VetTag: improving automated veterinary diagnosis coding via large-scale language modeling

Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational research. Recent machine learning effort is limi...

Full description

Saved in:
Bibliographic Details
Published inNPJ digital medicine Vol. 2; no. 1; p. 35
Main Authors Zhang, Yuhui, Nie, Allen, Zehnder, Ashley, Page, Rodney L., Zou, James
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.05.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2398-6352
2398-6352
DOI10.1038/s41746-019-0113-1

Cover

Abstract Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational research. Recent machine learning effort is limited to predicting 42 top-level diagnosis categories from veterinary notes. Here we develop a large-scale algorithm to automatically predict all 4577 standard veterinary diagnosis codes from free text. We train our algorithm on a curated dataset of over 100 K expert labeled veterinary notes and over one million unlabeled notes. Our algorithm is based on the adapted Transformer architecture and we demonstrate that large-scale language modeling on the unlabeled notes via pretraining and as an auxiliary objective during supervised learning greatly improves performance. We systematically evaluate the performance of the model and several baselines in challenging settings where algorithms trained on one hospital are evaluated in a different hospital with substantial domain shift. In addition, we show that hierarchical training can address severe data imbalances for fine-grained diagnosis with a few training cases, and we provide interpretation for what is learned by the deep network. Our algorithm addresses an important challenge in veterinary medicine, and our model and experiments add insights into the power of unsupervised learning for clinical natural language processing.
AbstractList Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational research. Recent machine learning effort is limited to predicting 42 top-level diagnosis categories from veterinary notes. Here we develop a large-scale algorithm to automatically predict all 4577 standard veterinary diagnosis codes from free text. We train our algorithm on a curated dataset of over 100 K expert labeled veterinary notes and over one million unlabeled notes. Our algorithm is based on the adapted Transformer architecture and we demonstrate that large-scale language modeling on the unlabeled notes via pretraining and as an auxiliary objective during supervised learning greatly improves performance. We systematically evaluate the performance of the model and several baselines in challenging settings where algorithms trained on one hospital are evaluated in a different hospital with substantial domain shift. In addition, we show that hierarchical training can address severe data imbalances for fine-grained diagnosis with a few training cases, and we provide interpretation for what is learned by the deep network. Our algorithm addresses an important challenge in veterinary medicine, and our model and experiments add insights into the power of unsupervised learning for clinical natural language processing.
Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational research. Recent machine learning effort is limited to predicting 42 top-level diagnosis categories from veterinary notes. Here we develop a large-scale algorithm to automatically predict all 4577 standard veterinary diagnosis codes from free text. We train our algorithm on a curated dataset of over 100 K expert labeled veterinary notes and over one million unlabeled notes. Our algorithm is based on the adapted Transformer architecture and we demonstrate that large-scale language modeling on the unlabeled notes via pretraining and as an auxiliary objective during supervised learning greatly improves performance. We systematically evaluate the performance of the model and several baselines in challenging settings where algorithms trained on one hospital are evaluated in a different hospital with substantial domain shift. In addition, we show that hierarchical training can address severe data imbalances for fine-grained diagnosis with a few training cases, and we provide interpretation for what is learned by the deep network. Our algorithm addresses an important challenge in veterinary medicine, and our model and experiments add insights into the power of unsupervised learning for clinical natural language processing.Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational research. Recent machine learning effort is limited to predicting 42 top-level diagnosis categories from veterinary notes. Here we develop a large-scale algorithm to automatically predict all 4577 standard veterinary diagnosis codes from free text. We train our algorithm on a curated dataset of over 100 K expert labeled veterinary notes and over one million unlabeled notes. Our algorithm is based on the adapted Transformer architecture and we demonstrate that large-scale language modeling on the unlabeled notes via pretraining and as an auxiliary objective during supervised learning greatly improves performance. We systematically evaluate the performance of the model and several baselines in challenging settings where algorithms trained on one hospital are evaluated in a different hospital with substantial domain shift. In addition, we show that hierarchical training can address severe data imbalances for fine-grained diagnosis with a few training cases, and we provide interpretation for what is learned by the deep network. Our algorithm addresses an important challenge in veterinary medicine, and our model and experiments add insights into the power of unsupervised learning for clinical natural language processing.
ArticleNumber 35
Author Nie, Allen
Page, Rodney L.
Zhang, Yuhui
Zou, James
Zehnder, Ashley
Author_xml – sequence: 1
  givenname: Yuhui
  surname: Zhang
  fullname: Zhang, Yuhui
  organization: Department of Computer Science and Technology, Tsinghua University
– sequence: 2
  givenname: Allen
  surname: Nie
  fullname: Nie, Allen
  organization: Department of Biomedical Data Science, Stanford University
– sequence: 3
  givenname: Ashley
  orcidid: 0000-0001-9436-0637
  surname: Zehnder
  fullname: Zehnder, Ashley
  organization: Department of Biomedical Data Science, Stanford University
– sequence: 4
  givenname: Rodney L.
  surname: Page
  fullname: Page, Rodney L.
  organization: Department of Clinical Sciences, Colorado State University
– sequence: 5
  givenname: James
  orcidid: 0000-0001-8880-4764
  surname: Zou
  fullname: Zou, James
  email: jamesz@stanford.edu
  organization: Department of Biomedical Data Science, Stanford University, Chan-Zuckerberg Biohub
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31304381$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1rFTEUhoNUbK39AW5kwI2b0XzPjAuhFL-g4KYKrsKZ5NwxZSa5JjNX-u_NcK-2FhQXIQfyvue858ljchRiQEKeMvqSUdG-ypI1UteUdeUwUbMH5ISLrq21UPzoTn1MznK-ppRyKttO6kfkWDBBpWjZCfn6BecrGF5XftqmuPNhqGCZ4wQzumqHMyYfIN1UzsMQYva5stGtqp2HaoQ0YJ0tjFjqMCwwYDVFh2NRPCEPNzBmPDvcp-Tzu7dXFx_qy0_vP16cX9ZWSTrXwnLac9c70XTCWUd1u3EKJLNS9ooKySXHjukWRad610iwbaulogiN1cDFKeH7vkvYws0PGEezTX4qoQ2jZkVl9qhMQWVWVIYV05u9abv0EzqLYU5wa4zgzZ8vwX8zQ9wZrRRlcm3w4tAgxe8L5tlMPlscCwaMSzacq5YpLllXpM_vSa_jkkJhYrjiZRkupC6qZ3cT_Y7y66uKgO0FNsWcE27-a83mnsf6GWYf16X8-E_ngWouU8KA6Tb0300_AfqtyEI
CitedBy_id crossref_primary_10_1016_j_isci_2024_109334
crossref_primary_10_1111_vru_13163
crossref_primary_10_1038_s41598_023_45155_7
crossref_primary_10_1109_ACCESS_2023_3324046
crossref_primary_10_3390_informatics11030057
crossref_primary_10_1038_s41746_021_00404_9
crossref_primary_10_17555_jvc_2023_40_4_243
crossref_primary_10_1111_vco_13035
crossref_primary_10_1016_j_prevetmed_2023_105850
crossref_primary_10_12968_coan_2022_0028a
crossref_primary_10_1007_s11259_023_10146_6
crossref_primary_10_2147_CMAR_S239795
crossref_primary_10_3389_fvets_2024_1352726
crossref_primary_10_1093_jamiaopen_ooaa005
crossref_primary_10_3389_fvets_2021_651238
Cites_doi 10.1155/2012/764621
10.1162/neco.1997.9.8.1735
10.1016/j.jbi.2015.10.001
10.1136/amiajnl-2013-002159
10.1038/sdata.2016.35
10.1038/s41746-018-0029-1
10.1109/JBHI.2017.2767063
10.1007/s12031-007-9023-9
10.15265/IY-2016-017
10.1158/1078-0432.CCR-15-2347
10.1126/scitranslmed.aaa9116
10.1136/jamia.2009.002733
10.1111/j.1475-6773.2005.00444.x
10.1038/s41746-018-0067-8
10.1609/aaai.v31i1.10964
10.3115/v1/D14-1181
10.3115/1219044.1219075
10.18653/v1/N18-1100
10.18653/v1/P16-1162
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s41746-019-0113-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Veterinary Medicine
EISSN 2398-6352
ExternalDocumentID 10.1038/s41746-019-0113-1
PMC6550141
31304381
10_1038_s41746_019_0113_1
Genre Journal Article
GroupedDBID 0R~
53G
7RV
7X7
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
C6C
CCPQU
EBLON
EBS
EIHBH
EJD
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
NAO
NAPCQ
NO~
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
PPXIY
PUEGO
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c540t-3c20b2dbd3793dcd068fd5a41c44b5034242e9168e395bd74ac886450ea7c6a23
IEDL.DBID AAJSJ
ISSN 2398-6352
IngestDate Sun Oct 26 04:08:51 EDT 2025
Tue Sep 30 16:03:16 EDT 2025
Thu Sep 04 17:15:22 EDT 2025
Tue Oct 07 07:14:48 EDT 2025
Thu Jan 02 23:01:39 EST 2025
Thu Apr 24 23:09:40 EDT 2025
Wed Oct 01 01:52:12 EDT 2025
Fri Feb 21 02:39:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-3c20b2dbd3793dcd068fd5a41c44b5034242e9168e395bd74ac886450ea7c6a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9436-0637
0000-0001-8880-4764
OpenAccessLink https://doi.org/10.1038%2Fs41746-019-0113-1
PMID 31304381
PQID 2528862346
PQPubID 5061815
ParticipantIDs unpaywall_primary_10_1038_s41746_019_0113_1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6550141
proquest_miscellaneous_2258152419
proquest_journals_2528862346
pubmed_primary_31304381
crossref_primary_10_1038_s41746_019_0113_1
crossref_citationtrail_10_1038_s41746_019_0113_1
springer_journals_10_1038_s41746_019_0113_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-08
PublicationDateYYYYMMDD 2019-05-08
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-08
  day: 08
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ digital medicine
PublicationTitleAbbrev npj Digit. Med
PublicationTitleAlternate NPJ Digit Med
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Velupillai, Mowery, South, Kvist, Dalianis (CR8) 2015; 10
CR19
Rajkomar (CR1) 2018; 1
CR18
LeBlanc, Mazcko, Khanna (CR3) 2016; 22
CR15
CR14
CR13
CR12
CR11
Vainzof (CR4) 2008; 34
Kol (CR7) 2015; 7
Donnelly (CR30) 2006; 121
O’malley (CR31) 2005; 40
Jurafsky, Martin (CR26) 2000
Perotte (CR17) 2013; 21
Johnson (CR21) 2016; 3
Adin, Gilor (CR6) 2017; 90
Hochreiter, Schmidhuber (CR20) 1997; 9
Aronson, Lang (CR24) 2010; 17
CR29
Pivovarov (CR10) 2015; 58
CR28
CR27
Shickel, Tighe, Bihorac, Rashidi (CR2) 2018; 22
Gregory (CR5) 2012; 2012
CR23
CR22
Nie (CR16) 2018; 1
Demner-Fushman, Elhadad (CR9) 2016; 25
Pedregosa (CR25) 2011; 12
KJ O’malley (113_CR31) 2005; 40
D Demner-Fushman (113_CR9) 2016; 25
CA Adin (113_CR6) 2017; 90
113_CR18
113_CR19
113_CR23
B Shickel (113_CR2) 2018; 22
D Jurafsky (113_CR26) 2000
113_CR22
S Velupillai (113_CR8) 2015; 10
A Rajkomar (113_CR1) 2018; 1
M Vainzof (113_CR4) 2008; 34
A Nie (113_CR16) 2018; 1
AK LeBlanc (113_CR3) 2016; 22
113_CR27
113_CR28
113_CR29
113_CR12
113_CR13
MH Gregory (113_CR5) 2012; 2012
113_CR14
S Hochreiter (113_CR20) 1997; 9
113_CR15
F Pedregosa (113_CR25) 2011; 12
A Kol (113_CR7) 2015; 7
R Pivovarov (113_CR10) 2015; 58
AEW Johnson (113_CR21) 2016; 3
113_CR11
A Perotte (113_CR17) 2013; 21
K Donnelly (113_CR30) 2006; 121
AR Aronson (113_CR24) 2010; 17
References_xml – volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR25
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: CR22
– volume: 2012
  start-page: 764621
  year: 2012
  ident: CR5
  article-title: A review of translational animal models for knee osteoarthritis
  publication-title: Arthritis
  doi: 10.1155/2012/764621
– ident: CR18
– ident: CR14
– ident: CR12
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: CR20
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2000
  ident: CR26
  publication-title: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition
– ident: CR29
– volume: 58
  start-page: 156
  year: 2015
  end-page: 165
  ident: CR10
  article-title: Learning probabilistic phenotypes from heterogeneous ehr data
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2015.10.001
– volume: 21
  start-page: 231
  year: 2013
  end-page: 237
  ident: CR17
  article-title: Diagnosis code assignment: models and evaluation metrics
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/amiajnl-2013-002159
– volume: 3
  year: 2016
  ident: CR21
  article-title: Mimic-iii, a freely accessible critical care database
  publication-title: Sci. data
  doi: 10.1038/sdata.2016.35
– volume: 1
  start-page: 18
  year: 2018
  ident: CR1
  article-title: Scalable and accurate deep learning with electronic health records
  publication-title: NPJ Dig. Med.
  doi: 10.1038/s41746-018-0029-1
– volume: 10
  start-page: 183
  year: 2015
  ident: CR8
  article-title: Recent advances in clinical natural language processing in support of semantic analysis
  publication-title: Yearb. Med. Inform.
– ident: CR27
– ident: CR23
– volume: 121
  start-page: 279
  year: 2006
  ident: CR30
  article-title: Snomed-ct: The advanced terminology and coding system for ehealth
  publication-title: Stud. Health Technol. Inform.
– volume: 22
  start-page: 1589
  year: 2018
  end-page: 1604
  ident: CR2
  article-title: Deep ehr: a survey of recent advances in deep learning techniques for electronic health record (ehr) analysis
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2767063
– volume: 34
  start-page: 241
  year: 2008
  end-page: 248
  ident: CR4
  article-title: Animal models for genetic neuromuscular diseases
  publication-title: J. Mol. Neurosci.
  doi: 10.1007/s12031-007-9023-9
– ident: CR19
– ident: CR15
– volume: 25
  start-page: 224
  year: 2016
  end-page: 233
  ident: CR9
  article-title: Aspiring to unintended consequences of natural language processing: a review of recent developments in clinical and consumer-generated text processing
  publication-title: Yearb. Med. Inform.
  doi: 10.15265/IY-2016-017
– volume: 22
  start-page: 2133
  year: 2016
  end-page: 2138
  ident: CR3
  article-title: Defining the value of a comparative approach to cancer drug development
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-2347
– volume: 90
  start-page: 509
  year: 2017
  ident: CR6
  article-title: Focus: Comparative medicine: the diabetic dog as a translational model for human islet transplantation
  publication-title: Yale J. Biol. Med.
– volume: 7
  start-page: 308ps21
  year: 2015
  ident: CR7
  article-title: Companion animals: Translational scientist’s new best friends
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa9116
– ident: CR13
– ident: CR11
– volume: 17
  start-page: 229
  year: 2010
  end-page: 236
  ident: CR24
  article-title: An overview of metamap: historical perspective and recent advances
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/jamia.2009.002733
– ident: CR28
– volume: 40
  start-page: 1620
  year: 2005
  end-page: 1639
  ident: CR31
  article-title: Measuring diagnoses: Icd code accuracy
  publication-title: Health Serv. Res.
  doi: 10.1111/j.1475-6773.2005.00444.x
– volume: 1
  start-page: 60
  year: 2018
  ident: CR16
  article-title: Deeptag: inferring diagnoses from veterinary clinical notes
  publication-title: NPJ Dig. Med.
  doi: 10.1038/s41746-018-0067-8
– volume: 22
  start-page: 1589
  year: 2018
  ident: 113_CR2
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2767063
– volume: 25
  start-page: 224
  year: 2016
  ident: 113_CR9
  publication-title: Yearb. Med. Inform.
  doi: 10.15265/IY-2016-017
– ident: 113_CR13
  doi: 10.1609/aaai.v31i1.10964
– ident: 113_CR15
– volume: 3
  year: 2016
  ident: 113_CR21
  publication-title: Sci. data
  doi: 10.1038/sdata.2016.35
– volume: 34
  start-page: 241
  year: 2008
  ident: 113_CR4
  publication-title: J. Mol. Neurosci.
  doi: 10.1007/s12031-007-9023-9
– volume: 10
  start-page: 183
  year: 2015
  ident: 113_CR8
  publication-title: Yearb. Med. Inform.
– ident: 113_CR23
– volume: 17
  start-page: 229
  year: 2010
  ident: 113_CR24
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/jamia.2009.002733
– volume: 7
  start-page: 308ps21
  year: 2015
  ident: 113_CR7
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa9116
– volume: 22
  start-page: 2133
  year: 2016
  ident: 113_CR3
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-2347
– volume: 9
  start-page: 1735
  year: 1997
  ident: 113_CR20
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 1
  start-page: 60
  year: 2018
  ident: 113_CR16
  publication-title: NPJ Dig. Med.
  doi: 10.1038/s41746-018-0067-8
– ident: 113_CR27
– ident: 113_CR11
– volume: 21
  start-page: 231
  year: 2013
  ident: 113_CR17
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/amiajnl-2013-002159
– ident: 113_CR19
  doi: 10.3115/v1/D14-1181
– ident: 113_CR28
  doi: 10.3115/1219044.1219075
– ident: 113_CR14
– ident: 113_CR22
  doi: 10.18653/v1/N18-1100
– ident: 113_CR18
– volume: 12
  start-page: 2825
  year: 2011
  ident: 113_CR25
  publication-title: J. Mach. Learn. Res.
– volume: 121
  start-page: 279
  year: 2006
  ident: 113_CR30
  publication-title: Stud. Health Technol. Inform.
– volume: 2012
  start-page: 764621
  year: 2012
  ident: 113_CR5
  publication-title: Arthritis
  doi: 10.1155/2012/764621
– ident: 113_CR29
  doi: 10.18653/v1/P16-1162
– volume: 40
  start-page: 1620
  year: 2005
  ident: 113_CR31
  publication-title: Health Serv. Res.
  doi: 10.1111/j.1475-6773.2005.00444.x
– volume: 90
  start-page: 509
  year: 2017
  ident: 113_CR6
  publication-title: Yale J. Biol. Med.
– volume: 1
  start-page: 18
  year: 2018
  ident: 113_CR1
  publication-title: NPJ Dig. Med.
  doi: 10.1038/s41746-018-0029-1
– volume: 58
  start-page: 156
  year: 2015
  ident: 113_CR10
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2015.10.001
– ident: 113_CR12
– volume-title: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition
  year: 2000
  ident: 113_CR26
SSID ssj0002048946
Score 2.2260723
Snippet Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35
SubjectTerms Algorithms
Biomedicine
Biotechnology
Digital technology
Health informatics
Medical diagnosis
Medicine
Medicine & Public Health
Performance evaluation
Veterinary medicine
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3raxQxEB_qFXx8ED1fp1Ui-MkSupvnriCi0lKEHiKt1E9LXqsHx-7p3VX8753s6zwK59dNwm52ZpJfZia_AXilpTIIExzlTlsqSl5S6wWjSdCJZ0LnrnG4nU3V6YX4dCkv92Da34WJaZX9mtgs1L520Ud-xCTLEH1zod4tftJYNSpGV_sSGqYrreDfNhRjN2CfRWasEex_OJ5-_jJ4XSJNbS5UH97k2dFSICaPh-qYNpRymm5vUNdQ5_XkySGCegdurauF-fPbzOf_bFIn9-Buhy7J-1Yd7sNeqMZw86yLn49h_DVmvzRXcEn_9AF8w6fn5vsbMus9DMSsVzVi2eDJ1WaEb9PyZkvi6rjlkauZIfOYSk6XKOpAeucnaerrYI-HcHFyfP7xlHYlF6hD6LZCibHEMm89R7v1zicqK700InVCWBnpAgULiCizwHNpvRbGoVSETILRThnGH8GoqqvwBEiivE9tzLXK8MipubGyTBzTLi-1VSqbQNL_58J1fOSxLMa8aOLiPCta0RQomiKKpkgn8HoYsmjJOHZ1PuiFV3R2uSw2WjSBl0MzWlQMk5gq1Gvsw2SGqEak-QQet7Ie3sZxy4-kaBPQW1owdIhs3dst1exHw9qtZAzh4sjDXl82n7VjEoeDSv1_yk93T_kZ3GaNnkuaZAcwWv1ah-cIqVb2RWcnfwHo5R5v
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrcTxwH0ECjIST1Qpie_lrUJUFVIrHrpV-xT5CqxYZSs2KYJfzzgXLCsV9dljxWPPeL54Po8B3ighDcIElzKnbMpLVqbWc5pmQWWecjV17YHb0bE8nPFPZ-JsC8RwF6Yl7bclLdttemCHvVtxhM7x3zeye3KW4gbjyxuwLQVC8Alsz44_75-3D8lNdYpBlA4ZTKY3-67HoA1gucmPHJOkd-BWU12Ynz_MYvFXHDq4B6eDBh395NteU9s99-uf4o7XVvE-3O2RKdnvBB_AVqgews2jPvf-CM5PQ31ivrwn8-EcgpimXiLiDZ5cRlZNe7WX-I68N18Rt4yBkVzODVlEwnm6QoMIZDgiJe0rPCjxGGYHH08-HKb9wwypQ4BX47rSzFJvPUPv9s5nUpdeGJ47zq2IRQU5DYg7dWBTYb3ixmktuciCUU4ayp7ApFpW4RmQTHqf28jI0vhjqpixoswcVW5aKiulTiAblqpwfdXy-HjGomiz50wX3bQVOG1FnLYiT-Dt2OWiK9lxlfDOsP5F772rggqK46WMywRej83odzGZYqqwbFCGCo3Yh-fTBJ525jJ-jSEwiKXTElBrhjQKxJre6y3V_Gtb21uKmOjFnruDyf0Z1hVK7I5W-X-Vn19L-gXcpq1JijTTOzCpvzfhJeKw2r7qve43eIYs5A
  priority: 102
  providerName: Unpaywall
Title VetTag: improving automated veterinary diagnosis coding via large-scale language modeling
URI https://link.springer.com/article/10.1038/s41746-019-0113-1
https://www.ncbi.nlm.nih.gov/pubmed/31304381
https://www.proquest.com/docview/2528862346
https://www.proquest.com/docview/2258152419
https://pubmed.ncbi.nlm.nih.gov/PMC6550141
https://www.nature.com/articles/s41746-019-0113-1.pdf
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: NAO
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: 7X7
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: BENPR
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: AAJSJ
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: C6C
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBZbCrs8lN3ntQsa7GnFzNbde0tDSwk0lK0Z6ZPRzV0gOGVxOvbvd-TbGgIdezLIR7akc4Q-nXP0CaGPkgsNMMHG1EoTs4IWsXGMxImXiSNMZrZ2uJ1PxdmMTeZ83vJsh7MwW_H7mrp7zQA0h11vyOtJaQxbnT0FdqkGaG80mnyb9C6VwEGbMdHFLqn6vFN3e_XZgZS7mZF9ePQperwpb_TvX3q5vLMCnT5D-y10xKNG18_RA1--QI_O2-D4S3T13VeX-voLXnSOAqw31QogqXf4NqS91GdvsWuy6xZrbFdh5cK3C42XISM8XoPGPO58mLi-JgckXqHZ6cnl-Cxub06ILSCwCgaeJIY44yhMP2ddIlThuGapZczwwPrHiAdgqDzNuHGSaauUYDzxWlqhCX2NBuWq9G8RToRzqQkpUwp2jpJqw4vEEmmzQhohVISSbkRz29KKh9stlnkd3qYqb5SQgxLyoIQ8jdCnvspNw6lxn_Bhp6a8nV7rnHAC7SWUiQh96F_DxAjRDl361QZkCFcATliaRehNo9X-bxRW7sBtFiG5pe9eIJBub78pFz9q8m3BQyQWah51lvG3Wfd04qg3nn93-d1_ffsAPSG1gfM4UYdoUP3c-PcAlCozRA_lXA7baQLP45PpxVcoHYvxsHY-QNlsejG6-gNYWxCM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6aNonBA4JyKwwwErwwRUt8yQVpQlw2dWytEOrQeAqO7UClKimk3bQ_x2_jOIlTqknlaa-Jrdg5x_Z3Lv4OwMtIhBJhgvKYijKP5yz3Ms2p55vI15RHiaodbsNRODjln87E2Qb8cXdhbFql2xPrjVqXyvrI96igMaJvxsO3s1-erRplo6uuhIZsSyvo_ZpirL3YcWwuL9CEq_aPPqK8X1F6eDD-MPDaKgOeQrQyx0FSP6M60wxVVSvth3GuheSB4jwTliGPU4MgKjYsEZmOuFQ4EC58IyMVSkt8gEfAFmc8QeNv6_3B6POXzstjaXETHrpwKov3Ko42gDXibZpSwLxg9UC8gnKvJmt2EdtbsL0oZvLyQk6n_xyKh3fgdotmybtG_e7Chil6cGPYxut70Ptqs23qK7_EPb0H3_DpWP54QybOo0HkYl4idjaanC976CYNcFIRVdojlpxPJJna1HWvQtUyxDlbSV3PB1vch9Nr-fkPYLMoC_MIiB9qHWQ2tytGEzdiMhO5r2ikkjzKwjDug-_-c6pa_nNbhmOa1nF4FqeNaFIUTWpFkwZ9eN11mTXkH-sa7zjhpe0-UKVLre3Di-41rmAblpGFKRfYhooYURQPkj48bGTdfY0hxLAkbH2IVrSga2DZwVffFJOfNUt4KGzIGHvuOn1ZDmvNJHY7lfr_lB-vn_Jz2B6MhyfpydHo-AncpLXOC8-Pd2Bz_nthniKcm2fP2jVD4Pt1L9O_fu1asw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qC7U-iN-NVl3BJ0tost_x7VCPetoi2Ep9CvsVPThyxctV_O-dzSXR46Di884mm8zM7m9nfjsL8FIJaRAmuJQ5ZVNesSq1ntM0CyrzlKvCtQG3k1N5fM4nF-JiC0R_FqYl7bclLdtpumeHHS04Que4943snpylOMH46gbsaMUkGvPOaDT5PBmCK7EabcFln8VkerP_-jq0AS43OZJDovQW3FzWl-bXTzOb_bUWje_A7Q5EktFq2HdhK9T3YPekS5Pfh69fQnNmvr0m0z5kQMyymSM4DZ5cRQJMewqX-BXPbrogbh7XMHI1NWQWueHpAnUXSB_NJO2FOSjxAM7H787eHKfdHQqpQyzWoApoZqm3nqEjeuczqSsvDM8d51bE-n-cBoSIOrBCWK-4cVpLLrJglJOGsoewXc_rsA8kk97nNpKnNO4hFTNWVJmjyhWVslLqBLL-j5auKzAe77mYlW2im-lypYQSlVBGJZR5Aq-GLper6hrXCR_0aio7R1uUVFAcL2VcJvBiaEYXiXkPU4f5EmWo0AhTeF4k8Gil1eFtDNfwWOUsAbWm70Eglt9eb6mn39sy3FLEnCz2POwt48-wrvmIw8F4_v3Jj__r2c9h99Pbcfnx_emHJ7BHW1sXaaYPYLv5sQxPET019lnnK78BjI4S-w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrcTxwH0ECjIST1Qpie_lrUJUFVIrHrpV-xT5CqxYZSs2KYJfzzgXLCsV9dljxWPPeL54Po8B3ighDcIElzKnbMpLVqbWc5pmQWWecjV17YHb0bE8nPFPZ-JsC8RwF6Yl7bclLdttemCHvVtxhM7x3zeye3KW4gbjyxuwLQVC8Alsz44_75-3D8lNdYpBlA4ZTKY3-67HoA1gucmPHJOkd-BWU12Ynz_MYvFXHDq4B6eDBh395NteU9s99-uf4o7XVvE-3O2RKdnvBB_AVqgews2jPvf-CM5PQ31ivrwn8-EcgpimXiLiDZ5cRlZNe7WX-I68N18Rt4yBkVzODVlEwnm6QoMIZDgiJe0rPCjxGGYHH08-HKb9wwypQ4BX47rSzFJvPUPv9s5nUpdeGJ47zq2IRQU5DYg7dWBTYb3ixmktuciCUU4ayp7ApFpW4RmQTHqf28jI0vhjqpixoswcVW5aKiulTiAblqpwfdXy-HjGomiz50wX3bQVOG1FnLYiT-Dt2OWiK9lxlfDOsP5F772rggqK46WMywRej83odzGZYqqwbFCGCo3Yh-fTBJ525jJ-jSEwiKXTElBrhjQKxJre6y3V_Gtb21uKmOjFnruDyf0Z1hVK7I5W-X-Vn19L-gXcpq1JijTTOzCpvzfhJeKw2r7qve43eIYs5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VetTag%3A+improving+automated+veterinary+diagnosis+coding+via+large-scale+language+modeling&rft.jtitle=NPJ+digital+medicine&rft.au=Zhang%2C+Yuhui&rft.au=Nie%2C+Allen&rft.au=Zehnder%2C+Ashley&rft.au=Page%2C+Rodney+L.&rft.date=2019-05-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2398-6352&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1038%2Fs41746-019-0113-1&rft.externalDocID=10_1038_s41746_019_0113_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon