 crossref_primary_10_1016_j_snb_2022_132708 crossref_primary_10_1038_s41586_024_07894_z crossref_primary_10_3390_diagnostics13071277 crossref_primary_10_1038_s41467_024_51110_5 crossref_primary_10_1007_s13139_023_00821_6 crossref_primary_10_1016_j_semcancer_2023_06_003 crossref_primary_10_1016_j_xcrm_2023_101004 crossref_primary_10_1016_j_xcrm_2024_101785 |
| Cites_doi | 10.1186/s12859-017-1685-x 10.1109/TMI.2016.2525803 10.1001/jama.2017.14585 10.1038/s41591-019-0508-1 10.1016/j.media.2019.03.009 10.1016/j.media.2014.11.010 10.1038/modpathol.3880185 10.1016/S0140-6736(19)32998-8 10.1371/journal.pone.0177544 10.1016/j.csbj.2018.01.001 10.4103/jpi.jpi_47_16 10.1016/j.neuroimage.2006.04.233 10.1038/nature21056 10.1371/journal.pmed.1002730 10.1038/s41598-018-21758-3 10.1136/gutjnl-2015-310912 10.1117/12.2043872 10.1016/j.artmed.2019.101756 10.1200/JGO.2015.000943 10.1038/s41591-018-0177-5 10.21147/j.issn.1000-9604.2019.01.06 10.1016/j.neucom.2020.04.148 10.7717/peerj.3874 10.1109/TMI.2018.2879369 10.1001/jamanetworkopen.2019.4337 10.1186/s12916-021-01942-5 10.1109/TMI.2020.2995518 10.1109/CVPR.2016.308 10.1109/CVPR42600.2020.00401 10.1007/978-3-030-00934-2_24 10.1109/CVPR.2016.90 10.1007/978-3-030-68107-4_10 10.1007/978-3-030-59710-8_54 10.1109/ISBI48211.2021.9434141 10.6084/m9.figshare.15072546.v1 10.1109/BIBM.2018.8621307 10.2991/iccsee.2013.391 10.1007/978-3-030-59710-8_65 10.1007/978-3-030-87237-3_49 10.7551/mitpress/9780262033589.001.0001 10.1109/CVPR.2009.5206848 10.5281/zenodo.5524324 10.5220/0006643100580066 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41467-021-26643-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_69b6a2073a554bada6f7413199f05840 10.1038/s41467-021-26643-8 PMC8563931 34728629 10_1038_s41467_021_26643_8 |
| Genre | Multicenter Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province (#2015JJ2150). H.M.X was supported by the National Key Research and Development Plan of China (2017YFC1001103, 2016YFC1201805) – fundername: the Edward G. Schlieder Endowment and the Drs. W.C.Tsai – fundername: Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.) grantid: R01AR059781,P20GM109036,R01MH107354,R01MH104680,R01GM109068,R01AR069055,U19AG055373,R01DK115679 funderid: https://doi.org/10.13039/100000009 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81673491; 81471453 funderid: https://doi.org/10.13039/501100001809 – fundername: Emergency Management Science and Technology Project of Hunan Province (#2020YJ004, #2021-QYC-10050-26366). – fundername: National Key Research and Development Plan of China (2017YFC1001103, 2016YFC1201805),and Jiangwang Educational Endowment. – fundername: NIGMS NIH HHS grantid: P20 GM109036 – fundername: NIAMS NIH HHS grantid: R01 AR059781 – fundername: NIGMS NIH HHS grantid: R01 GM109068 – fundername: NIDDK NIH HHS grantid: R01 DK115679 – fundername: NIAMS NIH HHS grantid: R01 AR069055 – fundername: NIMH NIH HHS grantid: R01 MH104680 – fundername: NIMH NIH HHS grantid: R01 MH107354 – fundername: NIA NIH HHS grantid: U19 AG055373 – fundername: ; – fundername: ; grantid: R01AR059781,P20GM109036,R01MH107354,R01MH104680,R01GM109068,R01AR069055,U19AG055373,R01DK115679 – fundername: ; grantid: 81673491; 81471453 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM 4.4 ADTOC BAPOH CAG COF EJD LGEZI LOTEE NADUK NXXTH UNPAY |
| ID | FETCH-LOGICAL-c540t-5c8834da8a9b942e805c1ef2b758e74aa7e6d979a93e5fab68cae550cb084dc23 |
| IEDL.DBID | M48 |
| ISSN | 2041-1723 |
| IngestDate | Tue Oct 14 18:33:11 EDT 2025 Sun Oct 26 03:19:46 EDT 2025 Tue Sep 30 16:56:32 EDT 2025 Fri Sep 05 07:34:45 EDT 2025 Tue Oct 07 06:53:34 EDT 2025 Mon Jul 21 05:40:19 EDT 2025 Wed Oct 01 04:56:43 EDT 2025 Thu Apr 24 23:44:04 EDT 2025 Fri Feb 21 02:38:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-5c8834da8a9b942e805c1ef2b758e74aa7e6d979a93e5fab68cae550cb084dc23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4662-3177 0000-0001-8742-3855 0000-0002-3821-6187 0000-0002-8400-1785 0000-0002-7828-2648 0000-0001-7833-4666 0000-0003-3599-8985 0000-0002-6232-2094 0000-0001-8731-2899 0000-0002-8121-9498 0000-0002-0387-8818 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-26643-8 |
| PMID | 34728629 |
| PQID | 2591866848 |
| PQPubID | 546298 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_69b6a2073a554bada6f7413199f05840 unpaywall_primary_10_1038_s41467_021_26643_8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8563931 proquest_miscellaneous_2593028999 proquest_journals_2591866848 pubmed_primary_34728629 crossref_citationtrail_10_1038_s41467_021_26643_8 crossref_primary_10_1038_s41467_021_26643_8 springer_journals_10_1038_s41467_021_26643_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-02 |
| PublicationDateYYYYMMDD | 2021-11-02 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Komura, Ishikawa (CR6) 2018; 16 Bejnordi (CR10) 2017; 318 CR37 CR36 CR35 CR34 Hua (CR8) 2015; 8 CR33 CR32 CR31 Xu (CR38) 2017; 18 Li (CR46) 2020; 2020 Arnold (CR1) 2017; 66 Metter (CR2) 2019; 2 Damjanov (CR3) 2000; 13 Coudray (CR7) 2018; 24 Mma (CR23) 2021; 452 Haj-Hassan (CR13) 2017; 8 Wang (CR19) 2021; 19 Gurcan (CR42) 2014; 9041 Kainz, Pfeiffer, Urschler (CR40) 2017; 5 CR49 Sirinukunwattana (CR14) 2016; 35 CR48 CR47 CR44 Su (CR29) 2019; 11764 Gupta (CR25) 2019; 11764 CR41 Veta (CR9) 2015; 20 Sari, Gunduz-Demir (CR39) 2019; 38 Campanella (CR45) 2019; 25 Kather (CR17) 2019; 16 Bychkov (CR16) 2018; 8 CR59 Heller (CR55) 2006; 33 CR58 Cheplygina, Bruijne, Pluim (CR28) 2019; 54 CR57 CR56 Ahmad, Camel (CR15) 2017; 2017 CR54 CR53 Zhang (CR11) 2019; 102 CR52 CR51 CR50 Araújo (CR43) 2017; 12 Skrede (CR18) 2020; 395 Rai (CR22) 2019; 10956 Liu (CR30) 2020; 39 CR27 CR26 CR24 CR21 CR20 Sayed, Lukande, Fleming (CR5) 2015; 1 CR60 Group (CR4) 2019; 31 Esteva (CR12) 2017; 542 KS Wang (26643_CR19) 2021; 19 T Rai (26643_CR22) 2019; 10956 N Coudray (26643_CR7) 2018; 24 N Zhang (26643_CR11) 2019; 102 EB Bejnordi (26643_CR10) 2017; 318 26643_CR58 26643_CR59 JN Kather (26643_CR17) 2019; 16 26643_CR21 26643_CR24 V Cheplygina (26643_CR28) 2019; 54 K Sirinukunwattana (26643_CR14) 2016; 35 M Arnold (26643_CR1) 2017; 66 26643_CR20 26643_CR60 H Haj-Hassan (26643_CR13) 2017; 8 D Bychkov (26643_CR16) 2018; 8 H Li (26643_CR46) 2020; 2020 C Ahmad (26643_CR15) 2017; 2017 26643_CR47 26643_CR48 M Veta (26643_CR9) 2015; 20 26643_CR49 26643_CR54 26643_CR56 A Esteva (26643_CR12) 2017; 542 26643_CR57 26643_CR50 26643_CR51 26643_CR52 26643_CR53 P Kainz (26643_CR40) 2017; 5 Q Liu (26643_CR30) 2020; 39 KL Hua (26643_CR8) 2015; 8 CT Sari (26643_CR39) 2019; 38 T Araújo (26643_CR43) 2017; 12 Y Xu (26643_CR38) 2017; 18 26643_CR36 26643_CR37 G Campanella (26643_CR45) 2019; 25 26643_CR44 26643_CR41 MN Gurcan (26643_CR42) 2014; 9041 D Komura (26643_CR6) 2018; 16 R Heller (26643_CR55) 2006; 33 OJ Skrede (26643_CR18) 2020; 395 26643_CR26 26643_CR27 C Mma (26643_CR23) 2021; 452 26643_CR32 26643_CR33 26643_CR34 S Sayed (26643_CR5) 2015; 1 26643_CR35 L Gupta (26643_CR25) 2019; 11764 I Damjanov (26643_CR3) 2000; 13 CCW Group (26643_CR4) 2019; 31 26643_CR31 DM Metter (26643_CR2) 2019; 2 H Su (26643_CR29) 2019; 11764 |
| References_xml | – volume: 18 year: 2017 ident: CR38 article-title: Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1685-x – ident: CR49 – ident: CR51 – volume: 35 start-page: 1196 year: 2016 end-page: 1206 ident: CR14 article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2525803 – volume: 318 start-page: 2199 year: 2017 end-page: 2210 ident: CR10 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA doi: 10.1001/jama.2017.14585 – ident: CR35 – volume: 25 start-page: 1301 year: 2019 end-page: 1309 ident: CR45 article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images publication-title: Nat. Med. doi: 10.1038/s41591-019-0508-1 – ident: CR54 – ident: CR58 – volume: 54 start-page: 280 year: 2019 end-page: 296 ident: CR28 article-title: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.03.009 – volume: 20 start-page: 237 year: 2015 end-page: 248 ident: CR9 article-title: Assessment of algorithms for mitosis detection in breast cancer histopathology images publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.11.010 – volume: 13 start-page: 1028 year: 2000 ident: CR3 article-title: Robbins review of pathology publication-title: Mod. Pathol. doi: 10.1038/modpathol.3880185 – volume: 395 start-page: 350 year: 2020 end-page: 360 ident: CR18 article-title: Deep learning for prediction of colorectal cancer outcome: a discovery and validation study publication-title: Lancet doi: 10.1016/S0140-6736(19)32998-8 – ident: CR21 – volume: 12 start-page: e0177544 year: 2017 ident: CR43 article-title: Classification of breast cancer histology images using convolutional neural networks publication-title: PLoS ONE doi: 10.1371/journal.pone.0177544 – volume: 16 start-page: 34 year: 2018 end-page: 42 ident: CR6 article-title: Machine learning methods for histopathological image analysis publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2018.01.001 – volume: 8 start-page: 1 year: 2017 ident: CR13 article-title: Classifications of multispectral colorectal cancer tissues using convolution neural network publication-title: J. Pathol. Inform. doi: 10.4103/jpi.jpi_47_16 – volume: 2017 start-page: 8428102 year: 2017 ident: CR15 article-title: Texture analysis of abnormal cell images for predicting the continuum of colorectal cancer publication-title: Anal. Cell. Pathol. – ident: CR50 – volume: 33 start-page: 599 year: 2006 end-page: 608 ident: CR55 article-title: Cluster-based analysis of FMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.04.233 – ident: CR57 – ident: CR32 – volume: 542 start-page: 115 year: 2017 end-page: 126 ident: CR12 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: CR60 – volume: 16 start-page: e1002730 year: 2019 ident: CR17 article-title: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002730 – ident: CR36 – volume: 8 year: 2018 ident: CR16 article-title: Deep learning based tissue analysis predicts outcome in colorectal cancer publication-title: Sci. Rep. doi: 10.1038/s41598-018-21758-3 – ident: CR26 – volume: 66 start-page: 683 year: 2017 end-page: 691 ident: CR1 article-title: Global patterns and trends in colorectal cancer incidence and mortality publication-title: Gut doi: 10.1136/gutjnl-2015-310912 – volume: 2020 start-page: 320 year: 2020 end-page: 329 ident: CR46 article-title: A novel loss calibration strategy for object detection networks training on sparsely annotated pathological datasets publication-title: MICCAI – volume: 9041 start-page: 904103 year: 2014 ident: CR42 article-title: Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks publication-title: Proc. SPIE doi: 10.1117/12.2043872 – ident: CR47 – volume: 11764 start-page: 559 year: 2019 end-page: 567 ident: CR29 article-title: Local and global consistency regularized mean teacher for semi-supervised nuclei classification publication-title: Int. Conf. Med. Image Comput. Computer Assist. Interv. – ident: CR37 – ident: CR53 – volume: 102 start-page: 101756 year: 2019 ident: CR11 article-title: Skin cancer diagnosis based on optimized convolutional neural network publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.101756 – volume: 10956 start-page: 109560U year: 2019 ident: CR22 article-title: An investigation of aggregated transfer learning for classification in digital pathology publication-title: Proc. SPIE – ident: CR33 – volume: 1 start-page: 3 year: 2015 end-page: 6 ident: CR5 article-title: Providing pathology support in low-income countries publication-title: Glob. Oncol. doi: 10.1200/JGO.2015.000943 – ident: CR56 – ident: CR27 – volume: 11764 start-page: 1 year: 2019 end-page: 9 ident: CR25 article-title: GAN-based image enrichment in digital pathology boosts segmentation accuracy publication-title: Lect. Notes Comput. Sci. – volume: 24 start-page: 1559 year: 2018 end-page: 1567 ident: CR7 article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 – volume: 31 start-page: 99 year: 2019 end-page: 116 ident: CR4 article-title: Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version) publication-title: Chin. J. Cancer Res. doi: 10.21147/j.issn.1000-9604.2019.01.06 – volume: 452 start-page: 424 year: 2021 end-page: 434 ident: CR23 article-title: Deep residual transfer learning for automatic diagnosis and grading of diabetic retinopathy publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.148 – ident: CR44 – ident: CR48 – volume: 5 start-page: e3874 year: 2017 ident: CR40 article-title: Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization publication-title: PeerJ doi: 10.7717/peerj.3874 – ident: CR52 – volume: 38 start-page: 1139 year: 2019 end-page: 1149 ident: CR39 article-title: Unsupervised feature extraction via deep learning for histopathological classification of colon tissue images publication-title: IEEE Trans. Med. imaging doi: 10.1109/TMI.2018.2879369 – ident: CR31 – volume: 2 start-page: e194337 year: 2019 ident: CR2 article-title: Trends in the US and Canadian pathologist workforces from 2007 to 2017 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.4337 – volume: 8 start-page: 2015 year: 2015 end-page: 2022 ident: CR8 article-title: Computer-aided classification of lung nodules on computed tomography images via deep learning technique publication-title: Onco Targets Ther. – volume: 19 year: 2021 ident: CR19 article-title: Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence publication-title: BMC Med. doi: 10.1186/s12916-021-01942-5 – ident: CR34 – ident: CR59 – ident: CR41 – ident: CR24 – ident: CR20 – volume: 39 start-page: 3429 year: 2020 end-page: 3440 ident: CR30 article-title: Semi-supervised medical image classification with relation-driven self-ensembling model publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2995518 – volume: 452 start-page: 424 year: 2021 ident: 26643_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.148 – ident: 26643_CR49 – volume: 12 start-page: e0177544 year: 2017 ident: 26643_CR43 publication-title: PLoS ONE doi: 10.1371/journal.pone.0177544 – ident: 26643_CR59 – ident: 26643_CR60 – ident: 26643_CR51 doi: 10.1109/CVPR.2016.308 – ident: 26643_CR31 doi: 10.1109/CVPR42600.2020.00401 – ident: 26643_CR36 – volume: 8 start-page: 2015 year: 2015 ident: 26643_CR8 publication-title: Onco Targets Ther. – volume: 1 start-page: 3 year: 2015 ident: 26643_CR5 publication-title: Glob. Oncol. doi: 10.1200/JGO.2015.000943 – volume: 11764 start-page: 559 year: 2019 ident: 26643_CR29 publication-title: Int. Conf. Med. Image Comput. Computer Assist. Interv. – ident: 26643_CR37 doi: 10.1007/978-3-030-00934-2_24 – volume: 16 start-page: e1002730 year: 2019 ident: 26643_CR17 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002730 – ident: 26643_CR50 doi: 10.1109/CVPR.2016.90 – volume: 2017 start-page: 8428102 year: 2017 ident: 26643_CR15 publication-title: Anal. Cell. Pathol. – ident: 26643_CR26 – ident: 26643_CR33 doi: 10.1007/978-3-030-68107-4_10 – volume: 24 start-page: 1559 year: 2018 ident: 26643_CR7 publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 – volume: 395 start-page: 350 year: 2020 ident: 26643_CR18 publication-title: Lancet doi: 10.1016/S0140-6736(19)32998-8 – ident: 26643_CR34 doi: 10.1007/978-3-030-59710-8_54 – ident: 26643_CR20 doi: 10.1109/ISBI48211.2021.9434141 – ident: 26643_CR35 – volume: 13 start-page: 1028 year: 2000 ident: 26643_CR3 publication-title: Mod. Pathol. doi: 10.1038/modpathol.3880185 – ident: 26643_CR56 – volume: 318 start-page: 2199 year: 2017 ident: 26643_CR10 publication-title: JAMA doi: 10.1001/jama.2017.14585 – volume: 542 start-page: 115 year: 2017 ident: 26643_CR12 publication-title: Nature doi: 10.1038/nature21056 – volume: 38 start-page: 1139 year: 2019 ident: 26643_CR39 publication-title: IEEE Trans. Med. imaging doi: 10.1109/TMI.2018.2879369 – ident: 26643_CR21 – volume: 66 start-page: 683 year: 2017 ident: 26643_CR1 publication-title: Gut doi: 10.1136/gutjnl-2015-310912 – volume: 2 start-page: e194337 year: 2019 ident: 26643_CR2 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.4337 – volume: 18 year: 2017 ident: 26643_CR38 publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1685-x – ident: 26643_CR57 doi: 10.6084/m9.figshare.15072546.v1 – volume: 33 start-page: 599 year: 2006 ident: 26643_CR55 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.04.233 – ident: 26643_CR44 doi: 10.1109/BIBM.2018.8621307 – ident: 26643_CR52 doi: 10.2991/iccsee.2013.391 – volume: 20 start-page: 237 year: 2015 ident: 26643_CR9 publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.11.010 – ident: 26643_CR32 doi: 10.1007/978-3-030-59710-8_65 – volume: 31 start-page: 99 year: 2019 ident: 26643_CR4 publication-title: Chin. J. Cancer Res. doi: 10.21147/j.issn.1000-9604.2019.01.06 – ident: 26643_CR24 – volume: 10956 start-page: 109560U year: 2019 ident: 26643_CR22 publication-title: Proc. SPIE – volume: 54 start-page: 280 year: 2019 ident: 26643_CR28 publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.03.009 – ident: 26643_CR47 doi: 10.1007/978-3-030-87237-3_49 – volume: 5 start-page: e3874 year: 2017 ident: 26643_CR40 publication-title: PeerJ doi: 10.7717/peerj.3874 – volume: 25 start-page: 1301 year: 2019 ident: 26643_CR45 publication-title: Nat. Med. doi: 10.1038/s41591-019-0508-1 – volume: 102 start-page: 101756 year: 2019 ident: 26643_CR11 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.101756 – volume: 9041 start-page: 904103 year: 2014 ident: 26643_CR42 publication-title: Proc. SPIE doi: 10.1117/12.2043872 – ident: 26643_CR48 doi: 10.7551/mitpress/9780262033589.001.0001 – ident: 26643_CR54 – ident: 26643_CR53 doi: 10.1109/CVPR.2009.5206848 – ident: 26643_CR58 doi: 10.5281/zenodo.5524324 – volume: 16 start-page: 34 year: 2018 ident: 26643_CR6 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2018.01.001 – volume: 8 start-page: 1 year: 2017 ident: 26643_CR13 publication-title: J. Pathol. Inform. doi: 10.4103/jpi.jpi_47_16 – ident: 26643_CR41 doi: 10.5220/0006643100580066 – volume: 35 start-page: 1196 year: 2016 ident: 26643_CR14 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2525803 – volume: 8 year: 2018 ident: 26643_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-018-21758-3 – volume: 19 year: 2021 ident: 26643_CR19 publication-title: BMC Med. doi: 10.1186/s12916-021-01942-5 – ident: 26643_CR27 – volume: 39 start-page: 3429 year: 2020 ident: 26643_CR30 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2995518 – volume: 11764 start-page: 1 year: 2019 ident: 26643_CR25 publication-title: Lect. Notes Comput. Sci. – volume: 2020 start-page: 320 year: 2020 ident: 26643_CR46 publication-title: MICCAI |
| SSID | ssj0000391844 |
| Score | 2.6168058 |
| Snippet | Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a... Machine-assisted recognition of colorectal cancer has been mainly focused on supervised deep learning that suffers from a significant bottleneck of requiring... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6311 |
| SubjectTerms | 119/118 631/114/1305 631/67/2321 639/166/985 Annotations Artificial intelligence Artificial Intelligence - standards Cancer Colorectal cancer Colorectal carcinoma Colorectal Neoplasms - classification Colorectal Neoplasms - diagnostic imaging Colorectal Neoplasms - pathology Deep learning Deep Learning - standards Humanities and Social Sciences Humans Learning algorithms Lung Neoplasms - classification Lung Neoplasms - diagnostic imaging Lung Neoplasms - pathology Lymph nodes Lymphatic Metastasis multidisciplinary Neural Networks, Computer Object recognition ROC Curve Science Science (multidisciplinary) Semi-supervised learning Supervised Machine Learning - standards Teachers |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yIOpB_La6SgRvbti2SZrkuIrLIujJhb2FfLzqwGxn2E6R_e99STt1BmX14LVJaPreL-8jSX-PkLcld14J7ZjzPDLRiIppLSOLClpehuCVTj8Kf_7SnJ2LTxfyYqfUV7oTNtIDj4I7boxvXI1AdOj4vIuuadEJInBMW6LzzNl6qc1OMpVtMDeYuojpL5mS6-NeZJuQbiSgTxKc6T1PlAn7_xRl_n5Zcj4xvUfuDN3aXf9wy-WOUzp9QO5P0SQ9Gb_iIbkF3SNye6wvef2YhJMQhsQFQed7QquOrlqaqKqTqcOxIan9iqb9WNrD5YL1wzrZjx4ijQBrOtWV-EZxaKpfvLWWdHGJtqh_Qs5PP379cMamqgosYHS2YTJozUV02hlvRA26lKGCtvaYOYASziloolHGGQ6ydb7RwQHmMcGXWsRQ86fkoFt18JxQkF42ra5KcEoIp7SElNIIKWJVQxAFqbYStmGiHE-VL5Y2H31zbUetWNSKzVqxuiDv5jHrkXDjxt7vk-LmnoksOz9ACNkJQvZvECrI4VbtdlrBvcW0MHEBaoHveDM349pLByqug9WQ-_B0UmtMQZ6NKJlnwoWqMVvEFrWHn72p7rd0i--Z31tLDBt5VZCjLdJ-TesmURzNaPwHyb34H5J7Se7WaUWlbfb6kBxsrgZ4hUHaxr_O6_EnCBA1gw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SDaXtofQdt2lRobfGxLYkSz6UkpSEUOhSSgO5Gb2cLGxsd70m5N9X41e6tCy9WhLImplPI83oG4APEVVaMKlCpakNWcriUEpuQytcQSNjtJD4UPjbPD07Z18v-MUOzMe3MJhWOWJiB9S2MnhHfujddORmk0x-rn-FWDUKo6tjCQ01lFawnzqKsXuwmyAz1gx2j0_m339Mty7Ihy4ZG17PRFQeNqzDCsxU8HsVo6Hc2KE6Iv9_eZ9_J1FOkdRH8KAta3V7o5bLPzar0yfwePAyyVGvFk9hx5XP4H5fd_L2OZgjY1rkiCBT_lBVkqogSGGNEOjHGlSHFcF7WtK460XYtDXiSuMssc7VZKg3cUn8UKxrPKIoWVx7jGpewPnpyc8vZ-FQbSE03mtbh9xISZlVUmU6Y4mTETexKxLtTxROMKWES20mMpVRxwulU2mU8-cboyPJrEnoS5iVVen2gDiueVrIOHJKMKaE5A6POowzGyfOsADicYVzM1CRY0WMZd6FxKnMe6nkXip5J5VcBvBxGlP3RBxbex-j4KaeSKLdfahWl_lgk3ma6VQlHuOU96m0siotvH_lMSkrIu-XRQHsj2LPB8tu8js9DOD91OxtEgMtqnRV2_WhGMHNsgBe9VoyzYQykfhTpG8RG_qzMdXNlnJx1fF-S-7dSRoHcDBq2t20ti3FwaSN_7Fyr7f_9Bt4mKCt4MV6sg-z9ap1b71bttbvBlv7DTkmNK4 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBwQLwbKMhI3NiIJLaTyXFBVNVKcIFKvVl-BVbaZlfNRqj_vuO8YFVUwTX2OJbn4RmP_Q3Au4RrUwjUsTbcxSIXaYwoXewKX_HEWlNgeCj85Wt-eiaW5_L8AObjW5i9_H0H3d2ITpnDVQLaTASP8Q4cIgkmzuBwsVh-W05nKgHtHIUY3sYQ-YebxHv7TwfT_zff8uYVySlP-gDutfVWX_3S6_UfW9HJI3g4-JBs0TP9MRz4-gnc7atKXj0Fu7C2DQgQbLodtKnZpmIBoDoYOKK1gdmXLJzCssZfrOKm3Qar0XjHnPdbNlST-MGINFQtHm0kW12QBWqewdnJ5--fTuOhlkJsySfbxdIicuE06tKUIvOYSJv6KjMUL_hCaF343JVFqUvuZaVNjlZ7il6sSVA4m_HnMKs3tT8C5qWReYVp4nUhhC5Q-hDICClcmnkrIkjHFVZ2ABoP9S7Wqkt4c1Q9VxRxRXVcURjB-4lm28Ns3Nr7Y2Dc1DNAZHcfSHLUoHEqL02uM7Jgmjwmo53OK_KeyOKUVUJeVxLB8ch2NehtoygYDAiAKOgfb6dm0riQRtG137RdHx7ys2UZwYteSqaZcFFkFCNSS7EnP3tT3W-pVz87VG-U5CzyNIL5KGm_p3XbUswnafyHlXv5f6O_gvtZ0J1wjJ4dw2x32frX5ITtzJtB964B4OYowQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwLuwUJCRuNEsSWwnznFBVBUSFQdWlJPlV8qKbRJtNkLl1zPOCxaqil7jseJMxuNv7PE3AK9CqnTKhAqUpjZgCYsCIbgNbOpyGhqjU-EvCn88SY4X7MMpP92BZLgL0ybtt5SWrZsessPe1Kyd0j6hAJcURgMxq2x-A3YTjhh8AruLk0_zr76SXIivw1WZ9jdkQiou6by1CrVk_ZchzH8TJcfT0ttwqykqdfFDrVZ_LEhHd-HL8CldHsr3WbPRM_PzL5bH63_rPbjTY1Qy7yTvw44rHsDNrmrlxUMwc2MazzBBxuyjsiBlTjwBtneg2Nd4Y1oTv8tLane-DOqm8l6pdpZY5yrSV6s4I9jVV0UefDBZnqOHqx_B4uj953fHQV-rITCI-TYBN0JQZpVQmc5Y7ETITeTyWGM84lKmVOoSm6WZyqjjudKJMMphdGR0KJg1Md2HSVEW7gkQxzVPchGFTqWMqVRw5wMlxpmNYmfYFKLh30nTE5n7ehor2R6oUyE7BUpUoGwVKMUUXo99qo7G40rpt94kRklPwd0-KNdnsv9NMsl0omL0kAoRmVZWJTmiM_RoWR4iqguncDAYlOz9Qi0x2PQMg4LhO16OzTij_TGNKlzZtDLUn_9m2RQed_Y3joSyNMYYFFvSLcvcGup2S7H81rKGC45glEZTOBxs-PewrlLF4Wjn_6G5p9cTfwZ7sTdzv00fH8Bks27ccwR5G_2in9G_AOAFS08 priority: 102 providerName: Unpaywall |
| Title | Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images |
| URI | https://link.springer.com/article/10.1038/s41467-021-26643-8 https://www.ncbi.nlm.nih.gov/pubmed/34728629 https://www.proquest.com/docview/2591866848 https://www.proquest.com/docview/2593028999 https://pubmed.ncbi.nlm.nih.gov/PMC8563931 https://www.nature.com/articles/s41467-021-26643-8.pdf https://doaj.org/article/69b6a2073a554bada6f7413199f05840 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: ADMLS dateStart: 20121101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: NAO dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 8FG dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2041-1723 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M48 dateStart: 20101001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: AAJSJ dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: C6C dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aRYjxgLivMCoj8cYCSezE9gNCXbUyVVo1AZXKU2Q7zqjUpaVpBf33HOcGFdUEL4nkYyeWz8Xf8eUcgNc-VZozoTylaeqxmAWeEFHqpdxm1DdGc-EuCl-O4osxG06iyR406Y7qASx2unYun9R4OXv78_vmAyr8--rKuHhXsFLd3WEDnG4Y9cQ-HOJMJV0qh8sa7peWmUp0aFh9d2Z30635qQzjvwt7_n2Est1HvQd31_lCbX6o2eyPqWrwAO7XGJP0KqF4CHs2fwR3qqyTm8dgesasXYQI0p4emudknhEXwNoZQGxrnDAsiVulJYW9mXrFeuGsSmFTklq7IHW2iWuCTV1W48aGkukNWqjiCYwH51_6F16da8EziNlWXmSEoCxVQkktWWiFH5nAZqFGf8JyphS3cSq5VJLaKFM6FkZZ9G6M9gVLTUifwkE-z-0xEBvpKM5E4FvFGVNcRNY5OixiaRBawzoQNCOcmDoQucuHMUvKDXEqkoorCXIlKbmSiA68adssqjAct9Y-c4xra7oQ2mXBfHmd1BqZxFLHKkQLpxBRaZWqOEN0hRZJZj6iMr8DJw3bk0YsE3QWXYRAwfAfr1oyaqTbZlG5na_LOtTt30rZgWeVlLQ9oYyH6EMihW_Jz1ZXtyn59FsZ9VtECCZp0IHTRtJ-d-u2oThtpfEfRu75_339BRyFTnfcMnt4Ager5dq-RJC20l3Y5xOOTzH42IXDXm_4eYjvs_PR1Scs7cf9brn80S01FCnj0VXv6y-MWT3q |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlQ4IN4EChgJTjRqEjuxc0CoPKotfZxaaW_Gr5SVtsmy2VW1f4rfyExeZQWquPQa25Ljmfn82TOeIeRtxLQRXOpQG-ZCnvE4lDJ1oRO-YJG1Rkh8KHx8ko3O-LdxOt4gv_q3MBhW2WNiA9SusnhHvgs0HXOzSS4_zn6GWDUKvat9CY1WLQ796hKObPWHgy8g33dJsv_19PMo7KoKhBbYySJMrZSMOy11bnKeeBmlNvZFYoA5e8G1Fj5zuch1znxaaJNJqz3weGsiyZ3FRAcA-bc4AywB-xFjMdzpYLZ1yXn3NidicrfmDRJhHATshJyFcm3_a8oE_Ivb_h2iOfhp75KtZTnTq0s9nf6xFe7fJ_c6Dkv3WqV7QDZ8-ZDcbqtarh4Ru2ftEjNQ0CE6qSppVVBMkI0AC2MtKtuc4i0wrf3FJKyXM0St2jvqvJ_RrprFOYWhWDW5x2g6uQAErB-TsxtZ9Sdks6xK_4xQn5o0K2QceS0410KmHg9SPOUuTrzlAYn7FVa2S3SO9TamqnG4M6laqSiQimqkomRA3g9jZm2aj2t7f0LBDT0xRXfzoZqfq87iVZabTCeAoBoYm9FOZwWwN0C8vIiA9UUB2e7FrjrcqNWVlgfkzdAMFo9uHF36atn0YegfzvOAPG21ZJgJ4yKBMyq0iDX9WZvqeks5-dFkFZcpkFUWB2Sn17SraV23FDuDNv7Hyj2__qdfk63R6fGROjo4OXxB7iRoN3iFn2yTzcV86V8CAVyYV43VUfL9ps38Nz51bAs |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HxJtAASPBiUabxE7sHBAqlFVLoeJApb25tuOUlbbJstmo2r_Gr2Mmr7ICrbj0GtuS45n5_NkzniHkdcC0EVxqXxuW-TzhoS9lnPmZcDkLrDVC4kPhr8fJwQn_PIknW-RX_xYGwyp7TGyAOist3pGPgKZjbjbJ5SjvwiK-7Y_fz3_6WEEKPa19OY1WRY7c6gKOb9W7w32Q9ZsoGn_6_vHA7yoM-BaYytKPrZSMZ1rq1KQ8cjKIbejyyACLdoJrLVySpSLVKXNxrk0irXbA6a0JJM8sJj0A-L8mGEsxnFBMxHC_g5nXJefdO52AyVHFG1TCmAjYFTnz5dpe2JQM-BfP_Ttcc_DZ3iY362KuVxd6NvtjWxzfJXc6Pkv3WgW8R7ZccZ9cbytcrh4Qu2dtjdko6BCpVBa0zCkmy0awhbEWFW9B8UaYVu586lf1HBGschnNnJvTrrLFGYWhWEG5x2s6PQc0rB6SkytZ9UdkuygL94RQF5s4yWUYOC0410LGDg9VPOZZGDnLPRL2K6xsl_Qca2_MVON8Z1K1UlEgFdVIRUmPvB3GzNuUHxt7f0DBDT0xXXfzoVycqc76VZKaREeAphrYm9GZTnJgcoB-aR4AAww8stOLXXUYUqlLjffIq6EZrB9dOrpwZd30YegrTlOPPG61ZJgJ4yKC8yq0iDX9WZvqeksx_dFkGJcxEFcWemS317TLaW1ait1BG_9j5Z5u_umX5AYYuPpyeHz0jNyK0GzwNj_aIdvLRe2eAxdcmheN0VFyetVW_huPvnBO |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwLuwUJCRuNEsSWwnznFBVBUSFQdWlJPlV8qKbRJtNkLl1zPOCxaqil7jseJMxuNv7PE3AK9CqnTKhAqUpjZgCYsCIbgNbOpyGhqjU-EvCn88SY4X7MMpP92BZLgL0ybtt5SWrZsessPe1Kyd0j6hAJcURgMxq2x-A3YTjhh8AruLk0_zr76SXIivw1WZ9jdkQiou6by1CrVk_ZchzH8TJcfT0ttwqykqdfFDrVZ_LEhHd-HL8CldHsr3WbPRM_PzL5bH63_rPbjTY1Qy7yTvw44rHsDNrmrlxUMwc2MazzBBxuyjsiBlTjwBtneg2Nd4Y1oTv8tLane-DOqm8l6pdpZY5yrSV6s4I9jVV0UefDBZnqOHqx_B4uj953fHQV-rITCI-TYBN0JQZpVQmc5Y7ETITeTyWGM84lKmVOoSm6WZyqjjudKJMMphdGR0KJg1Md2HSVEW7gkQxzVPchGFTqWMqVRw5wMlxpmNYmfYFKLh30nTE5n7ehor2R6oUyE7BUpUoGwVKMUUXo99qo7G40rpt94kRklPwd0-KNdnsv9NMsl0omL0kAoRmVZWJTmiM_RoWR4iqguncDAYlOz9Qi0x2PQMg4LhO16OzTij_TGNKlzZtDLUn_9m2RQed_Y3joSyNMYYFFvSLcvcGup2S7H81rKGC45glEZTOBxs-PewrlLF4Wjn_6G5p9cTfwZ7sTdzv00fH8Bks27ccwR5G_2in9G_AOAFS08 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+recognition+of+colorectal+cancer+with+semi-supervised+deep+learning+on+pathological+images&rft.jtitle=Nature+communications&rft.au=Yu%2C+Gang&rft.au=Sun%2C+Kai&rft.au=Xu%2C+Chao&rft.au=Shi%2C+Xing-Hua&rft.date=2021-11-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26643-8&rft.externalDocID=10_1038_s41467_021_26643_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |