A graph-based algorithm for detecting rigid domains in protein structures

Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation a...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 22; no. 1; pp. 66 - 19
Main Authors Dang, Truong Khanh Linh, Nguyen, Thach, Habeck, Michael, Gültas, Mehmet, Waack, Stephan
Format Journal Article
LanguageEnglish
Published London BioMed Central 12.02.2021
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-021-03966-3

Cover

Abstract Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains. Results We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively. Conclusions The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ .
AbstractList Abstract Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains. Results We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively. Conclusions The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ .
Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains. We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively. The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ .
Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains. Results We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively. Conclusions The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ .
Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains.BACKGROUNDConformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains.We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively.RESULTSWe develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively.The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ .CONCLUSIONSThe results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ .
Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains. Results We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively. Conclusions The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/.
ArticleNumber 66
Author Nguyen, Thach
Dang, Truong Khanh Linh
Habeck, Michael
Gültas, Mehmet
Waack, Stephan
Author_xml – sequence: 1
  givenname: Truong Khanh Linh
  surname: Dang
  fullname: Dang, Truong Khanh Linh
  email: linh.dang@informatik.uni-goettingen.de
  organization: Institute of Computer Science, University of Göttingen
– sequence: 2
  givenname: Thach
  surname: Nguyen
  fullname: Nguyen, Thach
  organization: Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen
– sequence: 3
  givenname: Michael
  surname: Habeck
  fullname: Habeck, Michael
  organization: Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Max Planck Institute for Biophysical Chemistry, Microscopic Image Analysis Group, University Hospital Jena
– sequence: 4
  givenname: Mehmet
  surname: Gültas
  fullname: Gültas, Mehmet
  organization: Breeding Informatics Group, Department of Animal Sciences, Center for Integrated Breeding Research (CiBreed)
– sequence: 5
  givenname: Stephan
  surname: Waack
  fullname: Waack, Stephan
  organization: Institute of Computer Science, University of Göttingen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33579190$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_wB1igSGzYBPyIXxukquIxUiU2sLYc28l4lNjBdkD993g6Q2m7qFhdyz7n6NzP5-AkxOAAeI3ge4QE-5ARFlS2EKMWEslYS56BM9Rx1GIE6cm98yk4z3kHIeIC0hfglBDKJZLwDGwumzHpZdv2Ojvb6GmMyZft3AwxNdYVZ4oPY5P86G1j46x9yI0PzZJicXXmklZT1uTyS_B80FN2r47zAvz4_On71df2-tuXzdXldWtoB0tLe9NBLE3HjROQcGk5NpxzIazre2sEQYR1FFqjO6SZoXqQyAy4IxYiawdyATaHXBv1Ti3JzzrdqKi9ur2IaVQ6FW8mp-iAjB247QXuO0o7aQbBGet7AYW2xNUscshaw6JvfutpugtEUO0hqwNkVSGrW8iKVNfHg2tZ-9lZ40JJenpQ5eFL8Fs1xl-qLokYhjXg3TEgxZ-ry0XNPhs3TTq4uGaFOyEx41DiKn37SLqLawoVcFVJKBFmZK96c7_RXZW__1wF4iAwKeac3KCML7r4uC_op6e3xY-s_4XoCDZXcRhd-lf7CdcfAaXcgw
CitedBy_id crossref_primary_10_1016_j_eswa_2023_120409
Cites_doi 10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N
10.1016/s1359-0278(97)00024-2
10.1016/s1093-3263(00)00138-8
10.1016/S0969-2126(96)00018-4
10.1038/206757a0
10.1016/j.immuni.2017.05.002
10.1002/(SICI)1097-0134(199709)29:1<1::AID-PROT1>3.0.CO;2-J
10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8
10.1021/bi0486987
10.1093/bioinformatics/btn396
10.1002/prot.22544
10.1088/1742-5468/2008/10/p10008
10.1038/nature06522
10.1093/bioinformatics/btw442
10.1038/nsb0296-170
10.1107/S0567739476001873
10.1002/prot.21613
10.1186/1471-2105-15-277
10.1002/pro.3290
10.1002/prot.25490
10.1140/epjb/e2010-00261-8
10.1021/bi701848w
10.1038/s41598-017-01498-6
10.1038/msb.2011.75
10.1002/(SICI)1097-0134(199703)27:3<425::AID-PROT10>3.0.CO;2-N
10.1007/978-0-387-32833-1_261
10.1016/j.str.2015.05.022
10.1103/PhysRevE.92.032801
10.1186/1471-2105-8-215
10.1103/PhysRevE.84.016114
10.1021/bi00188a001
10.1093/bioinformatics/btg137
10.1016/j.jmb.2006.11.085
10.1038/s41586-019-1923-7
10.1172/JCI103055
ContentType Journal Article
Copyright The Author(s) 2021
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-021-03966-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals (NTUSG)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 19
ExternalDocumentID oai_doaj_org_article_5f1cdf7db82b45549cf8766bb808ad3e
10.1186/s12859-021-03966-3
PMC7881620
33579190
10_1186_s12859_021_03966_3
Genre Journal Article
GrantInformation_xml – fundername: Projekt DEAL
– fundername: ;
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c540t-5bc4029c47ce80379d72c77788debbdc83136450dca41a6c5af91cf243d01ddf3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:46:21 EDT 2025
Sun Oct 26 04:14:43 EDT 2025
Tue Sep 30 16:02:39 EDT 2025
Thu Oct 02 10:56:23 EDT 2025
Mon Oct 06 18:39:34 EDT 2025
Wed Feb 19 02:29:25 EST 2025
Wed Oct 01 04:15:36 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Sat Sep 06 07:27:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Protein structural transition
Graph algorithms
Generalized Viterbi algorithm
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-5bc4029c47ce80379d72c77788debbdc83136450dca41a6c5af91cf243d01ddf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-021-03966-3
PMID 33579190
PQID 2490912632
PQPubID 44065
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_5f1cdf7db82b45549cf8766bb808ad3e
unpaywall_primary_10_1186_s12859_021_03966_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7881620
proquest_miscellaneous_2489267092
proquest_journals_2490912632
pubmed_primary_33579190
crossref_citationtrail_10_1186_s12859_021_03966_3
crossref_primary_10_1186_s12859_021_03966_3
springer_journals_10_1186_s12859_021_03966_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-12
PublicationDateYYYYMMDD 2021-02-12
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2021
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References S Hayward (3966_CR28) 1997; 27
A Abyzov (3966_CR5) 2010; 78
F Sievers (3966_CR24) 2011; 7
K Theis (3966_CR19) 2004; 43
M Gerstein (3966_CR2) 1994; 33
AK Dunker (3966_CR26) 2001; 19
S Hayward (3966_CR3) 1998; 30
T Nguyen (3966_CR8) 2016; 32
Z Dong (3966_CR14) 2014; 15
J Salamanca Viloria (3966_CR29) 2017; 7
K Henzler-Wildman (3966_CR1) 2007; 450
U Emekli (3966_CR9) 2008; 70
CCF Blake (3966_CR22) 1965; 206
A Karmen (3966_CR21) 1955; 34
VA Traag (3966_CR33) 2015; 92
VA Traag (3966_CR13) 2011; 84
Y Zheng (3966_CR23) 2017; 46
L Ponzoni (3966_CR6) 2015; 23
3966_CR36
VD Blondel (3966_CR32) 2008; 2008
SC Flores (3966_CR11) 2007; 8
F Sievers (3966_CR25) 2017; 27
B Iglewicz (3966_CR35) 1993
K Hinsen (3966_CR10) 1998; 33
DC Boisvert (3966_CR20) 1996; 3
M Habeck (3966_CR16) 2018; 86
K Lim (3966_CR18) 2007; 46
W Kabsch (3966_CR31) 1976; 32
M Hirsch (3966_CR7) 2008; 24
CW Mueller (3966_CR12) 1996; 4
RA Lee (3966_CR17) 2003; 19
I Bahar (3966_CR30) 1997; 2
W Wriggers (3966_CR4) 1997; 29
TS Evans (3966_CR34) 2010; 77
AW Senior (3966_CR27) 2020; 577
PC Whitford (3966_CR15) 2007; 366
References_xml – volume: 30
  start-page: 144
  issue: 2
  year: 1998
  ident: 3966_CR3
  publication-title: Proteins Struct Funct Genet
  doi: 10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N
– volume: 2
  start-page: 173
  issue: 3
  year: 1997
  ident: 3966_CR30
  publication-title: Fold Des
  doi: 10.1016/s1359-0278(97)00024-2
– volume: 19
  start-page: 26
  issue: 1
  year: 2001
  ident: 3966_CR26
  publication-title: J Mol Graph Model
  doi: 10.1016/s1093-3263(00)00138-8
– volume-title: How to detect and handle outliers
  year: 1993
  ident: 3966_CR35
– volume: 4
  start-page: 147
  year: 1996
  ident: 3966_CR12
  publication-title: Structure
  doi: 10.1016/S0969-2126(96)00018-4
– volume: 206
  start-page: 757
  issue: 4986
  year: 1965
  ident: 3966_CR22
  publication-title: Nature
  doi: 10.1038/206757a0
– volume: 46
  start-page: 1005
  issue: 6
  year: 2017
  ident: 3966_CR23
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.05.002
– volume: 29
  start-page: 1
  issue: 1
  year: 1997
  ident: 3966_CR4
  publication-title: Proteins Struct Funct Genet
  doi: 10.1002/(SICI)1097-0134(199709)29:1<1::AID-PROT1>3.0.CO;2-J
– volume: 33
  start-page: 417
  issue: 3
  year: 1998
  ident: 3966_CR10
  publication-title: Proteins Struct Funct Bioinform
  doi: 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8
– volume: 43
  start-page: 12709
  issue: 40
  year: 2004
  ident: 3966_CR19
  publication-title: Biochemistry
  doi: 10.1021/bi0486987
– volume: 24
  start-page: 2184
  issue: 19
  year: 2008
  ident: 3966_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn396
– volume: 78
  start-page: 309
  issue: 2
  year: 2010
  ident: 3966_CR5
  publication-title: Proteins Struct Funct Bioinform
  doi: 10.1002/prot.22544
– volume: 2008
  start-page: 10008
  issue: 10
  year: 2008
  ident: 3966_CR32
  publication-title: J Stat Mech Theory Exp
  doi: 10.1088/1742-5468/2008/10/p10008
– volume: 450
  start-page: 964
  year: 2007
  ident: 3966_CR1
  publication-title: Nature
  doi: 10.1038/nature06522
– volume: 32
  start-page: 710
  issue: 17
  year: 2016
  ident: 3966_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw442
– volume: 3
  start-page: 170
  issue: 2
  year: 1996
  ident: 3966_CR20
  publication-title: Nat Struct Biol
  doi: 10.1038/nsb0296-170
– volume: 32
  start-page: 922
  year: 1976
  ident: 3966_CR31
  publication-title: Acta Crystallogr Sect A
  doi: 10.1107/S0567739476001873
– volume: 70
  start-page: 1219
  issue: 4
  year: 2008
  ident: 3966_CR9
  publication-title: Proteins Struct Funct Bioinform
  doi: 10.1002/prot.21613
– volume: 15
  start-page: 277
  year: 2014
  ident: 3966_CR14
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-15-277
– volume: 27
  start-page: 135
  issue: 1
  year: 2017
  ident: 3966_CR25
  publication-title: Protein Sci
  doi: 10.1002/pro.3290
– volume: 86
  start-page: 634
  year: 2018
  ident: 3966_CR16
  publication-title: Proteins
  doi: 10.1002/prot.25490
– volume: 77
  start-page: 265
  issue: 2
  year: 2010
  ident: 3966_CR34
  publication-title: Eur Phys J B
  doi: 10.1140/epjb/e2010-00261-8
– volume: 46
  start-page: 14845
  issue: 51
  year: 2007
  ident: 3966_CR18
  publication-title: Biochemistry
  doi: 10.1021/bi701848w
– volume: 7
  start-page: 2838
  issue: 1
  year: 2017
  ident: 3966_CR29
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-01498-6
– volume: 7
  start-page: 539
  issue: 1
  year: 2011
  ident: 3966_CR24
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.75
– volume: 27
  start-page: 425
  issue: 3
  year: 1997
  ident: 3966_CR28
  publication-title: Proteins Struct Funct Bioinform
  doi: 10.1002/(SICI)1097-0134(199703)27:3<425::AID-PROT10>3.0.CO;2-N
– ident: 3966_CR36
  doi: 10.1007/978-0-387-32833-1_261
– volume: 23
  start-page: 1516
  issue: 8
  year: 2015
  ident: 3966_CR6
  publication-title: Structure
  doi: 10.1016/j.str.2015.05.022
– volume: 92
  start-page: 032801
  issue: 3
  year: 2015
  ident: 3966_CR33
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.92.032801
– volume: 8
  start-page: 215
  issue: 1
  year: 2007
  ident: 3966_CR11
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-8-215
– volume: 84
  start-page: 016114
  issue: 1
  year: 2011
  ident: 3966_CR13
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.84.016114
– volume: 33
  start-page: 6739
  issue: 22
  year: 1994
  ident: 3966_CR2
  publication-title: Biochemistry
  doi: 10.1021/bi00188a001
– volume: 19
  start-page: 1290
  issue: 10
  year: 2003
  ident: 3966_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg137
– volume: 366
  start-page: 1661
  year: 2007
  ident: 3966_CR15
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2006.11.085
– volume: 577
  start-page: 706
  issue: 7792
  year: 2020
  ident: 3966_CR27
  publication-title: Nature
  doi: 10.1038/s41586-019-1923-7
– volume: 34
  start-page: 126
  issue: 1
  year: 1955
  ident: 3966_CR21
  publication-title: J Clin Investig
  doi: 10.1172/JCI103055
SSID ssj0017805
Score 2.3620224
Snippet Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately...
Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the...
Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately...
Abstract Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 66
SubjectTerms Algorithms
Amino acids
Bioinformatics
Biomedical and Life Sciences
Chemistry Techniques, Analytical - methods
Cluster Analysis
Clustering
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Generalized Viterbi algorithm
Graph algorithms
Graphical representations
Kinases
Labeling
Life Sciences
Methodology
Methodology Article
Methods
Microarrays
Novel computational methods for analysis of biological systems
Parameter identification
Protein structural transition
Proteins
Proteins - chemistry
Segmentation
Viterbi algorithm detectors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlENoeSvqMk7So0FsjYlm2JR_T0pAW2lMDuQlJIzULG2_o7hLy7zPjV7O0pD30ZLAkLH2a8cx45G8YewfaFzroXIAJtUALIYWLrhFSYbAgnQk60aeBr9_q07Pyy3l1fqfUF50J6-mBe-COqiQDJA3eFL5E29eEhApce29y40BFevvmphmDqSF_QEz94y8ypj5aSuJpE3QcIVfo4Au1YYY6tv4_uZi_n5Sc0qWP2cN1e-Vurt18fscineywJ4MryY_7JTxlD2L7jG33xSVvnrPPx7xjoxZkqIC7-Y_Fz9nq4pKjm8ohUvIAH8GpMBZwWFy6Wbvks5Z3zA147Zll1xiOv2BnJ5--fzwVQ-EEEdABW4nKBwwLm1DqEE2udAO6CFpjtAvRewhGSco-5hBcKV0dKpcaGVJRKsglQFIv2Va7aOMu42jCQQOU0jtduihNHlWKzhOdqIt1ypgccbRhYBWn4hZz20UXprY99haxtx32VmXs_TTmqufUuLf3B9qeqSfxYXc3UErsICX2b1KSsYNxc-2gpEuLkScugwjrM_Z2akb1opyJa-NiTX1MUxDHHfZ51cvCNBOlKt2gQ5UxvSElG1PdbGlnFx2FN5H41wWOPBzl6de07oPicJK5f0Bu738gt88eFZ3eUA2cA7aFshdfox-28m86lbsF7ZctxQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_1iqgP4rerVSL4ZkM3m91N9kGklZYqeIhY6NuSZLLtwXX39O6Q_vfO7Fc9lMOnhd0Jm0xmMjOZ5DeMvQXtEu11LMD4XKCFkMIGWwipMFiQ1nhd0dbAl2l-epZ-Ps_Od9h0uAtDxyqHNbFdqKHxtEd-gGECmjZCF_-w-CGoahRlV4cSGrYvrQDvW4ixW2w3IWSsCds9Op5-_TbmFQjBf7g6Y_KDpST8NkHHFGKFjr9QG-apRfH_l-v59wnKMY16j91Z1wt7_cvO539YqpMH7H7vYvLDTiYesp1QP2K3u6KT14_Zp0PeolQLMmDA7fwCh7m6vOLovnIIlFTAX3AqmAUcmis7q5d8VvMW0QGfHeLsGsP0J-zs5Pj7x1PRF1QQHh2zlcicx3Cx8Kn2wcRKF6ATrzVGwRCcA2-UpKxkDN6m0uY-s1UhfZWkCmIJUKmnbFI3dXjOOJp20ACpdFanNkgTB1UF6whm1Ia8ipgc-Fj6Hm2cil7MyzbqMHnZ8b5E3pct70sVsXdjm0WHtbGV-oimZ6QknOz2RfPzouzVrswq6aHS4EziUvScCl_h8p87Z2JjQYWI7Q2TW_bKuyxvRC1ib8bPqHaUS7F1aNZEY4qEsO-Q5lknC2NPlMp0gY5WxPSGlGx0dfNLPbtsob0J3D9PsOX-IE833drGiv1R5v6Dcy-2D_olu5u0GkFVb_bYBKUqvELPa-Ve9-r0Gyl5KsY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgCNEeEN8ECjISN2oRx4ntHEtFVZDgRKXeLNvj0JW22UrbVdV_z4yTTbuiquAUKbETZzyTeZOx3zD2EUyoTDSlABu1QA8hhU--FVJhsCC9jaajXwM_fuqj4_r7SXMy0uTQXpib-Xtp9eelJIY1QQsJSoXQXKj77AE6KZ0Ts_pgyhgQN_96U8yt_TYcT-bnvw1U_r02ckqQ7rBHq_7cX136-fyGDzp8wh6P4JHvD7P9lN1L_TP2cCgnefWcfdvnmX9akGsC7ue_Fxj6n55xBKYcEqUL8BGcSmEBh8WZn_VLPut55mrA48Alu8IA_AU7Pvz66-BIjKUSRETIdSGaEDEQbGNtYrKlMi2YKhqD8S2kECBaJSnfWEL0tfQ6Nr5rZeyqWkEpATr1km31iz69ZhydNhiAWgZvap-kLZPqkg9EIOqT7gom13J0ceQRp3IWc5fjCavdIHuHsndZ9k4V7NPU53xg0biz9ReanqklMWDnE6gYbjQo13QyQmcg2CrUiIna2OGHXYdgS-tBpYLtrifXjWa5dBhr4msQRX3BPkyX0aAoS-L7tFhRG9tWxGqHbV4NujCNRKnGtAihCmY2tGRjqJtX-tlpJu0m2n5dYc-9tT5dD-suUexNOvcPknvzf3d_y7arbCFU32aXbaGWpXeIsS7C-2xcfwDmCh0y
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRDlwPsRKChI3Ki3cZzEznFBVAWJqgdWKqfIr7RRs8l2H0Ll1zPOiy5UFUicNtqMFXv2c-abtf0NwFvDVcg1D4gROiEYISiRVqaEMkwWqBSa5-6vgS9HyeE0-nwSn2zBcX8WRs20KupONNQJFY-vHkMvm3c3Xujz_bnJ2ykvkv0ldTpsxG03CBgSeMJuwXYSIzsfwfb06HjyrTlkxCnBDCfuz85c23AjPjUy_tdxzz-3UA7rqHfhzrqay8vvsiyvhKqD-3DRD7LdoXI-Xq_UWP_4Tf_xf3rhAdzreK0_aYH4ELZs9Qhut5UuLx_Dp4nfSGMTFzWNL8vTelGszmY-Pts31q1k4LB8V6XL-KaeyaJa-kXlNzIS-NnK3K4XdvkEpgcfv344JF0VB6KRDa5IrDTmqKmOuLYiYDw1PNScY-ptrFJGC0bdUmhgtIyoTHQs85TqPIyYCagxOXsKo6qu7HPwkU8YbkxEleSRtFQEluVWKqdtKm2Se0D73y7TncS5q7RRZk2qI5KsdVGGLsoaF2XMg3dDm3kr8HGj9XsHicHSiXM3X9SL06yb61mcU21ybpQIVYR0LdU5xpxEKREIaZj1YLcHVNa9MZYZpsE4DKee78Gb4TbOdbeAIytbr52NSEMnuIc2z1r8DT1hLOYpsjsP-AYyN7q6eacqzho9cVdRIAmx5V6P4V_duskVewPO_8JzL_7N_CXshA2QXemdXRghyuwrpH8r9bqb0T8BFCxT3g
  priority: 102
  providerName: Unpaywall
Title A graph-based algorithm for detecting rigid domains in protein structures
URI https://link.springer.com/article/10.1186/s12859-021-03966-3
https://www.ncbi.nlm.nih.gov/pubmed/33579190
https://www.proquest.com/docview/2490912632
https://www.proquest.com/docview/2489267092
https://pubmed.ncbi.nlm.nih.gov/PMC7881620
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-021-03966-3
https://doaj.org/article/5f1cdf7db82b45549cf8766bb808ad3e
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals (NTUSG)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2IQQ8IL4pjCpIiBdmiOM0dh4Q6qqNUWnVBFQqT5G_slXq0m5tBf3vuXM-RkVV8ZJIsZPYlzvdnc_5_Qh5a4WOhBEhtdIkFDwEo8qplDIOyQJT0ogclwbOBsnpMO6POqMdUm-3rQQ435jaIZ_U8Gby4ff16jMY_Cdv8DL5OGeIwkZxs0HIIXyn_N3smiKxFBZgK5aNXbIPzitFdoez-LbQgJD-9b80Gx-15q88rP-mWPTfLZVNXfU-ubssZmr1S00mf7muk4fkQRVzBt1SSR6RHVc8JndKFsrVE_K1G3jYaooezQZqcgGTWlxeBRDPBtZhlQFeESCDlg3s9EqNi3kwLgIP8QDnEoJ2CXn7UzI8Of7RO6UVwwI1EKktaEcbyB9TEwvjZMhFakVkhIC02DqtrZGcYZkytEbFTCWmo_KUmTyKuQ2ZtTl_RvaKaeFekAB8vRXWxkwrESvHZOh47pRG3FHlkrxFWC3HzFTw48iCMcl8GiKTrJR9BrLPvOwz3iLvm3tmJfjG1t5H-Hmangic7S9Mby6yyg6zTs6MzYXVMtIxhFKpycEfJFrLUCrLXYsc1B83q5UxgxQVpoHI9i3ypmkGO8TiiircdIl9ZBohGB70eV7qQjMSzjsihcirRcSalqwNdb2lGF96rG9E-08iuPOw1qfbYW0TxWGjc_8huZfbJ_2K3Iu8RSANzgHZA61yryEUW-g22RUjAUd58qVN9rvd_vc-nI-OB-ff4Gov6bX9IkfbGx20DAfn3Z9_AAksN3Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8CBYwEJ2o1jpPYOSBUHtUufZxaaW_Gr7QrbbNLd1fV_il-IzPJJmUFWnHpKVLiJM54xjPjcb6PkHde2kQ6GTOvXM7AQ3BmgikYF5AscKOcLHFp4Og4752m3wfZYIP8av-FwW2V7ZxYT9R-7HCNfBfSBHBtiC7-afKTIWsUVldbCo1GLQ7C4gpStunH_lcY3_dJsv_t5EuPLVkFmIPoZMYy6yBnKlwqXVCxkIWXiZMSUkEfrPVOCY6ludg7k3KTu8yUBXdlkgofc-9LAc-9RW6nAuYSsB856BI8jvwA7Y85Kt-dckSHY7gJIhaQVjCx4vxqjoB_BbZ_78_sirT3yNa8mpjFlRmN_vCD-w_I_WUAS_cajXtINkL1iNxpKC0Xj0l_j9YY2Azdo6dmdAZCnJ1fUAiOqQ9YsoBXUKTj8tSPL8ywmtJhRWu8CDg2eLbzyzB9Qk5vRLBPyWY1rsJzQiFw8NL7lFsjUxO4ioMog7EIYmpCXkaEt3LUbolljpQaI13nNCrXjew1yF7XstciIh-6eyYNksfa1p9xeLqWiMJdnxhfnumlUeus5M6X0luV2BTissKV4Fxya1WsjBchItvt4Orl1DDV14ockbfdZTBqrNSYKozn2EYVCSLrQZtnjS50PREikwWEcRGRK1qy0tXVK9XwvAYOR-qAPIE7d1p9uu7WOlHsdDr3H5J7sf6j35Ct3snRoT7sHx-8JHeT2jqQX2ebbIKGhVcQ483s69qwKPlx05b8G37cYZE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagiNcB8SZQwEjcqNU4TmLnWBZWLY-KA5V6s_xsV9omq-6uUP89M3nRFVUFp0iJnTjjmcw3GfsbQt57aTPpZMq8ciUDD8GZCaZiXECwwI1yMuKvge-H5f5R_uW4OL60i79d7T6kJLs9DcjSVK92Fz52Jq7K3SVH3jWGywtSAYCdiZvkVg7eDWsYTMrJmEdAxv5hq8yV_TbcUcvafxXU_HvF5Jg2vU_uruuFufhl5vNLnmn6kDzoISXd63TgEbkR6sfkdldk8uIJOdijLSs1Q4flqZmfNOez1ekZBbhKfcAkAjyCYoEsT31zZmb1ks5q2jI4wLFjmF1DWP6UHE0__5zss76AAnMAxFassA7Cw8rl0gWVCll5mTkpIer1wVrvlOCYhUy9Mzk3pStMrLiLWS58yr2P4hnZqps6vCAUXLmX3ufcGpmbwFUaRAzGIq2oCWVMCB_kqF3PLo5FLua6jTJUqTvZa5C9bmWvRUI-jH0WHbfGta0_4vSMLZEXuz3RnJ_o3sx0EbnzUXqrMpsDUqpchM99aa1KlfEiJGR7mFzdG-tSQwQKr4HE9Ql5N14GM8PcialDs8Y2qsqQ6w7aPO90YRyJEIWsAFglRG5oycZQN6_Us9OWyhvJ_MsMeu4M-vRnWNeJYmfUuX-Q3Mv_u_tbcufHp6n-dnD49RW5l7XGggVwtskWKFx4DSBsZd-0dvYbFG0oaA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRDlwPsRKChI3Ki3cZzEznFBVAWJqgdWKqfIr7RRs8l2H0Ll1zPOiy5UFUicNtqMFXv2c-abtf0NwFvDVcg1D4gROiEYISiRVqaEMkwWqBSa5-6vgS9HyeE0-nwSn2zBcX8WRs20KupONNQJFY-vHkMvm3c3Xujz_bnJ2ykvkv0ldTpsxG03CBgSeMJuwXYSIzsfwfb06HjyrTlkxCnBDCfuz85c23AjPjUy_tdxzz-3UA7rqHfhzrqay8vvsiyvhKqD-3DRD7LdoXI-Xq_UWP_4Tf_xf3rhAdzreK0_aYH4ELZs9Qhut5UuLx_Dp4nfSGMTFzWNL8vTelGszmY-Pts31q1k4LB8V6XL-KaeyaJa-kXlNzIS-NnK3K4XdvkEpgcfv344JF0VB6KRDa5IrDTmqKmOuLYiYDw1PNScY-ptrFJGC0bdUmhgtIyoTHQs85TqPIyYCagxOXsKo6qu7HPwkU8YbkxEleSRtFQEluVWKqdtKm2Se0D73y7TncS5q7RRZk2qI5KsdVGGLsoaF2XMg3dDm3kr8HGj9XsHicHSiXM3X9SL06yb61mcU21ybpQIVYR0LdU5xpxEKREIaZj1YLcHVNa9MZYZpsE4DKee78Gb4TbOdbeAIytbr52NSEMnuIc2z1r8DT1hLOYpsjsP-AYyN7q6eacqzho9cVdRIAmx5V6P4V_duskVewPO_8JzL_7N_CXshA2QXemdXRghyuwrpH8r9bqb0T8BFCxT3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph-based+algorithm+for+detecting+rigid+domains+in+protein+structures&rft.jtitle=BMC+bioinformatics&rft.au=Truong+Khanh+Linh+Dang&rft.au=Nguyen%2C+Thach&rft.au=Habeck%2C+Michael&rft.au=G%C3%BCltas%2C+Mehmet&rft.date=2021-02-12&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=22&rft.spage=1&rft_id=info:doi/10.1186%2Fs12859-021-03966-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon