Automatic identification of early ischemic lesions on non-contrast CT with deep learning approach

Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) w...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 18054 - 13
Main Authors Sahoo, Prasan Kumar, Mohapatra, Sulagna, Wu, Ching-Yi, Huang, Kuo-Lun, Chang, Ting-Yu, Lee, Tsong-Hai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.10.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-22939-x

Cover

Abstract Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion.
AbstractList Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion.Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion.
Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion.
Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion.
Abstract Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for treatment decision-making. We retrospectively included the NCCT slices of 129 normal subjects and 546 ischemic stroke patients (onset < 12 h) with corresponding MR slices as reference standard from a prospective registry of Chang Gung Research Databank. In model selection, NCCT slices were preprocessed and fed into five different pre-trained convolutional neural network (CNN) models including Visual Geometry Group 16 (VGG16), Residual Networks 50, Inception-ResNet-v2, Inception-v3, and Inception-v4. In model derivation, the customized-VGG16 model could achieve an accuracy of 0.83, sensitivity 0.85, F-score 0.80, specificity 0.82, and AP 0.82 after using a tenfold cross-validation method, outperforming the pre-trained VGG16 model. In model evaluation, the customized-VGG16 model could correctly identify 53 in 58 subjects (91.37%) including 29 ischemic stroke patients and 24 normal subjects and reached the sensitivity of 86.95% in identifying ischemic NCCT slices (200/230), irrespective of supratentorial or infratentorial lesions. The customized-VGG16 CNN model can successfully identify the presence of early ischemic lesions on NCCT slices using the concept of automatic feature learning. Further study will be proceeded to detect the location of ischemic lesion.
ArticleNumber 18054
Author Wu, Ching-Yi
Mohapatra, Sulagna
Sahoo, Prasan Kumar
Huang, Kuo-Lun
Lee, Tsong-Hai
Chang, Ting-Yu
Author_xml – sequence: 1
  givenname: Prasan Kumar
  surname: Sahoo
  fullname: Sahoo, Prasan Kumar
  organization: Department of Computer Science and Information Engineering, Chang Gung University, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center
– sequence: 2
  givenname: Sulagna
  surname: Mohapatra
  fullname: Mohapatra, Sulagna
  organization: Department of Computer Science and Information Engineering, Chang Gung University
– sequence: 3
  givenname: Ching-Yi
  surname: Wu
  fullname: Wu, Ching-Yi
  organization: Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University
– sequence: 4
  givenname: Kuo-Lun
  surname: Huang
  fullname: Huang, Kuo-Lun
  organization: Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University
– sequence: 5
  givenname: Ting-Yu
  surname: Chang
  fullname: Chang, Ting-Yu
  organization: Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University
– sequence: 6
  givenname: Tsong-Hai
  surname: Lee
  fullname: Lee, Tsong-Hai
  email: thlee@adm.cgmh.org.tw
  organization: Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, College of Medicine, Chang Gung University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36302876$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFARLaV_gAOKxIVLwN9xLkjVCmilSlzK2XrrvOx6ldjBTmj33-PubkvbQ4Uv_ngz43ljvy2OfPBYFO8p-UwJ11-SoLLRFWGsYqzhTXX7qjhhRMiKccaOHq2Pi7OUNiQPyRpBmzfFMVecMF2rkwLO5ykMMDlbuhb95Dpn8y74MnQlQuy3pUt2jUMG9JhyIZW5mM1UNvgpQprKxXV546Z12SKOGQTRO78qYRxjALt-V7zuoE94dphPi1_fv10vLqqrnz8uF-dXlZWCTJWotRW0ZkqotmNUtBxbjS3BprGogaAUKLmtBVBla8lV3THsUNaEdEKphp8Wl3vdNsDGjNENELcmgDO7gxBXBmLus0ejuyWRVlvCpBJyqTWXiquWCQsAVkPW4nut2Y-wvYG-fxCkxNzlb_b5m5y_2eVvbjPr6541zssBW4t3-fRPrDyteLc2q_DHNIpyJXgW-HQQiOH3jGkyQw4f-x48hjkZVnPCac1rmqEfn0E3YY4-B5xR2Q9VUumM-vDY0YOV-_fPALYH2BhSitj9X5_6Gcm6afdpcleuf5l6CDble_wK4z_bL7D-AtoD5k0
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105065
crossref_primary_10_3389_fendo_2025_1485311
crossref_primary_10_22730_jmls_2023_20_4_141
crossref_primary_10_1038_s41598_023_45573_7
crossref_primary_10_1007_s11042_024_18622_0
crossref_primary_10_1055_s_0044_1785504
crossref_primary_10_1080_21681163_2023_2227733
crossref_primary_10_1109_ACCESS_2024_3383140
Cites_doi 10.3174/ajnr.A6077
10.1155/2021/3628179
10.1016/j.jstrokecerebrovasdis.2021.105752
10.1016/j.nicl.2014.03.009
10.3390/app10041245
10.1186/s40537-019-0197-0
10.1038/s41598-021-03043-y
10.1161/STR.0000000000000211
10.1016/j.jcmg.2018.03.012
10.1186/s41747-019-0085-6
10.1016/j.compeleceng.2018.07.051
10.13005/bpj/1484
10.1016/j.nicl.2020.102548
10.1016/j.chemolab.2021.104269
10.1038/s41598-022-06021-0
10.3174/ajnr.A7081
10.1016/j.cmpb.2020.105711
10.1016/j.compbiomed.2019.103487
10.1038/s41598-021-91467-x
10.4236/jcc.2019.73002
10.1002/jmri.21088
10.1109/BIBM.2015.7359869
10.1117/1.JMI.8.1.014505
10.1148/radiol.2020191193
10.1007/s10044-019-00838-8
10.3966/160792642020122107010
10.1016/j.nicl.2017.06.016
10.1001/jamanetworkopen.2020.0772
10.5853/jos.2020.05064
10.3174/ajnr.A5543
10.3348/kjr.2018.0615
10.3174/ajnr.A6883
10.1161/STROKEAHA.117.019740
10.1148/radiol.2352040262
10.1161/STROKEAHA.119.027457
10.3390/electronics9060951
10.1016/S0140-6736(07)61448-2
10.1016/j.media.2019.101589
10.1109/ICAwST.2017.8256481
10.1109/cvpr.2016.308
10.1109/cvpr.2016.90
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-022-22939-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database



CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_8fb05c8c025645b8835636d24caaac8a
10.1038/s41598-022-22939-x
PMC9613643
36302876
10_1038_s41598_022_22939_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 110-2221-E-182-008-MY3 (TH Lee)
  funderid: http://dx.doi.org/10.13039/501100004663
– fundername: Chang Gung University
  grantid: EMRPD1I0491 (PK Sahoo)
  funderid: http://dx.doi.org/10.13039/501100002836
– fundername: Chang Gung Memorial Hospital, Linkou
  grantid: CMRPG3J1172; CMRPG3J1162 (TH Lee); CMRPD2J0141; CMRPD2J0142 (PK Sahoo); CMRPD1J0242 (CY Wu)
  funderid: http://dx.doi.org/10.13039/501100005795
– fundername: ;
  grantid: CMRPG3J1172; CMRPG3J1162 (TH Lee); CMRPD2J0141; CMRPD2J0142 (PK Sahoo); CMRPD1J0242 (CY Wu)
– fundername: ;
  grantid: MOST 110-2221-E-182-008-MY3 (TH Lee)
– fundername: ;
  grantid: EMRPD1I0491 (PK Sahoo)
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c540t-478c4172646df214d3ed8ed0e99ce8a0e54e53c74a16c75367f2efe5700f46693
IEDL.DBID BENPR
ISSN 2045-2322
IngestDate Tue Oct 14 19:08:20 EDT 2025
Sun Oct 26 04:14:21 EDT 2025
Tue Sep 30 17:19:18 EDT 2025
Fri Sep 05 06:36:35 EDT 2025
Tue Oct 07 07:45:16 EDT 2025
Thu Jan 02 22:53:11 EST 2025
Thu Apr 24 23:11:28 EDT 2025
Wed Oct 01 01:38:08 EDT 2025
Fri Feb 21 02:40:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-478c4172646df214d3ed8ed0e99ce8a0e54e53c74a16c75367f2efe5700f46693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2729316568?pq-origsite=%requestingapplication%&accountid=15518
PMID 36302876
PQID 2729316568
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_8fb05c8c025645b8835636d24caaac8a
unpaywall_primary_10_1038_s41598_022_22939_x
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9613643
proquest_miscellaneous_2730317371
proquest_journals_2729316568
pubmed_primary_36302876
crossref_primary_10_1038_s41598_022_22939_x
crossref_citationtrail_10_1038_s41598_022_22939_x
springer_journals_10_1038_s41598_022_22939_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-27
PublicationDateYYYYMMDD 2022-10-27
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Robben (CR38) 2020; 59
Zhu, Braun, Chiang, Romagnoli (CR12) 2021
Wang (CR30) 2020; 51
CR19
Bergstra, Bengio (CR16) 2012; 13
Yu (CR34) 2020; 3
Nishio (CR43) 2020; 196
Soun (CR7) 2021; 42
CR15
CR14
Alon, Dehkharghani (CR5) 2021; 11
CR13
Axer (CR9) 2007; 26
Alis (CR4) 2021; 11
Winzeck (CR31) 2019; 40
Wardlaw, Mielke (CR3) 2005; 235
Sara, Akter, Uddin (CR11) 2019; 07
Beecy (CR40) 2018; 11
Qiu (CR45) 2020; 294
Pan (CR46) 2021; 30
Zhao (CR35) 2021; 2021
Debs (CR27) 2021; 29
Powers (CR2) 2019; 50
Peixoto, Rebouças Filho (CR44) 2018; 71
Maeda-Gutiérrez (CR21) 2020
Chen, Bentley, Rueckert (CR26) 2017; 15
Oman, Makela, Salli, Savolainen, Kangasniemi (CR39) 2019; 3
Shorten, Khoshgoftaar (CR17) 2019; 6
Gillebert, Humphreys, Mantini (CR25) 2014; 4
Qiu (CR47) 2021; 23
CR24
Goyal, Dogra, Agrawal, Sohi (CR10) 2018; 11
CR23
CR22
Zaharchuk, Gong, Wintermark, Rubin, Langlotz (CR8) 2018; 39
CR20
Stier, Vincent, Liebeskind, Scalzo (CR29) 2015; 1316–1321
Avanzato, Beritelli (CR18) 2020; 9
Woo (CR32) 2019; 20
Clerigues (CR37) 2019; 115
Rothwell (CR1) 2007; 370
Rava (CR36) 2021; 8
Yu (CR33) 2021
Gautam, Raman (CR41) 2020; 23
Jung, Whangbo (CR42) 2020; 21
Bridge (CR6) 2022; 12
Nielsen, Hansen, Tietze, Mouridsen (CR28) 2018; 49
V Maeda-Gutiérrez (22939_CR21) 2020
L Alon (22939_CR5) 2021; 11
CR Gillebert (22939_CR25) 2014; 4
L Chen (22939_CR26) 2017; 15
S Winzeck (22939_CR31) 2019; 40
22939_CR24
A Clerigues (22939_CR37) 2019; 115
WJ Powers (22939_CR2) 2019; 50
22939_CR23
M Nishio (22939_CR43) 2020; 196
W Qiu (22939_CR45) 2020; 294
RA Rava (22939_CR36) 2021; 8
AN Beecy (22939_CR40) 2018; 11
SA Peixoto (22939_CR44) 2018; 71
A Nielsen (22939_CR28) 2018; 49
I Woo (22939_CR32) 2019; 20
22939_CR20
JM Wardlaw (22939_CR3) 2005; 235
D Robben (22939_CR38) 2020; 59
22939_CR22
CP Bridge (22939_CR6) 2022; 12
Y Yu (22939_CR33) 2021
B Zhao (22939_CR35) 2021; 2021
H Axer (22939_CR9) 2007; 26
22939_CR19
SM Jung (22939_CR42) 2020; 21
J Bergstra (22939_CR16) 2012; 13
A Gautam (22939_CR41) 2020; 23
22939_CR13
N Debs (22939_CR27) 2021; 29
O Oman (22939_CR39) 2019; 3
G Zaharchuk (22939_CR8) 2018; 39
22939_CR15
22939_CR14
U Sara (22939_CR11) 2019; 07
W Zhu (22939_CR12) 2021
Y Yu (22939_CR34) 2020; 3
W Qiu (22939_CR47) 2021; 23
PM Rothwell (22939_CR1) 2007; 370
K Wang (22939_CR30) 2020; 51
JE Soun (22939_CR7) 2021; 42
C Shorten (22939_CR17) 2019; 6
R Avanzato (22939_CR18) 2020; 9
J Pan (22939_CR46) 2021; 30
D Alis (22939_CR4) 2021; 11
B Goyal (22939_CR10) 2018; 11
N Stier (22939_CR29) 2015; 1316–1321
References_xml – volume: 40
  start-page: 938
  year: 2019
  end-page: 945
  ident: CR31
  article-title: Ensemble of convolutional neural networks improves automated segmentation of acute ischemic lesions using multiparametric diffusion-weighted MRI
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A6077
– ident: CR22
– volume: 2021
  start-page: 3628179
  year: 2021
  ident: CR35
  article-title: Deep learning-based acute ischemic stroke lesion segmentation method on multimodal MR images using a few fully labeled subjects
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/3628179
– volume: 30
  year: 2021
  ident: CR46
  article-title: Detecting the early infarct core on non-contrast CT images with a deep learning residual network
  publication-title: J. Stroke Cerebrovasc. Dis.
  doi: 10.1016/j.jstrokecerebrovasdis.2021.105752
– volume: 4
  start-page: 540
  year: 2014
  end-page: 548
  ident: CR25
  article-title: Automated delineation of stroke lesions using brain CT images
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2014.03.009
– ident: CR14
– year: 2020
  ident: CR21
  article-title: Comparison of convolutional neural network architectures for classification of tomato plant diseases
  publication-title: Appl. Sci.
  doi: 10.3390/app10041245
– volume: 6
  start-page: 1
  year: 2019
  end-page: 48
  ident: CR17
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 11
  start-page: 24222
  year: 2021
  ident: CR5
  article-title: A stroke detection and discrimination framework using broadband microwave scattering on stochastic models with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03043-y
– volume: 50
  start-page: e344
  year: 2019
  end-page: e418
  ident: CR2
  article-title: Guidelines for the early management of patients with acute ischemic stroke: 2019 Update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association
  publication-title: Stroke
  doi: 10.1161/STR.0000000000000211
– volume: 11
  start-page: 1723
  year: 2018
  end-page: 1725
  ident: CR40
  article-title: A novel deep learning approach for automated diagnosis of acute ischemic infarction on computed tomography
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2018.03.012
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: CR16
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 8
  year: 2019
  ident: CR39
  article-title: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-019-0085-6
– volume: 71
  start-page: 398
  year: 2018
  end-page: 407
  ident: CR44
  article-title: Neurologist-level classification of stroke using a structural co-occurrence matrix based on the frequency domain
  publication-title: Comput. Electric. Eng.
  doi: 10.1016/j.compeleceng.2018.07.051
– volume: 11
  start-page: 1227
  year: 2018
  end-page: 1237
  ident: CR10
  article-title: Noise issues prevailing in various types of medical images
  publication-title: Biomed. Pharmacol. J.
  doi: 10.13005/bpj/1484
– volume: 29
  year: 2021
  ident: CR27
  article-title: Impact of the reperfusion status for predicting the final stroke infarct using deep learning
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2020.102548
– year: 2021
  ident: CR12
  article-title: Investigation of transfer learning for image classification and impact on training sample size
  publication-title: Chemometrics Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2021.104269
– volume: 12
  start-page: 2154
  year: 2022
  ident: CR6
  article-title: Development and clinical application of a deep learning model to identify acute infarct on magnetic resonance imaging
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-06021-0
– year: 2021
  ident: CR33
  article-title: Tissue at risk and ischemic core estimation using deep learning in acute stroke
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A7081
– volume: 196
  year: 2020
  ident: CR43
  article-title: Automatic detection of acute ischemic stroke using non-contrast computed tomography and two-stage deep learning model
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105711
– ident: CR23
– volume: 115
  year: 2019
  ident: CR37
  article-title: Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103487
– volume: 11
  start-page: 12434
  year: 2021
  ident: CR4
  article-title: Inter-vendor performance of deep learning in segmenting acute ischemic lesions on diffusion-weighted imaging: A multicenter study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91467-x
– volume: 07
  start-page: 8
  year: 2019
  end-page: 18
  ident: CR11
  article-title: Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2019.73002
– volume: 26
  start-page: 905
  year: 2007
  end-page: 912
  ident: CR9
  article-title: Time course of diffusion imaging in acute brainstem infarcts
  publication-title: J. Magn. Reason. Imaging
  doi: 10.1002/jmri.21088
– ident: CR19
– volume: 1316–1321
  start-page: 2015
  year: 2015
  ident: CR29
  article-title: Deep learning of tissue fate features in acute ischemic stroke
  publication-title: Proceedings (IEEE Int. Conf. Bioinform. Biomed.)
  doi: 10.1109/BIBM.2015.7359869
– volume: 8
  year: 2021
  ident: CR36
  article-title: Investigation of convolutional neural networks using multiple computed tomography perfusion maps to identify infarct core in acute ischemic stroke patients
  publication-title: J. Med. Imaging (Bellingham)
  doi: 10.1117/1.JMI.8.1.014505
– volume: 294
  start-page: 638
  year: 2020
  end-page: 644
  ident: CR45
  article-title: Machine learning for detecting early infarction in acute stroke with non-contrast-enhanced CT
  publication-title: Radiology
  doi: 10.1148/radiol.2020191193
– volume: 23
  start-page: 797
  year: 2020
  end-page: 817
  ident: CR41
  article-title: Local gradient of gradient pattern: A robust image descriptor for the classification of brain strokes from computed tomography images
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00838-8
– volume: 21
  start-page: 1957
  year: 2020
  end-page: 1968
  ident: CR42
  article-title: A deep learning system for diagnosing ischemic stroke by applying adaptive transfer learning
  publication-title: J. Internet Technol.
  doi: 10.3966/160792642020122107010
– ident: CR15
– volume: 15
  start-page: 633
  year: 2017
  end-page: 643
  ident: CR26
  article-title: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2017.06.016
– volume: 3
  year: 2020
  ident: CR34
  article-title: Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.0772
– volume: 23
  start-page: 234
  year: 2021
  end-page: 243
  ident: CR47
  article-title: Automated prediction of ischemic brain tissue fate from multiphase computed tomographic angiography in patients with acute ischemic stroke using machine learning
  publication-title: J. Stroke
  doi: 10.5853/jos.2020.05064
– volume: 39
  start-page: 1776
  year: 2018
  end-page: 1784
  ident: CR8
  article-title: Deep learning in neuroradiology
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A5543
– volume: 20
  start-page: 1275
  year: 2019
  end-page: 1284
  ident: CR32
  article-title: Fully automatic segmentation of acute ischemic lesions on diffusion-weighted imaging using convolutional neural networks: Comparison with conventional algorithms
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2018.0615
– ident: CR13
– volume: 42
  start-page: 2
  year: 2021
  end-page: 11
  ident: CR7
  article-title: Artificial intelligence and acute stroke imaging
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A6883
– volume: 49
  start-page: 1394
  year: 2018
  end-page: 1401
  ident: CR28
  article-title: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.019740
– volume: 235
  start-page: 444
  year: 2005
  end-page: 453
  ident: CR3
  article-title: Early signs of brain infarction at CT: Observer reliability and outcome after thrombolytic treatment–systematic review
  publication-title: Radiology
  doi: 10.1148/radiol.2352040262
– volume: 51
  start-page: 489
  year: 2020
  end-page: 497
  ident: CR30
  article-title: Deep learning detection of penumbral tissue on arterial spin labeling in stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.027457
– volume: 9
  start-page: 951
  year: 2020
  ident: CR18
  article-title: Automatic ECG diagnosis using convolutional neural network
  publication-title: Electronics
  doi: 10.3390/electronics9060951
– volume: 370
  start-page: 1432
  year: 2007
  end-page: 1442
  ident: CR1
  article-title: Effect of urgent treatment of transient ischaemic attack and minor stroke on early recurrent stroke (EXPRESS study): A prospective population-based sequential comparison
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)61448-2
– ident: CR24
– volume: 59
  year: 2020
  ident: CR38
  article-title: Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101589
– ident: CR20
– ident: 22939_CR14
– volume: 21
  start-page: 1957
  year: 2020
  ident: 22939_CR42
  publication-title: J. Internet Technol.
  doi: 10.3966/160792642020122107010
– volume: 07
  start-page: 8
  year: 2019
  ident: 22939_CR11
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2019.73002
– volume: 1316–1321
  start-page: 2015
  year: 2015
  ident: 22939_CR29
  publication-title: Proceedings (IEEE Int. Conf. Bioinform. Biomed.)
  doi: 10.1109/BIBM.2015.7359869
– volume: 50
  start-page: e344
  year: 2019
  ident: 22939_CR2
  publication-title: Stroke
  doi: 10.1161/STR.0000000000000211
– volume: 26
  start-page: 905
  year: 2007
  ident: 22939_CR9
  publication-title: J. Magn. Reason. Imaging
  doi: 10.1002/jmri.21088
– volume: 6
  start-page: 1
  year: 2019
  ident: 22939_CR17
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 39
  start-page: 1776
  year: 2018
  ident: 22939_CR8
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A5543
– year: 2020
  ident: 22939_CR21
  publication-title: Appl. Sci.
  doi: 10.3390/app10041245
– volume: 3
  year: 2020
  ident: 22939_CR34
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.0772
– volume: 9
  start-page: 951
  year: 2020
  ident: 22939_CR18
  publication-title: Electronics
  doi: 10.3390/electronics9060951
– year: 2021
  ident: 22939_CR12
  publication-title: Chemometrics Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2021.104269
– volume: 20
  start-page: 1275
  year: 2019
  ident: 22939_CR32
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2018.0615
– year: 2021
  ident: 22939_CR33
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A7081
– volume: 71
  start-page: 398
  year: 2018
  ident: 22939_CR44
  publication-title: Comput. Electric. Eng.
  doi: 10.1016/j.compeleceng.2018.07.051
– volume: 11
  start-page: 24222
  year: 2021
  ident: 22939_CR5
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03043-y
– volume: 4
  start-page: 540
  year: 2014
  ident: 22939_CR25
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2014.03.009
– volume: 11
  start-page: 1723
  year: 2018
  ident: 22939_CR40
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2018.03.012
– ident: 22939_CR23
– volume: 12
  start-page: 2154
  year: 2022
  ident: 22939_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-06021-0
– volume: 11
  start-page: 1227
  year: 2018
  ident: 22939_CR10
  publication-title: Biomed. Pharmacol. J.
  doi: 10.13005/bpj/1484
– volume: 30
  year: 2021
  ident: 22939_CR46
  publication-title: J. Stroke Cerebrovasc. Dis.
  doi: 10.1016/j.jstrokecerebrovasdis.2021.105752
– volume: 23
  start-page: 234
  year: 2021
  ident: 22939_CR47
  publication-title: J. Stroke
  doi: 10.5853/jos.2020.05064
– volume: 23
  start-page: 797
  year: 2020
  ident: 22939_CR41
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00838-8
– volume: 51
  start-page: 489
  year: 2020
  ident: 22939_CR30
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.027457
– ident: 22939_CR15
– volume: 40
  start-page: 938
  year: 2019
  ident: 22939_CR31
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A6077
– ident: 22939_CR13
– ident: 22939_CR24
  doi: 10.1109/ICAwST.2017.8256481
– volume: 235
  start-page: 444
  year: 2005
  ident: 22939_CR3
  publication-title: Radiology
  doi: 10.1148/radiol.2352040262
– ident: 22939_CR19
– volume: 11
  start-page: 12434
  year: 2021
  ident: 22939_CR4
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91467-x
– volume: 13
  start-page: 281
  year: 2012
  ident: 22939_CR16
  publication-title: J. Mach. Learn. Res.
– volume: 294
  start-page: 638
  year: 2020
  ident: 22939_CR45
  publication-title: Radiology
  doi: 10.1148/radiol.2020191193
– volume: 49
  start-page: 1394
  year: 2018
  ident: 22939_CR28
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.019740
– volume: 42
  start-page: 2
  year: 2021
  ident: 22939_CR7
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A6883
– volume: 196
  year: 2020
  ident: 22939_CR43
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105711
– volume: 59
  year: 2020
  ident: 22939_CR38
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101589
– volume: 370
  start-page: 1432
  year: 2007
  ident: 22939_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)61448-2
– volume: 2021
  start-page: 3628179
  year: 2021
  ident: 22939_CR35
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/3628179
– volume: 15
  start-page: 633
  year: 2017
  ident: 22939_CR26
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2017.06.016
– ident: 22939_CR22
  doi: 10.1109/cvpr.2016.308
– volume: 3
  start-page: 8
  year: 2019
  ident: 22939_CR39
  publication-title: Eur. Radiol. Exp.
  doi: 10.1186/s41747-019-0085-6
– ident: 22939_CR20
  doi: 10.1109/cvpr.2016.90
– volume: 29
  year: 2021
  ident: 22939_CR27
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2020.102548
– volume: 8
  year: 2021
  ident: 22939_CR36
  publication-title: J. Med. Imaging (Bellingham)
  doi: 10.1117/1.JMI.8.1.014505
– volume: 115
  year: 2019
  ident: 22939_CR37
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103487
SSID ssj0000529419
Score 2.4530392
Snippet Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image for...
Abstract Early ischemic lesion on non-contrast computed tomogram (NCCT) in acute stroke can be subtle and need confirmation with magnetic resonance (MR) image...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18054
SubjectTerms 631/114
631/61
Concept learning
Decision making
Deep Learning
Humanities and Social Sciences
Humans
Ischemia
Ischemic Stroke
Lesions
Magnetic resonance imaging
multidisciplinary
Neural networks
Patients
Retrospective Studies
Science
Science (multidisciplinary)
Stroke
Stroke - diagnostic imaging
Tomography, X-Ray Computed - methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSgg4IN6kLchI3GjUJHYc-1gqqgoJTq3Um-XYY1hplV11s6L994ydbNgVqHDgGjuSM4_MN_b4G4D3vrBWSKS0pJY6F43CvG19m2vRCvoX8qB9vI385as8vxSfr-qrrVZfsSZsoAceBHesQlvUTrkYm0XdKkIMkktfCWetdSpBo0LprWRqYPWutCj1eEum4Op4RZEq3iaj3KuiEKfzm51IlAj7_4Qyfy-WnE5MH8GDdbe0tz_sfL4VlM6ewOMRTbKT4Suewj3snsH9ob_k7XOwJ-t-kThZ2cyPZUFJE2wRGEZqYzaj7DbWx7M5xn2zFaPBbtHlqYTdrnp2esHiXi3ziEs29pj4xjZU5C_g8uzTxel5PvZUyB1hsz5qwwkCLVJIH6pSeI5eoS9Qa4fKFlgLrLlrhC2lo1RGNqHCgJEFPwgpNX8Je7QKfA0sZleON2XAwgoRuHbK1wRXWgIdZQg-g3IjX-NGwvHY92Ju0sE3V2bQiSGdmKQTc5PBh-md5UC3cefsj1Ft08xIlZ0ekAGZ0YDM3wwog8ON0s3ovytTUc7BIzGRyuDdNEyeF49TbIeLdZxD4b9sSAIZvBpsZFoJl5wk0cgMmh3r2Vnq7kg3-57YvTUBLIKJGRxt7OzXsu4SxdFki_8guf3_IbkDeFhFf6JIXjWHsNdfr_ENQbS-fZu88SenqzZn
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQcEG8CBRkJcaGBJHYc-4BQqagqpHLqSr1Fjh9lpVV2uw-x---ZyQtWrFZcYydy5pH5Jh5_A_DOJcYI6TEtyaWORaF8XFWuirWoBH4LedCOTiNf_JDnI_H9Kr86gL7cthPgYmdqR_2kRvPJx_XN5gs6_Of2yLj6tMAgRAfFMK3KMHrpeP1-dhNTYynagO26bNyC2xi8NHV3uOgygJb-O9Mi1d1xmt1P2wpZDbP_Ljj6b1XlsLV6H-6u6pnZ_DKTyV_R6-whPOhgJztp7eQRHPj6MdxpG1FunoA5WS2nDXkrG7uufqhRGZsG5okDmY1RVlRIzyaefrAtGA7W0zpuat3NYslOLxn91GXO-xnrmlFcs56z_CmMzr5dnp7HXfOF2CKIW5LarEB0I4V0IUuF494p7xKvtfXKJD4XPue2ECaVFnMeWYTMB090-UFIqfkzOMRV-BfAKA2zvEiDT4wQgWurXI64pkJ0kobgIkh7-Za2YyanBhmTstkh56psdVKiTspGJ-U6gg_DPbOWl2Pv7K-ktmEmcWo3F6bz67Jz0VKFKsmtsoQCRV4pxKaSS5cJa4yxykRw1Cu97O20zDA54cRgpCJ4Owyji9K-i6n9dEVzECekBUogguetjQwr4ZKjJAoZQbFlPVtL3R6pxz8bGnCNSAzxZATHvZ39WdY-URwPtvgfknu5_6Vfwb2MPAWDeVYcweFyvvKvEaUtqzeNn_0GKOE42Q
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD6ULaI-iNc6WiWCb-7gzCSTSR7XYikL-mILfQuZXHRhmV3cWWz_fU8yFx0qRV83yRLOZc53ck6-ALy3mdaMO0xLSi5TVgmX1rWtU8lqht9C6qUNt5G_fOVnF2x5WV4ewHy4CzOp30fq7h2GmHANDJOmAmOTTBExHgo0TDGDw8Vi-W05nqmEqhXLZX83Bpd_vL14En8iTf_fsOXtFsmxTvoQ7u-brb7-pdfrP0LR6WN41GNIsuiU_gQOXPMU7nWvSl4_A73Yt5vIxEpWtm8GivInG09cIDQmK8xpQ1c8WbtwWrYjONhsmjQ2rutdS07OSTihJda5LelflvhOBgLy53Bx-vn85CztX1JIDSKyNujAMIQqnHHri5xZ6qxwNnNSGid05krmSmoqpnNuMIHhlS-cd4H73jPOJX0BM9yFewkk5FSGVrl3mWbMU2mELRGk1Ag1cu9tAvkgX2V6mvHw2sVaxXI3FarTiUKdqKgTdZXAh3HNtiPZuHP2p6C2cWYgyI4_oN2o3t-U8HVWGmECpGNlLRBocsptwYzW2gidwPGgdNV77U4VmGnQQEckEng3DqO_hSKKbtxmH-Zg0M8rlEACR52NjDuhnKIkKp5ANbGeyVanI83qR-T0lgirEBwmMB_s7Pe27hLFfLTFf5Dcq__799fwoAieg5G6qI5h1v7cuzcIwdr6be95N5DpKR0
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4E0JFGQkbjRLEjuOc1wqqgqJikNXlFPk-FFWrJJVN1Fbfj1j5wELVUWv8VhxZsb2N_H4G4C3OpKScYNhScrzkGXChGWpyzBnJcO1kNpcu9vIn4_44Zx9OklPtoAPd2F80r6ntPTL9JAd9n6NG427DIahU4I7VB5eTFfa3oJtniIGn8D2_OjL7JurJIcYJUSYkPQ3ZCIqrui8sQt5sv6rEOa_iZLjaek9uNNWK3l5LpfLPzakgwfwdfiULg_lx7Rtyqn6-RfL482_9SHc7zEqmXWSj2DLVI_hdle18vIJyFnb1J7plSx0n2zk7UtqS4wjTCYLjJld1j3BFzm_JthY1VXoE-PluiH7x8T9ASbamBXpK1eckoHg_CnMDz4e7x-GfaWGUCHia5yNFUMoxBnXNomZpkYLoyOT58oIGZmUmZSqjMmYKwyQeGYTY43j1reM85w-gwmOwjwH4mI2RbPYmkgyZmmuhE4RBJUIZWJrdQDxYLlC9TTmrprGsvDH6VQUnfoKVF_h1VdcBPBu7LPqSDyulf7gHGKUdATc_kF9dlr0RiqELaNUCeUgI0tLgUCWU64TpqSUSsgAdgd3KvpVYV0kGMlQR3ckAngzNuN8doc0sjJ162QQVMQZaiCAnc77xpFQTlETGQ8g2_DLjaFutlSL754zPEfYhuAzgL3Bg38P6zpV7I1e_h-ae3Ez8ZdwN3FOjkggyXZh0py15hVCvKZ83c_nX0jqS_Q
  priority: 102
  providerName: Unpaywall
Title Automatic identification of early ischemic lesions on non-contrast CT with deep learning approach
URI https://link.springer.com/article/10.1038/s41598-022-22939-x
https://www.ncbi.nlm.nih.gov/pubmed/36302876
https://www.proquest.com/docview/2729316568
https://www.proquest.com/docview/2730317371
https://pubmed.ncbi.nlm.nih.gov/PMC9613643
https://www.nature.com/articles/s41598-022-22939-x.pdf
https://doaj.org/article/8fb05c8c025645b8835636d24caaac8a
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7ahLHtYez3vHVBg72tprYly_LDGGloKYGGsjWQPRlZkrtAsLMmYe1_vzvHdhc2yl78YClY0d1J3-lO3wF8tIHWQjp0S2KZ-iJRzs9zm_upyAWuhbxILd1GPp_Is6kYz-LZHkzauzCUVtmuifVCbStDZ-RHEaJATlQx6svyp09Voyi62pbQ0E1pBfu5phjbh35EzFg96B-fTC6-dqcuFNcSYdrcngm4OlrhDka3zNAni_ALqX-zs0PVRP7_Qp9_J1F2kdTH8HBTLvXtL71Y_LFZnT6FJw3KZMOtWjyDPVc-hwfbupO3L0APN-uq5mplc9ukC9USYlXBHFEeszl6vZQ3zxaOztNWDBvLqvTr1Ha9WrPRJaMzXGadW7Km9sQVaynKX8L09ORydOY3tRZ8g5htTVIyAsGMFNIWUSgsd1Y5G7g0NU7pwMXCxdwkQofSoIsjkyJyhSN2_EJImfJX0MNRuDfAyOsyPAkLF2ghCp4aZWOEMTmCkbAorAdhO7-ZaYjIqR7GIqsD4lxlW5lkKJOslkl248Gn7jfLLQ3Hvb2PSWxdT6LQrl9U11dZY5GZKvIgNsoQ6BNxrhCKSi5tJIzW2ijtwUEr9Kyx61V2p4UefOia0SIpzKJLV22oD8KCMMEZ8OD1Vke6kXDJcSYS6UGyoz07Q91tKec_atbvFIEXwkcPDls9uxvWfVNx2Onif8zc2_v_9Dt4FJGl4N4dJQfQW19v3HsEZet8APvJLBlAfzgcfxsPGrvDtyM5GtQHHfg8FwpbppOL4fffRlk7NQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWjwgPgmMMBI8MSiJbHjOA8T2samjm0VQp20N8-xnVGpSsraaus_x9_GXepkVKCJl73WrnS5O9_9zh-_I-SDjbTmwkFZkoo85Jl0YVHYIsx5wSEWsjK3-Br5pC96p_zrWXq2Qn61b2HwWmUbE5tAbWuDe-RbCaBAhlQx8vP4Z4hdo_B0tW2hoX1rBbvdUIz5hx1Hbn4FJdxk-_AL2PtjkhzsD_Z6oe8yEBpAK1OUz3BI44ILWyYxt8xZ6Wzk8tw4qSOXcpcyk3EdCwPgXmRl4kqHvPAlFwLJmCAFrHHGcyj-1nb3-9--d7s8eI7G49y_1omY3JpAxsRXbVADJvBFeXi9lBGbxgH_Qrt_X9rsTm4fkPVZNdbzKz0a_ZEcDx6Rhx7V0p2FGz4mK656Qu4t-lzOnxK9M5vWDTcsHVp_PanxCFqX1CHFMh1ClY339OnI4f7dhMJgVVdhc5VeT6Z0b0Bxz5ha58bU97q4oC0l-jNyeidaf05WQQr3klCs8gzL4tJFmvOS5UbaFGBTAeAnLksbkLjVrzKe-Bz7b4xUcwDPpFrYRIFNVGMTdR2QT91_xgvaj1tn76LZuplI2d38UF9eKB8BlCyLKDXSIMjkaSEB-gombMKN1tpIHZCN1ujKx5GJuvH6gLzvhiEC4LGOrlw9wzkAQ-IMNBCQFwsf6SRhgoEmMhGQbMl7lkRdHqmGPxqW8RyAHsDVgGy2fnYj1m2q2Ox88T809-r2j35H1nuDk2N1fNg_ek3uJ7hqADck2QZZnV7O3BsAhNPirV91lJzf9UL_DdzrcJY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIl4HxJuFAkaCE11ld-21vQeESkvUUqg4tFJuW68fJVK0G5pEbf4av46ZfZUIFHHpNXak2Xn5G894hpC3NtKaCwdhSSqykEvlwqKwRZjxgoMvZD6z-Br525HYP-FfRulog_zq3sJgWWXnE2tHbSuDd-SDBFAgw1YxauDbsojve8OP058hTpDCTGs3TqNRkUO3vIDwbfbhYA9k_S5Jhp-Pd_fDdsJAaACpzJE2w-EIF1xYn8TcMmeVs5HLMuOUjlzKXcqM5DoWBoC9kD5x3mFPeM-FwEZM4P5vSMYyLCeUI9nf72AGjcdZ-04nYmowg7MS37NB9JfAt2Th5cpZWI8M-BfO_btcs8_Z3iW3F-VULy_0ZPLHsTi8T-61eJbuNAr4gGy48iG52Uy4XD4iemcxr-qusHRs28KkWhdo5anD5sp0DPE1VujTicObuxmFxbIqw7qIXs_mdPeY4m0xtc5NaTvl4ox2zdAfk5Nr4fkTsglUuGeEYnxnmIy9izTnnmVG2RQAUwGwJ_beBiTu-JubtuU5Tt6Y5HXqnam8kUkOMslrmeSXAXnf_2faNPxYu_sTiq3fic266x-q87O8tf1c-SJKjTIIL3laKAC9ggmbcKO1NkoHZKsTet56kFl-pe8BedMvg-1jQkeXrlrgHgAgsQQOBORpoyM9JUww4IQUAZEr2rNC6upKOf5R9xfPAOIBUA3IdqdnV2StY8V2r4v_wbnn6z_6NbkF5p1_PTg6fEHuJGg0ABgSuUU25-cL9xKQ4Lx4VZscJafXbeO_Abm4bjA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4E0JFGQkbjRLEjuOc1wqqgqJikNXlFPk-FFWrJJVN1Fbfj1j5wELVUWv8VhxZsb2N_H4G4C3OpKScYNhScrzkGXChGWpyzBnJcO1kNpcu9vIn4_44Zx9OklPtoAPd2F80r6ntPTL9JAd9n6NG427DIahU4I7VB5eTFfa3oJtniIGn8D2_OjL7JurJIcYJUSYkPQ3ZCIqrui8sQt5sv6rEOa_iZLjaek9uNNWK3l5LpfLPzakgwfwdfiULg_lx7Rtyqn6-RfL482_9SHc7zEqmXWSj2DLVI_hdle18vIJyFnb1J7plSx0n2zk7UtqS4wjTCYLjJld1j3BFzm_JthY1VXoE-PluiH7x8T9ASbamBXpK1eckoHg_CnMDz4e7x-GfaWGUCHia5yNFUMoxBnXNomZpkYLoyOT58oIGZmUmZSqjMmYKwyQeGYTY43j1reM85w-gwmOwjwH4mI2RbPYmkgyZmmuhE4RBJUIZWJrdQDxYLlC9TTmrprGsvDH6VQUnfoKVF_h1VdcBPBu7LPqSDyulf7gHGKUdATc_kF9dlr0RiqELaNUCeUgI0tLgUCWU64TpqSUSsgAdgd3KvpVYV0kGMlQR3ckAngzNuN8doc0sjJ162QQVMQZaiCAnc77xpFQTlETGQ8g2_DLjaFutlSL754zPEfYhuAzgL3Bg38P6zpV7I1e_h-ae3Ez8ZdwN3FOjkggyXZh0py15hVCvKZ83c_nX0jqS_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+identification+of+early+ischemic+lesions+on+non-contrast+CT+with+deep+learning+approach&rft.jtitle=Scientific+reports&rft.au=Sahoo%2C+Prasan+Kumar&rft.au=Mohapatra%2C+Sulagna&rft.au=Wu%2C+Ching-Yi&rft.au=Huang%2C+Kuo-Lun&rft.date=2022-10-27&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-22939-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon