Large-scale Evolution of Seconds-long Relativistic Jets from Black Hole–Neutron Star Mergers
We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 10 11 cm. The disk that forms after a merger of mass ratio q = 2 ejects massive disk winds (3–5 × 10 −2 M ⊙ ). We introduce various postmerger magnetic configurations...
Saved in:
Published in | Astrophysical journal. Letters Vol. 954; no. 1; p. L21 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Austin
The American Astronomical Society
01.09.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 2041-8205 2041-8213 |
DOI | 10.3847/2041-8213/aceeff |
Cover
Abstract | We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to
r
≳ 10
11
cm. The disk that forms after a merger of mass ratio
q
= 2 ejects massive disk winds (3–5 × 10
−2
M
⊙
). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off as
L
j
∼
t
−2
. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetization
σ
0
> 100 retain significant magnetization (
σ
≫ 1) at
r
> 10
10
cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper. |
---|---|
AbstractList | We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to
r
≳ 10
11
cm. The disk that forms after a merger of mass ratio
q
= 2 ejects massive disk winds (3–5 × 10
−2
M
⊙
). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off as
L
j
∼
t
−2
. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetization
σ
0
> 100 retain significant magnetization (
σ
≫ 1) at
r
> 10
10
cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper. We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 1011 cm. The disk that forms after a merger of mass ratio q = 2 ejects massive disk winds (3–5 × 10–2M⊙). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off as Lj ~ t–2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetization σ0 > 100 retain significant magnetization (σ $\gg$ 1) at r > 1010 cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper. We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 1011 cm. The disk that forms after a merger of mass ratio q = 2 ejects massive disk winds (3–5 × 10−2M⊙). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off as Lj ∼ t−2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetization σ0 > 100 retain significant magnetization (σ ≫ 1) at r > 1010 cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper. We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 10 ^11 cm. The disk that forms after a merger of mass ratio q = 2 ejects massive disk winds (3–5 × 10 ^−2 M _⊙ ). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off as L _j ∼ t ^−2 . All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetization σ _0 > 100 retain significant magnetization ( σ ≫ 1) at r > 10 ^10 cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper. |
Author | Gottlieb, Ore Jacquemin-Ide, Jonatan Issa, Danat Tchekhovskoy, Alexander Foucart, Francois Kasen, Daniel Pfeiffer, Harald P. Quataert, Eliot Duez, Matthew D. Scheel, Mark A. Metzger, Brian D. Kidder, Lawrence E. Liska, Matthew Perna, Rosalba |
Author_xml | – sequence: 1 givenname: Ore orcidid: 0000-0003-3115-2456 surname: Gottlieb fullname: Gottlieb, Ore organization: Northwestern University Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Physics & Astronomy, Evanston, IL 60202, USA – sequence: 2 givenname: Danat orcidid: 0009-0005-2478-7631 surname: Issa fullname: Issa, Danat organization: Northwestern University Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Physics & Astronomy, Evanston, IL 60202, USA – sequence: 3 givenname: Jonatan orcidid: 0000-0003-2982-0005 surname: Jacquemin-Ide fullname: Jacquemin-Ide, Jonatan organization: Northwestern University Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Physics & Astronomy, Evanston, IL 60202, USA – sequence: 4 givenname: Matthew orcidid: 0000-0003-4475-9345 surname: Liska fullname: Liska, Matthew organization: Harvard University John Harvard Distinguished Science and ITC, 60 Garden Street, Cambridge, MA 02138, USA – sequence: 5 givenname: Francois orcidid: 0000-0003-4617-4738 surname: Foucart fullname: Foucart, Francois organization: University of New Hampshire Department of Physics and Astronomy, 9 Library Way, Durham, NH 03824, USA – sequence: 6 givenname: Alexander orcidid: 0000-0002-9182-2047 surname: Tchekhovskoy fullname: Tchekhovskoy, Alexander organization: Northwestern University Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Physics & Astronomy, Evanston, IL 60202, USA – sequence: 7 givenname: Brian D. orcidid: 0000-0002-4670-7509 surname: Metzger fullname: Metzger, Brian D. organization: Flatiron Institute Center for Computational Astrophysics, New York, NY 10010, USA – sequence: 8 givenname: Eliot orcidid: 0000-0001-9185-5044 surname: Quataert fullname: Quataert, Eliot organization: Princeton University Department of Astrophysical Sciences, Princeton, NJ 08544, USA – sequence: 9 givenname: Rosalba orcidid: 0000-0002-3635-5677 surname: Perna fullname: Perna, Rosalba organization: Stony Brook University Department of Physics and Astronomy, Stony Brook, NY 11794-3800, USA – sequence: 10 givenname: Daniel orcidid: 0000-0002-5981-1022 surname: Kasen fullname: Kasen, Daniel organization: Lawrence Berkeley National Laboratory Nuclear Science Division, Berkeley, CA 94720, USA – sequence: 11 givenname: Matthew D. orcidid: 0000-0002-0050-1783 surname: Duez fullname: Duez, Matthew D. organization: Washington State University Department of Physics & Astronomy, Pullman, WA 99164, USA – sequence: 12 givenname: Lawrence E. orcidid: 0000-0001-5392-7342 surname: Kidder fullname: Kidder, Lawrence E. organization: Cornell University Cornell Center for Astrophysics and Planetary Science, Ithaca, NY 14853, USA – sequence: 13 givenname: Harald P. orcidid: 0000-0001-9288-519X surname: Pfeiffer fullname: Pfeiffer, Harald P. organization: Max Planck Institute for Gravitational Physics (Albert Einstein Institute) , D-14467 Potsdam, Germany – sequence: 14 givenname: Mark A. orcidid: 0000-0001-6656-9134 surname: Scheel fullname: Scheel, Mark A. organization: California Institute of Technology TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, Pasadena, CA 91125, USA |
BackLink | https://www.osti.gov/servlets/purl/2281673$$D View this record in Osti.gov |
BookMark | eNp9kc1u1TAQhSPUSrSFPcsIJFaE-id2nCVUhRbdFonCFmvijC-5uHFq-1Zixzvwhn2SOgRaCQErW6NzPs2Zs1_sjH7EonhCyUuu6uaQkZpWilF-CAbR2gfF3t1o5-5PxMNiP8YNIYxIqvaKzysIa6yiAYfl8bV32zT4sfS2vEDjxz5Wzo_r8gM6SMP1ENNgyneYYmmDvyxfOzBfyxPv8Ob7j3PcppC9FwlCeYYZG-KjYteCi_j413tQfHpz_PHopFq9f3t69GpVGVGTVImuASWIsKruOPQ1ldJSwy3vVNcQ2nW9pbTlveK8ZkaBko2UggoDbduaRvCD4nTh9h42egrDJYRv2sOgfw58WGsIeXeHGi32kjIue9rWrcQODBF1xxqEzMWZ9XRh-ZxWRzMkNF_yLUY0STOmqGx4Fj1bRFPwV1uMSW_8Now5o2ZKtFJywmaUXFQm-BgDWp1pMF84BRicpkTP5em5HT03pZfyspH8Yfyd6T-W54tl8NP9MjBtnG5FraleMaqnfha--Ivwn9xbVsq7QQ |
CitedBy_id | crossref_primary_10_1103_PhysRevD_110_024046 crossref_primary_10_3847_2041_8213_ad1525 crossref_primary_10_1103_PhysRevD_108_123012 crossref_primary_10_1093_mnras_staf377 crossref_primary_10_3390_galaxies13010002 crossref_primary_10_1103_PhysRevD_111_064022 crossref_primary_10_1093_mnras_stad3572 crossref_primary_10_1093_mnras_stae1538 crossref_primary_10_1103_PhysRevD_111_064023 crossref_primary_10_3847_1538_4357_ad2fc1 crossref_primary_10_1093_mnras_stae815 crossref_primary_10_3847_1538_4357_ad1bd7 crossref_primary_10_3847_2041_8213_ad2df6 crossref_primary_10_1038_s41586_023_06759_1 crossref_primary_10_1103_PhysRevD_109_043051 crossref_primary_10_3847_2041_8213_ad096e crossref_primary_10_3847_1538_4357_ad72f0 crossref_primary_10_3847_1538_4365_ada0b0 crossref_primary_10_3847_2041_8213_ad8563 crossref_primary_10_3847_1538_4357_ad9b87 crossref_primary_10_1038_s41550_024_02194_y crossref_primary_10_3847_1538_4357_ad323d |
Cites_doi | 10.1103/PhysRevD.99.103025 10.1088/0004-637X/774/1/17 10.1088/1361-6382/acc0c6 10.3847/2041-8213/ace779 10.3847/1538-4357/ac19a7 10.1126/science.1125201 https://doi.org/10.3847/2041-8213/acec4a 10.1086/312397 10.1086/587858 10.3847/2041-8213/ac7530 10.3847/2041-8213/ac1169 10.1038/nature25452 10.1088/2041-8205/804/1/L16 10.1088/0004-637X/717/1/411 10.1093/mnras/179.3.433 10.1038/361236a0 10.3847/2041-8213/ac7728 10.3847/1538-4357/abff5d 10.1103/PhysRevD.90.024026 10.1093/mnras/stz2552 10.1103/PhysRevD.87.084006 10.1146/annurev-astro-112420-030742 10.1093/mnrasl/slx131 10.12942/lrr-2011-6 10.1103/PhysRevLett.120.241103 10.1088/0004-637X/696/2/1871 10.1103/PhysRevD.97.124039 10.1038/s41586-022-05403-8 10.1088/1361-6382/aa7a77 10.1111/j.1745-3933.2011.01147.x 10.1038/s41586-022-05390-w 10.3847/1538-4357/ac1737 10.1038/s41550-018-0511-3 10.1086/170270 10.3847/2041-8213/ac082e 10.1088/1361-6382/aa573b 10.1103/PhysRevD.107.123001 10.1086/502796 10.1103/PhysRevD.77.084002 10.1086/529025 10.1103/PhysRevD.77.084015 10.1007/s41114-020-00026-9 10.1007/BF00642237 10.1126/science.aau8815 10.1103/PhysRevD.106.023008 10.1007/BF01225967 10.3847/2041-8213/ac3bcd 10.3847/2041-8213/aa9057 10.1103/PhysRevD.83.024005 10.1086/497062 10.1093/mnras/stu2229 10.1038/s41586-022-05327-3 10.3847/2041-8213/aa905d 10.1088/0004-637X/738/1/84 10.1111/j.1745-3933.2007.00284.x 10.1103/PhysRevD.84.064018 10.3847/2515-5172/ace258 10.1088/2041-8205/806/1/L14 10.1038/s41586-018-0486-3 10.1093/mnras/stac2699 10.1088/0004-637X/780/1/31 10.1093/mnras/stad2348 10.3847/0004-637X/825/1/52 10.1103/PhysRevD.88.041503 10.1093/mnrasl/sly061 10.3847/1538-4357/ab38bb 10.1093/mnras/staa2567 10.1103/PhysRevD.91.124021 10.1103/PhysRevD.74.121503 10.1093/pasj/55.6.L69 10.1086/375769 10.1016/j.physrep.2020.08.008 10.1038/s41586-020-2649-2 10.3847/1538-4365/ac9966 10.1103/PhysRevD.78.104015 10.1103/PhysRevD.92.044028 10.1093/mnras/staa3501 10.1103/PhysRevD.92.124034 10.1088/0264-9381/23/16/S09 10.1103/PhysRevD.92.024014 10.1093/mnras/stx3158 10.1103/PhysRevD.103.043007 10.1111/j.1365-2966.2009.16107.x 10.1103/PhysRevD.98.123017 10.1093/mnras/sty2932 10.1086/589609 10.1093/mnras/stab1824 10.1093/mnras/stv238 10.3847/2041-8213/ac4259 10.1093/mnras/stz644 10.1088/0264-9381/24/12/S09 10.1086/589507 10.1103/PhysRevD.86.084026 10.1103/PhysRevD.85.044015 10.1103/PhysRevD.86.124007 10.1080/14786447108640585 10.1103/PhysRevD.105.083004 10.1088/0264-9381/27/11/114106 10.1093/mnras/208.4.721 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M OIOZB OTOTI DOA |
DOI | 10.3847/2041-8213/aceeff |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 2041-8213 |
ExternalDocumentID | oai_doaj_org_article_efed61236d19496ebac054b27eaa86e5 2281673 10_3847_2041_8213_aceeff apjlaceeff |
GroupedDBID | 1JI 2FS 4.4 6J9 AAFWJ AAGCD AAJIO ABDNZ ABHWH ACGFS ACHIP AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU EBS FRP GROUPED_DOAJ IJHAN IOP KOT N5L O3W O43 OK1 PJBAE RIN ROL SY9 T37 TSCCA ~02 AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M OIOZB OTOTI |
ID | FETCH-LOGICAL-c540t-5b7a8505f84b3ad4166f1c3f3b8b701bbdf1193d83342c8a86766515ca999c753 |
IEDL.DBID | DOA |
ISSN | 2041-8205 |
IngestDate | Wed Aug 27 01:23:00 EDT 2025 Mon Aug 12 05:47:47 EDT 2024 Wed Aug 13 05:56:04 EDT 2025 Tue Jul 01 04:12:05 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Wed Sep 06 07:34:18 EDT 2023 Wed Aug 21 03:33:06 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-5b7a8505f84b3ad4166f1c3f3b8b701bbdf1193d83342c8a86766515ca999c753 |
Notes | High-Energy Phenomena and Fundamental Physics AAS47828 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 National Aeronautics and Space Administration (NASA) USDOE Office of Science (SC), High Energy Physics (HEP) National Science Foundation (NSF) USDOE Office of Science (SC), Nuclear Physics (NP) AC02-05CH11231; TM1-22005X; AC05-00OR22725; PHY-2206607; NP-ERCAP0020543; ALCC-ERCAP0022634 |
ORCID | 0000-0003-2982-0005 0000-0001-9185-5044 0000-0002-0050-1783 0000-0003-3115-2456 0000-0001-9288-519X 0000-0001-6656-9134 0000-0001-5392-7342 0000-0002-9182-2047 0009-0005-2478-7631 0000-0003-4475-9345 0000-0002-3635-5677 0000-0002-5981-1022 0000-0003-4617-4738 0000-0002-4670-7509 0000000344759345 0000000329820005 0000000200501783 0000000259811022 0000000246707509 0000000191855044 0000000236355677 0000000291822047 0009000524787631 0000000331152456 0000000166569134 000000019288519X 0000000346174738 0000000153927342 |
OpenAccessLink | https://doaj.org/article/efed61236d19496ebac054b27eaa86e5 |
PQID | 2859663025 |
PQPubID | 4562431 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2859663025 crossref_citationtrail_10_3847_2041_8213_aceeff crossref_primary_10_3847_2041_8213_aceeff iop_journals_10_3847_2041_8213_aceeff doaj_primary_oai_doaj_org_article_efed61236d19496ebac054b27eaa86e5 osti_scitechconnect_2281673 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Austin |
PublicationPlace_xml | – name: Austin – name: United States |
PublicationTitle | Astrophysical journal. Letters |
PublicationTitleAbbrev | APJL |
PublicationTitleAlternate | Astrophys. J. Lett |
PublicationYear | 2023 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Darbha (apjlaceeffbib12) 2021; 915 Fernández (apjlaceeffbib21) 2015; 449 Lindblom (apjlaceeffbib62) 2006; 23 Mooley (apjlaceeffbib72) 2018a; 554 Foucart (apjlaceeffbib25) 2014; 90 Most (apjlaceeffbib74) 2021; 506 Hayashi (apjlaceeffbib47) 2023; 107 Bugli (apjlaceeffbib10) 2018; 475 Kiuchi (apjlaceeffbib56) 2018; 97 Foucart (apjlaceeffbib30) 2011; 83 Rantsiou (apjlaceeffbib85) 2008; 680 SpEC collaboration (apjlaceeffbib95) 2023 Kyutoku (apjlaceeffbib58) 2013; 88 Christie (apjlaceeffbib11) 2019; 490 Kyutoku (apjlaceeffbib59) 2011; 84 Mooley (apjlaceeffbib73) 2018b; 561 Shibata (apjlaceeffbib92) 2011; 14 Paczynski (apjlaceeffbib80) 1991; 41 Fragione (apjlaceeffbib32) 2021; 923 Belczynski (apjlaceeffbib5) 2008; 682 Etienne (apjlaceeffbib18) 2008; 77 Helmholtz (apjlaceeffbib48) 1868; 23 Lamb (apjlaceeffbib60) 2019; 883 Blandford (apjlaceeffbib9) 1977; 179 Dichiara (apjlaceeffbib14) 2021; 923 Paschalidis (apjlaceeffbib82) 2015; 806 Shibata (apjlaceeffbib91) 2008; 77 Metzger (apjlaceeffbib69) 2021; 916 Margutti (apjlaceeffbib67) 2021; 59 Balbus (apjlaceeffbib4) 1991; 376 Margutti (apjlaceeffbib66) 2017; 848 Liska (apjlaceeffbib63) 2022; 263 Biscoveanu (apjlaceeffbib6) 2023; 7 Lazzati (apjlaceeffbib61) 2018; 120 Ekanger (apjlaceeffbib17) 2023; Adcance Access Gottlieb (apjlaceeffbib36) 2023a; 952 Foucart (apjlaceeffbib28) 2012; 85 Gottlieb (apjlaceeffbib40) 2022; 517 Haddadi (apjlaceeffbib42) 2023; 40 Norris (apjlaceeffbib78) 2008 Duez (apjlaceeffbib16) 2010; 27 Moharana (apjlaceeffbib71) 2017; 472 Thomson (apjlaceeffbib102) 1871; 42 Hayashi (apjlaceeffbib45) 2022; 106 Shibata (apjlaceeffbib94) 2007; 24 Hawley (apjlaceeffbib44) 2011; 738 Foucart (apjlaceeffbib27) 2021; 920 Norris (apjlaceeffbib79) 2010; 717 Kiuchi (apjlaceeffbib55) 2015; 92 Zhu (apjlaceeffbib107) 2021; 921 Etienne (apjlaceeffbib19) 2012; 86 Tchekhovskoy (apjlaceeffbib101) 2011; 418 Kawaguchi (apjlaceeffbib53) 2016; 825 Foucart (apjlaceeffbib24) 2013; 87 Ruiz (apjlaceeffbib89) 2018; 98 Gottlieb (apjlaceeffbib39) 2022b; 933 Ghirlanda (apjlaceeffbib33) 2019; 363 Alexander (apjlaceeffbib3) 2017; 848 Bisnovatyi-Kogan (apjlaceeffbib7) 1974; 28 Nakar (apjlaceeffbib75) 2020; 886 Norris (apjlaceeffbib77) 2006; 643 Tchekhovskoy (apjlaceeffbib99) 2015; Vol. 414 Steiner (apjlaceeffbib96) 2013; 774 Tanaka (apjlaceeffbib98) 2014; 780 Bisnovatyi-Kogan (apjlaceeffbib8) 1976; 42 Foucart (apjlaceeffbib26) 2017; 34 Narayan (apjlaceeffbib76) 2003; 55 Abbott (apjlaceeffbib2) 2021; 915 Kawaguchi (apjlaceeffbib52) 2015; 92 Sarin (apjlaceeffbib90) 2022; 105 Gompertz (apjlaceeffbib34) 2023 Gottlieb (apjlaceeffbib35) 2020; 498 Hayashi (apjlaceeffbib46) 2021; 103 Mochkovitch (apjlaceeffbib70) 1993; 361 Duez (apjlaceeffbib15) 2008; 78 Foucart (apjlaceeffbib23) 2012; 86 Wanajo (apjlaceeffbib105) 2022 Igumenshchev (apjlaceeffbib49) 2008; 677 Gottlieb (apjlaceeffbib38) 2022a; 933 Harris (apjlaceeffbib43) 2020; 585 Lyman (apjlaceeffbib65) 2018; 2 Janka (apjlaceeffbib51) 1999; 527 Gottlieb (apjlaceeffbib41) 2021; 500 Abbott (apjlaceeffbib1) 2020; 23 Foucart (apjlaceeffbib31) 2015; 91 Foucart (apjlaceeffbib29) 2019; 99 Igumenshchev (apjlaceeffbib50) 2003; 592 Fernández (apjlaceeffbib22) 2019; 482 Kisaka (apjlaceeffbib54) 2015; 804 Perley (apjlaceeffbib83) 2009; 696 Tchekhovskoy (apjlaceeffbib100) 2015; 447 Metzger (apjlaceeffbib68) 2010; 402 Gottlieb (apjlaceeffbib37) 2023b; 953 Desai (apjlaceeffbib13) 2019; 485 Troja (apjlaceeffbib104) 2018; 478 Rastinejad (apjlaceeffbib86) 2022; 612 Rosswog (apjlaceeffbib87) 2005; 634 Yang (apjlaceeffbib106) 2022; 612 Lowell (apjlaceeffbib64) 2023 Rosswog (apjlaceeffbib88) 2007; 376 Troja (apjlaceeffbib103) 2022; 612 Kyutoku (apjlaceeffbib57) 2015; 92 Surman (apjlaceeffbib97) 2008; 679 Price (apjlaceeffbib84) 2006; 312 Shibata (apjlaceeffbib93) 2006; 74 Fernández (apjlaceeffbib20) 2017; 34 Papaloizou (apjlaceeffbib81) 1984; 208 |
References_xml | – volume: 99 start-page: 103025 year: 2019 ident: apjlaceeffbib29 publication-title: PhRvD doi: 10.1103/PhysRevD.99.103025 – volume: 774 start-page: 17 year: 2013 ident: apjlaceeffbib96 publication-title: ApJ doi: 10.1088/0004-637X/774/1/17 – volume: 40 start-page: 085008 year: 2023 ident: apjlaceeffbib42 publication-title: CQGra doi: 10.1088/1361-6382/acc0c6 – volume: 952 start-page: L32 year: 2023a ident: apjlaceeffbib36 publication-title: ApJL doi: 10.3847/2041-8213/ace779 – year: 2023 ident: apjlaceeffbib64 – year: 2022 ident: apjlaceeffbib105 – volume: 921 start-page: 156 year: 2021 ident: apjlaceeffbib107 publication-title: ApJ doi: 10.3847/1538-4357/ac19a7 – volume: 312 start-page: 719 year: 2006 ident: apjlaceeffbib84 publication-title: Sci doi: 10.1126/science.1125201 – year: 2023 ident: apjlaceeffbib34 – volume: 953 start-page: L11 year: 2023b ident: apjlaceeffbib37 publication-title: ApJL doi: https://doi.org/10.3847/2041-8213/acec4a – volume: 527 start-page: L39 year: 1999 ident: apjlaceeffbib51 publication-title: ApJL doi: 10.1086/312397 – volume: 680 start-page: 1326 year: 2008 ident: apjlaceeffbib85 publication-title: ApJ doi: 10.1086/587858 – volume: 933 start-page: L9 year: 2022a ident: apjlaceeffbib38 publication-title: ApJL doi: 10.3847/2041-8213/ac7530 – volume: 916 start-page: L3 year: 2021 ident: apjlaceeffbib69 publication-title: ApJL doi: 10.3847/2041-8213/ac1169 – volume: 554 start-page: 207 year: 2018a ident: apjlaceeffbib72 publication-title: Natur doi: 10.1038/nature25452 – volume: 804 start-page: L16 year: 2015 ident: apjlaceeffbib54 publication-title: ApJL doi: 10.1088/2041-8205/804/1/L16 – volume: 717 start-page: 411 year: 2010 ident: apjlaceeffbib79 publication-title: ApJ doi: 10.1088/0004-637X/717/1/411 – volume: 179 start-page: 433 year: 1977 ident: apjlaceeffbib9 publication-title: MNRAS doi: 10.1093/mnras/179.3.433 – volume: 361 start-page: 236 year: 1993 ident: apjlaceeffbib70 publication-title: Natur doi: 10.1038/361236a0 – volume: 933 start-page: L2 year: 2022b ident: apjlaceeffbib39 publication-title: ApJL doi: 10.3847/2041-8213/ac7728 – volume: 915 start-page: 69 year: 2021 ident: apjlaceeffbib12 publication-title: ApJ doi: 10.3847/1538-4357/abff5d – volume: 90 start-page: 024026 year: 2014 ident: apjlaceeffbib25 publication-title: PhRvD doi: 10.1103/PhysRevD.90.024026 – volume: 490 start-page: 4811 year: 2019 ident: apjlaceeffbib11 publication-title: MNRAS doi: 10.1093/mnras/stz2552 – volume: 87 start-page: 084006 year: 2013 ident: apjlaceeffbib24 publication-title: PhRvD doi: 10.1103/PhysRevD.87.084006 – volume: 59 start-page: 155 year: 2021 ident: apjlaceeffbib67 publication-title: ARA&A doi: 10.1146/annurev-astro-112420-030742 – volume: 472 start-page: L55 year: 2017 ident: apjlaceeffbib71 publication-title: MNRAS doi: 10.1093/mnrasl/slx131 – volume: 23 start-page: 215 year: 1868 ident: apjlaceeffbib48 publication-title: Monthly Rep. Royal Prussian Acad. Phil. Berlin – volume: 14 start-page: 6 year: 2011 ident: apjlaceeffbib92 publication-title: LRR doi: 10.12942/lrr-2011-6 – volume: 120 start-page: 241103 year: 2018 ident: apjlaceeffbib61 publication-title: PhRvL doi: 10.1103/PhysRevLett.120.241103 – year: 2023 ident: apjlaceeffbib95 – volume: 696 start-page: 1871 year: 2009 ident: apjlaceeffbib83 publication-title: ApJ doi: 10.1088/0004-637X/696/2/1871 – volume: 97 start-page: 124039 year: 2018 ident: apjlaceeffbib56 publication-title: PhRvD doi: 10.1103/PhysRevD.97.124039 – volume: 612 start-page: 232 year: 2022 ident: apjlaceeffbib106 publication-title: Natur doi: 10.1038/s41586-022-05403-8 – volume: 34 start-page: 154001 year: 2017 ident: apjlaceeffbib20 publication-title: CQGra doi: 10.1088/1361-6382/aa7a77 – start-page: 280 year: 2008 ident: apjlaceeffbib78 – volume: 418 start-page: L79 year: 2011 ident: apjlaceeffbib101 publication-title: MNRAS doi: 10.1111/j.1745-3933.2011.01147.x – volume: 612 start-page: 223 year: 2022 ident: apjlaceeffbib86 publication-title: Natur doi: 10.1038/s41586-022-05390-w – volume: Vol. 414 start-page: 45 year: 2015 ident: apjlaceeffbib99 – volume: 920 start-page: 82 year: 2021 ident: apjlaceeffbib27 publication-title: ApJ doi: 10.3847/1538-4357/ac1737 – volume: 2 start-page: 751 year: 2018 ident: apjlaceeffbib65 publication-title: NatAs doi: 10.1038/s41550-018-0511-3 – volume: 376 start-page: 214 year: 1991 ident: apjlaceeffbib4 publication-title: ApJ doi: 10.1086/170270 – volume: 915 start-page: L5 year: 2021 ident: apjlaceeffbib2 publication-title: ApJL doi: 10.3847/2041-8213/ac082e – volume: 34 start-page: 044002 year: 2017 ident: apjlaceeffbib26 publication-title: CQGra doi: 10.1088/1361-6382/aa573b – volume: 107 start-page: 123001 year: 2023 ident: apjlaceeffbib47 publication-title: PhRvD doi: 10.1103/PhysRevD.107.123001 – volume: 643 start-page: 266 year: 2006 ident: apjlaceeffbib77 publication-title: ApJ doi: 10.1086/502796 – volume: 77 start-page: 084002 year: 2008 ident: apjlaceeffbib18 publication-title: PhRvD doi: 10.1103/PhysRevD.77.084002 – volume: 677 start-page: 317 year: 2008 ident: apjlaceeffbib49 publication-title: ApJ doi: 10.1086/529025 – volume: 77 start-page: 084015 year: 2008 ident: apjlaceeffbib91 publication-title: PhRvD doi: 10.1103/PhysRevD.77.084015 – volume: 23 start-page: 3 year: 2020 ident: apjlaceeffbib1 publication-title: LRR doi: 10.1007/s41114-020-00026-9 – volume: 28 start-page: 45 year: 1974 ident: apjlaceeffbib7 publication-title: Ap&SS doi: 10.1007/BF00642237 – volume: 363 start-page: 968 year: 2019 ident: apjlaceeffbib33 publication-title: Sci doi: 10.1126/science.aau8815 – volume: 106 start-page: 023008 year: 2022 ident: apjlaceeffbib45 publication-title: PhRvD doi: 10.1103/PhysRevD.106.023008 – volume: 42 start-page: 401 year: 1976 ident: apjlaceeffbib8 publication-title: Ap&SS doi: 10.1007/BF01225967 – volume: 923 start-page: L2 year: 2021 ident: apjlaceeffbib32 publication-title: ApJL doi: 10.3847/2041-8213/ac3bcd – volume: 848 start-page: L20 year: 2017 ident: apjlaceeffbib66 publication-title: ApJL doi: 10.3847/2041-8213/aa9057 – volume: 83 start-page: 024005 year: 2011 ident: apjlaceeffbib30 publication-title: PhRvD doi: 10.1103/PhysRevD.83.024005 – volume: 634 start-page: 1202 year: 2005 ident: apjlaceeffbib87 publication-title: ApJ doi: 10.1086/497062 – volume: 41 start-page: 257 year: 1991 ident: apjlaceeffbib80 publication-title: AcA – volume: 447 start-page: 327 year: 2015 ident: apjlaceeffbib100 publication-title: MNRAS doi: 10.1093/mnras/stu2229 – volume: 612 start-page: 228 year: 2022 ident: apjlaceeffbib103 publication-title: Natur doi: 10.1038/s41586-022-05327-3 – volume: 848 start-page: L21 year: 2017 ident: apjlaceeffbib3 publication-title: ApJL doi: 10.3847/2041-8213/aa905d – volume: 738 start-page: 84 year: 2011 ident: apjlaceeffbib44 publication-title: ApJ doi: 10.1088/0004-637X/738/1/84 – volume: 376 start-page: L48 year: 2007 ident: apjlaceeffbib88 publication-title: MNRAS doi: 10.1111/j.1745-3933.2007.00284.x – volume: 84 start-page: 064018 year: 2011 ident: apjlaceeffbib59 publication-title: PhRvD doi: 10.1103/PhysRevD.84.064018 – volume: 7 start-page: 136 year: 2023 ident: apjlaceeffbib6 publication-title: RNAAS doi: 10.3847/2515-5172/ace258 – volume: 806 start-page: L14 year: 2015 ident: apjlaceeffbib82 publication-title: ApJL doi: 10.1088/2041-8205/806/1/L14 – volume: 561 start-page: 355 year: 2018b ident: apjlaceeffbib73 publication-title: Natur doi: 10.1038/s41586-018-0486-3 – volume: 517 start-page: 1640 year: 2022 ident: apjlaceeffbib40 publication-title: MNRAS doi: 10.1093/mnras/stac2699 – volume: 780 start-page: 31 year: 2014 ident: apjlaceeffbib98 publication-title: ApJ doi: 10.1088/0004-637X/780/1/31 – volume: Adcance Access year: 2023 ident: apjlaceeffbib17 publication-title: MNRAS doi: 10.1093/mnras/stad2348 – volume: 825 start-page: 52 year: 2016 ident: apjlaceeffbib53 publication-title: ApJ doi: 10.3847/0004-637X/825/1/52 – volume: 88 start-page: 041503 year: 2013 ident: apjlaceeffbib58 publication-title: PhRvD doi: 10.1103/PhysRevD.88.041503 – volume: 478 start-page: L18 year: 2018 ident: apjlaceeffbib104 publication-title: MNRAS doi: 10.1093/mnrasl/sly061 – volume: 883 start-page: 48 year: 2019 ident: apjlaceeffbib60 publication-title: ApJ doi: 10.3847/1538-4357/ab38bb – volume: 498 start-page: 3320 year: 2020 ident: apjlaceeffbib35 publication-title: MNRAS doi: 10.1093/mnras/staa2567 – volume: 91 start-page: 124021 year: 2015 ident: apjlaceeffbib31 publication-title: PhRvD doi: 10.1103/PhysRevD.91.124021 – volume: 74 start-page: 121503 year: 2006 ident: apjlaceeffbib93 publication-title: PhRvD doi: 10.1103/PhysRevD.74.121503 – volume: 55 start-page: L69 year: 2003 ident: apjlaceeffbib76 publication-title: PASJ doi: 10.1093/pasj/55.6.L69 – volume: 592 start-page: 1042 year: 2003 ident: apjlaceeffbib50 publication-title: ApJ doi: 10.1086/375769 – volume: 886 start-page: 1 year: 2020 ident: apjlaceeffbib75 publication-title: PhR doi: 10.1016/j.physrep.2020.08.008 – volume: 585 start-page: 357 year: 2020 ident: apjlaceeffbib43 publication-title: Natur doi: 10.1038/s41586-020-2649-2 – volume: 263 start-page: 26 year: 2022 ident: apjlaceeffbib63 publication-title: ApJS doi: 10.3847/1538-4365/ac9966 – volume: 78 start-page: 104015 year: 2008 ident: apjlaceeffbib15 publication-title: PhRvD doi: 10.1103/PhysRevD.78.104015 – volume: 92 start-page: 044028 year: 2015 ident: apjlaceeffbib57 publication-title: PhRvD doi: 10.1103/PhysRevD.92.044028 – volume: 500 start-page: 3511 year: 2021 ident: apjlaceeffbib41 publication-title: MNRAS doi: 10.1093/mnras/staa3501 – volume: 92 start-page: 124034 year: 2015 ident: apjlaceeffbib55 publication-title: PhRvD doi: 10.1103/PhysRevD.92.124034 – volume: 23 start-page: S447 year: 2006 ident: apjlaceeffbib62 publication-title: CQGra doi: 10.1088/0264-9381/23/16/S09 – volume: 92 start-page: 024014 year: 2015 ident: apjlaceeffbib52 publication-title: PhRvD doi: 10.1103/PhysRevD.92.024014 – volume: 475 start-page: 108 year: 2018 ident: apjlaceeffbib10 publication-title: MNRAS doi: 10.1093/mnras/stx3158 – volume: 103 start-page: 043007 year: 2021 ident: apjlaceeffbib46 publication-title: PhRvD doi: 10.1103/PhysRevD.103.043007 – volume: 402 start-page: 2771 year: 2010 ident: apjlaceeffbib68 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.16107.x – volume: 98 start-page: 123017 year: 2018 ident: apjlaceeffbib89 publication-title: PhRvD doi: 10.1103/PhysRevD.98.123017 – volume: 482 start-page: 3373 year: 2019 ident: apjlaceeffbib22 publication-title: MNRAS doi: 10.1093/mnras/sty2932 – volume: 682 start-page: 474 year: 2008 ident: apjlaceeffbib5 publication-title: ApJ doi: 10.1086/589609 – volume: 506 start-page: 3511 year: 2021 ident: apjlaceeffbib74 publication-title: MNRAS doi: 10.1093/mnras/stab1824 – volume: 449 start-page: 390 year: 2015 ident: apjlaceeffbib21 publication-title: MNRAS doi: 10.1093/mnras/stv238 – volume: 923 start-page: L32 year: 2021 ident: apjlaceeffbib14 publication-title: ApJL doi: 10.3847/2041-8213/ac4259 – volume: 485 start-page: 4404 year: 2019 ident: apjlaceeffbib13 publication-title: MNRAS doi: 10.1093/mnras/stz644 – volume: 24 start-page: S125 year: 2007 ident: apjlaceeffbib94 publication-title: CQGra doi: 10.1088/0264-9381/24/12/S09 – volume: 679 start-page: L117 year: 2008 ident: apjlaceeffbib97 publication-title: ApJL doi: 10.1086/589507 – volume: 86 start-page: 084026 year: 2012 ident: apjlaceeffbib19 publication-title: PhRvD doi: 10.1103/PhysRevD.86.084026 – volume: 85 start-page: 044015 year: 2012 ident: apjlaceeffbib28 publication-title: PhRvD doi: 10.1103/PhysRevD.85.044015 – volume: 86 start-page: 124007 year: 2012 ident: apjlaceeffbib23 publication-title: PhRvD doi: 10.1103/PhysRevD.86.124007 – volume: 42 start-page: 362 year: 1871 ident: apjlaceeffbib102 publication-title: PMag doi: 10.1080/14786447108640585 – volume: 105 start-page: 083004 year: 2022 ident: apjlaceeffbib90 publication-title: PhRvD doi: 10.1103/PhysRevD.105.083004 – volume: 27 start-page: 114106 year: 2010 ident: apjlaceeffbib16 publication-title: CQGra doi: 10.1088/0264-9381/27/11/114106 – volume: 208 start-page: 721 year: 1984 ident: apjlaceeffbib81 publication-title: MNRAS doi: 10.1093/mnras/208.4.721 |
SSID | ssj0020618 |
Score | 2.5542073 |
Snippet | We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to
r
≳ 10
11
cm. The disk that... We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 1011 cm. The disk that... We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger to r ≳ 10 ^11 cm. The disk that... |
SourceID | doaj osti proquest crossref iop |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | L21 |
SubjectTerms | ASTRONOMY AND ASTROPHYSICS Astrophysical black holes Black holes Compact binary stars Deposition Disks Emission analysis Energy distribution Evolution Gamma ray bursts Gamma rays Jets Luminosity Magnetic fields Magnetic flux Magnetization Magnetohydrodynamical simulations Mass ratios Neutron stars Neutrons Numerical simulations Relativistic jets Star mergers Stellar mass black holes Stellar mergers Wind |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZKuXBB_KpLC_gASBxM13HiJOJUUKtV1ZYDVPSE5Z9xJbRsVpu0EjfegTfkSZix00UVqOKWRBPbGY893zj2N4y9aFsApZUWVeWAlm6mwmIUIIpQai8RA4Omg8LHJ3p2Wh6eVWcb7O36LEy3HKf-N3iZiYKzCml8K5xLMVwvpWgKqXYtzvAx3mK3FeJyirw-qM_raAsdVUpHl6WnVf5H-c8SrvmkRN2Pngarx5sOB9pf03TyPQf32N0RNPK93MT7bAMWD9jWXk_L2N237_wVT9d5laJ_yL4c0f5u0aP-ge9fjtbFu8g_UvwbejHvFuc8b4S7TFTN_BCGntNhE57W9Pism8OvHz9P4IJq4QhKV_yYjmqu-kfs9GD_0_uZGBMpCI-AbBCVq22DUCc2pVM2IAbTUXoVlWtcPZXOhSgRyIVGqbLwjW10rSlFurcIHz0GNI_Z5qJbwBbjdaxk8OjRVG3L1lvEBxBr3WIHe5AQJ2z3SpXGjyzjlOxibjDaIOUbUr4h5Zus_Al7vX5jmRk2bpB9R72zliNu7PQA7cSMdmIgQkikMkG2ZavBWY-41BU1WPwyqCbsJfatGcdqf0Nlz6_J2eXXuWmr0khzVEizDCixTfZh0GKJcdfT1iQ_mKJopK7VhO1cmc2fQogvEEEeIs0n_9mMbXaHUtznfW07bHNYXcBTBEKDe5YM_jcafgL8 priority: 102 providerName: IOP Publishing |
Title | Large-scale Evolution of Seconds-long Relativistic Jets from Black Hole–Neutron Star Mergers |
URI | https://iopscience.iop.org/article/10.3847/2041-8213/aceeff https://www.proquest.com/docview/2859663025 https://www.osti.gov/servlets/purl/2281673 https://doaj.org/article/efed61236d19496ebac054b27eaa86e5 |
Volume | 954 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wQv-rSUnwAJA7WxnHiJMeCWi1Vf5Cgoics2xmjomWz2qSVeuMdeEOehBk7W6iQyoVLlFhOnIzHnm-c8TeMvWgaAKWVFmXpgJZuMmHRCxB5W2gvEQODpo3CR8d6dlocnJVnf6T6opiwRA-cBDeFAG2kCGnR3W40OOsRZbi8AmtrDZG9NGuytTM1ulpopWIuuqyQAm1cmX5QKpyKp2OZVFOLBiKEGwYp8vajmTnvlnjR4Sj7a46Ohmf_Prs3Ika-m970AbsDi4dsc7enNezu2xV_xeN5WqLoH7HPhxTcLXoUPvC9y1G1eBf4B3J-217Mu8UXnqLgLiNPMz-Aoee004THBT0-6-bw8_uPY7igVjgi0hU_on2aq_4xO93f-_h2JsYsCsIjGhtE6SpbI84JdeGUbRGA6SC9CsrVrsqkc22QiOLaWqki9zUKtdKUH91bxI4evZknbGPRLWCT8SqUsvVozlRli8ZbBAcQKt1g73qQECZsuhal8SPFOGW6mBt0NUj4hoRvSPgmCX_CXl_fsUz0GrfUfUO9c12PiLFjAaqLGdXF_EtdJuwl9q0ZB2p_S2PPb9Szy69z05SFkeYwl2bZYo0t0g-DSIXodj3FJfnB5HktdaUmbHutNr8fQmSBiPAQZj79H9-yxe7mCLlSxNs22xhWF_AMIdLgduJowOO7k_d4PFGffgFJsQ8K |
linkProvider | Directory of Open Access Journals |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgSIgL4lMNLdQHQOIQdh0nTnIs0NVStgsSVPSEZTvjSmjZrDZpJW78B_4hv4QZO11UgSpuSeQkzvjZ88ax3zD2tK4BpJIqLQoLNHUzTg1GAWnW5MoJ5MCgaKPw0VxNj_PDk-JkyHMa9sK0q2Hof4mHUSg4mpD6t8SxFMP1XKRVJuTI4Ajv_WjV-OvsRiGRGyOg38vPm4gLnVVISRfvGBfxP-U_n3LJLwX5fvQ2WAU8abGz_TVUB_8zucNuD8SR78dq3mXXYHmPbe93NJXdfvvOn_NwHGcquvvsy4zWeKcdtgHwg_MBYbz1_CPFwE2XLtrlKY-L4c6DXDM_hL7jtOGEh3k9Pm0X8OvHzzmc0Vs4EtM1P6LtmuvuATueHHx6PU2HZAqpQ1LWp4UtTYV0x1e5laZBHqa8cNJLW9lyLKxtvEAy11RS5pmrTKVKRWnSnUEK6TCoeci2lu0SthkvfSEah15NliavnUGOAL5UNTayAwE-YaMLU2o3KI1TwouFxoiDjK_J-JqMr6PxE_Zic8cqqmxcUfYVtc6mHOljhwuIFT1gRYOHJgjLNKLOawXWOOSmNivB4JdBkbBn2LZ66K_dFS_bu1TOrL4udF3kWuhZJjQiL2E7hA-NqCXVXUfLk1yvs6wSqpQJ272AzZ-HkGYgEj1km4_-sxp77OaHNxM9ezt_t8NuUcb7uMxtl2316zN4jLyot08C9n8DM1sG-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+Evolution+of+Seconds-long+Relativistic+Jets+from+Black+Hole%E2%80%93Neutron+Star+Mergers&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Ore+Gottlieb&rft.au=Danat+Issa&rft.au=Jonatan+Jacquemin-Ide&rft.au=Matthew+Liska&rft.date=2023-09-01&rft.pub=IOP+Publishing&rft.issn=2041-8205&rft.volume=954&rft.issue=1&rft.spage=L21&rft_id=info:doi/10.3847%2F2041-8213%2Faceeff&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_efed61236d19496ebac054b27eaa86e5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon |