Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images

Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subje...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 6311 - 13
Main Authors Yu, Gang, Sun, Kai, Xu, Chao, Shi, Xing-Hua, Wu, Chong, Xie, Ting, Meng, Run-Qi, Meng, Xiang-He, Wang, Kuan-Song, Xiao, Hong-Mei, Deng, Hong-Wen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.11.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-021-26643-8

Cover

Abstract Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice. Machine-assisted recognition of colorectal cancer has been mainly focused on supervised deep learning that suffers from a significant bottleneck of requiring massive amounts of labeled data. Here, the authors propose a semi-supervised model based on the mean teacher architecture that provides pathological predictions at both patch- and patient-levels.
AbstractList Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice. Machine-assisted recognition of colorectal cancer has been mainly focused on supervised deep learning that suffers from a significant bottleneck of requiring massive amounts of labeled data. Here, the authors propose a semi-supervised model based on the mean teacher architecture that provides pathological predictions at both patch- and patient-levels.
Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice.
Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice.Machine-assisted recognition of colorectal cancer has been mainly focused on supervised deep learning that suffers from a significant bottleneck of requiring massive amounts of labeled data. Here, the authors propose a semi-supervised model based on the mean teacher architecture that provides pathological predictions at both patch- and patient-levels.
Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice.Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice.
Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (~3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (~6300 labeled, ~37,800 unlabeled) and SL (~44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice.
Machine-assisted recognition of colorectal cancer has been mainly focused on supervised deep learning that suffers from a significant bottleneck of requiring massive amounts of labeled data. Here, the authors propose a semi-supervised model based on the mean teacher architecture that provides pathological predictions at both patch- and patient-levels.
ArticleNumber 6311
Author Xie, Ting
Meng, Xiang-He
Deng, Hong-Wen
Wang, Kuan-Song
Meng, Run-Qi
Shi, Xing-Hua
Yu, Gang
Sun, Kai
Wu, Chong
Xiao, Hong-Mei
Xu, Chao
Author_xml – sequence: 1
  givenname: Gang
  orcidid: 0000-0003-3599-8985
  surname: Yu
  fullname: Yu, Gang
  organization: Department of Biomedical Engineering, School of Basic Medical Science, Central South University
– sequence: 2
  givenname: Kai
  orcidid: 0000-0002-6232-2094
  surname: Sun
  fullname: Sun, Kai
  organization: Department of Biomedical Engineering, School of Basic Medical Science, Central South University
– sequence: 3
  givenname: Chao
  orcidid: 0000-0002-3821-6187
  surname: Xu
  fullname: Xu, Chao
  organization: Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center
– sequence: 4
  givenname: Xing-Hua
  orcidid: 0000-0003-4662-3177
  surname: Shi
  fullname: Shi, Xing-Hua
  organization: Department of Computer & Information Sciences, College of Science and Technology, Temple University
– sequence: 5
  givenname: Chong
  orcidid: 0000-0002-8400-1785
  surname: Wu
  fullname: Wu, Chong
  organization: Department of Statistics, Florida State University
– sequence: 6
  givenname: Ting
  orcidid: 0000-0001-8742-3855
  surname: Xie
  fullname: Xie, Ting
  organization: Department of Biomedical Engineering, School of Basic Medical Science, Central South University
– sequence: 7
  givenname: Run-Qi
  orcidid: 0000-0001-7833-4666
  surname: Meng
  fullname: Meng, Run-Qi
  organization: Electronic Information Science and Technology, School of Physics and Electronics, Central South University
– sequence: 8
  givenname: Xiang-He
  orcidid: 0000-0001-8731-2899
  surname: Meng
  fullname: Meng, Xiang-He
  organization: Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University
– sequence: 9
  givenname: Kuan-Song
  orcidid: 0000-0002-7828-2648
  surname: Wang
  fullname: Wang, Kuan-Song
  email: 375527162@qq.com
  organization: Department of Pathology, Xiangya Hospital, School of Basic Medical Science, Central South University
– sequence: 10
  givenname: Hong-Mei
  orcidid: 0000-0002-8121-9498
  surname: Xiao
  fullname: Xiao, Hong-Mei
  email: hmxiao@csu.edu.cn
  organization: Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University
– sequence: 11
  givenname: Hong-Wen
  orcidid: 0000-0002-0387-8818
  surname: Deng
  fullname: Deng, Hong-Wen
  email: hdeng2@tulane.edu
  organization: Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Deming Department of Medicine, Tulane Center of Biomedical Informatics and Genomics, Tulane University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34728629$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFARLaV_gAOKxIVLwN-xL0hVxUelSlzgbL04L1mvsvZiJ6367_F2l9L2UOGLreeZ8fjNe10dhRiwqt5S8pESrj9lQYVqG8Jow5QSvNEvqhNGBG1oy_jRg_NxdZbzmpTFDdVCvKqOuWiZVsycVO7cuSXBjHVCF8fgZx9DHYfaxSmW0gxT7SA4TPWNn1d1xo1v8rLFdO0z9nWPuK0nhBR8GOtC3cK8KtTRu8L0Gxgxv6leDjBlPDvsp9Wvr19-Xnxvrn58u7w4v2qcFGRupNOaix40mM4IhppIR3FgXSs1tgKgRdWb1oDhKAfolHaAUhLXES16x_hpdbnX7SOs7TaV19OtjeDtXSGm0UKavZvQKtMpYKTlIKXooAc1tIJyasxApBakaPG91hK2cHsD03QvSIndJWD3CdiSgL1LwOrC-rxnbZdug73DMCeYHll5fBP8yo7x2mqpuOG0CHw4CKT4e8E8243PDqcJAsYlWyYNJ0wbYwr0_RPoOi4plAbvUFQrpcXO0buHju6t_J2AAtB7gEsx54SDdX6G3RQUg356_rfsCfW_WnRobC7gMGL6Z_sZ1h_jBuaa
CitedBy_id crossref_primary_10_3390_bioengineering11100978
crossref_primary_10_1016_j_eclinm_2023_101834
crossref_primary_10_3389_fonc_2024_1365364
crossref_primary_10_1186_s12885_025_13740_w
crossref_primary_10_1186_s13020_024_00963_5
crossref_primary_10_3389_fonc_2022_856575
crossref_primary_10_1016_S2589_7500_23_00027_4
crossref_primary_10_1177_10732748231222109
crossref_primary_10_3390_diagnostics12040837
crossref_primary_10_1007_s00761_023_01359_0
crossref_primary_10_1038_s41698_024_00539_4
crossref_primary_10_3390_electronics12051167
crossref_primary_10_1016_S2589_7500_23_00148_6
crossref_primary_10_3389_froh_2025_1443313
crossref_primary_10_1186_s12967_024_04915_3
crossref_primary_10_1016_j_eswa_2025_126640
crossref_primary_10_1016_j_dld_2024_11_001
crossref_primary_10_3390_brainsci15010030
crossref_primary_10_1016_j_lfs_2024_122634
crossref_primary_10_1177_15330338241301297
crossref_primary_10_3390_diagnostics13193115
crossref_primary_10_1016_j_modpat_2023_100118
crossref_primary_10_15212_RADSCI_2022_0007
crossref_primary_10_1109_JBHI_2023_3237137
crossref_primary_10_1360_TB_2024_0088
crossref_primary_10_1007_s11517_025_03291_4
crossref_primary_10_3389_fbinf_2023_1159381
crossref_primary_10_1016_j_jpi_2022_100159
crossref_primary_10_3390_jimaging9020050
crossref_primary_10_1109_TCE_2024_3371995
crossref_primary_10_1016_j_compbiomed_2022_105499
crossref_primary_10_3390_diagnostics14050528
crossref_primary_10_3389_fphar_2022_929755
crossref_primary_10_26599_BDMA_2024_9020057
crossref_primary_10_1038_s41467_024_46764_0
crossref_primary_10_1038_s41467_024_50369_y
crossref_primary_10_1158_2159_8290_CD_23_1199
crossref_primary_10_1016_j_jhepr_2024_101198
crossref_primary_10_2196_52073
crossref_primary_10_3390_molecules29133164
crossref_primary_10_1016_j_modpat_2023_100327
crossref_primary_10_3389_fonc_2022_960984
crossref_primary_10_1007_s00261_024_04770_2
crossref_primary_10_1016_j_cmpb_2023_107446
crossref_primary_10_1159_000539010
crossref_primary_10_1038_s41598_024_71302_9
crossref_primary_10_3389_fonc_2023_1094869
crossref_primary_10_59717_j_xinn_med_2024_100069
crossref_primary_10_1021_acs_biomac_3c01452
crossref_primary_10_1021_acsmaterialslett_4c01267
crossref_primary_10_35377_saucis___1564497
crossref_primary_10_3389_fmed_2023_1128084
crossref_primary_10_3390_cancers14102489
crossref_primary_10_1155_2024_5562890
crossref_primary_10_37349_etat_2023_00119
crossref_primary_10_1111_jgh_16661
crossref_primary_10_1016_j_eswa_2024_124242
crossref_primary_10_1016_j_dajour_2023_100177
crossref_primary_10_1016_j_eswa_2024_124114
crossref_primary_10_1016_j_future_2024_107578
crossref_primary_10_1007_s00535_023_02025_3
crossref_primary_10_1016_j_eswa_2024_124838
crossref_primary_10_1109_ACCESS_2023_3346894
crossref_primary_10_3390_cancers14153707
crossref_primary_10_1038_s41467_023_37179_4
crossref_primary_10_1016_j_snb_2022_132708
crossref_primary_10_1038_s41586_024_07894_z
crossref_primary_10_3390_diagnostics13071277
crossref_primary_10_1038_s41467_024_51110_5
crossref_primary_10_1007_s13139_023_00821_6
crossref_primary_10_1016_j_semcancer_2023_06_003
crossref_primary_10_1016_j_xcrm_2023_101004
crossref_primary_10_1016_j_xcrm_2024_101785
Cites_doi 10.1186/s12859-017-1685-x
10.1109/TMI.2016.2525803
10.1001/jama.2017.14585
10.1038/s41591-019-0508-1
10.1016/j.media.2019.03.009
10.1016/j.media.2014.11.010
10.1038/modpathol.3880185
10.1016/S0140-6736(19)32998-8
10.1371/journal.pone.0177544
10.1016/j.csbj.2018.01.001
10.4103/jpi.jpi_47_16
10.1016/j.neuroimage.2006.04.233
10.1038/nature21056
10.1371/journal.pmed.1002730
10.1038/s41598-018-21758-3
10.1136/gutjnl-2015-310912
10.1117/12.2043872
10.1016/j.artmed.2019.101756
10.1200/JGO.2015.000943
10.1038/s41591-018-0177-5
10.21147/j.issn.1000-9604.2019.01.06
10.1016/j.neucom.2020.04.148
10.7717/peerj.3874
10.1109/TMI.2018.2879369
10.1001/jamanetworkopen.2019.4337
10.1186/s12916-021-01942-5
10.1109/TMI.2020.2995518
10.1109/CVPR.2016.308
10.1109/CVPR42600.2020.00401
10.1007/978-3-030-00934-2_24
10.1109/CVPR.2016.90
10.1007/978-3-030-68107-4_10
10.1007/978-3-030-59710-8_54
10.1109/ISBI48211.2021.9434141
10.6084/m9.figshare.15072546.v1
10.1109/BIBM.2018.8621307
10.2991/iccsee.2013.391
10.1007/978-3-030-59710-8_65
10.1007/978-3-030-87237-3_49
10.7551/mitpress/9780262033589.001.0001
10.1109/CVPR.2009.5206848
10.5281/zenodo.5524324
10.5220/0006643100580066
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41467-021-26643-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_69b6a2073a554bada6f7413199f05840
10.1038/s41467-021-26643-8
PMC8563931
34728629
10_1038_s41467_021_26643_8
Genre Multicenter Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province (#2015JJ2150). H.M.X was supported by the National Key Research and Development Plan of China (2017YFC1001103, 2016YFC1201805)
– fundername: the Edward G. Schlieder Endowment and the Drs. W.C.Tsai
– fundername: Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
  grantid: R01AR059781,P20GM109036,R01MH107354,R01MH104680,R01GM109068,R01AR069055,U19AG055373,R01DK115679
  funderid: https://doi.org/10.13039/100000009
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81673491; 81471453
  funderid: https://doi.org/10.13039/501100001809
– fundername: Emergency Management Science and Technology Project of Hunan Province (#2020YJ004, #2021-QYC-10050-26366).
– fundername: National Key Research and Development Plan of China (2017YFC1001103, 2016YFC1201805),and Jiangwang Educational Endowment.
– fundername: NIGMS NIH HHS
  grantid: P20 GM109036
– fundername: NIAMS NIH HHS
  grantid: R01 AR059781
– fundername: NIGMS NIH HHS
  grantid: R01 GM109068
– fundername: NIDDK NIH HHS
  grantid: R01 DK115679
– fundername: NIAMS NIH HHS
  grantid: R01 AR069055
– fundername: NIMH NIH HHS
  grantid: R01 MH104680
– fundername: NIMH NIH HHS
  grantid: R01 MH107354
– fundername: NIA NIH HHS
  grantid: U19 AG055373
– fundername: ;
– fundername: ;
  grantid: R01AR059781,P20GM109036,R01MH107354,R01MH104680,R01GM109068,R01AR069055,U19AG055373,R01DK115679
– fundername: ;
  grantid: 81673491; 81471453
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
4.4
ADTOC
BAPOH
CAG
COF
EJD
LGEZI
LOTEE
NADUK
NXXTH
UNPAY
ID FETCH-LOGICAL-c540t-5c8834da8a9b942e805c1ef2b758e74aa7e6d979a93e5fab68cae550cb084dc23
IEDL.DBID M48
ISSN 2041-1723
IngestDate Tue Oct 14 18:33:11 EDT 2025
Sun Oct 26 03:19:46 EDT 2025
Tue Sep 30 16:56:32 EDT 2025
Fri Sep 05 07:34:45 EDT 2025
Tue Oct 07 06:53:34 EDT 2025
Mon Jul 21 05:40:19 EDT 2025
Wed Oct 01 04:56:43 EDT 2025
Thu Apr 24 23:44:04 EDT 2025
Fri Feb 21 02:38:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-5c8834da8a9b942e805c1ef2b758e74aa7e6d979a93e5fab68cae550cb084dc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4662-3177
0000-0001-8742-3855
0000-0002-3821-6187
0000-0002-8400-1785
0000-0002-7828-2648
0000-0001-7833-4666
0000-0003-3599-8985
0000-0002-6232-2094
0000-0001-8731-2899
0000-0002-8121-9498
0000-0002-0387-8818
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-26643-8
PMID 34728629
PQID 2591866848
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_69b6a2073a554bada6f7413199f05840
unpaywall_primary_10_1038_s41467_021_26643_8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8563931
proquest_miscellaneous_2593028999
proquest_journals_2591866848
pubmed_primary_34728629
crossref_citationtrail_10_1038_s41467_021_26643_8
crossref_primary_10_1038_s41467_021_26643_8
springer_journals_10_1038_s41467_021_26643_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-02
PublicationDateYYYYMMDD 2021-11-02
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Komura, Ishikawa (CR6) 2018; 16
Bejnordi (CR10) 2017; 318
CR37
CR36
CR35
CR34
Hua (CR8) 2015; 8
CR33
CR32
CR31
Xu (CR38) 2017; 18
Li (CR46) 2020; 2020
Arnold (CR1) 2017; 66
Metter (CR2) 2019; 2
Damjanov (CR3) 2000; 13
Coudray (CR7) 2018; 24
Mma (CR23) 2021; 452
Haj-Hassan (CR13) 2017; 8
Wang (CR19) 2021; 19
Gurcan (CR42) 2014; 9041
Kainz, Pfeiffer, Urschler (CR40) 2017; 5
CR49
Sirinukunwattana (CR14) 2016; 35
CR48
CR47
CR44
Su (CR29) 2019; 11764
Gupta (CR25) 2019; 11764
CR41
Veta (CR9) 2015; 20
Sari, Gunduz-Demir (CR39) 2019; 38
Campanella (CR45) 2019; 25
Kather (CR17) 2019; 16
Bychkov (CR16) 2018; 8
CR59
Heller (CR55) 2006; 33
CR58
Cheplygina, Bruijne, Pluim (CR28) 2019; 54
CR57
CR56
Ahmad, Camel (CR15) 2017; 2017
CR54
CR53
Zhang (CR11) 2019; 102
CR52
CR51
CR50
Araújo (CR43) 2017; 12
Skrede (CR18) 2020; 395
Rai (CR22) 2019; 10956
Liu (CR30) 2020; 39
CR27
CR26
CR24
CR21
CR20
Sayed, Lukande, Fleming (CR5) 2015; 1
CR60
Group (CR4) 2019; 31
Esteva (CR12) 2017; 542
KS Wang (26643_CR19) 2021; 19
T Rai (26643_CR22) 2019; 10956
N Coudray (26643_CR7) 2018; 24
N Zhang (26643_CR11) 2019; 102
EB Bejnordi (26643_CR10) 2017; 318
26643_CR58
26643_CR59
JN Kather (26643_CR17) 2019; 16
26643_CR21
26643_CR24
V Cheplygina (26643_CR28) 2019; 54
K Sirinukunwattana (26643_CR14) 2016; 35
M Arnold (26643_CR1) 2017; 66
26643_CR20
26643_CR60
H Haj-Hassan (26643_CR13) 2017; 8
D Bychkov (26643_CR16) 2018; 8
H Li (26643_CR46) 2020; 2020
C Ahmad (26643_CR15) 2017; 2017
26643_CR47
26643_CR48
M Veta (26643_CR9) 2015; 20
26643_CR49
26643_CR54
26643_CR56
A Esteva (26643_CR12) 2017; 542
26643_CR57
26643_CR50
26643_CR51
26643_CR52
26643_CR53
P Kainz (26643_CR40) 2017; 5
Q Liu (26643_CR30) 2020; 39
KL Hua (26643_CR8) 2015; 8
CT Sari (26643_CR39) 2019; 38
T Araújo (26643_CR43) 2017; 12
Y Xu (26643_CR38) 2017; 18
26643_CR36
26643_CR37
G Campanella (26643_CR45) 2019; 25
26643_CR44
26643_CR41
MN Gurcan (26643_CR42) 2014; 9041
D Komura (26643_CR6) 2018; 16
R Heller (26643_CR55) 2006; 33
OJ Skrede (26643_CR18) 2020; 395
26643_CR26
26643_CR27
C Mma (26643_CR23) 2021; 452
26643_CR32
26643_CR33
26643_CR34
S Sayed (26643_CR5) 2015; 1
26643_CR35
L Gupta (26643_CR25) 2019; 11764
I Damjanov (26643_CR3) 2000; 13
CCW Group (26643_CR4) 2019; 31
26643_CR31
DM Metter (26643_CR2) 2019; 2
H Su (26643_CR29) 2019; 11764
References_xml – volume: 18
  year: 2017
  ident: CR38
  article-title: Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1685-x
– ident: CR49
– ident: CR51
– volume: 35
  start-page: 1196
  year: 2016
  end-page: 1206
  ident: CR14
  article-title: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2525803
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  ident: CR10
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– ident: CR35
– volume: 25
  start-page: 1301
  year: 2019
  end-page: 1309
  ident: CR45
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0508-1
– ident: CR54
– ident: CR58
– volume: 54
  start-page: 280
  year: 2019
  end-page: 296
  ident: CR28
  article-title: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.03.009
– volume: 20
  start-page: 237
  year: 2015
  end-page: 248
  ident: CR9
  article-title: Assessment of algorithms for mitosis detection in breast cancer histopathology images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.11.010
– volume: 13
  start-page: 1028
  year: 2000
  ident: CR3
  article-title: Robbins review of pathology
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.3880185
– volume: 395
  start-page: 350
  year: 2020
  end-page: 360
  ident: CR18
  article-title: Deep learning for prediction of colorectal cancer outcome: a discovery and validation study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)32998-8
– ident: CR21
– volume: 12
  start-page: e0177544
  year: 2017
  ident: CR43
  article-title: Classification of breast cancer histology images using convolutional neural networks
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177544
– volume: 16
  start-page: 34
  year: 2018
  end-page: 42
  ident: CR6
  article-title: Machine learning methods for histopathological image analysis
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2018.01.001
– volume: 8
  start-page: 1
  year: 2017
  ident: CR13
  article-title: Classifications of multispectral colorectal cancer tissues using convolution neural network
  publication-title: J. Pathol. Inform.
  doi: 10.4103/jpi.jpi_47_16
– volume: 2017
  start-page: 8428102
  year: 2017
  ident: CR15
  article-title: Texture analysis of abnormal cell images for predicting the continuum of colorectal cancer
  publication-title: Anal. Cell. Pathol.
– ident: CR50
– volume: 33
  start-page: 599
  year: 2006
  end-page: 608
  ident: CR55
  article-title: Cluster-based analysis of FMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.04.233
– ident: CR57
– ident: CR32
– volume: 542
  start-page: 115
  year: 2017
  end-page: 126
  ident: CR12
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: CR60
– volume: 16
  start-page: e1002730
  year: 2019
  ident: CR17
  article-title: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002730
– ident: CR36
– volume: 8
  year: 2018
  ident: CR16
  article-title: Deep learning based tissue analysis predicts outcome in colorectal cancer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21758-3
– ident: CR26
– volume: 66
  start-page: 683
  year: 2017
  end-page: 691
  ident: CR1
  article-title: Global patterns and trends in colorectal cancer incidence and mortality
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310912
– volume: 2020
  start-page: 320
  year: 2020
  end-page: 329
  ident: CR46
  article-title: A novel loss calibration strategy for object detection networks training on sparsely annotated pathological datasets
  publication-title: MICCAI
– volume: 9041
  start-page: 904103
  year: 2014
  ident: CR42
  article-title: Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks
  publication-title: Proc. SPIE
  doi: 10.1117/12.2043872
– ident: CR47
– volume: 11764
  start-page: 559
  year: 2019
  end-page: 567
  ident: CR29
  article-title: Local and global consistency regularized mean teacher for semi-supervised nuclei classification
  publication-title: Int. Conf. Med. Image Comput. Computer Assist. Interv.
– ident: CR37
– ident: CR53
– volume: 102
  start-page: 101756
  year: 2019
  ident: CR11
  article-title: Skin cancer diagnosis based on optimized convolutional neural network
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.101756
– volume: 10956
  start-page: 109560U
  year: 2019
  ident: CR22
  article-title: An investigation of aggregated transfer learning for classification in digital pathology
  publication-title: Proc. SPIE
– ident: CR33
– volume: 1
  start-page: 3
  year: 2015
  end-page: 6
  ident: CR5
  article-title: Providing pathology support in low-income countries
  publication-title: Glob. Oncol.
  doi: 10.1200/JGO.2015.000943
– ident: CR56
– ident: CR27
– volume: 11764
  start-page: 1
  year: 2019
  end-page: 9
  ident: CR25
  article-title: GAN-based image enrichment in digital pathology boosts segmentation accuracy
  publication-title: Lect. Notes Comput. Sci.
– volume: 24
  start-page: 1559
  year: 2018
  end-page: 1567
  ident: CR7
  article-title: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0177-5
– volume: 31
  start-page: 99
  year: 2019
  end-page: 116
  ident: CR4
  article-title: Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version)
  publication-title: Chin. J. Cancer Res.
  doi: 10.21147/j.issn.1000-9604.2019.01.06
– volume: 452
  start-page: 424
  year: 2021
  end-page: 434
  ident: CR23
  article-title: Deep residual transfer learning for automatic diagnosis and grading of diabetic retinopathy
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.148
– ident: CR44
– ident: CR48
– volume: 5
  start-page: e3874
  year: 2017
  ident: CR40
  article-title: Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization
  publication-title: PeerJ
  doi: 10.7717/peerj.3874
– ident: CR52
– volume: 38
  start-page: 1139
  year: 2019
  end-page: 1149
  ident: CR39
  article-title: Unsupervised feature extraction via deep learning for histopathological classification of colon tissue images
  publication-title: IEEE Trans. Med. imaging
  doi: 10.1109/TMI.2018.2879369
– ident: CR31
– volume: 2
  start-page: e194337
  year: 2019
  ident: CR2
  article-title: Trends in the US and Canadian pathologist workforces from 2007 to 2017
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.4337
– volume: 8
  start-page: 2015
  year: 2015
  end-page: 2022
  ident: CR8
  article-title: Computer-aided classification of lung nodules on computed tomography images via deep learning technique
  publication-title: Onco Targets Ther.
– volume: 19
  year: 2021
  ident: CR19
  article-title: Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence
  publication-title: BMC Med.
  doi: 10.1186/s12916-021-01942-5
– ident: CR34
– ident: CR59
– ident: CR41
– ident: CR24
– ident: CR20
– volume: 39
  start-page: 3429
  year: 2020
  end-page: 3440
  ident: CR30
  article-title: Semi-supervised medical image classification with relation-driven self-ensembling model
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2995518
– volume: 452
  start-page: 424
  year: 2021
  ident: 26643_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.148
– ident: 26643_CR49
– volume: 12
  start-page: e0177544
  year: 2017
  ident: 26643_CR43
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177544
– ident: 26643_CR59
– ident: 26643_CR60
– ident: 26643_CR51
  doi: 10.1109/CVPR.2016.308
– ident: 26643_CR31
  doi: 10.1109/CVPR42600.2020.00401
– ident: 26643_CR36
– volume: 8
  start-page: 2015
  year: 2015
  ident: 26643_CR8
  publication-title: Onco Targets Ther.
– volume: 1
  start-page: 3
  year: 2015
  ident: 26643_CR5
  publication-title: Glob. Oncol.
  doi: 10.1200/JGO.2015.000943
– volume: 11764
  start-page: 559
  year: 2019
  ident: 26643_CR29
  publication-title: Int. Conf. Med. Image Comput. Computer Assist. Interv.
– ident: 26643_CR37
  doi: 10.1007/978-3-030-00934-2_24
– volume: 16
  start-page: e1002730
  year: 2019
  ident: 26643_CR17
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002730
– ident: 26643_CR50
  doi: 10.1109/CVPR.2016.90
– volume: 2017
  start-page: 8428102
  year: 2017
  ident: 26643_CR15
  publication-title: Anal. Cell. Pathol.
– ident: 26643_CR26
– ident: 26643_CR33
  doi: 10.1007/978-3-030-68107-4_10
– volume: 24
  start-page: 1559
  year: 2018
  ident: 26643_CR7
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0177-5
– volume: 395
  start-page: 350
  year: 2020
  ident: 26643_CR18
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)32998-8
– ident: 26643_CR34
  doi: 10.1007/978-3-030-59710-8_54
– ident: 26643_CR20
  doi: 10.1109/ISBI48211.2021.9434141
– ident: 26643_CR35
– volume: 13
  start-page: 1028
  year: 2000
  ident: 26643_CR3
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.3880185
– ident: 26643_CR56
– volume: 318
  start-page: 2199
  year: 2017
  ident: 26643_CR10
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– volume: 542
  start-page: 115
  year: 2017
  ident: 26643_CR12
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 38
  start-page: 1139
  year: 2019
  ident: 26643_CR39
  publication-title: IEEE Trans. Med. imaging
  doi: 10.1109/TMI.2018.2879369
– ident: 26643_CR21
– volume: 66
  start-page: 683
  year: 2017
  ident: 26643_CR1
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310912
– volume: 2
  start-page: e194337
  year: 2019
  ident: 26643_CR2
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.4337
– volume: 18
  year: 2017
  ident: 26643_CR38
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1685-x
– ident: 26643_CR57
  doi: 10.6084/m9.figshare.15072546.v1
– volume: 33
  start-page: 599
  year: 2006
  ident: 26643_CR55
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.04.233
– ident: 26643_CR44
  doi: 10.1109/BIBM.2018.8621307
– ident: 26643_CR52
  doi: 10.2991/iccsee.2013.391
– volume: 20
  start-page: 237
  year: 2015
  ident: 26643_CR9
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.11.010
– ident: 26643_CR32
  doi: 10.1007/978-3-030-59710-8_65
– volume: 31
  start-page: 99
  year: 2019
  ident: 26643_CR4
  publication-title: Chin. J. Cancer Res.
  doi: 10.21147/j.issn.1000-9604.2019.01.06
– ident: 26643_CR24
– volume: 10956
  start-page: 109560U
  year: 2019
  ident: 26643_CR22
  publication-title: Proc. SPIE
– volume: 54
  start-page: 280
  year: 2019
  ident: 26643_CR28
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.03.009
– ident: 26643_CR47
  doi: 10.1007/978-3-030-87237-3_49
– volume: 5
  start-page: e3874
  year: 2017
  ident: 26643_CR40
  publication-title: PeerJ
  doi: 10.7717/peerj.3874
– volume: 25
  start-page: 1301
  year: 2019
  ident: 26643_CR45
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0508-1
– volume: 102
  start-page: 101756
  year: 2019
  ident: 26643_CR11
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.101756
– volume: 9041
  start-page: 904103
  year: 2014
  ident: 26643_CR42
  publication-title: Proc. SPIE
  doi: 10.1117/12.2043872
– ident: 26643_CR48
  doi: 10.7551/mitpress/9780262033589.001.0001
– ident: 26643_CR54
– ident: 26643_CR53
  doi: 10.1109/CVPR.2009.5206848
– ident: 26643_CR58
  doi: 10.5281/zenodo.5524324
– volume: 16
  start-page: 34
  year: 2018
  ident: 26643_CR6
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2018.01.001
– volume: 8
  start-page: 1
  year: 2017
  ident: 26643_CR13
  publication-title: J. Pathol. Inform.
  doi: 10.4103/jpi.jpi_47_16
– ident: 26643_CR41
  doi: 10.5220/0006643100580066
– volume: 35
  start-page: 1196
  year: 2016
  ident: 26643_CR14
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2525803
– volume: 8
  year: 2018
  ident: 26643_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21758-3
– volume: 19
  year: 2021
  ident: 26643_CR19
  publication-title: BMC Med.
  doi: 10.1186/s12916-021-01942-5
– ident: 26643_CR27
– volume: 39
  start-page: 3429
  year: 2020
  ident: 26643_CR30
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2995518
– volume: 11764
  start-page: 1
  year: 2019
  ident: 26643_CR25
  publication-title: Lect. Notes Comput. Sci.
– volume: 2020
  start-page: 320
  year: 2020
  ident: 26643_CR46
  publication-title: MICCAI
SSID ssj0000391844
Score 2.6168058
Snippet Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a...
Machine-assisted recognition of colorectal cancer has been mainly focused on supervised deep learning that suffers from a significant bottleneck of requiring...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6311
SubjectTerms 119/118
631/114/1305
631/67/2321
639/166/985
Annotations
Artificial intelligence
Artificial Intelligence - standards
Cancer
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - classification
Colorectal Neoplasms - diagnostic imaging
Colorectal Neoplasms - pathology
Deep learning
Deep Learning - standards
Humanities and Social Sciences
Humans
Learning algorithms
Lung Neoplasms - classification
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - pathology
Lymph nodes
Lymphatic Metastasis
multidisciplinary
Neural Networks, Computer
Object recognition
ROC Curve
Science
Science (multidisciplinary)
Semi-supervised learning
Supervised Machine Learning - standards
Teachers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yIOpB_La6SgRvbti2SZrkuIrLIujJhb2FfLzqwGxn2E6R_e99STt1BmX14LVJaPreL-8jSX-PkLcld14J7ZjzPDLRiIppLSOLClpehuCVTj8Kf_7SnJ2LTxfyYqfUV7oTNtIDj4I7boxvXI1AdOj4vIuuadEJInBMW6LzzNl6qc1OMpVtMDeYuojpL5mS6-NeZJuQbiSgTxKc6T1PlAn7_xRl_n5Zcj4xvUfuDN3aXf9wy-WOUzp9QO5P0SQ9Gb_iIbkF3SNye6wvef2YhJMQhsQFQed7QquOrlqaqKqTqcOxIan9iqb9WNrD5YL1wzrZjx4ijQBrOtWV-EZxaKpfvLWWdHGJtqh_Qs5PP379cMamqgosYHS2YTJozUV02hlvRA26lKGCtvaYOYASziloolHGGQ6ydb7RwQHmMcGXWsRQ86fkoFt18JxQkF42ra5KcEoIp7SElNIIKWJVQxAFqbYStmGiHE-VL5Y2H31zbUetWNSKzVqxuiDv5jHrkXDjxt7vk-LmnoksOz9ACNkJQvZvECrI4VbtdlrBvcW0MHEBaoHveDM349pLByqug9WQ-_B0UmtMQZ6NKJlnwoWqMVvEFrWHn72p7rd0i--Z31tLDBt5VZCjLdJ-TesmURzNaPwHyb34H5J7Se7WaUWlbfb6kBxsrgZ4hUHaxr_O6_EnCBA1gw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SDaXtofQdt2lRobfGxLYkSz6UkpSEUOhSSgO5Gb2cLGxsd70m5N9X41e6tCy9WhLImplPI83oG4APEVVaMKlCpakNWcriUEpuQytcQSNjtJD4UPjbPD07Z18v-MUOzMe3MJhWOWJiB9S2MnhHfujddORmk0x-rn-FWDUKo6tjCQ01lFawnzqKsXuwmyAz1gx2j0_m339Mty7Ihy4ZG17PRFQeNqzDCsxU8HsVo6Hc2KE6Iv9_eZ9_J1FOkdRH8KAta3V7o5bLPzar0yfwePAyyVGvFk9hx5XP4H5fd_L2OZgjY1rkiCBT_lBVkqogSGGNEOjHGlSHFcF7WtK460XYtDXiSuMssc7VZKg3cUn8UKxrPKIoWVx7jGpewPnpyc8vZ-FQbSE03mtbh9xISZlVUmU6Y4mTETexKxLtTxROMKWES20mMpVRxwulU2mU8-cboyPJrEnoS5iVVen2gDiueVrIOHJKMKaE5A6POowzGyfOsADicYVzM1CRY0WMZd6FxKnMe6nkXip5J5VcBvBxGlP3RBxbex-j4KaeSKLdfahWl_lgk3ma6VQlHuOU96m0siotvH_lMSkrIu-XRQHsj2LPB8tu8js9DOD91OxtEgMtqnRV2_WhGMHNsgBe9VoyzYQykfhTpG8RG_qzMdXNlnJx1fF-S-7dSRoHcDBq2t20ti3FwaSN_7Fyr7f_9Bt4mKCt4MV6sg-z9ap1b71bttbvBlv7DTkmNK4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBwQLwbKMhI3NiIJLaTyXFBVNVKcIFKvVl-BVbaZlfNRqj_vuO8YFVUwTX2OJbn4RmP_Q3Au4RrUwjUsTbcxSIXaYwoXewKX_HEWlNgeCj85Wt-eiaW5_L8AObjW5i9_H0H3d2ITpnDVQLaTASP8Q4cIgkmzuBwsVh-W05nKgHtHIUY3sYQ-YebxHv7TwfT_zff8uYVySlP-gDutfVWX_3S6_UfW9HJI3g4-JBs0TP9MRz4-gnc7atKXj0Fu7C2DQgQbLodtKnZpmIBoDoYOKK1gdmXLJzCssZfrOKm3Qar0XjHnPdbNlST-MGINFQtHm0kW12QBWqewdnJ5--fTuOhlkJsySfbxdIicuE06tKUIvOYSJv6KjMUL_hCaF343JVFqUvuZaVNjlZ7il6sSVA4m_HnMKs3tT8C5qWReYVp4nUhhC5Q-hDICClcmnkrIkjHFVZ2ABoP9S7Wqkt4c1Q9VxRxRXVcURjB-4lm28Ns3Nr7Y2Dc1DNAZHcfSHLUoHEqL02uM7Jgmjwmo53OK_KeyOKUVUJeVxLB8ch2NehtoygYDAiAKOgfb6dm0riQRtG137RdHx7ys2UZwYteSqaZcFFkFCNSS7EnP3tT3W-pVz87VG-U5CzyNIL5KGm_p3XbUswnafyHlXv5f6O_gvtZ0J1wjJ4dw2x32frX5ITtzJtB964B4OYowQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwLuwUJCRuNEsSWwnznFBVBUSFQdWlJPlV8qKbRJtNkLl1zPOCxaqil7jseJMxuNv7PE3AK9CqnTKhAqUpjZgCYsCIbgNbOpyGhqjU-EvCn88SY4X7MMpP92BZLgL0ybtt5SWrZsessPe1Kyd0j6hAJcURgMxq2x-A3YTjhh8AruLk0_zr76SXIivw1WZ9jdkQiou6by1CrVk_ZchzH8TJcfT0ttwqykqdfFDrVZ_LEhHd-HL8CldHsr3WbPRM_PzL5bH63_rPbjTY1Qy7yTvw44rHsDNrmrlxUMwc2MazzBBxuyjsiBlTjwBtneg2Nd4Y1oTv8tLane-DOqm8l6pdpZY5yrSV6s4I9jVV0UefDBZnqOHqx_B4uj953fHQV-rITCI-TYBN0JQZpVQmc5Y7ETITeTyWGM84lKmVOoSm6WZyqjjudKJMMphdGR0KJg1Md2HSVEW7gkQxzVPchGFTqWMqVRw5wMlxpmNYmfYFKLh30nTE5n7ehor2R6oUyE7BUpUoGwVKMUUXo99qo7G40rpt94kRklPwd0-KNdnsv9NMsl0omL0kAoRmVZWJTmiM_RoWR4iqguncDAYlOz9Qi0x2PQMg4LhO16OzTij_TGNKlzZtDLUn_9m2RQed_Y3joSyNMYYFFvSLcvcGup2S7H81rKGC45glEZTOBxs-PewrlLF4Wjn_6G5p9cTfwZ7sTdzv00fH8Bks27ccwR5G_2in9G_AOAFS08
  priority: 102
  providerName: Unpaywall
Title Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images
URI https://link.springer.com/article/10.1038/s41467-021-26643-8
https://www.ncbi.nlm.nih.gov/pubmed/34728629
https://www.proquest.com/docview/2591866848
https://www.proquest.com/docview/2593028999
https://pubmed.ncbi.nlm.nih.gov/PMC8563931
https://www.nature.com/articles/s41467-021-26643-8.pdf
https://doaj.org/article/69b6a2073a554bada6f7413199f05840
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: ADMLS
  dateStart: 20121101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: NAO
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 8FG
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M48
  dateStart: 20101001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: AAJSJ
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: C6C
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aRYjxgLivMCoj8cYCSezE9gNCXbUyVVo1AZXKU2Q7zqjUpaVpBf33HOcGFdUEL4nkYyeWz8Xf8eUcgNc-VZozoTylaeqxmAWeEFHqpdxm1DdGc-EuCl-O4osxG06iyR406Y7qASx2unYun9R4OXv78_vmAyr8--rKuHhXsFLd3WEDnG4Y9cQ-HOJMJV0qh8sa7peWmUp0aFh9d2Z30635qQzjvwt7_n2Est1HvQd31_lCbX6o2eyPqWrwAO7XGJP0KqF4CHs2fwR3qqyTm8dgesasXYQI0p4emudknhEXwNoZQGxrnDAsiVulJYW9mXrFeuGsSmFTklq7IHW2iWuCTV1W48aGkukNWqjiCYwH51_6F16da8EziNlWXmSEoCxVQkktWWiFH5nAZqFGf8JyphS3cSq5VJLaKFM6FkZZ9G6M9gVLTUifwkE-z-0xEBvpKM5E4FvFGVNcRNY5OixiaRBawzoQNCOcmDoQucuHMUvKDXEqkoorCXIlKbmSiA68adssqjAct9Y-c4xra7oQ2mXBfHmd1BqZxFLHKkQLpxBRaZWqOEN0hRZJZj6iMr8DJw3bk0YsE3QWXYRAwfAfr1oyaqTbZlG5na_LOtTt30rZgWeVlLQ9oYyH6EMihW_Jz1ZXtyn59FsZ9VtECCZp0IHTRtJ-d-u2oThtpfEfRu75_339BRyFTnfcMnt4Ager5dq-RJC20l3Y5xOOTzH42IXDXm_4eYjvs_PR1Scs7cf9brn80S01FCnj0VXv6y-MWT3q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlQ4IN4EChgJTjRqEjuxc0CoPKotfZxaaW_Gr5SVtsmy2VW1f4rfyExeZQWquPQa25Ljmfn82TOeIeRtxLQRXOpQG-ZCnvE4lDJ1oRO-YJG1Rkh8KHx8ko3O-LdxOt4gv_q3MBhW2WNiA9SusnhHvgs0HXOzSS4_zn6GWDUKvat9CY1WLQ796hKObPWHgy8g33dJsv_19PMo7KoKhBbYySJMrZSMOy11bnKeeBmlNvZFYoA5e8G1Fj5zuch1znxaaJNJqz3weGsiyZ3FRAcA-bc4AywB-xFjMdzpYLZ1yXn3NidicrfmDRJhHATshJyFcm3_a8oE_Ivb_h2iOfhp75KtZTnTq0s9nf6xFe7fJ_c6Dkv3WqV7QDZ8-ZDcbqtarh4Ru2ftEjNQ0CE6qSppVVBMkI0AC2MtKtuc4i0wrf3FJKyXM0St2jvqvJ_RrprFOYWhWDW5x2g6uQAErB-TsxtZ9Sdks6xK_4xQn5o0K2QceS0410KmHg9SPOUuTrzlAYn7FVa2S3SO9TamqnG4M6laqSiQimqkomRA3g9jZm2aj2t7f0LBDT0xRXfzoZqfq87iVZabTCeAoBoYm9FOZwWwN0C8vIiA9UUB2e7FrjrcqNWVlgfkzdAMFo9uHF36atn0YegfzvOAPG21ZJgJ4yKBMyq0iDX9WZvqeks5-dFkFZcpkFUWB2Sn17SraV23FDuDNv7Hyj2__qdfk63R6fGROjo4OXxB7iRoN3iFn2yTzcV86V8CAVyYV43VUfL9ps38Nz51bAs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HxJtAASPBiUabxE7sHBAqlFVLoeJApb25tuOUlbbJstmo2r_Gr2Mmr7ICrbj0GtuS45n5_NkzniHkdcC0EVxqXxuW-TzhoS9lnPmZcDkLrDVC4kPhr8fJwQn_PIknW-RX_xYGwyp7TGyAOist3pGPgKZjbjbJ5SjvwiK-7Y_fz3_6WEEKPa19OY1WRY7c6gKOb9W7w32Q9ZsoGn_6_vHA7yoM-BaYytKPrZSMZ1rq1KQ8cjKIbejyyACLdoJrLVySpSLVKXNxrk0irXbA6a0JJM8sJj0A-L8mGEsxnFBMxHC_g5nXJefdO52AyVHFG1TCmAjYFTnz5dpe2JQM-BfP_Ttcc_DZ3iY362KuVxd6NvtjWxzfJXc6Pkv3WgW8R7ZccZ9cbytcrh4Qu2dtjdko6BCpVBa0zCkmy0awhbEWFW9B8UaYVu586lf1HBGschnNnJvTrrLFGYWhWEG5x2s6PQc0rB6SkytZ9UdkuygL94RQF5s4yWUYOC0410LGDg9VPOZZGDnLPRL2K6xsl_Qca2_MVON8Z1K1UlEgFdVIRUmPvB3GzNuUHxt7f0DBDT0xXXfzoVycqc76VZKaREeAphrYm9GZTnJgcoB-aR4AAww8stOLXXUYUqlLjffIq6EZrB9dOrpwZd30YegrTlOPPG61ZJgJ4yKC8yq0iDX9WZvqeksx_dFkGJcxEFcWemS317TLaW1ait1BG_9j5Z5u_umX5AYYuPpyeHz0jNyK0GzwNj_aIdvLRe2eAxdcmheN0VFyetVW_huPvnBO
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwLuwUJCRuNEsSWwnznFBVBUSFQdWlJPlV8qKbRJtNkLl1zPOCxaqil7jseJMxuNv7PE3AK9CqnTKhAqUpjZgCYsCIbgNbOpyGhqjU-EvCn88SY4X7MMpP92BZLgL0ybtt5SWrZsessPe1Kyd0j6hAJcURgMxq2x-A3YTjhh8AruLk0_zr76SXIivw1WZ9jdkQiou6by1CrVk_ZchzH8TJcfT0ttwqykqdfFDrVZ_LEhHd-HL8CldHsr3WbPRM_PzL5bH63_rPbjTY1Qy7yTvw44rHsDNrmrlxUMwc2MazzBBxuyjsiBlTjwBtneg2Nd4Y1oTv8tLane-DOqm8l6pdpZY5yrSV6s4I9jVV0UefDBZnqOHqx_B4uj953fHQV-rITCI-TYBN0JQZpVQmc5Y7ETITeTyWGM84lKmVOoSm6WZyqjjudKJMMphdGR0KJg1Md2HSVEW7gkQxzVPchGFTqWMqVRw5wMlxpmNYmfYFKLh30nTE5n7ehor2R6oUyE7BUpUoGwVKMUUXo99qo7G40rpt94kRklPwd0-KNdnsv9NMsl0omL0kAoRmVZWJTmiM_RoWR4iqguncDAYlOz9Qi0x2PQMg4LhO16OzTij_TGNKlzZtDLUn_9m2RQed_Y3joSyNMYYFFvSLcvcGup2S7H81rKGC45glEZTOBxs-PewrlLF4Wjn_6G5p9cTfwZ7sTdzv00fH8Bks27ccwR5G_2in9G_AOAFS08
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+recognition+of+colorectal+cancer+with+semi-supervised+deep+learning+on+pathological+images&rft.jtitle=Nature+communications&rft.au=Yu%2C+Gang&rft.au=Sun%2C+Kai&rft.au=Xu%2C+Chao&rft.au=Shi%2C+Xing-Hua&rft.date=2021-11-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26643-8&rft.externalDocID=10_1038_s41467_021_26643_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon