VetTag: improving automated veterinary diagnosis coding via large-scale language modeling
Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational research. Recent machine learning effort is limi...
Saved in:
| Published in | NPJ digital medicine Vol. 2; no. 1; p. 35 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
08.05.2019
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2398-6352 2398-6352 |
| DOI | 10.1038/s41746-019-0113-1 |
Cover
| Abstract | Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational research. Recent machine learning effort is limited to predicting 42 top-level diagnosis categories from veterinary notes. Here we develop a large-scale algorithm to automatically predict all 4577 standard veterinary diagnosis codes from free text. We train our algorithm on a curated dataset of over 100 K expert labeled veterinary notes and over one million unlabeled notes. Our algorithm is based on the adapted Transformer architecture and we demonstrate that large-scale language modeling on the unlabeled notes via pretraining and as an auxiliary objective during supervised learning greatly improves performance. We systematically evaluate the performance of the model and several baselines in challenging settings where algorithms trained on one hospital are evaluated in a different hospital with substantial domain shift. In addition, we show that hierarchical training can address severe data imbalances for fine-grained diagnosis with a few training cases, and we provide interpretation for what is learned by the deep network. Our algorithm addresses an important challenge in veterinary medicine, and our model and experiments add insights into the power of unsupervised learning for clinical natural language processing. |
|---|---|
| AbstractList | Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational research. Recent machine learning effort is limited to predicting 42 top-level diagnosis categories from veterinary notes. Here we develop a large-scale algorithm to automatically predict all 4577 standard veterinary diagnosis codes from free text. We train our algorithm on a curated dataset of over 100 K expert labeled veterinary notes and over one million unlabeled notes. Our algorithm is based on the adapted Transformer architecture and we demonstrate that large-scale language modeling on the unlabeled notes via pretraining and as an auxiliary objective during supervised learning greatly improves performance. We systematically evaluate the performance of the model and several baselines in challenging settings where algorithms trained on one hospital are evaluated in a different hospital with substantial domain shift. In addition, we show that hierarchical training can address severe data imbalances for fine-grained diagnosis with a few training cases, and we provide interpretation for what is learned by the deep network. Our algorithm addresses an important challenge in veterinary medicine, and our model and experiments add insights into the power of unsupervised learning for clinical natural language processing. Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational research. Recent machine learning effort is limited to predicting 42 top-level diagnosis categories from veterinary notes. Here we develop a large-scale algorithm to automatically predict all 4577 standard veterinary diagnosis codes from free text. We train our algorithm on a curated dataset of over 100 K expert labeled veterinary notes and over one million unlabeled notes. Our algorithm is based on the adapted Transformer architecture and we demonstrate that large-scale language modeling on the unlabeled notes via pretraining and as an auxiliary objective during supervised learning greatly improves performance. We systematically evaluate the performance of the model and several baselines in challenging settings where algorithms trained on one hospital are evaluated in a different hospital with substantial domain shift. In addition, we show that hierarchical training can address severe data imbalances for fine-grained diagnosis with a few training cases, and we provide interpretation for what is learned by the deep network. Our algorithm addresses an important challenge in veterinary medicine, and our model and experiments add insights into the power of unsupervised learning for clinical natural language processing.Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational research. Recent machine learning effort is limited to predicting 42 top-level diagnosis categories from veterinary notes. Here we develop a large-scale algorithm to automatically predict all 4577 standard veterinary diagnosis codes from free text. We train our algorithm on a curated dataset of over 100 K expert labeled veterinary notes and over one million unlabeled notes. Our algorithm is based on the adapted Transformer architecture and we demonstrate that large-scale language modeling on the unlabeled notes via pretraining and as an auxiliary objective during supervised learning greatly improves performance. We systematically evaluate the performance of the model and several baselines in challenging settings where algorithms trained on one hospital are evaluated in a different hospital with substantial domain shift. In addition, we show that hierarchical training can address severe data imbalances for fine-grained diagnosis with a few training cases, and we provide interpretation for what is learned by the deep network. Our algorithm addresses an important challenge in veterinary medicine, and our model and experiments add insights into the power of unsupervised learning for clinical natural language processing. |
| ArticleNumber | 35 |
| Author | Nie, Allen Page, Rodney L. Zhang, Yuhui Zou, James Zehnder, Ashley |
| Author_xml | – sequence: 1 givenname: Yuhui surname: Zhang fullname: Zhang, Yuhui organization: Department of Computer Science and Technology, Tsinghua University – sequence: 2 givenname: Allen surname: Nie fullname: Nie, Allen organization: Department of Biomedical Data Science, Stanford University – sequence: 3 givenname: Ashley orcidid: 0000-0001-9436-0637 surname: Zehnder fullname: Zehnder, Ashley organization: Department of Biomedical Data Science, Stanford University – sequence: 4 givenname: Rodney L. surname: Page fullname: Page, Rodney L. organization: Department of Clinical Sciences, Colorado State University – sequence: 5 givenname: James orcidid: 0000-0001-8880-4764 surname: Zou fullname: Zou, James email: jamesz@stanford.edu organization: Department of Biomedical Data Science, Stanford University, Chan-Zuckerberg Biohub |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31304381$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1rFTEUhoNUbK39AW5kwI2b0XzPjAuhFL-g4KYKrsKZ5NwxZSa5JjNX-u_NcK-2FhQXIQfyvue858ljchRiQEKeMvqSUdG-ypI1UteUdeUwUbMH5ISLrq21UPzoTn1MznK-ppRyKttO6kfkWDBBpWjZCfn6BecrGF5XftqmuPNhqGCZ4wQzumqHMyYfIN1UzsMQYva5stGtqp2HaoQ0YJ0tjFjqMCwwYDVFh2NRPCEPNzBmPDvcp-Tzu7dXFx_qy0_vP16cX9ZWSTrXwnLac9c70XTCWUd1u3EKJLNS9ooKySXHjukWRad610iwbaulogiN1cDFKeH7vkvYws0PGEezTX4qoQ2jZkVl9qhMQWVWVIYV05u9abv0EzqLYU5wa4zgzZ8vwX8zQ9wZrRRlcm3w4tAgxe8L5tlMPlscCwaMSzacq5YpLllXpM_vSa_jkkJhYrjiZRkupC6qZ3cT_Y7y66uKgO0FNsWcE27-a83mnsf6GWYf16X8-E_ngWouU8KA6Tb0300_AfqtyEI |
| CitedBy_id | crossref_primary_10_1016_j_isci_2024_109334 crossref_primary_10_1111_vru_13163 crossref_primary_10_1038_s41598_023_45155_7 crossref_primary_10_1109_ACCESS_2023_3324046 crossref_primary_10_3390_informatics11030057 crossref_primary_10_1038_s41746_021_00404_9 crossref_primary_10_17555_jvc_2023_40_4_243 crossref_primary_10_1111_vco_13035 crossref_primary_10_1016_j_prevetmed_2023_105850 crossref_primary_10_12968_coan_2022_0028a crossref_primary_10_1007_s11259_023_10146_6 crossref_primary_10_2147_CMAR_S239795 crossref_primary_10_3389_fvets_2024_1352726 crossref_primary_10_1093_jamiaopen_ooaa005 crossref_primary_10_3389_fvets_2021_651238 |
| Cites_doi | 10.1155/2012/764621 10.1162/neco.1997.9.8.1735 10.1016/j.jbi.2015.10.001 10.1136/amiajnl-2013-002159 10.1038/sdata.2016.35 10.1038/s41746-018-0029-1 10.1109/JBHI.2017.2767063 10.1007/s12031-007-9023-9 10.15265/IY-2016-017 10.1158/1078-0432.CCR-15-2347 10.1126/scitranslmed.aaa9116 10.1136/jamia.2009.002733 10.1111/j.1475-6773.2005.00444.x 10.1038/s41746-018-0067-8 10.1609/aaai.v31i1.10964 10.3115/v1/D14-1181 10.3115/1219044.1219075 10.18653/v1/N18-1100 10.18653/v1/P16-1162 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/s41746-019-0113-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Veterinary Medicine |
| EISSN | 2398-6352 |
| ExternalDocumentID | 10.1038/s41746-019-0113-1 PMC6550141 31304381 10_1038_s41746_019_0113_1 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 53G 7RV 7X7 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR C6C CCPQU EBLON EBS EIHBH EJD FYUFA GROUPED_DOAJ HMCUK HYE M~E NAO NAPCQ NO~ OK1 PGMZT PIMPY RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT PPXIY PUEGO NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c540t-3c20b2dbd3793dcd068fd5a41c44b5034242e9168e395bd74ac886450ea7c6a23 |
| IEDL.DBID | AAJSJ |
| ISSN | 2398-6352 |
| IngestDate | Sun Oct 26 04:08:51 EDT 2025 Tue Sep 30 16:03:16 EDT 2025 Thu Sep 04 17:15:22 EDT 2025 Tue Oct 07 07:14:48 EDT 2025 Thu Jan 02 23:01:39 EST 2025 Thu Apr 24 23:09:40 EDT 2025 Wed Oct 01 01:52:12 EDT 2025 Fri Feb 21 02:39:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-3c20b2dbd3793dcd068fd5a41c44b5034242e9168e395bd74ac886450ea7c6a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9436-0637 0000-0001-8880-4764 |
| OpenAccessLink | https://doi.org/10.1038%2Fs41746-019-0113-1 |
| PMID | 31304381 |
| PQID | 2528862346 |
| PQPubID | 5061815 |
| ParticipantIDs | unpaywall_primary_10_1038_s41746_019_0113_1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6550141 proquest_miscellaneous_2258152419 proquest_journals_2528862346 pubmed_primary_31304381 crossref_primary_10_1038_s41746_019_0113_1 crossref_citationtrail_10_1038_s41746_019_0113_1 springer_journals_10_1038_s41746_019_0113_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-08 |
| PublicationDateYYYYMMDD | 2019-05-08 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | NPJ digital medicine |
| PublicationTitleAbbrev | npj Digit. Med |
| PublicationTitleAlternate | NPJ Digit Med |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Velupillai, Mowery, South, Kvist, Dalianis (CR8) 2015; 10 CR19 Rajkomar (CR1) 2018; 1 CR18 LeBlanc, Mazcko, Khanna (CR3) 2016; 22 CR15 CR14 CR13 CR12 CR11 Vainzof (CR4) 2008; 34 Kol (CR7) 2015; 7 Donnelly (CR30) 2006; 121 O’malley (CR31) 2005; 40 Jurafsky, Martin (CR26) 2000 Perotte (CR17) 2013; 21 Johnson (CR21) 2016; 3 Adin, Gilor (CR6) 2017; 90 Hochreiter, Schmidhuber (CR20) 1997; 9 Aronson, Lang (CR24) 2010; 17 CR29 Pivovarov (CR10) 2015; 58 CR28 CR27 Shickel, Tighe, Bihorac, Rashidi (CR2) 2018; 22 Gregory (CR5) 2012; 2012 CR23 CR22 Nie (CR16) 2018; 1 Demner-Fushman, Elhadad (CR9) 2016; 25 Pedregosa (CR25) 2011; 12 KJ O’malley (113_CR31) 2005; 40 D Demner-Fushman (113_CR9) 2016; 25 CA Adin (113_CR6) 2017; 90 113_CR18 113_CR19 113_CR23 B Shickel (113_CR2) 2018; 22 D Jurafsky (113_CR26) 2000 113_CR22 S Velupillai (113_CR8) 2015; 10 A Rajkomar (113_CR1) 2018; 1 M Vainzof (113_CR4) 2008; 34 A Nie (113_CR16) 2018; 1 AK LeBlanc (113_CR3) 2016; 22 113_CR27 113_CR28 113_CR29 113_CR12 113_CR13 MH Gregory (113_CR5) 2012; 2012 113_CR14 S Hochreiter (113_CR20) 1997; 9 113_CR15 F Pedregosa (113_CR25) 2011; 12 A Kol (113_CR7) 2015; 7 R Pivovarov (113_CR10) 2015; 58 AEW Johnson (113_CR21) 2016; 3 113_CR11 A Perotte (113_CR17) 2013; 21 K Donnelly (113_CR30) 2006; 121 AR Aronson (113_CR24) 2010; 17 |
| References_xml | – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR25 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – ident: CR22 – volume: 2012 start-page: 764621 year: 2012 ident: CR5 article-title: A review of translational animal models for knee osteoarthritis publication-title: Arthritis doi: 10.1155/2012/764621 – ident: CR18 – ident: CR14 – ident: CR12 – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: CR20 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – year: 2000 ident: CR26 publication-title: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition – ident: CR29 – volume: 58 start-page: 156 year: 2015 end-page: 165 ident: CR10 article-title: Learning probabilistic phenotypes from heterogeneous ehr data publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2015.10.001 – volume: 21 start-page: 231 year: 2013 end-page: 237 ident: CR17 article-title: Diagnosis code assignment: models and evaluation metrics publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/amiajnl-2013-002159 – volume: 3 year: 2016 ident: CR21 article-title: Mimic-iii, a freely accessible critical care database publication-title: Sci. data doi: 10.1038/sdata.2016.35 – volume: 1 start-page: 18 year: 2018 ident: CR1 article-title: Scalable and accurate deep learning with electronic health records publication-title: NPJ Dig. Med. doi: 10.1038/s41746-018-0029-1 – volume: 10 start-page: 183 year: 2015 ident: CR8 article-title: Recent advances in clinical natural language processing in support of semantic analysis publication-title: Yearb. Med. Inform. – ident: CR27 – ident: CR23 – volume: 121 start-page: 279 year: 2006 ident: CR30 article-title: Snomed-ct: The advanced terminology and coding system for ehealth publication-title: Stud. Health Technol. Inform. – volume: 22 start-page: 1589 year: 2018 end-page: 1604 ident: CR2 article-title: Deep ehr: a survey of recent advances in deep learning techniques for electronic health record (ehr) analysis publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2767063 – volume: 34 start-page: 241 year: 2008 end-page: 248 ident: CR4 article-title: Animal models for genetic neuromuscular diseases publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-007-9023-9 – ident: CR19 – ident: CR15 – volume: 25 start-page: 224 year: 2016 end-page: 233 ident: CR9 article-title: Aspiring to unintended consequences of natural language processing: a review of recent developments in clinical and consumer-generated text processing publication-title: Yearb. Med. Inform. doi: 10.15265/IY-2016-017 – volume: 22 start-page: 2133 year: 2016 end-page: 2138 ident: CR3 article-title: Defining the value of a comparative approach to cancer drug development publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-2347 – volume: 90 start-page: 509 year: 2017 ident: CR6 article-title: Focus: Comparative medicine: the diabetic dog as a translational model for human islet transplantation publication-title: Yale J. Biol. Med. – volume: 7 start-page: 308ps21 year: 2015 ident: CR7 article-title: Companion animals: Translational scientist’s new best friends publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa9116 – ident: CR13 – ident: CR11 – volume: 17 start-page: 229 year: 2010 end-page: 236 ident: CR24 article-title: An overview of metamap: historical perspective and recent advances publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/jamia.2009.002733 – ident: CR28 – volume: 40 start-page: 1620 year: 2005 end-page: 1639 ident: CR31 article-title: Measuring diagnoses: Icd code accuracy publication-title: Health Serv. Res. doi: 10.1111/j.1475-6773.2005.00444.x – volume: 1 start-page: 60 year: 2018 ident: CR16 article-title: Deeptag: inferring diagnoses from veterinary clinical notes publication-title: NPJ Dig. Med. doi: 10.1038/s41746-018-0067-8 – volume: 22 start-page: 1589 year: 2018 ident: 113_CR2 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2767063 – volume: 25 start-page: 224 year: 2016 ident: 113_CR9 publication-title: Yearb. Med. Inform. doi: 10.15265/IY-2016-017 – ident: 113_CR13 doi: 10.1609/aaai.v31i1.10964 – ident: 113_CR15 – volume: 3 year: 2016 ident: 113_CR21 publication-title: Sci. data doi: 10.1038/sdata.2016.35 – volume: 34 start-page: 241 year: 2008 ident: 113_CR4 publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-007-9023-9 – volume: 10 start-page: 183 year: 2015 ident: 113_CR8 publication-title: Yearb. Med. Inform. – ident: 113_CR23 – volume: 17 start-page: 229 year: 2010 ident: 113_CR24 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/jamia.2009.002733 – volume: 7 start-page: 308ps21 year: 2015 ident: 113_CR7 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa9116 – volume: 22 start-page: 2133 year: 2016 ident: 113_CR3 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-2347 – volume: 9 start-page: 1735 year: 1997 ident: 113_CR20 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 1 start-page: 60 year: 2018 ident: 113_CR16 publication-title: NPJ Dig. Med. doi: 10.1038/s41746-018-0067-8 – ident: 113_CR27 – ident: 113_CR11 – volume: 21 start-page: 231 year: 2013 ident: 113_CR17 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/amiajnl-2013-002159 – ident: 113_CR19 doi: 10.3115/v1/D14-1181 – ident: 113_CR28 doi: 10.3115/1219044.1219075 – ident: 113_CR14 – ident: 113_CR22 doi: 10.18653/v1/N18-1100 – ident: 113_CR18 – volume: 12 start-page: 2825 year: 2011 ident: 113_CR25 publication-title: J. Mach. Learn. Res. – volume: 121 start-page: 279 year: 2006 ident: 113_CR30 publication-title: Stud. Health Technol. Inform. – volume: 2012 start-page: 764621 year: 2012 ident: 113_CR5 publication-title: Arthritis doi: 10.1155/2012/764621 – ident: 113_CR29 doi: 10.18653/v1/P16-1162 – volume: 40 start-page: 1620 year: 2005 ident: 113_CR31 publication-title: Health Serv. Res. doi: 10.1111/j.1475-6773.2005.00444.x – volume: 90 start-page: 509 year: 2017 ident: 113_CR6 publication-title: Yale J. Biol. Med. – volume: 1 start-page: 18 year: 2018 ident: 113_CR1 publication-title: NPJ Dig. Med. doi: 10.1038/s41746-018-0029-1 – volume: 58 start-page: 156 year: 2015 ident: 113_CR10 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2015.10.001 – ident: 113_CR12 – volume-title: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition year: 2000 ident: 113_CR26 |
| SSID | ssj0002048946 |
| Score | 2.2260723 |
| Snippet | Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of systematic coding is a major barrier... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 35 |
| SubjectTerms | Algorithms Biomedicine Biotechnology Digital technology Health informatics Medical diagnosis Medicine Medicine & Public Health Performance evaluation Veterinary medicine |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3raxQxEB_qFXx8ED1fp1Ui-MkSupvnriCi0lKEHiKt1E9LXqsHx-7p3VX8753s6zwK59dNwm52ZpJfZia_AXilpTIIExzlTlsqSl5S6wWjSdCJZ0LnrnG4nU3V6YX4dCkv92Da34WJaZX9mtgs1L520Ud-xCTLEH1zod4tftJYNSpGV_sSGqYrreDfNhRjN2CfRWasEex_OJ5-_jJ4XSJNbS5UH97k2dFSICaPh-qYNpRymm5vUNdQ5_XkySGCegdurauF-fPbzOf_bFIn9-Buhy7J-1Yd7sNeqMZw86yLn49h_DVmvzRXcEn_9AF8w6fn5vsbMus9DMSsVzVi2eDJ1WaEb9PyZkvi6rjlkauZIfOYSk6XKOpAeucnaerrYI-HcHFyfP7xlHYlF6hD6LZCibHEMm89R7v1zicqK700InVCWBnpAgULiCizwHNpvRbGoVSETILRThnGH8GoqqvwBEiivE9tzLXK8MipubGyTBzTLi-1VSqbQNL_58J1fOSxLMa8aOLiPCta0RQomiKKpkgn8HoYsmjJOHZ1PuiFV3R2uSw2WjSBl0MzWlQMk5gq1Gvsw2SGqEak-QQet7Ie3sZxy4-kaBPQW1owdIhs3dst1exHw9qtZAzh4sjDXl82n7VjEoeDSv1_yk93T_kZ3GaNnkuaZAcwWv1ah-cIqVb2RWcnfwHo5R5v priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrcTxwH0ECjIST1Qpie_lrUJUFVIrHrpV-xT5CqxYZSs2KYJfzzgXLCsV9dljxWPPeL54Po8B3ighDcIElzKnbMpLVqbWc5pmQWWecjV17YHb0bE8nPFPZ-JsC8RwF6Yl7bclLdttemCHvVtxhM7x3zeye3KW4gbjyxuwLQVC8Alsz44_75-3D8lNdYpBlA4ZTKY3-67HoA1gucmPHJOkd-BWU12Ynz_MYvFXHDq4B6eDBh395NteU9s99-uf4o7XVvE-3O2RKdnvBB_AVqgews2jPvf-CM5PQ31ivrwn8-EcgpimXiLiDZ5cRlZNe7WX-I68N18Rt4yBkVzODVlEwnm6QoMIZDgiJe0rPCjxGGYHH08-HKb9wwypQ4BX47rSzFJvPUPv9s5nUpdeGJ47zq2IRQU5DYg7dWBTYb3ixmktuciCUU4ayp7ApFpW4RmQTHqf28jI0vhjqpixoswcVW5aKiulTiAblqpwfdXy-HjGomiz50wX3bQVOG1FnLYiT-Dt2OWiK9lxlfDOsP5F772rggqK46WMywRej83odzGZYqqwbFCGCo3Yh-fTBJ525jJ-jSEwiKXTElBrhjQKxJre6y3V_Gtb21uKmOjFnruDyf0Z1hVK7I5W-X-Vn19L-gXcpq1JijTTOzCpvzfhJeKw2r7qve43eIYs5A priority: 102 providerName: Unpaywall |
| Title | VetTag: improving automated veterinary diagnosis coding via large-scale language modeling |
| URI | https://link.springer.com/article/10.1038/s41746-019-0113-1 https://www.ncbi.nlm.nih.gov/pubmed/31304381 https://www.proquest.com/docview/2528862346 https://www.proquest.com/docview/2258152419 https://pubmed.ncbi.nlm.nih.gov/PMC6550141 https://www.nature.com/articles/s41746-019-0113-1.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: NAO dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: 7X7 dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2398-6352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: BENPR dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: AAJSJ dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: C6C dateStart: 20181201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFBZbCrs8lN3ntQsa7GnFzNbde0tDSwk0lK0Z6ZPRzV0gOGVxOvbvd-TbGgIdezLIR7akc4Q-nXP0CaGPkgsNMMHG1EoTs4IWsXGMxImXiSNMZrZ2uJ1PxdmMTeZ83vJsh7MwW_H7mrp7zQA0h11vyOtJaQxbnT0FdqkGaG80mnyb9C6VwEGbMdHFLqn6vFN3e_XZgZS7mZF9ePQperwpb_TvX3q5vLMCnT5D-y10xKNG18_RA1--QI_O2-D4S3T13VeX-voLXnSOAqw31QogqXf4NqS91GdvsWuy6xZrbFdh5cK3C42XISM8XoPGPO58mLi-JgckXqHZ6cnl-Cxub06ILSCwCgaeJIY44yhMP2ddIlThuGapZczwwPrHiAdgqDzNuHGSaauUYDzxWlqhCX2NBuWq9G8RToRzqQkpUwp2jpJqw4vEEmmzQhohVISSbkRz29KKh9stlnkd3qYqb5SQgxLyoIQ8jdCnvspNw6lxn_Bhp6a8nV7rnHAC7SWUiQh96F_DxAjRDl361QZkCFcATliaRehNo9X-bxRW7sBtFiG5pe9eIJBub78pFz9q8m3BQyQWah51lvG3Wfd04qg3nn93-d1_ffsAPSG1gfM4UYdoUP3c-PcAlCozRA_lXA7baQLP45PpxVcoHYvxsHY-QNlsejG6-gNYWxCM |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6aNonBA4JyKwwwErwwRUt8yQVpQlw2dWytEOrQeAqO7UClKimk3bQ_x2_jOIlTqknlaa-Jrdg5x_Z3Lv4OwMtIhBJhgvKYijKP5yz3Ms2p55vI15RHiaodbsNRODjln87E2Qb8cXdhbFql2xPrjVqXyvrI96igMaJvxsO3s1-erRplo6uuhIZsSyvo_ZpirL3YcWwuL9CEq_aPPqK8X1F6eDD-MPDaKgOeQrQyx0FSP6M60wxVVSvth3GuheSB4jwTliGPU4MgKjYsEZmOuFQ4EC58IyMVSkt8gEfAFmc8QeNv6_3B6POXzstjaXETHrpwKov3Ko42gDXibZpSwLxg9UC8gnKvJmt2EdtbsL0oZvLyQk6n_xyKh3fgdotmybtG_e7Chil6cGPYxut70Ptqs23qK7_EPb0H3_DpWP54QybOo0HkYl4idjaanC976CYNcFIRVdojlpxPJJna1HWvQtUyxDlbSV3PB1vch9Nr-fkPYLMoC_MIiB9qHWQ2tytGEzdiMhO5r2ikkjzKwjDug-_-c6pa_nNbhmOa1nF4FqeNaFIUTWpFkwZ9eN11mTXkH-sa7zjhpe0-UKVLre3Di-41rmAblpGFKRfYhooYURQPkj48bGTdfY0hxLAkbH2IVrSga2DZwVffFJOfNUt4KGzIGHvuOn1ZDmvNJHY7lfr_lB-vn_Jz2B6MhyfpydHo-AncpLXOC8-Pd2Bz_nthniKcm2fP2jVD4Pt1L9O_fu1asw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qC7U-iN-NVl3BJ0tost_x7VCPetoi2Ep9CvsVPThyxctV_O-dzSXR46Di884mm8zM7m9nfjsL8FIJaRAmuJQ5ZVNesSq1ntM0CyrzlKvCtQG3k1N5fM4nF-JiC0R_FqYl7bclLdtpumeHHS04Que4943snpylOMH46gbsaMUkGvPOaDT5PBmCK7EabcFln8VkerP_-jq0AS43OZJDovQW3FzWl-bXTzOb_bUWje_A7Q5EktFq2HdhK9T3YPekS5Pfh69fQnNmvr0m0z5kQMyymSM4DZ5cRQJMewqX-BXPbrogbh7XMHI1NWQWueHpAnUXSB_NJO2FOSjxAM7H787eHKfdHQqpQyzWoApoZqm3nqEjeuczqSsvDM8d51bE-n-cBoSIOrBCWK-4cVpLLrJglJOGsoewXc_rsA8kk97nNpKnNO4hFTNWVJmjyhWVslLqBLL-j5auKzAe77mYlW2im-lypYQSlVBGJZR5Aq-GLper6hrXCR_0aio7R1uUVFAcL2VcJvBiaEYXiXkPU4f5EmWo0AhTeF4k8Gil1eFtDNfwWOUsAbWm70Eglt9eb6mn39sy3FLEnCz2POwt48-wrvmIw8F4_v3Jj__r2c9h99Pbcfnx_emHJ7BHW1sXaaYPYLv5sQxPET019lnnK78BjI4S-w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VrcTxwH0ECjIST1Qpie_lrUJUFVIrHrpV-xT5CqxYZSs2KYJfzzgXLCsV9dljxWPPeL54Po8B3ighDcIElzKnbMpLVqbWc5pmQWWecjV17YHb0bE8nPFPZ-JsC8RwF6Yl7bclLdttemCHvVtxhM7x3zeye3KW4gbjyxuwLQVC8Alsz44_75-3D8lNdYpBlA4ZTKY3-67HoA1gucmPHJOkd-BWU12Ynz_MYvFXHDq4B6eDBh395NteU9s99-uf4o7XVvE-3O2RKdnvBB_AVqgews2jPvf-CM5PQ31ivrwn8-EcgpimXiLiDZ5cRlZNe7WX-I68N18Rt4yBkVzODVlEwnm6QoMIZDgiJe0rPCjxGGYHH08-HKb9wwypQ4BX47rSzFJvPUPv9s5nUpdeGJ47zq2IRQU5DYg7dWBTYb3ixmktuciCUU4ayp7ApFpW4RmQTHqf28jI0vhjqpixoswcVW5aKiulTiAblqpwfdXy-HjGomiz50wX3bQVOG1FnLYiT-Dt2OWiK9lxlfDOsP5F772rggqK46WMywRej83odzGZYqqwbFCGCo3Yh-fTBJ525jJ-jSEwiKXTElBrhjQKxJre6y3V_Gtb21uKmOjFnruDyf0Z1hVK7I5W-X-Vn19L-gXcpq1JijTTOzCpvzfhJeKw2r7qve43eIYs5A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VetTag%3A+improving+automated+veterinary+diagnosis+coding+via+large-scale+language+modeling&rft.jtitle=NPJ+digital+medicine&rft.au=Zhang%2C+Yuhui&rft.au=Nie%2C+Allen&rft.au=Zehnder%2C+Ashley&rft.au=Page%2C+Rodney+L.&rft.date=2019-05-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2398-6352&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1038%2Fs41746-019-0113-1&rft.externalDocID=10_1038_s41746_019_0113_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon |