Automatic identification of early ischemic lesions on non-contrast CT with deep learning approach
Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) w...
Saved in:
| Published in | Scientific reports Vol. 12; no. 1; pp. 18054 - 13 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
27.10.2022
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-022-22939-x |
Cover
| Abstract | Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion. |
|---|---|
| AbstractList | Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion.Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion. Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion. Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion. Abstract Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion. |
| ArticleNumber | 18054 |
| Author | Wu, Ching-Yi Mohapatra, Sulagna Sahoo, Prasan Kumar Huang, Kuo-Lun Lee, Tsong-Hai Chang, Ting-Yu |
| Author_xml | – sequence: 1 givenname: Prasan Kumar surname: Sahoo fullname: Sahoo, Prasan Kumar organization: Department of Computer Science and Information Engineering, Chang Gung University, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center – sequence: 2 givenname: Sulagna surname: Mohapatra fullname: Mohapatra, Sulagna organization: Department of Computer Science and Information Engineering, Chang Gung University – sequence: 3 givenname: Ching-Yi surname: Wu fullname: Wu, Ching-Yi organization: Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University – sequence: 4 givenname: Kuo-Lun surname: Huang fullname: Huang, Kuo-Lun organization: Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University – sequence: 5 givenname: Ting-Yu surname: Chang fullname: Chang, Ting-Yu organization: Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University – sequence: 6 givenname: Tsong-Hai surname: Lee fullname: Lee, Tsong-Hai email: thlee@adm.cgmh.org.tw organization: Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36302876$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAUjFARLaV_gAOKxIVLwN9xLkjVCmilSlzK2XrrvOx6ldjBTmj33-PubkvbQ4Uv_ngz43ljvy2OfPBYFO8p-UwJ11-SoLLRFWGsYqzhTXX7qjhhRMiKccaOHq2Pi7OUNiQPyRpBmzfFMVecMF2rkwLO5ykMMDlbuhb95Dpn8y74MnQlQuy3pUt2jUMG9JhyIZW5mM1UNvgpQprKxXV546Z12SKOGQTRO78qYRxjALt-V7zuoE94dphPi1_fv10vLqqrnz8uF-dXlZWCTJWotRW0ZkqotmNUtBxbjS3BprGogaAUKLmtBVBla8lV3THsUNaEdEKphp8Wl3vdNsDGjNENELcmgDO7gxBXBmLus0ejuyWRVlvCpBJyqTWXiquWCQsAVkPW4nut2Y-wvYG-fxCkxNzlb_b5m5y_2eVvbjPr6541zssBW4t3-fRPrDyteLc2q_DHNIpyJXgW-HQQiOH3jGkyQw4f-x48hjkZVnPCac1rmqEfn0E3YY4-B5xR2Q9VUumM-vDY0YOV-_fPALYH2BhSitj9X5_6Gcm6afdpcleuf5l6CDble_wK4z_bL7D-AtoD5k0 |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105065 crossref_primary_10_3389_fendo_2025_1485311 crossref_primary_10_22730_jmls_2023_20_4_141 crossref_primary_10_1038_s41598_023_45573_7 crossref_primary_10_1007_s11042_024_18622_0 crossref_primary_10_1055_s_0044_1785504 crossref_primary_10_1080_21681163_2023_2227733 crossref_primary_10_1109_ACCESS_2024_3383140 |
| Cites_doi | 10.3174/ajnr.A6077 10.1155/2021/3628179 10.1016/j.jstrokecerebrovasdis.2021.105752 10.1016/j.nicl.2014.03.009 10.3390/app10041245 10.1186/s40537-019-0197-0 10.1038/s41598-021-03043-y 10.1161/STR.0000000000000211 10.1016/j.jcmg.2018.03.012 10.1186/s41747-019-0085-6 10.1016/j.compeleceng.2018.07.051 10.13005/bpj/1484 10.1016/j.nicl.2020.102548 10.1016/j.chemolab.2021.104269 10.1038/s41598-022-06021-0 10.3174/ajnr.A7081 10.1016/j.cmpb.2020.105711 10.1016/j.compbiomed.2019.103487 10.1038/s41598-021-91467-x 10.4236/jcc.2019.73002 10.1002/jmri.21088 10.1109/BIBM.2015.7359869 10.1117/1.JMI.8.1.014505 10.1148/radiol.2020191193 10.1007/s10044-019-00838-8 10.3966/160792642020122107010 10.1016/j.nicl.2017.06.016 10.1001/jamanetworkopen.2020.0772 10.5853/jos.2020.05064 10.3174/ajnr.A5543 10.3348/kjr.2018.0615 10.3174/ajnr.A6883 10.1161/STROKEAHA.117.019740 10.1148/radiol.2352040262 10.1161/STROKEAHA.119.027457 10.3390/electronics9060951 10.1016/S0140-6736(07)61448-2 10.1016/j.media.2019.101589 10.1109/ICAwST.2017.8256481 10.1109/cvpr.2016.308 10.1109/cvpr.2016.90 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-022-22939-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_8fb05c8c025645b8835636d24caaac8a 10.1038/s41598-022-22939-x PMC9613643 36302876 10_1038_s41598_022_22939_x |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 110-2221-E-182-008-MY3 (TH Lee) funderid: http://dx.doi.org/10.13039/501100004663 – fundername: Chang Gung University grantid: EMRPD1I0491 (PK Sahoo) funderid: http://dx.doi.org/10.13039/501100002836 – fundername: Chang Gung Memorial Hospital, Linkou grantid: CMRPG3J1172; CMRPG3J1162 (TH Lee); CMRPD2J0141; CMRPD2J0142 (PK Sahoo); CMRPD1J0242 (CY Wu) funderid: http://dx.doi.org/10.13039/501100005795 – fundername: ; grantid: CMRPG3J1172; CMRPG3J1162 (TH Lee); CMRPD2J0141; CMRPD2J0142 (PK Sahoo); CMRPD1J0242 (CY Wu) – fundername: ; grantid: MOST 110-2221-E-182-008-MY3 (TH Lee) – fundername: ; grantid: EMRPD1I0491 (PK Sahoo) |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c540t-478c4172646df214d3ed8ed0e99ce8a0e54e53c74a16c75367f2efe5700f46693 |
| IEDL.DBID | BENPR |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:08:20 EDT 2025 Sun Oct 26 04:14:21 EDT 2025 Tue Sep 30 17:19:18 EDT 2025 Fri Sep 05 06:36:35 EDT 2025 Tue Oct 07 07:45:16 EDT 2025 Thu Jan 02 22:53:11 EST 2025 Thu Apr 24 23:11:28 EDT 2025 Wed Oct 01 01:38:08 EDT 2025 Fri Feb 21 02:40:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-478c4172646df214d3ed8ed0e99ce8a0e54e53c74a16c75367f2efe5700f46693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2729316568?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 36302876 |
| PQID | 2729316568 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8fb05c8c025645b8835636d24caaac8a unpaywall_primary_10_1038_s41598_022_22939_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_9613643 proquest_miscellaneous_2730317371 proquest_journals_2729316568 pubmed_primary_36302876 crossref_primary_10_1038_s41598_022_22939_x crossref_citationtrail_10_1038_s41598_022_22939_x springer_journals_10_1038_s41598_022_22939_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-27 |
| PublicationDateYYYYMMDD | 2022-10-27 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Robben (CR38) 2020; 59 Zhu, Braun, Chiang, Romagnoli (CR12) 2021 Wang (CR30) 2020; 51 CR19 Bergstra, Bengio (CR16) 2012; 13 Yu (CR34) 2020; 3 Nishio (CR43) 2020; 196 Soun (CR7) 2021; 42 CR15 CR14 Alon, Dehkharghani (CR5) 2021; 11 CR13 Axer (CR9) 2007; 26 Alis (CR4) 2021; 11 Winzeck (CR31) 2019; 40 Wardlaw, Mielke (CR3) 2005; 235 Sara, Akter, Uddin (CR11) 2019; 07 Beecy (CR40) 2018; 11 Qiu (CR45) 2020; 294 Pan (CR46) 2021; 30 Zhao (CR35) 2021; 2021 Debs (CR27) 2021; 29 Powers (CR2) 2019; 50 Peixoto, Rebouças Filho (CR44) 2018; 71 Maeda-Gutiérrez (CR21) 2020 Chen, Bentley, Rueckert (CR26) 2017; 15 Oman, Makela, Salli, Savolainen, Kangasniemi (CR39) 2019; 3 Shorten, Khoshgoftaar (CR17) 2019; 6 Gillebert, Humphreys, Mantini (CR25) 2014; 4 Qiu (CR47) 2021; 23 CR24 Goyal, Dogra, Agrawal, Sohi (CR10) 2018; 11 CR23 CR22 Zaharchuk, Gong, Wintermark, Rubin, Langlotz (CR8) 2018; 39 CR20 Stier, Vincent, Liebeskind, Scalzo (CR29) 2015; 1316–1321 Avanzato, Beritelli (CR18) 2020; 9 Woo (CR32) 2019; 20 Clerigues (CR37) 2019; 115 Rothwell (CR1) 2007; 370 Rava (CR36) 2021; 8 Yu (CR33) 2021 Gautam, Raman (CR41) 2020; 23 Jung, Whangbo (CR42) 2020; 21 Bridge (CR6) 2022; 12 Nielsen, Hansen, Tietze, Mouridsen (CR28) 2018; 49 V Maeda-Gutiérrez (22939_CR21) 2020 L Alon (22939_CR5) 2021; 11 CR Gillebert (22939_CR25) 2014; 4 L Chen (22939_CR26) 2017; 15 S Winzeck (22939_CR31) 2019; 40 22939_CR24 A Clerigues (22939_CR37) 2019; 115 WJ Powers (22939_CR2) 2019; 50 22939_CR23 M Nishio (22939_CR43) 2020; 196 W Qiu (22939_CR45) 2020; 294 RA Rava (22939_CR36) 2021; 8 AN Beecy (22939_CR40) 2018; 11 SA Peixoto (22939_CR44) 2018; 71 A Nielsen (22939_CR28) 2018; 49 I Woo (22939_CR32) 2019; 20 22939_CR20 JM Wardlaw (22939_CR3) 2005; 235 D Robben (22939_CR38) 2020; 59 22939_CR22 CP Bridge (22939_CR6) 2022; 12 Y Yu (22939_CR33) 2021 B Zhao (22939_CR35) 2021; 2021 H Axer (22939_CR9) 2007; 26 22939_CR19 SM Jung (22939_CR42) 2020; 21 J Bergstra (22939_CR16) 2012; 13 A Gautam (22939_CR41) 2020; 23 22939_CR13 N Debs (22939_CR27) 2021; 29 O Oman (22939_CR39) 2019; 3 G Zaharchuk (22939_CR8) 2018; 39 22939_CR15 22939_CR14 U Sara (22939_CR11) 2019; 07 W Zhu (22939_CR12) 2021 Y Yu (22939_CR34) 2020; 3 W Qiu (22939_CR47) 2021; 23 PM Rothwell (22939_CR1) 2007; 370 K Wang (22939_CR30) 2020; 51 JE Soun (22939_CR7) 2021; 42 C Shorten (22939_CR17) 2019; 6 R Avanzato (22939_CR18) 2020; 9 J Pan (22939_CR46) 2021; 30 D Alis (22939_CR4) 2021; 11 B Goyal (22939_CR10) 2018; 11 N Stier (22939_CR29) 2015; 1316–1321 |
| References_xml | – volume: 40 start-page: 938 year: 2019 end-page: 945 ident: CR31 article-title: Ensemble of convolutional neural networks improves automated segmentation of acute ischemic lesions using multiparametric diffusion-weighted MRI publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A6077 – ident: CR22 – volume: 2021 start-page: 3628179 year: 2021 ident: CR35 article-title: Deep learning-based acute ischemic stroke lesion segmentation method on multimodal MR images using a few fully labeled subjects publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/3628179 – volume: 30 year: 2021 ident: CR46 article-title: Detecting the early infarct core on non-contrast CT images with a deep learning residual network publication-title: J. Stroke Cerebrovasc. Dis. doi: 10.1016/j.jstrokecerebrovasdis.2021.105752 – volume: 4 start-page: 540 year: 2014 end-page: 548 ident: CR25 article-title: Automated delineation of stroke lesions using brain CT images publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2014.03.009 – ident: CR14 – year: 2020 ident: CR21 article-title: Comparison of convolutional neural network architectures for classification of tomato plant diseases publication-title: Appl. Sci. doi: 10.3390/app10041245 – volume: 6 start-page: 1 year: 2019 end-page: 48 ident: CR17 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 11 start-page: 24222 year: 2021 ident: CR5 article-title: A stroke detection and discrimination framework using broadband microwave scattering on stochastic models with deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-021-03043-y – volume: 50 start-page: e344 year: 2019 end-page: e418 ident: CR2 article-title: Guidelines for the early management of patients with acute ischemic stroke: 2019 Update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association publication-title: Stroke doi: 10.1161/STR.0000000000000211 – volume: 11 start-page: 1723 year: 2018 end-page: 1725 ident: CR40 article-title: A novel deep learning approach for automated diagnosis of acute ischemic infarction on computed tomography publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2018.03.012 – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: CR16 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 3 start-page: 8 year: 2019 ident: CR39 article-title: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-019-0085-6 – volume: 71 start-page: 398 year: 2018 end-page: 407 ident: CR44 article-title: Neurologist-level classification of stroke using a structural co-occurrence matrix based on the frequency domain publication-title: Comput. Electric. Eng. doi: 10.1016/j.compeleceng.2018.07.051 – volume: 11 start-page: 1227 year: 2018 end-page: 1237 ident: CR10 article-title: Noise issues prevailing in various types of medical images publication-title: Biomed. Pharmacol. J. doi: 10.13005/bpj/1484 – volume: 29 year: 2021 ident: CR27 article-title: Impact of the reperfusion status for predicting the final stroke infarct using deep learning publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2020.102548 – year: 2021 ident: CR12 article-title: Investigation of transfer learning for image classification and impact on training sample size publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/j.chemolab.2021.104269 – volume: 12 start-page: 2154 year: 2022 ident: CR6 article-title: Development and clinical application of a deep learning model to identify acute infarct on magnetic resonance imaging publication-title: Sci. Rep. doi: 10.1038/s41598-022-06021-0 – year: 2021 ident: CR33 article-title: Tissue at risk and ischemic core estimation using deep learning in acute stroke publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A7081 – volume: 196 year: 2020 ident: CR43 article-title: Automatic detection of acute ischemic stroke using non-contrast computed tomography and two-stage deep learning model publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105711 – ident: CR23 – volume: 115 year: 2019 ident: CR37 article-title: Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103487 – volume: 11 start-page: 12434 year: 2021 ident: CR4 article-title: Inter-vendor performance of deep learning in segmenting acute ischemic lesions on diffusion-weighted imaging: A multicenter study publication-title: Sci. Rep. doi: 10.1038/s41598-021-91467-x – volume: 07 start-page: 8 year: 2019 end-page: 18 ident: CR11 article-title: Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study publication-title: J. Comput. Commun. doi: 10.4236/jcc.2019.73002 – volume: 26 start-page: 905 year: 2007 end-page: 912 ident: CR9 article-title: Time course of diffusion imaging in acute brainstem infarcts publication-title: J. Magn. Reason. Imaging doi: 10.1002/jmri.21088 – ident: CR19 – volume: 1316–1321 start-page: 2015 year: 2015 ident: CR29 article-title: Deep learning of tissue fate features in acute ischemic stroke publication-title: Proceedings (IEEE Int. Conf. Bioinform. Biomed.) doi: 10.1109/BIBM.2015.7359869 – volume: 8 year: 2021 ident: CR36 article-title: Investigation of convolutional neural networks using multiple computed tomography perfusion maps to identify infarct core in acute ischemic stroke patients publication-title: J. Med. Imaging (Bellingham) doi: 10.1117/1.JMI.8.1.014505 – volume: 294 start-page: 638 year: 2020 end-page: 644 ident: CR45 article-title: Machine learning for detecting early infarction in acute stroke with non-contrast-enhanced CT publication-title: Radiology doi: 10.1148/radiol.2020191193 – volume: 23 start-page: 797 year: 2020 end-page: 817 ident: CR41 article-title: Local gradient of gradient pattern: A robust image descriptor for the classification of brain strokes from computed tomography images publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-019-00838-8 – volume: 21 start-page: 1957 year: 2020 end-page: 1968 ident: CR42 article-title: A deep learning system for diagnosing ischemic stroke by applying adaptive transfer learning publication-title: J. Internet Technol. doi: 10.3966/160792642020122107010 – ident: CR15 – volume: 15 start-page: 633 year: 2017 end-page: 643 ident: CR26 article-title: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.06.016 – volume: 3 year: 2020 ident: CR34 article-title: Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.0772 – volume: 23 start-page: 234 year: 2021 end-page: 243 ident: CR47 article-title: Automated prediction of ischemic brain tissue fate from multiphase computed tomographic angiography in patients with acute ischemic stroke using machine learning publication-title: J. Stroke doi: 10.5853/jos.2020.05064 – volume: 39 start-page: 1776 year: 2018 end-page: 1784 ident: CR8 article-title: Deep learning in neuroradiology publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A5543 – volume: 20 start-page: 1275 year: 2019 end-page: 1284 ident: CR32 article-title: Fully automatic segmentation of acute ischemic lesions on diffusion-weighted imaging using convolutional neural networks: Comparison with conventional algorithms publication-title: Korean J. Radiol. doi: 10.3348/kjr.2018.0615 – ident: CR13 – volume: 42 start-page: 2 year: 2021 end-page: 11 ident: CR7 article-title: Artificial intelligence and acute stroke imaging publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A6883 – volume: 49 start-page: 1394 year: 2018 end-page: 1401 ident: CR28 article-title: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning publication-title: Stroke doi: 10.1161/STROKEAHA.117.019740 – volume: 235 start-page: 444 year: 2005 end-page: 453 ident: CR3 article-title: Early signs of brain infarction at CT: Observer reliability and outcome after thrombolytic treatment–systematic review publication-title: Radiology doi: 10.1148/radiol.2352040262 – volume: 51 start-page: 489 year: 2020 end-page: 497 ident: CR30 article-title: Deep learning detection of penumbral tissue on arterial spin labeling in stroke publication-title: Stroke doi: 10.1161/STROKEAHA.119.027457 – volume: 9 start-page: 951 year: 2020 ident: CR18 article-title: Automatic ECG diagnosis using convolutional neural network publication-title: Electronics doi: 10.3390/electronics9060951 – volume: 370 start-page: 1432 year: 2007 end-page: 1442 ident: CR1 article-title: Effect of urgent treatment of transient ischaemic attack and minor stroke on early recurrent stroke (EXPRESS study): A prospective population-based sequential comparison publication-title: Lancet doi: 10.1016/S0140-6736(07)61448-2 – ident: CR24 – volume: 59 year: 2020 ident: CR38 article-title: Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101589 – ident: CR20 – ident: 22939_CR14 – volume: 21 start-page: 1957 year: 2020 ident: 22939_CR42 publication-title: J. Internet Technol. doi: 10.3966/160792642020122107010 – volume: 07 start-page: 8 year: 2019 ident: 22939_CR11 publication-title: J. Comput. Commun. doi: 10.4236/jcc.2019.73002 – volume: 1316–1321 start-page: 2015 year: 2015 ident: 22939_CR29 publication-title: Proceedings (IEEE Int. Conf. Bioinform. Biomed.) doi: 10.1109/BIBM.2015.7359869 – volume: 50 start-page: e344 year: 2019 ident: 22939_CR2 publication-title: Stroke doi: 10.1161/STR.0000000000000211 – volume: 26 start-page: 905 year: 2007 ident: 22939_CR9 publication-title: J. Magn. Reason. Imaging doi: 10.1002/jmri.21088 – volume: 6 start-page: 1 year: 2019 ident: 22939_CR17 publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 39 start-page: 1776 year: 2018 ident: 22939_CR8 publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A5543 – year: 2020 ident: 22939_CR21 publication-title: Appl. Sci. doi: 10.3390/app10041245 – volume: 3 year: 2020 ident: 22939_CR34 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.0772 – volume: 9 start-page: 951 year: 2020 ident: 22939_CR18 publication-title: Electronics doi: 10.3390/electronics9060951 – year: 2021 ident: 22939_CR12 publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/j.chemolab.2021.104269 – volume: 20 start-page: 1275 year: 2019 ident: 22939_CR32 publication-title: Korean J. Radiol. doi: 10.3348/kjr.2018.0615 – year: 2021 ident: 22939_CR33 publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A7081 – volume: 71 start-page: 398 year: 2018 ident: 22939_CR44 publication-title: Comput. Electric. Eng. doi: 10.1016/j.compeleceng.2018.07.051 – volume: 11 start-page: 24222 year: 2021 ident: 22939_CR5 publication-title: Sci. Rep. doi: 10.1038/s41598-021-03043-y – volume: 4 start-page: 540 year: 2014 ident: 22939_CR25 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2014.03.009 – volume: 11 start-page: 1723 year: 2018 ident: 22939_CR40 publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2018.03.012 – ident: 22939_CR23 – volume: 12 start-page: 2154 year: 2022 ident: 22939_CR6 publication-title: Sci. Rep. doi: 10.1038/s41598-022-06021-0 – volume: 11 start-page: 1227 year: 2018 ident: 22939_CR10 publication-title: Biomed. Pharmacol. J. doi: 10.13005/bpj/1484 – volume: 30 year: 2021 ident: 22939_CR46 publication-title: J. Stroke Cerebrovasc. Dis. doi: 10.1016/j.jstrokecerebrovasdis.2021.105752 – volume: 23 start-page: 234 year: 2021 ident: 22939_CR47 publication-title: J. Stroke doi: 10.5853/jos.2020.05064 – volume: 23 start-page: 797 year: 2020 ident: 22939_CR41 publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-019-00838-8 – volume: 51 start-page: 489 year: 2020 ident: 22939_CR30 publication-title: Stroke doi: 10.1161/STROKEAHA.119.027457 – ident: 22939_CR15 – volume: 40 start-page: 938 year: 2019 ident: 22939_CR31 publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A6077 – ident: 22939_CR13 – ident: 22939_CR24 doi: 10.1109/ICAwST.2017.8256481 – volume: 235 start-page: 444 year: 2005 ident: 22939_CR3 publication-title: Radiology doi: 10.1148/radiol.2352040262 – ident: 22939_CR19 – volume: 11 start-page: 12434 year: 2021 ident: 22939_CR4 publication-title: Sci. Rep. doi: 10.1038/s41598-021-91467-x – volume: 13 start-page: 281 year: 2012 ident: 22939_CR16 publication-title: J. Mach. Learn. Res. – volume: 294 start-page: 638 year: 2020 ident: 22939_CR45 publication-title: Radiology doi: 10.1148/radiol.2020191193 – volume: 49 start-page: 1394 year: 2018 ident: 22939_CR28 publication-title: Stroke doi: 10.1161/STROKEAHA.117.019740 – volume: 42 start-page: 2 year: 2021 ident: 22939_CR7 publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A6883 – volume: 196 year: 2020 ident: 22939_CR43 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105711 – volume: 59 year: 2020 ident: 22939_CR38 publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101589 – volume: 370 start-page: 1432 year: 2007 ident: 22939_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(07)61448-2 – volume: 2021 start-page: 3628179 year: 2021 ident: 22939_CR35 publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/3628179 – volume: 15 start-page: 633 year: 2017 ident: 22939_CR26 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.06.016 – ident: 22939_CR22 doi: 10.1109/cvpr.2016.308 – volume: 3 start-page: 8 year: 2019 ident: 22939_CR39 publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-019-0085-6 – ident: 22939_CR20 doi: 10.1109/cvpr.2016.90 – volume: 29 year: 2021 ident: 22939_CR27 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2020.102548 – volume: 8 year: 2021 ident: 22939_CR36 publication-title: J. Med. Imaging (Bellingham) doi: 10.1117/1.JMI.8.1.014505 – volume: 115 year: 2019 ident: 22939_CR37 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103487 |
| SSID | ssj0000529419 |
| Score | 2.4530392 |
| Snippet | Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for... Abstract Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 18054 |
| SubjectTerms | 631/114 631/61 Concept learning Decision making Deep Learning Humanities and Social Sciences Humans Ischemia Ischemic Stroke Lesions Magnetic resonance imaging multidisciplinary Neural networks Patients Retrospective Studies Science Science (multidisciplinary) Stroke Stroke - diagnostic imaging Tomography, X-Ray Computed - methods |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSgg4IN6kLchI3GjUJHYc-1gqqgoJTq3Um-XYY1hplV11s6L994ydbNgVqHDgGjuSM4_MN_b4G4D3vrBWSKS0pJY6F43CvG19m2vRCvoX8qB9vI385as8vxSfr-qrrVZfsSZsoAceBHesQlvUTrkYm0XdKkIMkktfCWetdSpBo0LprWRqYPWutCj1eEum4Op4RZEq3iaj3KuiEKfzm51IlAj7_4Qyfy-WnE5MH8GDdbe0tz_sfL4VlM6ewOMRTbKT4Suewj3snsH9ob_k7XOwJ-t-kThZ2cyPZUFJE2wRGEZqYzaj7DbWx7M5xn2zFaPBbtHlqYTdrnp2esHiXi3ziEs29pj4xjZU5C_g8uzTxel5PvZUyB1hsz5qwwkCLVJIH6pSeI5eoS9Qa4fKFlgLrLlrhC2lo1RGNqHCgJEFPwgpNX8Je7QKfA0sZleON2XAwgoRuHbK1wRXWgIdZQg-g3IjX-NGwvHY92Ju0sE3V2bQiSGdmKQTc5PBh-md5UC3cefsj1Ft08xIlZ0ekAGZ0YDM3wwog8ON0s3ovytTUc7BIzGRyuDdNEyeF49TbIeLdZxD4b9sSAIZvBpsZFoJl5wk0cgMmh3r2Vnq7kg3-57YvTUBLIKJGRxt7OzXsu4SxdFki_8guf3_IbkDeFhFf6JIXjWHsNdfr_ENQbS-fZu88SenqzZn priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQcEG8CBRkJcaGBJHYc-4BQqagqpHLqSr1Fjh9lpVV2uw-x---ZyQtWrFZcYydy5pH5Jh5_A_DOJcYI6TEtyaWORaF8XFWuirWoBH4LedCOTiNf_JDnI_H9Kr86gL7cthPgYmdqR_2kRvPJx_XN5gs6_Of2yLj6tMAgRAfFMK3KMHrpeP1-dhNTYynagO26bNyC2xi8NHV3uOgygJb-O9Mi1d1xmt1P2wpZDbP_Ljj6b1XlsLV6H-6u6pnZ_DKTyV_R6-whPOhgJztp7eQRHPj6MdxpG1FunoA5WS2nDXkrG7uufqhRGZsG5okDmY1RVlRIzyaefrAtGA7W0zpuat3NYslOLxn91GXO-xnrmlFcs56z_CmMzr5dnp7HXfOF2CKIW5LarEB0I4V0IUuF494p7xKvtfXKJD4XPue2ECaVFnMeWYTMB090-UFIqfkzOMRV-BfAKA2zvEiDT4wQgWurXI64pkJ0kobgIkh7-Za2YyanBhmTstkh56psdVKiTspGJ-U6gg_DPbOWl2Pv7K-ktmEmcWo3F6bz67Jz0VKFKsmtsoQCRV4pxKaSS5cJa4yxykRw1Cu97O20zDA54cRgpCJ4Owyji9K-i6n9dEVzECekBUogguetjQwr4ZKjJAoZQbFlPVtL3R6pxz8bGnCNSAzxZATHvZ39WdY-URwPtvgfknu5_6Vfwb2MPAWDeVYcweFyvvKvEaUtqzeNn_0GKOE42Q priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD6ULaI-iNc6WiWCb-7gzCSTSR7XYikL-mILfQuZXHRhmV3cWWz_fU8yFx0qRV83yRLOZc53ck6-ALy3mdaMO0xLSi5TVgmX1rWtU8lqht9C6qUNt5G_fOVnF2x5WV4ewHy4CzOp30fq7h2GmHANDJOmAmOTTBExHgo0TDGDw8Vi-W05nqmEqhXLZX83Bpd_vL14En8iTf_fsOXtFsmxTvoQ7u-brb7-pdfrP0LR6WN41GNIsuiU_gQOXPMU7nWvSl4_A73Yt5vIxEpWtm8GivInG09cIDQmK8xpQ1c8WbtwWrYjONhsmjQ2rutdS07OSTihJda5LelflvhOBgLy53Bx-vn85CztX1JIDSKyNujAMIQqnHHri5xZ6qxwNnNSGid05krmSmoqpnNuMIHhlS-cd4H73jPOJX0BM9yFewkk5FSGVrl3mWbMU2mELRGk1Ag1cu9tAvkgX2V6mvHw2sVaxXI3FarTiUKdqKgTdZXAh3HNtiPZuHP2p6C2cWYgyI4_oN2o3t-U8HVWGmECpGNlLRBocsptwYzW2gidwPGgdNV77U4VmGnQQEckEng3DqO_hSKKbtxmH-Zg0M8rlEACR52NjDuhnKIkKp5ANbGeyVanI83qR-T0lgirEBwmMB_s7Pe27hLFfLTFf5Dcq__799fwoAieg5G6qI5h1v7cuzcIwdr6be95N5DpKR0 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4E0JFGQkbjRLEjuOc1wqqgqJikNXlFPk-FFWrJJVN1Fbfj1j5wELVUWv8VhxZsb2N_H4G4C3OpKScYNhScrzkGXChGWpyzBnJcO1kNpcu9vIn4_44Zx9OklPtoAPd2F80r6ntPTL9JAd9n6NG427DIahU4I7VB5eTFfa3oJtniIGn8D2_OjL7JurJIcYJUSYkPQ3ZCIqrui8sQt5sv6rEOa_iZLjaek9uNNWK3l5LpfLPzakgwfwdfiULg_lx7Rtyqn6-RfL482_9SHc7zEqmXWSj2DLVI_hdle18vIJyFnb1J7plSx0n2zk7UtqS4wjTCYLjJld1j3BFzm_JthY1VXoE-PluiH7x8T9ASbamBXpK1eckoHg_CnMDz4e7x-GfaWGUCHia5yNFUMoxBnXNomZpkYLoyOT58oIGZmUmZSqjMmYKwyQeGYTY43j1reM85w-gwmOwjwH4mI2RbPYmkgyZmmuhE4RBJUIZWJrdQDxYLlC9TTmrprGsvDH6VQUnfoKVF_h1VdcBPBu7LPqSDyulf7gHGKUdATc_kF9dlr0RiqELaNUCeUgI0tLgUCWU64TpqSUSsgAdgd3KvpVYV0kGMlQR3ckAngzNuN8doc0sjJ162QQVMQZaiCAnc77xpFQTlETGQ8g2_DLjaFutlSL754zPEfYhuAzgL3Bg38P6zpV7I1e_h-ae3Ez8ZdwN3FOjkggyXZh0py15hVCvKZ83c_nX0jqS_Q priority: 102 providerName: Unpaywall |
| Title | Automatic identification of early ischemic lesions on non-contrast CT with deep learning approach |
| URI | https://link.springer.com/article/10.1038/s41598-022-22939-x https://www.ncbi.nlm.nih.gov/pubmed/36302876 https://www.proquest.com/docview/2729316568 https://www.proquest.com/docview/2730317371 https://pubmed.ncbi.nlm.nih.gov/PMC9613643 https://www.nature.com/articles/s41598-022-22939-x.pdf https://doaj.org/article/8fb05c8c025645b8835636d24caaac8a |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7ahLHtYez3vHVBg72tprYly_LDGGloKYGGsjWQPRlZkrtAsLMmYe1_vzvHdhc2yl78YClY0d1J3-lO3wF8tIHWQjp0S2KZ-iJRzs9zm_upyAWuhbxILd1GPp_Is6kYz-LZHkzauzCUVtmuifVCbStDZ-RHEaJATlQx6svyp09Voyi62pbQ0E1pBfu5phjbh35EzFg96B-fTC6-dqcuFNcSYdrcngm4OlrhDka3zNAni_ALqX-zs0PVRP7_Qp9_J1F2kdTH8HBTLvXtL71Y_LFZnT6FJw3KZMOtWjyDPVc-hwfbupO3L0APN-uq5mplc9ukC9USYlXBHFEeszl6vZQ3zxaOztNWDBvLqvTr1Ha9WrPRJaMzXGadW7Km9sQVaynKX8L09ORydOY3tRZ8g5htTVIyAsGMFNIWUSgsd1Y5G7g0NU7pwMXCxdwkQofSoIsjkyJyhSN2_EJImfJX0MNRuDfAyOsyPAkLF2ghCp4aZWOEMTmCkbAorAdhO7-ZaYjIqR7GIqsD4lxlW5lkKJOslkl248Gn7jfLLQ3Hvb2PSWxdT6LQrl9U11dZY5GZKvIgNsoQ6BNxrhCKSi5tJIzW2ijtwUEr9Kyx61V2p4UefOia0SIpzKJLV22oD8KCMMEZ8OD1Vke6kXDJcSYS6UGyoz07Q91tKec_atbvFIEXwkcPDls9uxvWfVNx2Onif8zc2_v_9Dt4FJGl4N4dJQfQW19v3HsEZet8APvJLBlAfzgcfxsPGrvDtyM5GtQHHfg8FwpbppOL4fffRlk7NQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWjwgPgmMMBI8MSiJbHjOA8T2samjm0VQp20N8-xnVGpSsraaus_x9_GXepkVKCJl73WrnS5O9_9zh-_I-SDjbTmwkFZkoo85Jl0YVHYIsx5wSEWsjK3-Br5pC96p_zrWXq2Qn61b2HwWmUbE5tAbWuDe-RbCaBAhlQx8vP4Z4hdo_B0tW2hoX1rBbvdUIz5hx1Hbn4FJdxk-_AL2PtjkhzsD_Z6oe8yEBpAK1OUz3BI44ILWyYxt8xZ6Wzk8tw4qSOXcpcyk3EdCwPgXmRl4kqHvPAlFwLJmCAFrHHGcyj-1nb3-9--d7s8eI7G49y_1omY3JpAxsRXbVADJvBFeXi9lBGbxgH_Qrt_X9rsTm4fkPVZNdbzKz0a_ZEcDx6Rhx7V0p2FGz4mK656Qu4t-lzOnxK9M5vWDTcsHVp_PanxCFqX1CHFMh1ClY339OnI4f7dhMJgVVdhc5VeT6Z0b0Bxz5ha58bU97q4oC0l-jNyeidaf05WQQr3klCs8gzL4tJFmvOS5UbaFGBTAeAnLksbkLjVrzKe-Bz7b4xUcwDPpFrYRIFNVGMTdR2QT91_xgvaj1tn76LZuplI2d38UF9eKB8BlCyLKDXSIMjkaSEB-gombMKN1tpIHZCN1ujKx5GJuvH6gLzvhiEC4LGOrlw9wzkAQ-IMNBCQFwsf6SRhgoEmMhGQbMl7lkRdHqmGPxqW8RyAHsDVgGy2fnYj1m2q2Ox88T809-r2j35H1nuDk2N1fNg_ek3uJ7hqADck2QZZnV7O3BsAhNPirV91lJzf9UL_DdzrcJY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIl4HxJuFAkaCE11ld-21vQeESkvUUqg4tFJuW68fJVK0G5pEbf4av46ZfZUIFHHpNXak2Xn5G894hpC3NtKaCwdhSSqykEvlwqKwRZjxgoMvZD6z-Br525HYP-FfRulog_zq3sJgWWXnE2tHbSuDd-SDBFAgw1YxauDbsojve8OP058hTpDCTGs3TqNRkUO3vIDwbfbhYA9k_S5Jhp-Pd_fDdsJAaACpzJE2w-EIF1xYn8TcMmeVs5HLMuOUjlzKXcqM5DoWBoC9kD5x3mFPeM-FwEZM4P5vSMYyLCeUI9nf72AGjcdZ-04nYmowg7MS37NB9JfAt2Th5cpZWI8M-BfO_btcs8_Z3iW3F-VULy_0ZPLHsTi8T-61eJbuNAr4gGy48iG52Uy4XD4iemcxr-qusHRs28KkWhdo5anD5sp0DPE1VujTicObuxmFxbIqw7qIXs_mdPeY4m0xtc5NaTvl4ox2zdAfk5Nr4fkTsglUuGeEYnxnmIy9izTnnmVG2RQAUwGwJ_beBiTu-JubtuU5Tt6Y5HXqnam8kUkOMslrmeSXAXnf_2faNPxYu_sTiq3fic266x-q87O8tf1c-SJKjTIIL3laKAC9ggmbcKO1NkoHZKsTet56kFl-pe8BedMvg-1jQkeXrlrgHgAgsQQOBORpoyM9JUww4IQUAZEr2rNC6upKOf5R9xfPAOIBUA3IdqdnV2StY8V2r4v_wbnn6z_6NbkF5p1_PTg6fEHuJGg0ABgSuUU25-cL9xKQ4Lx4VZscJafXbeO_Abm4bjA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4E0JFGQkbjRLEjuOc1wqqgqJikNXlFPk-FFWrJJVN1Fbfj1j5wELVUWv8VhxZsb2N_H4G4C3OpKScYNhScrzkGXChGWpyzBnJcO1kNpcu9vIn4_44Zx9OklPtoAPd2F80r6ntPTL9JAd9n6NG427DIahU4I7VB5eTFfa3oJtniIGn8D2_OjL7JurJIcYJUSYkPQ3ZCIqrui8sQt5sv6rEOa_iZLjaek9uNNWK3l5LpfLPzakgwfwdfiULg_lx7Rtyqn6-RfL482_9SHc7zEqmXWSj2DLVI_hdle18vIJyFnb1J7plSx0n2zk7UtqS4wjTCYLjJld1j3BFzm_JthY1VXoE-PluiH7x8T9ASbamBXpK1eckoHg_CnMDz4e7x-GfaWGUCHia5yNFUMoxBnXNomZpkYLoyOT58oIGZmUmZSqjMmYKwyQeGYTY43j1reM85w-gwmOwjwH4mI2RbPYmkgyZmmuhE4RBJUIZWJrdQDxYLlC9TTmrprGsvDH6VQUnfoKVF_h1VdcBPBu7LPqSDyulf7gHGKUdATc_kF9dlr0RiqELaNUCeUgI0tLgUCWU64TpqSUSsgAdgd3KvpVYV0kGMlQR3ckAngzNuN8doc0sjJ162QQVMQZaiCAnc77xpFQTlETGQ8g2_DLjaFutlSL754zPEfYhuAzgL3Bg38P6zpV7I1e_h-ae3Ez8ZdwN3FOjkggyXZh0py15hVCvKZ83c_nX0jqS_Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+early+ischemic+lesions+on+non-contrast+CT+with+deep+learning+approach&rft.jtitle=Scientific+reports&rft.au=Sahoo%2C+Prasan+Kumar&rft.au=Mohapatra%2C+Sulagna&rft.au=Wu%2C+Ching-Yi&rft.au=Huang%2C+Kuo-Lun&rft.date=2022-10-27&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-22939-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |