A graph-based algorithm for detecting rigid domains in protein structures
Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation a...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 22; no. 1; pp. 66 - 19 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        12.02.2021
     Springer Nature B.V BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/s12859-021-03966-3 | 
Cover
| Abstract | Background
Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains.
Results
We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively.
Conclusions
The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at
http://azifi.tz.agrar.uni-goettingen.de/webservice/
. | 
    
|---|---|
| AbstractList | Abstract Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains. Results We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively. Conclusions The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ . Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains. We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively. The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ . Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains. Results We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively. Conclusions The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ . Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains.BACKGROUNDConformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains.We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively.RESULTSWe develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively.The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ .CONCLUSIONSThe results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ . Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains. Results We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively. Conclusions The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/.  | 
    
| ArticleNumber | 66 | 
    
| Author | Nguyen, Thach Dang, Truong Khanh Linh Habeck, Michael Gültas, Mehmet Waack, Stephan  | 
    
| Author_xml | – sequence: 1 givenname: Truong Khanh Linh surname: Dang fullname: Dang, Truong Khanh Linh email: linh.dang@informatik.uni-goettingen.de organization: Institute of Computer Science, University of Göttingen – sequence: 2 givenname: Thach surname: Nguyen fullname: Nguyen, Thach organization: Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen – sequence: 3 givenname: Michael surname: Habeck fullname: Habeck, Michael organization: Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of Göttingen, Max Planck Institute for Biophysical Chemistry, Microscopic Image Analysis Group, University Hospital Jena – sequence: 4 givenname: Mehmet surname: Gültas fullname: Gültas, Mehmet organization: Breeding Informatics Group, Department of Animal Sciences, Center for Integrated Breeding Research (CiBreed) – sequence: 5 givenname: Stephan surname: Waack fullname: Waack, Stephan organization: Institute of Computer Science, University of Göttingen  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33579190$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUtv1DAUhS1URB_wB1igSGzYBPyIXxukquIxUiU2sLYc28l4lNjBdkD993g6Q2m7qFhdyz7n6NzP5-AkxOAAeI3ge4QE-5ARFlS2EKMWEslYS56BM9Rx1GIE6cm98yk4z3kHIeIC0hfglBDKJZLwDGwumzHpZdv2Ojvb6GmMyZft3AwxNdYVZ4oPY5P86G1j46x9yI0PzZJicXXmklZT1uTyS_B80FN2r47zAvz4_On71df2-tuXzdXldWtoB0tLe9NBLE3HjROQcGk5NpxzIazre2sEQYR1FFqjO6SZoXqQyAy4IxYiawdyATaHXBv1Ti3JzzrdqKi9ur2IaVQ6FW8mp-iAjB247QXuO0o7aQbBGet7AYW2xNUscshaw6JvfutpugtEUO0hqwNkVSGrW8iKVNfHg2tZ-9lZ40JJenpQ5eFL8Fs1xl-qLokYhjXg3TEgxZ-ry0XNPhs3TTq4uGaFOyEx41DiKn37SLqLawoVcFVJKBFmZK96c7_RXZW__1wF4iAwKeac3KCML7r4uC_op6e3xY-s_4XoCDZXcRhd-lf7CdcfAaXcgw | 
    
| CitedBy_id | crossref_primary_10_1016_j_eswa_2023_120409 | 
    
| Cites_doi | 10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N 10.1016/s1359-0278(97)00024-2 10.1016/s1093-3263(00)00138-8 10.1016/S0969-2126(96)00018-4 10.1038/206757a0 10.1016/j.immuni.2017.05.002 10.1002/(SICI)1097-0134(199709)29:1<1::AID-PROT1>3.0.CO;2-J 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8 10.1021/bi0486987 10.1093/bioinformatics/btn396 10.1002/prot.22544 10.1088/1742-5468/2008/10/p10008 10.1038/nature06522 10.1093/bioinformatics/btw442 10.1038/nsb0296-170 10.1107/S0567739476001873 10.1002/prot.21613 10.1186/1471-2105-15-277 10.1002/pro.3290 10.1002/prot.25490 10.1140/epjb/e2010-00261-8 10.1021/bi701848w 10.1038/s41598-017-01498-6 10.1038/msb.2011.75 10.1002/(SICI)1097-0134(199703)27:3<425::AID-PROT10>3.0.CO;2-N 10.1007/978-0-387-32833-1_261 10.1016/j.str.2015.05.022 10.1103/PhysRevE.92.032801 10.1186/1471-2105-8-215 10.1103/PhysRevE.84.016114 10.1021/bi00188a001 10.1093/bioinformatics/btg137 10.1016/j.jmb.2006.11.085 10.1038/s41586-019-1923-7 10.1172/JCI103055  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2021 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s12859-021-03966-3 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals (NTUSG) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | 19 | 
    
| ExternalDocumentID | oai_doaj_org_article_5f1cdf7db82b45549cf8766bb808ad3e 10.1186/s12859-021-03966-3 PMC7881620 33579190 10_1186_s12859_021_03966_3  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Projekt DEAL – fundername: ;  | 
    
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF M0N NPM 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c540t-5bc4029c47ce80379d72c77788debbdc83136450dca41a6c5af91cf243d01ddf3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Fri Oct 03 12:46:21 EDT 2025 Sun Oct 26 04:14:43 EDT 2025 Tue Sep 30 16:02:39 EDT 2025 Thu Oct 02 10:56:23 EDT 2025 Mon Oct 06 18:39:34 EDT 2025 Wed Feb 19 02:29:25 EST 2025 Wed Oct 01 04:15:36 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Sat Sep 06 07:27:37 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Protein structural transition Graph algorithms Generalized Viterbi algorithm  | 
    
| Language | English | 
    
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c540t-5bc4029c47ce80379d72c77788debbdc83136450dca41a6c5af91cf243d01ddf3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-021-03966-3 | 
    
| PMID | 33579190 | 
    
| PQID | 2490912632 | 
    
| PQPubID | 44065 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5f1cdf7db82b45549cf8766bb808ad3e unpaywall_primary_10_1186_s12859_021_03966_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7881620 proquest_miscellaneous_2489267092 proquest_journals_2490912632 pubmed_primary_33579190 crossref_citationtrail_10_1186_s12859_021_03966_3 crossref_primary_10_1186_s12859_021_03966_3 springer_journals_10_1186_s12859_021_03966_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-02-12 | 
    
| PublicationDateYYYYMMDD | 2021-02-12 | 
    
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-12 day: 12  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAbbrev | BMC Bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2021 | 
    
| Publisher | BioMed Central Springer Nature B.V BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC  | 
    
| References | S Hayward (3966_CR28) 1997; 27 A Abyzov (3966_CR5) 2010; 78 F Sievers (3966_CR24) 2011; 7 K Theis (3966_CR19) 2004; 43 M Gerstein (3966_CR2) 1994; 33 AK Dunker (3966_CR26) 2001; 19 S Hayward (3966_CR3) 1998; 30 T Nguyen (3966_CR8) 2016; 32 Z Dong (3966_CR14) 2014; 15 J Salamanca Viloria (3966_CR29) 2017; 7 K Henzler-Wildman (3966_CR1) 2007; 450 U Emekli (3966_CR9) 2008; 70 CCF Blake (3966_CR22) 1965; 206 A Karmen (3966_CR21) 1955; 34 VA Traag (3966_CR33) 2015; 92 VA Traag (3966_CR13) 2011; 84 Y Zheng (3966_CR23) 2017; 46 L Ponzoni (3966_CR6) 2015; 23 3966_CR36 VD Blondel (3966_CR32) 2008; 2008 SC Flores (3966_CR11) 2007; 8 F Sievers (3966_CR25) 2017; 27 B Iglewicz (3966_CR35) 1993 K Hinsen (3966_CR10) 1998; 33 DC Boisvert (3966_CR20) 1996; 3 M Habeck (3966_CR16) 2018; 86 K Lim (3966_CR18) 2007; 46 W Kabsch (3966_CR31) 1976; 32 M Hirsch (3966_CR7) 2008; 24 CW Mueller (3966_CR12) 1996; 4 RA Lee (3966_CR17) 2003; 19 I Bahar (3966_CR30) 1997; 2 W Wriggers (3966_CR4) 1997; 29 TS Evans (3966_CR34) 2010; 77 AW Senior (3966_CR27) 2020; 577 PC Whitford (3966_CR15) 2007; 366  | 
    
| References_xml | – volume: 30 start-page: 144 issue: 2 year: 1998 ident: 3966_CR3 publication-title: Proteins Struct Funct Genet doi: 10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N – volume: 2 start-page: 173 issue: 3 year: 1997 ident: 3966_CR30 publication-title: Fold Des doi: 10.1016/s1359-0278(97)00024-2 – volume: 19 start-page: 26 issue: 1 year: 2001 ident: 3966_CR26 publication-title: J Mol Graph Model doi: 10.1016/s1093-3263(00)00138-8 – volume-title: How to detect and handle outliers year: 1993 ident: 3966_CR35 – volume: 4 start-page: 147 year: 1996 ident: 3966_CR12 publication-title: Structure doi: 10.1016/S0969-2126(96)00018-4 – volume: 206 start-page: 757 issue: 4986 year: 1965 ident: 3966_CR22 publication-title: Nature doi: 10.1038/206757a0 – volume: 46 start-page: 1005 issue: 6 year: 2017 ident: 3966_CR23 publication-title: Immunity doi: 10.1016/j.immuni.2017.05.002 – volume: 29 start-page: 1 issue: 1 year: 1997 ident: 3966_CR4 publication-title: Proteins Struct Funct Genet doi: 10.1002/(SICI)1097-0134(199709)29:1<1::AID-PROT1>3.0.CO;2-J – volume: 33 start-page: 417 issue: 3 year: 1998 ident: 3966_CR10 publication-title: Proteins Struct Funct Bioinform doi: 10.1002/(SICI)1097-0134(19981115)33:3<417::AID-PROT10>3.0.CO;2-8 – volume: 43 start-page: 12709 issue: 40 year: 2004 ident: 3966_CR19 publication-title: Biochemistry doi: 10.1021/bi0486987 – volume: 24 start-page: 2184 issue: 19 year: 2008 ident: 3966_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn396 – volume: 78 start-page: 309 issue: 2 year: 2010 ident: 3966_CR5 publication-title: Proteins Struct Funct Bioinform doi: 10.1002/prot.22544 – volume: 2008 start-page: 10008 issue: 10 year: 2008 ident: 3966_CR32 publication-title: J Stat Mech Theory Exp doi: 10.1088/1742-5468/2008/10/p10008 – volume: 450 start-page: 964 year: 2007 ident: 3966_CR1 publication-title: Nature doi: 10.1038/nature06522 – volume: 32 start-page: 710 issue: 17 year: 2016 ident: 3966_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw442 – volume: 3 start-page: 170 issue: 2 year: 1996 ident: 3966_CR20 publication-title: Nat Struct Biol doi: 10.1038/nsb0296-170 – volume: 32 start-page: 922 year: 1976 ident: 3966_CR31 publication-title: Acta Crystallogr Sect A doi: 10.1107/S0567739476001873 – volume: 70 start-page: 1219 issue: 4 year: 2008 ident: 3966_CR9 publication-title: Proteins Struct Funct Bioinform doi: 10.1002/prot.21613 – volume: 15 start-page: 277 year: 2014 ident: 3966_CR14 publication-title: BMC Bioinform doi: 10.1186/1471-2105-15-277 – volume: 27 start-page: 135 issue: 1 year: 2017 ident: 3966_CR25 publication-title: Protein Sci doi: 10.1002/pro.3290 – volume: 86 start-page: 634 year: 2018 ident: 3966_CR16 publication-title: Proteins doi: 10.1002/prot.25490 – volume: 77 start-page: 265 issue: 2 year: 2010 ident: 3966_CR34 publication-title: Eur Phys J B doi: 10.1140/epjb/e2010-00261-8 – volume: 46 start-page: 14845 issue: 51 year: 2007 ident: 3966_CR18 publication-title: Biochemistry doi: 10.1021/bi701848w – volume: 7 start-page: 2838 issue: 1 year: 2017 ident: 3966_CR29 publication-title: Sci Rep doi: 10.1038/s41598-017-01498-6 – volume: 7 start-page: 539 issue: 1 year: 2011 ident: 3966_CR24 publication-title: Mol Syst Biol doi: 10.1038/msb.2011.75 – volume: 27 start-page: 425 issue: 3 year: 1997 ident: 3966_CR28 publication-title: Proteins Struct Funct Bioinform doi: 10.1002/(SICI)1097-0134(199703)27:3<425::AID-PROT10>3.0.CO;2-N – ident: 3966_CR36 doi: 10.1007/978-0-387-32833-1_261 – volume: 23 start-page: 1516 issue: 8 year: 2015 ident: 3966_CR6 publication-title: Structure doi: 10.1016/j.str.2015.05.022 – volume: 92 start-page: 032801 issue: 3 year: 2015 ident: 3966_CR33 publication-title: Phys Rev E doi: 10.1103/PhysRevE.92.032801 – volume: 8 start-page: 215 issue: 1 year: 2007 ident: 3966_CR11 publication-title: BMC Bioinform doi: 10.1186/1471-2105-8-215 – volume: 84 start-page: 016114 issue: 1 year: 2011 ident: 3966_CR13 publication-title: Phys Rev E doi: 10.1103/PhysRevE.84.016114 – volume: 33 start-page: 6739 issue: 22 year: 1994 ident: 3966_CR2 publication-title: Biochemistry doi: 10.1021/bi00188a001 – volume: 19 start-page: 1290 issue: 10 year: 2003 ident: 3966_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg137 – volume: 366 start-page: 1661 year: 2007 ident: 3966_CR15 publication-title: J Mol Biol doi: 10.1016/j.jmb.2006.11.085 – volume: 577 start-page: 706 issue: 7792 year: 2020 ident: 3966_CR27 publication-title: Nature doi: 10.1038/s41586-019-1923-7 – volume: 34 start-page: 126 issue: 1 year: 1955 ident: 3966_CR21 publication-title: J Clin Investig doi: 10.1172/JCI103055  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.3620224 | 
    
| Snippet | Background
Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately... Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the... Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately... Abstract Background Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 66 | 
    
| SubjectTerms | Algorithms Amino acids Bioinformatics Biomedical and Life Sciences Chemistry Techniques, Analytical - methods Cluster Analysis Clustering Computational Biology/Bioinformatics Computer Appl. in Life Sciences Generalized Viterbi algorithm Graph algorithms Graphical representations Kinases Labeling Life Sciences Methodology Methodology Article Methods Microarrays Novel computational methods for analysis of biological systems Parameter identification Protein structural transition Proteins Proteins - chemistry Segmentation Viterbi algorithm detectors  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlENoeSvqMk7So0FsjYlm2JR_T0pAW2lMDuQlJIzULG2_o7hLy7zPjV7O0pD30ZLAkLH2a8cx45G8YewfaFzroXIAJtUALIYWLrhFSYbAgnQk60aeBr9_q07Pyy3l1fqfUF50J6-mBe-COqiQDJA3eFL5E29eEhApce29y40BFevvmphmDqSF_QEz94y8ypj5aSuJpE3QcIVfo4Au1YYY6tv4_uZi_n5Sc0qWP2cN1e-Vurt18fscineywJ4MryY_7JTxlD2L7jG33xSVvnrPPx7xjoxZkqIC7-Y_Fz9nq4pKjm8ohUvIAH8GpMBZwWFy6Wbvks5Z3zA147Zll1xiOv2BnJ5--fzwVQ-EEEdABW4nKBwwLm1DqEE2udAO6CFpjtAvRewhGSco-5hBcKV0dKpcaGVJRKsglQFIv2Va7aOMu42jCQQOU0jtduihNHlWKzhOdqIt1ypgccbRhYBWn4hZz20UXprY99haxtx32VmXs_TTmqufUuLf3B9qeqSfxYXc3UErsICX2b1KSsYNxc-2gpEuLkScugwjrM_Z2akb1opyJa-NiTX1MUxDHHfZ51cvCNBOlKt2gQ5UxvSElG1PdbGlnFx2FN5H41wWOPBzl6de07oPicJK5f0Bu738gt88eFZ3eUA2cA7aFshdfox-28m86lbsF7ZctxQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_1iqgP4rerVSL4ZkM3m91N9kGklZYqeIhY6NuSZLLtwXX39O6Q_vfO7Fc9lMOnhd0Jm0xmMjOZ5DeMvQXtEu11LMD4XKCFkMIGWwipMFiQ1nhd0dbAl2l-epZ-Ps_Od9h0uAtDxyqHNbFdqKHxtEd-gGECmjZCF_-w-CGoahRlV4cSGrYvrQDvW4ixW2w3IWSsCds9Op5-_TbmFQjBf7g6Y_KDpST8NkHHFGKFjr9QG-apRfH_l-v59wnKMY16j91Z1wt7_cvO539YqpMH7H7vYvLDTiYesp1QP2K3u6KT14_Zp0PeolQLMmDA7fwCh7m6vOLovnIIlFTAX3AqmAUcmis7q5d8VvMW0QGfHeLsGsP0J-zs5Pj7x1PRF1QQHh2zlcicx3Cx8Kn2wcRKF6ATrzVGwRCcA2-UpKxkDN6m0uY-s1UhfZWkCmIJUKmnbFI3dXjOOJp20ACpdFanNkgTB1UF6whm1Ia8ipgc-Fj6Hm2cil7MyzbqMHnZ8b5E3pct70sVsXdjm0WHtbGV-oimZ6QknOz2RfPzouzVrswq6aHS4EziUvScCl_h8p87Z2JjQYWI7Q2TW_bKuyxvRC1ib8bPqHaUS7F1aNZEY4qEsO-Q5lknC2NPlMp0gY5WxPSGlGx0dfNLPbtsob0J3D9PsOX-IE833drGiv1R5v6Dcy-2D_olu5u0GkFVb_bYBKUqvELPa-Ve9-r0Gyl5KsY priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgCNEeEN8ECjISN2oRx4ntHEtFVZDgRKXeLNvj0JW22UrbVdV_z4yTTbuiquAUKbETZzyTeZOx3zD2EUyoTDSlABu1QA8hhU--FVJhsCC9jaajXwM_fuqj4_r7SXMy0uTQXpib-Xtp9eelJIY1QQsJSoXQXKj77AE6KZ0Ts_pgyhgQN_96U8yt_TYcT-bnvw1U_r02ckqQ7rBHq_7cX136-fyGDzp8wh6P4JHvD7P9lN1L_TP2cCgnefWcfdvnmX9akGsC7ue_Fxj6n55xBKYcEqUL8BGcSmEBh8WZn_VLPut55mrA48Alu8IA_AU7Pvz66-BIjKUSRETIdSGaEDEQbGNtYrKlMi2YKhqD8S2kECBaJSnfWEL0tfQ6Nr5rZeyqWkEpATr1km31iz69ZhydNhiAWgZvap-kLZPqkg9EIOqT7gom13J0ceQRp3IWc5fjCavdIHuHsndZ9k4V7NPU53xg0biz9ReanqklMWDnE6gYbjQo13QyQmcg2CrUiIna2OGHXYdgS-tBpYLtrifXjWa5dBhr4msQRX3BPkyX0aAoS-L7tFhRG9tWxGqHbV4NujCNRKnGtAihCmY2tGRjqJtX-tlpJu0m2n5dYc-9tT5dD-suUexNOvcPknvzf3d_y7arbCFU32aXbaGWpXeIsS7C-2xcfwDmCh0y priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRDlwPsRKChI3Ki3cZzEznFBVAWJqgdWKqfIr7RRs8l2H0Ll1zPOiy5UFUicNtqMFXv2c-abtf0NwFvDVcg1D4gROiEYISiRVqaEMkwWqBSa5-6vgS9HyeE0-nwSn2zBcX8WRs20KupONNQJFY-vHkMvm3c3Xujz_bnJ2ykvkv0ldTpsxG03CBgSeMJuwXYSIzsfwfb06HjyrTlkxCnBDCfuz85c23AjPjUy_tdxzz-3UA7rqHfhzrqay8vvsiyvhKqD-3DRD7LdoXI-Xq_UWP_4Tf_xf3rhAdzreK0_aYH4ELZs9Qhut5UuLx_Dp4nfSGMTFzWNL8vTelGszmY-Pts31q1k4LB8V6XL-KaeyaJa-kXlNzIS-NnK3K4XdvkEpgcfv344JF0VB6KRDa5IrDTmqKmOuLYiYDw1PNScY-ptrFJGC0bdUmhgtIyoTHQs85TqPIyYCagxOXsKo6qu7HPwkU8YbkxEleSRtFQEluVWKqdtKm2Se0D73y7TncS5q7RRZk2qI5KsdVGGLsoaF2XMg3dDm3kr8HGj9XsHicHSiXM3X9SL06yb61mcU21ybpQIVYR0LdU5xpxEKREIaZj1YLcHVNa9MZYZpsE4DKee78Gb4TbOdbeAIytbr52NSEMnuIc2z1r8DT1hLOYpsjsP-AYyN7q6eacqzho9cVdRIAmx5V6P4V_duskVewPO_8JzL_7N_CXshA2QXemdXRghyuwrpH8r9bqb0T8BFCxT3g priority: 102 providerName: Unpaywall  | 
    
| Title | A graph-based algorithm for detecting rigid domains in protein structures | 
    
| URI | https://link.springer.com/article/10.1186/s12859-021-03966-3 https://www.ncbi.nlm.nih.gov/pubmed/33579190 https://www.proquest.com/docview/2490912632 https://www.proquest.com/docview/2489267092 https://pubmed.ncbi.nlm.nih.gov/PMC7881620 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-021-03966-3 https://doaj.org/article/5f1cdf7db82b45549cf8766bb808ad3e  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central_OA刊 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals (NTUSG) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2IQQ8IL4pjCpIiBdmiOM0dh4Q6qqNUWnVBFQqT5G_slXq0m5tBf3vuXM-RkVV8ZJIsZPYlzvdnc_5_Qh5a4WOhBEhtdIkFDwEo8qplDIOyQJT0ogclwbOBsnpMO6POqMdUm-3rQQ435jaIZ_U8Gby4ff16jMY_Cdv8DL5OGeIwkZxs0HIIXyn_N3smiKxFBZgK5aNXbIPzitFdoez-LbQgJD-9b80Gx-15q88rP-mWPTfLZVNXfU-ubssZmr1S00mf7muk4fkQRVzBt1SSR6RHVc8JndKFsrVE_K1G3jYaooezQZqcgGTWlxeBRDPBtZhlQFeESCDlg3s9EqNi3kwLgIP8QDnEoJ2CXn7UzI8Of7RO6UVwwI1EKktaEcbyB9TEwvjZMhFakVkhIC02DqtrZGcYZkytEbFTCWmo_KUmTyKuQ2ZtTl_RvaKaeFekAB8vRXWxkwrESvHZOh47pRG3FHlkrxFWC3HzFTw48iCMcl8GiKTrJR9BrLPvOwz3iLvm3tmJfjG1t5H-Hmangic7S9Mby6yyg6zTs6MzYXVMtIxhFKpycEfJFrLUCrLXYsc1B83q5UxgxQVpoHI9i3ypmkGO8TiiircdIl9ZBohGB70eV7qQjMSzjsihcirRcSalqwNdb2lGF96rG9E-08iuPOw1qfbYW0TxWGjc_8huZfbJ_2K3Iu8RSANzgHZA61yryEUW-g22RUjAUd58qVN9rvd_vc-nI-OB-ff4Gov6bX9IkfbGx20DAfn3Z9_AAksN3Q | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8CBYwEJ2o1jpPYOSBUHtUufZxaaW_Gr7QrbbNLd1fV_il-IzPJJmUFWnHpKVLiJM54xjPjcb6PkHde2kQ6GTOvXM7AQ3BmgikYF5AscKOcLHFp4Og4752m3wfZYIP8av-FwW2V7ZxYT9R-7HCNfBfSBHBtiC7-afKTIWsUVldbCo1GLQ7C4gpStunH_lcY3_dJsv_t5EuPLVkFmIPoZMYy6yBnKlwqXVCxkIWXiZMSUkEfrPVOCY6ludg7k3KTu8yUBXdlkgofc-9LAc-9RW6nAuYSsB856BI8jvwA7Y85Kt-dckSHY7gJIhaQVjCx4vxqjoB_BbZ_78_sirT3yNa8mpjFlRmN_vCD-w_I_WUAS_cajXtINkL1iNxpKC0Xj0l_j9YY2Azdo6dmdAZCnJ1fUAiOqQ9YsoBXUKTj8tSPL8ywmtJhRWu8CDg2eLbzyzB9Qk5vRLBPyWY1rsJzQiFw8NL7lFsjUxO4ioMog7EIYmpCXkaEt3LUbolljpQaI13nNCrXjew1yF7XstciIh-6eyYNksfa1p9xeLqWiMJdnxhfnumlUeus5M6X0luV2BTissKV4Fxya1WsjBchItvt4Orl1DDV14ockbfdZTBqrNSYKozn2EYVCSLrQZtnjS50PREikwWEcRGRK1qy0tXVK9XwvAYOR-qAPIE7d1p9uu7WOlHsdDr3H5J7sf6j35Ct3snRoT7sHx-8JHeT2jqQX2ebbIKGhVcQ483s69qwKPlx05b8G37cYZE | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagiNcB8SZQwEjcqNU4TmLnWBZWLY-KA5V6s_xsV9omq-6uUP89M3nRFVUFp0iJnTjjmcw3GfsbQt57aTPpZMq8ciUDD8GZCaZiXECwwI1yMuKvge-H5f5R_uW4OL60i79d7T6kJLs9DcjSVK92Fz52Jq7K3SVH3jWGywtSAYCdiZvkVg7eDWsYTMrJmEdAxv5hq8yV_TbcUcvafxXU_HvF5Jg2vU_uruuFufhl5vNLnmn6kDzoISXd63TgEbkR6sfkdldk8uIJOdijLSs1Q4flqZmfNOez1ekZBbhKfcAkAjyCYoEsT31zZmb1ks5q2jI4wLFjmF1DWP6UHE0__5zss76AAnMAxFassA7Cw8rl0gWVCll5mTkpIer1wVrvlOCYhUy9Mzk3pStMrLiLWS58yr2P4hnZqps6vCAUXLmX3ufcGpmbwFUaRAzGIq2oCWVMCB_kqF3PLo5FLua6jTJUqTvZa5C9bmWvRUI-jH0WHbfGta0_4vSMLZEXuz3RnJ_o3sx0EbnzUXqrMpsDUqpchM99aa1KlfEiJGR7mFzdG-tSQwQKr4HE9Ql5N14GM8PcialDs8Y2qsqQ6w7aPO90YRyJEIWsAFglRG5oycZQN6_Us9OWyhvJ_MsMeu4M-vRnWNeJYmfUuX-Q3Mv_u_tbcufHp6n-dnD49RW5l7XGggVwtskWKFx4DSBsZd-0dvYbFG0oaA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRDlwPsRKChI3Ki3cZzEznFBVAWJqgdWKqfIr7RRs8l2H0Ll1zPOiy5UFUicNtqMFXv2c-abtf0NwFvDVcg1D4gROiEYISiRVqaEMkwWqBSa5-6vgS9HyeE0-nwSn2zBcX8WRs20KupONNQJFY-vHkMvm3c3Xujz_bnJ2ykvkv0ldTpsxG03CBgSeMJuwXYSIzsfwfb06HjyrTlkxCnBDCfuz85c23AjPjUy_tdxzz-3UA7rqHfhzrqay8vvsiyvhKqD-3DRD7LdoXI-Xq_UWP_4Tf_xf3rhAdzreK0_aYH4ELZs9Qhut5UuLx_Dp4nfSGMTFzWNL8vTelGszmY-Pts31q1k4LB8V6XL-KaeyaJa-kXlNzIS-NnK3K4XdvkEpgcfv344JF0VB6KRDa5IrDTmqKmOuLYiYDw1PNScY-ptrFJGC0bdUmhgtIyoTHQs85TqPIyYCagxOXsKo6qu7HPwkU8YbkxEleSRtFQEluVWKqdtKm2Se0D73y7TncS5q7RRZk2qI5KsdVGGLsoaF2XMg3dDm3kr8HGj9XsHicHSiXM3X9SL06yb61mcU21ybpQIVYR0LdU5xpxEKREIaZj1YLcHVNa9MZYZpsE4DKee78Gb4TbOdbeAIytbr52NSEMnuIc2z1r8DT1hLOYpsjsP-AYyN7q6eacqzho9cVdRIAmx5V6P4V_duskVewPO_8JzL_7N_CXshA2QXemdXRghyuwrpH8r9bqb0T8BFCxT3g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph-based+algorithm+for+detecting+rigid+domains+in+protein+structures&rft.jtitle=BMC+bioinformatics&rft.au=Truong+Khanh+Linh+Dang&rft.au=Nguyen%2C+Thach&rft.au=Habeck%2C+Michael&rft.au=G%C3%BCltas%2C+Mehmet&rft.date=2021-02-12&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=22&rft.spage=1&rft_id=info:doi/10.1186%2Fs12859-021-03966-3 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |