Large-scale Evolution of Seconds-long Relativistic Jets from Black Hole–Neutron Star Mergers

We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 10 11 cm. The disk that forms after a merger of mass ratio q = 2 ejects massive disk winds (3–5 × 10 −2 M ⊙ ). We introduce various postmerger magnetic configurations...

Full description

Saved in:
Bibliographic Details
Published inAstrophysical journal. Letters Vol. 954; no. 1; p. L21
Main Authors Gottlieb, Ore, Issa, Danat, Jacquemin-Ide, Jonatan, Liska, Matthew, Foucart, Francois, Tchekhovskoy, Alexander, Metzger, Brian D., Quataert, Eliot, Perna, Rosalba, Kasen, Daniel, Duez, Matthew D., Kidder, Lawrence E., Pfeiffer, Harald P., Scheel, Mark A.
Format Journal Article
LanguageEnglish
Published Austin The American Astronomical Society 01.09.2023
IOP Publishing
Subjects
Online AccessGet full text
ISSN2041-8205
2041-8213
DOI10.3847/2041-8213/aceeff

Cover

Abstract We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 10 11 cm. The disk that forms after a merger of mass ratio q = 2 ejects massive disk winds (3–5 × 10 −2 M ⊙ ). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off as L j ∼ t −2 . All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetization σ 0 > 100 retain significant magnetization ( σ ≫ 1) at r > 10 10 cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper.
AbstractList We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 10 11 cm. The disk that forms after a merger of mass ratio q = 2 ejects massive disk winds (3–5 × 10 −2 M ⊙ ). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off as L j ∼ t −2 . All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetization σ 0 > 100 retain significant magnetization ( σ ≫ 1) at r > 10 10 cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper.
We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 1011 cm. The disk that forms after a merger of mass ratio q = 2 ejects massive disk winds (3–5 × 10–2M⊙). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off as Lj ~ t–2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetization σ0 > 100 retain significant magnetization (σ $\gg$ 1) at r > 1010 cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper.
We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 1011 cm. The disk that forms after a merger of mass ratio q = 2 ejects massive disk winds (3–5 × 10−2M⊙). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off as Lj ∼ t−2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetization σ0 > 100 retain significant magnetization (σ ≫ 1) at r > 1010 cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper.
We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 10 ^11 cm. The disk that forms after a merger of mass ratio q = 2 ejects massive disk winds (3–5 × 10 ^−2 M _⊙ ). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off as L _j ∼ t ^−2 . All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetization σ _0 > 100 retain significant magnetization ( σ ≫ 1) at r > 10 ^10 cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper.
Author Gottlieb, Ore
Jacquemin-Ide, Jonatan
Issa, Danat
Tchekhovskoy, Alexander
Foucart, Francois
Kasen, Daniel
Pfeiffer, Harald P.
Quataert, Eliot
Duez, Matthew D.
Scheel, Mark A.
Metzger, Brian D.
Kidder, Lawrence E.
Liska, Matthew
Perna, Rosalba
Author_xml – sequence: 1
  givenname: Ore
  orcidid: 0000-0003-3115-2456
  surname: Gottlieb
  fullname: Gottlieb, Ore
  organization: Northwestern University Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Physics & Astronomy, Evanston, IL 60202, USA
– sequence: 2
  givenname: Danat
  orcidid: 0009-0005-2478-7631
  surname: Issa
  fullname: Issa, Danat
  organization: Northwestern University Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Physics & Astronomy, Evanston, IL 60202, USA
– sequence: 3
  givenname: Jonatan
  orcidid: 0000-0003-2982-0005
  surname: Jacquemin-Ide
  fullname: Jacquemin-Ide, Jonatan
  organization: Northwestern University Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Physics & Astronomy, Evanston, IL 60202, USA
– sequence: 4
  givenname: Matthew
  orcidid: 0000-0003-4475-9345
  surname: Liska
  fullname: Liska, Matthew
  organization: Harvard University John Harvard Distinguished Science and ITC, 60 Garden Street, Cambridge, MA 02138, USA
– sequence: 5
  givenname: Francois
  orcidid: 0000-0003-4617-4738
  surname: Foucart
  fullname: Foucart, Francois
  organization: University of New Hampshire Department of Physics and Astronomy, 9 Library Way, Durham, NH 03824, USA
– sequence: 6
  givenname: Alexander
  orcidid: 0000-0002-9182-2047
  surname: Tchekhovskoy
  fullname: Tchekhovskoy, Alexander
  organization: Northwestern University Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Physics & Astronomy, Evanston, IL 60202, USA
– sequence: 7
  givenname: Brian D.
  orcidid: 0000-0002-4670-7509
  surname: Metzger
  fullname: Metzger, Brian D.
  organization: Flatiron Institute Center for Computational Astrophysics, New York, NY 10010, USA
– sequence: 8
  givenname: Eliot
  orcidid: 0000-0001-9185-5044
  surname: Quataert
  fullname: Quataert, Eliot
  organization: Princeton University Department of Astrophysical Sciences, Princeton, NJ 08544, USA
– sequence: 9
  givenname: Rosalba
  orcidid: 0000-0002-3635-5677
  surname: Perna
  fullname: Perna, Rosalba
  organization: Stony Brook University Department of Physics and Astronomy, Stony Brook, NY 11794-3800, USA
– sequence: 10
  givenname: Daniel
  orcidid: 0000-0002-5981-1022
  surname: Kasen
  fullname: Kasen, Daniel
  organization: Lawrence Berkeley National Laboratory Nuclear Science Division, Berkeley, CA 94720, USA
– sequence: 11
  givenname: Matthew D.
  orcidid: 0000-0002-0050-1783
  surname: Duez
  fullname: Duez, Matthew D.
  organization: Washington State University Department of Physics & Astronomy, Pullman, WA 99164, USA
– sequence: 12
  givenname: Lawrence E.
  orcidid: 0000-0001-5392-7342
  surname: Kidder
  fullname: Kidder, Lawrence E.
  organization: Cornell University Cornell Center for Astrophysics and Planetary Science, Ithaca, NY 14853, USA
– sequence: 13
  givenname: Harald P.
  orcidid: 0000-0001-9288-519X
  surname: Pfeiffer
  fullname: Pfeiffer, Harald P.
  organization: Max Planck Institute for Gravitational Physics (Albert Einstein Institute) , D-14467 Potsdam, Germany
– sequence: 14
  givenname: Mark A.
  orcidid: 0000-0001-6656-9134
  surname: Scheel
  fullname: Scheel, Mark A.
  organization: California Institute of Technology TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, Pasadena, CA 91125, USA
BackLink https://www.osti.gov/servlets/purl/2281673$$D View this record in Osti.gov
BookMark eNp9kc1u1TAQhSPUSrSFPcsIJFaE-id2nCVUhRbdFonCFmvijC-5uHFq-1Zixzvwhn2SOgRaCQErW6NzPs2Zs1_sjH7EonhCyUuu6uaQkZpWilF-CAbR2gfF3t1o5-5PxMNiP8YNIYxIqvaKzysIa6yiAYfl8bV32zT4sfS2vEDjxz5Wzo_r8gM6SMP1ENNgyneYYmmDvyxfOzBfyxPv8Ob7j3PcppC9FwlCeYYZG-KjYteCi_j413tQfHpz_PHopFq9f3t69GpVGVGTVImuASWIsKruOPQ1ldJSwy3vVNcQ2nW9pbTlveK8ZkaBko2UggoDbduaRvCD4nTh9h42egrDJYRv2sOgfw58WGsIeXeHGi32kjIue9rWrcQODBF1xxqEzMWZ9XRh-ZxWRzMkNF_yLUY0STOmqGx4Fj1bRFPwV1uMSW_8Now5o2ZKtFJywmaUXFQm-BgDWp1pMF84BRicpkTP5em5HT03pZfyspH8Yfyd6T-W54tl8NP9MjBtnG5FraleMaqnfha--Ivwn9xbVsq7QQ
CitedBy_id crossref_primary_10_1103_PhysRevD_110_024046
crossref_primary_10_3847_2041_8213_ad1525
crossref_primary_10_1103_PhysRevD_108_123012
crossref_primary_10_1093_mnras_staf377
crossref_primary_10_3390_galaxies13010002
crossref_primary_10_1103_PhysRevD_111_064022
crossref_primary_10_1093_mnras_stad3572
crossref_primary_10_1093_mnras_stae1538
crossref_primary_10_1103_PhysRevD_111_064023
crossref_primary_10_3847_1538_4357_ad2fc1
crossref_primary_10_1093_mnras_stae815
crossref_primary_10_3847_1538_4357_ad1bd7
crossref_primary_10_3847_2041_8213_ad2df6
crossref_primary_10_1038_s41586_023_06759_1
crossref_primary_10_1103_PhysRevD_109_043051
crossref_primary_10_3847_2041_8213_ad096e
crossref_primary_10_3847_1538_4357_ad72f0
crossref_primary_10_3847_1538_4365_ada0b0
crossref_primary_10_3847_2041_8213_ad8563
crossref_primary_10_3847_1538_4357_ad9b87
crossref_primary_10_1038_s41550_024_02194_y
crossref_primary_10_3847_1538_4357_ad323d
Cites_doi 10.1103/PhysRevD.99.103025
10.1088/0004-637X/774/1/17
10.1088/1361-6382/acc0c6
10.3847/2041-8213/ace779
10.3847/1538-4357/ac19a7
10.1126/science.1125201
https://doi.org/10.3847/2041-8213/acec4a
10.1086/312397
10.1086/587858
10.3847/2041-8213/ac7530
10.3847/2041-8213/ac1169
10.1038/nature25452
10.1088/2041-8205/804/1/L16
10.1088/0004-637X/717/1/411
10.1093/mnras/179.3.433
10.1038/361236a0
10.3847/2041-8213/ac7728
10.3847/1538-4357/abff5d
10.1103/PhysRevD.90.024026
10.1093/mnras/stz2552
10.1103/PhysRevD.87.084006
10.1146/annurev-astro-112420-030742
10.1093/mnrasl/slx131
10.12942/lrr-2011-6
10.1103/PhysRevLett.120.241103
10.1088/0004-637X/696/2/1871
10.1103/PhysRevD.97.124039
10.1038/s41586-022-05403-8
10.1088/1361-6382/aa7a77
10.1111/j.1745-3933.2011.01147.x
10.1038/s41586-022-05390-w
10.3847/1538-4357/ac1737
10.1038/s41550-018-0511-3
10.1086/170270
10.3847/2041-8213/ac082e
10.1088/1361-6382/aa573b
10.1103/PhysRevD.107.123001
10.1086/502796
10.1103/PhysRevD.77.084002
10.1086/529025
10.1103/PhysRevD.77.084015
10.1007/s41114-020-00026-9
10.1007/BF00642237
10.1126/science.aau8815
10.1103/PhysRevD.106.023008
10.1007/BF01225967
10.3847/2041-8213/ac3bcd
10.3847/2041-8213/aa9057
10.1103/PhysRevD.83.024005
10.1086/497062
10.1093/mnras/stu2229
10.1038/s41586-022-05327-3
10.3847/2041-8213/aa905d
10.1088/0004-637X/738/1/84
10.1111/j.1745-3933.2007.00284.x
10.1103/PhysRevD.84.064018
10.3847/2515-5172/ace258
10.1088/2041-8205/806/1/L14
10.1038/s41586-018-0486-3
10.1093/mnras/stac2699
10.1088/0004-637X/780/1/31
10.1093/mnras/stad2348
10.3847/0004-637X/825/1/52
10.1103/PhysRevD.88.041503
10.1093/mnrasl/sly061
10.3847/1538-4357/ab38bb
10.1093/mnras/staa2567
10.1103/PhysRevD.91.124021
10.1103/PhysRevD.74.121503
10.1093/pasj/55.6.L69
10.1086/375769
10.1016/j.physrep.2020.08.008
10.1038/s41586-020-2649-2
10.3847/1538-4365/ac9966
10.1103/PhysRevD.78.104015
10.1103/PhysRevD.92.044028
10.1093/mnras/staa3501
10.1103/PhysRevD.92.124034
10.1088/0264-9381/23/16/S09
10.1103/PhysRevD.92.024014
10.1093/mnras/stx3158
10.1103/PhysRevD.103.043007
10.1111/j.1365-2966.2009.16107.x
10.1103/PhysRevD.98.123017
10.1093/mnras/sty2932
10.1086/589609
10.1093/mnras/stab1824
10.1093/mnras/stv238
10.3847/2041-8213/ac4259
10.1093/mnras/stz644
10.1088/0264-9381/24/12/S09
10.1086/589507
10.1103/PhysRevD.86.084026
10.1103/PhysRevD.85.044015
10.1103/PhysRevD.86.124007
10.1080/14786447108640585
10.1103/PhysRevD.105.083004
10.1088/0264-9381/27/11/114106
10.1093/mnras/208.4.721
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
– name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OIOZB
OTOTI
DOA
DOI 10.3847/2041-8213/aceeff
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2041-8213
ExternalDocumentID oai_doaj_org_article_efed61236d19496ebac054b27eaa86e5
2281673
10_3847_2041_8213_aceeff
apjlaceeff
GroupedDBID 1JI
2FS
4.4
6J9
AAFWJ
AAGCD
AAJIO
ABDNZ
ABHWH
ACGFS
ACHIP
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
EBS
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
PJBAE
RIN
ROL
SY9
T37
TSCCA
~02
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
OIOZB
OTOTI
ID FETCH-LOGICAL-c540t-5b7a8505f84b3ad4166f1c3f3b8b701bbdf1193d83342c8a86766515ca999c753
IEDL.DBID DOA
ISSN 2041-8205
IngestDate Wed Aug 27 01:23:00 EDT 2025
Mon Aug 12 05:47:47 EDT 2024
Wed Aug 13 05:56:04 EDT 2025
Tue Jul 01 04:12:05 EDT 2025
Thu Apr 24 22:59:38 EDT 2025
Wed Sep 06 07:34:18 EDT 2023
Wed Aug 21 03:33:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-5b7a8505f84b3ad4166f1c3f3b8b701bbdf1193d83342c8a86766515ca999c753
Notes High-Energy Phenomena and Fundamental Physics
AAS47828
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
National Aeronautics and Space Administration (NASA)
USDOE Office of Science (SC), High Energy Physics (HEP)
National Science Foundation (NSF)
USDOE Office of Science (SC), Nuclear Physics (NP)
AC02-05CH11231; TM1-22005X; AC05-00OR22725; PHY-2206607; NP-ERCAP0020543; ALCC-ERCAP0022634
ORCID 0000-0003-2982-0005
0000-0001-9185-5044
0000-0002-0050-1783
0000-0003-3115-2456
0000-0001-9288-519X
0000-0001-6656-9134
0000-0001-5392-7342
0000-0002-9182-2047
0009-0005-2478-7631
0000-0003-4475-9345
0000-0002-3635-5677
0000-0002-5981-1022
0000-0003-4617-4738
0000-0002-4670-7509
0000000344759345
0000000329820005
0000000200501783
0000000259811022
0000000246707509
0000000191855044
0000000236355677
0000000291822047
0009000524787631
0000000331152456
0000000166569134
000000019288519X
0000000346174738
0000000153927342
OpenAccessLink https://doaj.org/article/efed61236d19496ebac054b27eaa86e5
PQID 2859663025
PQPubID 4562431
PageCount 12
ParticipantIDs proquest_journals_2859663025
crossref_citationtrail_10_3847_2041_8213_aceeff
crossref_primary_10_3847_2041_8213_aceeff
iop_journals_10_3847_2041_8213_aceeff
doaj_primary_oai_doaj_org_article_efed61236d19496ebac054b27eaa86e5
osti_scitechconnect_2281673
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Austin
PublicationPlace_xml – name: Austin
– name: United States
PublicationTitle Astrophysical journal. Letters
PublicationTitleAbbrev APJL
PublicationTitleAlternate Astrophys. J. Lett
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Darbha (apjlaceeffbib12) 2021; 915
Fernández (apjlaceeffbib21) 2015; 449
Lindblom (apjlaceeffbib62) 2006; 23
Mooley (apjlaceeffbib72) 2018a; 554
Foucart (apjlaceeffbib25) 2014; 90
Most (apjlaceeffbib74) 2021; 506
Hayashi (apjlaceeffbib47) 2023; 107
Bugli (apjlaceeffbib10) 2018; 475
Kiuchi (apjlaceeffbib56) 2018; 97
Foucart (apjlaceeffbib30) 2011; 83
Rantsiou (apjlaceeffbib85) 2008; 680
SpEC collaboration (apjlaceeffbib95) 2023
Kyutoku (apjlaceeffbib58) 2013; 88
Christie (apjlaceeffbib11) 2019; 490
Kyutoku (apjlaceeffbib59) 2011; 84
Mooley (apjlaceeffbib73) 2018b; 561
Shibata (apjlaceeffbib92) 2011; 14
Paczynski (apjlaceeffbib80) 1991; 41
Fragione (apjlaceeffbib32) 2021; 923
Belczynski (apjlaceeffbib5) 2008; 682
Etienne (apjlaceeffbib18) 2008; 77
Helmholtz (apjlaceeffbib48) 1868; 23
Lamb (apjlaceeffbib60) 2019; 883
Blandford (apjlaceeffbib9) 1977; 179
Dichiara (apjlaceeffbib14) 2021; 923
Paschalidis (apjlaceeffbib82) 2015; 806
Shibata (apjlaceeffbib91) 2008; 77
Metzger (apjlaceeffbib69) 2021; 916
Margutti (apjlaceeffbib67) 2021; 59
Balbus (apjlaceeffbib4) 1991; 376
Margutti (apjlaceeffbib66) 2017; 848
Liska (apjlaceeffbib63) 2022; 263
Biscoveanu (apjlaceeffbib6) 2023; 7
Lazzati (apjlaceeffbib61) 2018; 120
Ekanger (apjlaceeffbib17) 2023; Adcance Access
Gottlieb (apjlaceeffbib36) 2023a; 952
Foucart (apjlaceeffbib28) 2012; 85
Gottlieb (apjlaceeffbib40) 2022; 517
Haddadi (apjlaceeffbib42) 2023; 40
Norris (apjlaceeffbib78) 2008
Duez (apjlaceeffbib16) 2010; 27
Moharana (apjlaceeffbib71) 2017; 472
Thomson (apjlaceeffbib102) 1871; 42
Hayashi (apjlaceeffbib45) 2022; 106
Shibata (apjlaceeffbib94) 2007; 24
Hawley (apjlaceeffbib44) 2011; 738
Foucart (apjlaceeffbib27) 2021; 920
Norris (apjlaceeffbib79) 2010; 717
Kiuchi (apjlaceeffbib55) 2015; 92
Zhu (apjlaceeffbib107) 2021; 921
Etienne (apjlaceeffbib19) 2012; 86
Tchekhovskoy (apjlaceeffbib101) 2011; 418
Kawaguchi (apjlaceeffbib53) 2016; 825
Foucart (apjlaceeffbib24) 2013; 87
Ruiz (apjlaceeffbib89) 2018; 98
Gottlieb (apjlaceeffbib39) 2022b; 933
Ghirlanda (apjlaceeffbib33) 2019; 363
Alexander (apjlaceeffbib3) 2017; 848
Bisnovatyi-Kogan (apjlaceeffbib7) 1974; 28
Nakar (apjlaceeffbib75) 2020; 886
Norris (apjlaceeffbib77) 2006; 643
Tchekhovskoy (apjlaceeffbib99) 2015; Vol. 414
Steiner (apjlaceeffbib96) 2013; 774
Tanaka (apjlaceeffbib98) 2014; 780
Bisnovatyi-Kogan (apjlaceeffbib8) 1976; 42
Foucart (apjlaceeffbib26) 2017; 34
Narayan (apjlaceeffbib76) 2003; 55
Abbott (apjlaceeffbib2) 2021; 915
Kawaguchi (apjlaceeffbib52) 2015; 92
Sarin (apjlaceeffbib90) 2022; 105
Gompertz (apjlaceeffbib34) 2023
Gottlieb (apjlaceeffbib35) 2020; 498
Hayashi (apjlaceeffbib46) 2021; 103
Mochkovitch (apjlaceeffbib70) 1993; 361
Duez (apjlaceeffbib15) 2008; 78
Foucart (apjlaceeffbib23) 2012; 86
Wanajo (apjlaceeffbib105) 2022
Igumenshchev (apjlaceeffbib49) 2008; 677
Gottlieb (apjlaceeffbib38) 2022a; 933
Harris (apjlaceeffbib43) 2020; 585
Lyman (apjlaceeffbib65) 2018; 2
Janka (apjlaceeffbib51) 1999; 527
Gottlieb (apjlaceeffbib41) 2021; 500
Abbott (apjlaceeffbib1) 2020; 23
Foucart (apjlaceeffbib31) 2015; 91
Foucart (apjlaceeffbib29) 2019; 99
Igumenshchev (apjlaceeffbib50) 2003; 592
Fernández (apjlaceeffbib22) 2019; 482
Kisaka (apjlaceeffbib54) 2015; 804
Perley (apjlaceeffbib83) 2009; 696
Tchekhovskoy (apjlaceeffbib100) 2015; 447
Metzger (apjlaceeffbib68) 2010; 402
Gottlieb (apjlaceeffbib37) 2023b; 953
Desai (apjlaceeffbib13) 2019; 485
Troja (apjlaceeffbib104) 2018; 478
Rastinejad (apjlaceeffbib86) 2022; 612
Rosswog (apjlaceeffbib87) 2005; 634
Yang (apjlaceeffbib106) 2022; 612
Lowell (apjlaceeffbib64) 2023
Rosswog (apjlaceeffbib88) 2007; 376
Troja (apjlaceeffbib103) 2022; 612
Kyutoku (apjlaceeffbib57) 2015; 92
Surman (apjlaceeffbib97) 2008; 679
Price (apjlaceeffbib84) 2006; 312
Shibata (apjlaceeffbib93) 2006; 74
Fernández (apjlaceeffbib20) 2017; 34
Papaloizou (apjlaceeffbib81) 1984; 208
References_xml – volume: 99
  start-page: 103025
  year: 2019
  ident: apjlaceeffbib29
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.99.103025
– volume: 774
  start-page: 17
  year: 2013
  ident: apjlaceeffbib96
  publication-title: ApJ
  doi: 10.1088/0004-637X/774/1/17
– volume: 40
  start-page: 085008
  year: 2023
  ident: apjlaceeffbib42
  publication-title: CQGra
  doi: 10.1088/1361-6382/acc0c6
– volume: 952
  start-page: L32
  year: 2023a
  ident: apjlaceeffbib36
  publication-title: ApJL
  doi: 10.3847/2041-8213/ace779
– year: 2023
  ident: apjlaceeffbib64
– year: 2022
  ident: apjlaceeffbib105
– volume: 921
  start-page: 156
  year: 2021
  ident: apjlaceeffbib107
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac19a7
– volume: 312
  start-page: 719
  year: 2006
  ident: apjlaceeffbib84
  publication-title: Sci
  doi: 10.1126/science.1125201
– year: 2023
  ident: apjlaceeffbib34
– volume: 953
  start-page: L11
  year: 2023b
  ident: apjlaceeffbib37
  publication-title: ApJL
  doi: https://doi.org/10.3847/2041-8213/acec4a
– volume: 527
  start-page: L39
  year: 1999
  ident: apjlaceeffbib51
  publication-title: ApJL
  doi: 10.1086/312397
– volume: 680
  start-page: 1326
  year: 2008
  ident: apjlaceeffbib85
  publication-title: ApJ
  doi: 10.1086/587858
– volume: 933
  start-page: L9
  year: 2022a
  ident: apjlaceeffbib38
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac7530
– volume: 916
  start-page: L3
  year: 2021
  ident: apjlaceeffbib69
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac1169
– volume: 554
  start-page: 207
  year: 2018a
  ident: apjlaceeffbib72
  publication-title: Natur
  doi: 10.1038/nature25452
– volume: 804
  start-page: L16
  year: 2015
  ident: apjlaceeffbib54
  publication-title: ApJL
  doi: 10.1088/2041-8205/804/1/L16
– volume: 717
  start-page: 411
  year: 2010
  ident: apjlaceeffbib79
  publication-title: ApJ
  doi: 10.1088/0004-637X/717/1/411
– volume: 179
  start-page: 433
  year: 1977
  ident: apjlaceeffbib9
  publication-title: MNRAS
  doi: 10.1093/mnras/179.3.433
– volume: 361
  start-page: 236
  year: 1993
  ident: apjlaceeffbib70
  publication-title: Natur
  doi: 10.1038/361236a0
– volume: 933
  start-page: L2
  year: 2022b
  ident: apjlaceeffbib39
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac7728
– volume: 915
  start-page: 69
  year: 2021
  ident: apjlaceeffbib12
  publication-title: ApJ
  doi: 10.3847/1538-4357/abff5d
– volume: 90
  start-page: 024026
  year: 2014
  ident: apjlaceeffbib25
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.90.024026
– volume: 490
  start-page: 4811
  year: 2019
  ident: apjlaceeffbib11
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2552
– volume: 87
  start-page: 084006
  year: 2013
  ident: apjlaceeffbib24
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.87.084006
– volume: 59
  start-page: 155
  year: 2021
  ident: apjlaceeffbib67
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-112420-030742
– volume: 472
  start-page: L55
  year: 2017
  ident: apjlaceeffbib71
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slx131
– volume: 23
  start-page: 215
  year: 1868
  ident: apjlaceeffbib48
  publication-title: Monthly Rep. Royal Prussian Acad. Phil. Berlin
– volume: 14
  start-page: 6
  year: 2011
  ident: apjlaceeffbib92
  publication-title: LRR
  doi: 10.12942/lrr-2011-6
– volume: 120
  start-page: 241103
  year: 2018
  ident: apjlaceeffbib61
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.120.241103
– year: 2023
  ident: apjlaceeffbib95
– volume: 696
  start-page: 1871
  year: 2009
  ident: apjlaceeffbib83
  publication-title: ApJ
  doi: 10.1088/0004-637X/696/2/1871
– volume: 97
  start-page: 124039
  year: 2018
  ident: apjlaceeffbib56
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.97.124039
– volume: 612
  start-page: 232
  year: 2022
  ident: apjlaceeffbib106
  publication-title: Natur
  doi: 10.1038/s41586-022-05403-8
– volume: 34
  start-page: 154001
  year: 2017
  ident: apjlaceeffbib20
  publication-title: CQGra
  doi: 10.1088/1361-6382/aa7a77
– start-page: 280
  year: 2008
  ident: apjlaceeffbib78
– volume: 418
  start-page: L79
  year: 2011
  ident: apjlaceeffbib101
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2011.01147.x
– volume: 612
  start-page: 223
  year: 2022
  ident: apjlaceeffbib86
  publication-title: Natur
  doi: 10.1038/s41586-022-05390-w
– volume: Vol. 414
  start-page: 45
  year: 2015
  ident: apjlaceeffbib99
– volume: 920
  start-page: 82
  year: 2021
  ident: apjlaceeffbib27
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac1737
– volume: 2
  start-page: 751
  year: 2018
  ident: apjlaceeffbib65
  publication-title: NatAs
  doi: 10.1038/s41550-018-0511-3
– volume: 376
  start-page: 214
  year: 1991
  ident: apjlaceeffbib4
  publication-title: ApJ
  doi: 10.1086/170270
– volume: 915
  start-page: L5
  year: 2021
  ident: apjlaceeffbib2
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac082e
– volume: 34
  start-page: 044002
  year: 2017
  ident: apjlaceeffbib26
  publication-title: CQGra
  doi: 10.1088/1361-6382/aa573b
– volume: 107
  start-page: 123001
  year: 2023
  ident: apjlaceeffbib47
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.107.123001
– volume: 643
  start-page: 266
  year: 2006
  ident: apjlaceeffbib77
  publication-title: ApJ
  doi: 10.1086/502796
– volume: 77
  start-page: 084002
  year: 2008
  ident: apjlaceeffbib18
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.77.084002
– volume: 677
  start-page: 317
  year: 2008
  ident: apjlaceeffbib49
  publication-title: ApJ
  doi: 10.1086/529025
– volume: 77
  start-page: 084015
  year: 2008
  ident: apjlaceeffbib91
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.77.084015
– volume: 23
  start-page: 3
  year: 2020
  ident: apjlaceeffbib1
  publication-title: LRR
  doi: 10.1007/s41114-020-00026-9
– volume: 28
  start-page: 45
  year: 1974
  ident: apjlaceeffbib7
  publication-title: Ap&SS
  doi: 10.1007/BF00642237
– volume: 363
  start-page: 968
  year: 2019
  ident: apjlaceeffbib33
  publication-title: Sci
  doi: 10.1126/science.aau8815
– volume: 106
  start-page: 023008
  year: 2022
  ident: apjlaceeffbib45
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.106.023008
– volume: 42
  start-page: 401
  year: 1976
  ident: apjlaceeffbib8
  publication-title: Ap&SS
  doi: 10.1007/BF01225967
– volume: 923
  start-page: L2
  year: 2021
  ident: apjlaceeffbib32
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac3bcd
– volume: 848
  start-page: L20
  year: 2017
  ident: apjlaceeffbib66
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa9057
– volume: 83
  start-page: 024005
  year: 2011
  ident: apjlaceeffbib30
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.83.024005
– volume: 634
  start-page: 1202
  year: 2005
  ident: apjlaceeffbib87
  publication-title: ApJ
  doi: 10.1086/497062
– volume: 41
  start-page: 257
  year: 1991
  ident: apjlaceeffbib80
  publication-title: AcA
– volume: 447
  start-page: 327
  year: 2015
  ident: apjlaceeffbib100
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2229
– volume: 612
  start-page: 228
  year: 2022
  ident: apjlaceeffbib103
  publication-title: Natur
  doi: 10.1038/s41586-022-05327-3
– volume: 848
  start-page: L21
  year: 2017
  ident: apjlaceeffbib3
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa905d
– volume: 738
  start-page: 84
  year: 2011
  ident: apjlaceeffbib44
  publication-title: ApJ
  doi: 10.1088/0004-637X/738/1/84
– volume: 376
  start-page: L48
  year: 2007
  ident: apjlaceeffbib88
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2007.00284.x
– volume: 84
  start-page: 064018
  year: 2011
  ident: apjlaceeffbib59
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.84.064018
– volume: 7
  start-page: 136
  year: 2023
  ident: apjlaceeffbib6
  publication-title: RNAAS
  doi: 10.3847/2515-5172/ace258
– volume: 806
  start-page: L14
  year: 2015
  ident: apjlaceeffbib82
  publication-title: ApJL
  doi: 10.1088/2041-8205/806/1/L14
– volume: 561
  start-page: 355
  year: 2018b
  ident: apjlaceeffbib73
  publication-title: Natur
  doi: 10.1038/s41586-018-0486-3
– volume: 517
  start-page: 1640
  year: 2022
  ident: apjlaceeffbib40
  publication-title: MNRAS
  doi: 10.1093/mnras/stac2699
– volume: 780
  start-page: 31
  year: 2014
  ident: apjlaceeffbib98
  publication-title: ApJ
  doi: 10.1088/0004-637X/780/1/31
– volume: Adcance Access
  year: 2023
  ident: apjlaceeffbib17
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2348
– volume: 825
  start-page: 52
  year: 2016
  ident: apjlaceeffbib53
  publication-title: ApJ
  doi: 10.3847/0004-637X/825/1/52
– volume: 88
  start-page: 041503
  year: 2013
  ident: apjlaceeffbib58
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.88.041503
– volume: 478
  start-page: L18
  year: 2018
  ident: apjlaceeffbib104
  publication-title: MNRAS
  doi: 10.1093/mnrasl/sly061
– volume: 883
  start-page: 48
  year: 2019
  ident: apjlaceeffbib60
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab38bb
– volume: 498
  start-page: 3320
  year: 2020
  ident: apjlaceeffbib35
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2567
– volume: 91
  start-page: 124021
  year: 2015
  ident: apjlaceeffbib31
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.91.124021
– volume: 74
  start-page: 121503
  year: 2006
  ident: apjlaceeffbib93
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.74.121503
– volume: 55
  start-page: L69
  year: 2003
  ident: apjlaceeffbib76
  publication-title: PASJ
  doi: 10.1093/pasj/55.6.L69
– volume: 592
  start-page: 1042
  year: 2003
  ident: apjlaceeffbib50
  publication-title: ApJ
  doi: 10.1086/375769
– volume: 886
  start-page: 1
  year: 2020
  ident: apjlaceeffbib75
  publication-title: PhR
  doi: 10.1016/j.physrep.2020.08.008
– volume: 585
  start-page: 357
  year: 2020
  ident: apjlaceeffbib43
  publication-title: Natur
  doi: 10.1038/s41586-020-2649-2
– volume: 263
  start-page: 26
  year: 2022
  ident: apjlaceeffbib63
  publication-title: ApJS
  doi: 10.3847/1538-4365/ac9966
– volume: 78
  start-page: 104015
  year: 2008
  ident: apjlaceeffbib15
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.78.104015
– volume: 92
  start-page: 044028
  year: 2015
  ident: apjlaceeffbib57
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.92.044028
– volume: 500
  start-page: 3511
  year: 2021
  ident: apjlaceeffbib41
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3501
– volume: 92
  start-page: 124034
  year: 2015
  ident: apjlaceeffbib55
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.92.124034
– volume: 23
  start-page: S447
  year: 2006
  ident: apjlaceeffbib62
  publication-title: CQGra
  doi: 10.1088/0264-9381/23/16/S09
– volume: 92
  start-page: 024014
  year: 2015
  ident: apjlaceeffbib52
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.92.024014
– volume: 475
  start-page: 108
  year: 2018
  ident: apjlaceeffbib10
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3158
– volume: 103
  start-page: 043007
  year: 2021
  ident: apjlaceeffbib46
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.103.043007
– volume: 402
  start-page: 2771
  year: 2010
  ident: apjlaceeffbib68
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.16107.x
– volume: 98
  start-page: 123017
  year: 2018
  ident: apjlaceeffbib89
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.98.123017
– volume: 482
  start-page: 3373
  year: 2019
  ident: apjlaceeffbib22
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2932
– volume: 682
  start-page: 474
  year: 2008
  ident: apjlaceeffbib5
  publication-title: ApJ
  doi: 10.1086/589609
– volume: 506
  start-page: 3511
  year: 2021
  ident: apjlaceeffbib74
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1824
– volume: 449
  start-page: 390
  year: 2015
  ident: apjlaceeffbib21
  publication-title: MNRAS
  doi: 10.1093/mnras/stv238
– volume: 923
  start-page: L32
  year: 2021
  ident: apjlaceeffbib14
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac4259
– volume: 485
  start-page: 4404
  year: 2019
  ident: apjlaceeffbib13
  publication-title: MNRAS
  doi: 10.1093/mnras/stz644
– volume: 24
  start-page: S125
  year: 2007
  ident: apjlaceeffbib94
  publication-title: CQGra
  doi: 10.1088/0264-9381/24/12/S09
– volume: 679
  start-page: L117
  year: 2008
  ident: apjlaceeffbib97
  publication-title: ApJL
  doi: 10.1086/589507
– volume: 86
  start-page: 084026
  year: 2012
  ident: apjlaceeffbib19
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.86.084026
– volume: 85
  start-page: 044015
  year: 2012
  ident: apjlaceeffbib28
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.85.044015
– volume: 86
  start-page: 124007
  year: 2012
  ident: apjlaceeffbib23
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.86.124007
– volume: 42
  start-page: 362
  year: 1871
  ident: apjlaceeffbib102
  publication-title: PMag
  doi: 10.1080/14786447108640585
– volume: 105
  start-page: 083004
  year: 2022
  ident: apjlaceeffbib90
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.105.083004
– volume: 27
  start-page: 114106
  year: 2010
  ident: apjlaceeffbib16
  publication-title: CQGra
  doi: 10.1088/0264-9381/27/11/114106
– volume: 208
  start-page: 721
  year: 1984
  ident: apjlaceeffbib81
  publication-title: MNRAS
  doi: 10.1093/mnras/208.4.721
SSID ssj0020618
Score 2.5542073
Snippet We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 10 11 cm. The disk that...
We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 1011 cm. The disk that...
We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 10 ^11 cm. The disk that...
SourceID doaj
osti
proquest
crossref
iop
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage L21
SubjectTerms ASTRONOMY AND ASTROPHYSICS
Astrophysical black holes
Black holes
Compact binary stars
Deposition
Disks
Emission analysis
Energy distribution
Evolution
Gamma ray bursts
Gamma rays
Jets
Luminosity
Magnetic fields
Magnetic flux
Magnetization
Magnetohydrodynamical simulations
Mass ratios
Neutron stars
Neutrons
Numerical simulations
Relativistic jets
Star mergers
Stellar mass black holes
Stellar mergers
Wind
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKuXBB_KpLC_gASBxM13HiJOJUUKtV1ZYDVPSE5Z9xJbRsVpu0EjfegTfkSZix00UVqOKWRBPbGY893zj2N4y9aFsApZUWVeWAlm6mwmIUIIpQai8RA4Omg8LHJ3p2Wh6eVWcb7O36LEy3HKf-N3iZiYKzCml8K5xLMVwvpWgKqXYtzvAx3mK3FeJyirw-qM_raAsdVUpHl6WnVf5H-c8SrvmkRN2Pngarx5sOB9pf03TyPQf32N0RNPK93MT7bAMWD9jWXk_L2N237_wVT9d5laJ_yL4c0f5u0aP-ge9fjtbFu8g_UvwbejHvFuc8b4S7TFTN_BCGntNhE57W9Pism8OvHz9P4IJq4QhKV_yYjmqu-kfs9GD_0_uZGBMpCI-AbBCVq22DUCc2pVM2IAbTUXoVlWtcPZXOhSgRyIVGqbLwjW10rSlFurcIHz0GNI_Z5qJbwBbjdaxk8OjRVG3L1lvEBxBr3WIHe5AQJ2z3SpXGjyzjlOxibjDaIOUbUr4h5Zus_Al7vX5jmRk2bpB9R72zliNu7PQA7cSMdmIgQkikMkG2ZavBWY-41BU1WPwyqCbsJfatGcdqf0Nlz6_J2eXXuWmr0khzVEizDCixTfZh0GKJcdfT1iQ_mKJopK7VhO1cmc2fQogvEEEeIs0n_9mMbXaHUtznfW07bHNYXcBTBEKDe5YM_jcafgL8
  priority: 102
  providerName: IOP Publishing
Title Large-scale Evolution of Seconds-long Relativistic Jets from Black Hole–Neutron Star Mergers
URI https://iopscience.iop.org/article/10.3847/2041-8213/aceeff
https://www.proquest.com/docview/2859663025
https://www.osti.gov/servlets/purl/2281673
https://doaj.org/article/efed61236d19496ebac054b27eaa86e5
Volume 954
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wQv-rSUnwAJA7WxnHiJMeCWi1Vf5Cgoics2xmjomWz2qSVeuMdeEOehBk7W6iQyoVLlFhOnIzHnm-c8TeMvWgaAKWVFmXpgJZuMmHRCxB5W2gvEQODpo3CR8d6dlocnJVnf6T6opiwRA-cBDeFAG2kCGnR3W40OOsRZbi8AmtrDZG9NGuytTM1ulpopWIuuqyQAm1cmX5QKpyKp2OZVFOLBiKEGwYp8vajmTnvlnjR4Sj7a46Ohmf_Prs3Ika-m970AbsDi4dsc7enNezu2xV_xeN5WqLoH7HPhxTcLXoUPvC9y1G1eBf4B3J-217Mu8UXnqLgLiNPMz-Aoee004THBT0-6-bw8_uPY7igVjgi0hU_on2aq_4xO93f-_h2JsYsCsIjGhtE6SpbI84JdeGUbRGA6SC9CsrVrsqkc22QiOLaWqki9zUKtdKUH91bxI4evZknbGPRLWCT8SqUsvVozlRli8ZbBAcQKt1g73qQECZsuhal8SPFOGW6mBt0NUj4hoRvSPgmCX_CXl_fsUz0GrfUfUO9c12PiLFjAaqLGdXF_EtdJuwl9q0ZB2p_S2PPb9Szy69z05SFkeYwl2bZYo0t0g-DSIXodj3FJfnB5HktdaUmbHutNr8fQmSBiPAQZj79H9-yxe7mCLlSxNs22xhWF_AMIdLgduJowOO7k_d4PFGffgFJsQ8K
linkProvider Directory of Open Access Journals
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgSIgL4lMNLdQHQOIQdh0nTnIs0NVStgsSVPSEZTvjSmjZrDZpJW78B_4hv4QZO11UgSpuSeQkzvjZ88ax3zD2tK4BpJIqLQoLNHUzTg1GAWnW5MoJ5MCgaKPw0VxNj_PDk-JkyHMa9sK0q2Hof4mHUSg4mpD6t8SxFMP1XKRVJuTI4Ajv_WjV-OvsRiGRGyOg38vPm4gLnVVISRfvGBfxP-U_n3LJLwX5fvQ2WAU8abGz_TVUB_8zucNuD8SR78dq3mXXYHmPbe93NJXdfvvOn_NwHGcquvvsy4zWeKcdtgHwg_MBYbz1_CPFwE2XLtrlKY-L4c6DXDM_hL7jtOGEh3k9Pm0X8OvHzzmc0Vs4EtM1P6LtmuvuATueHHx6PU2HZAqpQ1LWp4UtTYV0x1e5laZBHqa8cNJLW9lyLKxtvEAy11RS5pmrTKVKRWnSnUEK6TCoeci2lu0SthkvfSEah15NliavnUGOAL5UNTayAwE-YaMLU2o3KI1TwouFxoiDjK_J-JqMr6PxE_Zic8cqqmxcUfYVtc6mHOljhwuIFT1gRYOHJgjLNKLOawXWOOSmNivB4JdBkbBn2LZ66K_dFS_bu1TOrL4udF3kWuhZJjQiL2E7hA-NqCXVXUfLk1yvs6wSqpQJ272AzZ-HkGYgEj1km4_-sxp77OaHNxM9ezt_t8NuUcb7uMxtl2316zN4jLyot08C9n8DM1sG-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+Evolution+of+Seconds-long+Relativistic+Jets+from+Black+Hole%E2%80%93Neutron+Star+Mergers&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Ore+Gottlieb&rft.au=Danat+Issa&rft.au=Jonatan+Jacquemin-Ide&rft.au=Matthew+Liska&rft.date=2023-09-01&rft.pub=IOP+Publishing&rft.issn=2041-8205&rft.volume=954&rft.issue=1&rft.spage=L21&rft_id=info:doi/10.3847%2F2041-8213%2Faceeff&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_efed61236d19496ebac054b27eaa86e5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon