De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies

In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach in...

Full description

Saved in:
Bibliographic Details
Published inAAPS PharmSciTech Vol. 12; no. 4; pp. 1324 - 1334
Main Authors Muteki, Koji, Swaminathan, Vidya, Sekulic, Sonja S., Reid, George L.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.12.2011
Subjects
Online AccessGet full text
ISSN1530-9932
1530-9932
DOI10.1208/s12249-011-9700-4

Cover

Abstract In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006 ). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.
AbstractList In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.
In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006 ). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.
In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.
Author Swaminathan, Vidya
Sekulic, Sonja S.
Muteki, Koji
Reid, George L.
Author_xml – sequence: 1
  givenname: Koji
  surname: Muteki
  fullname: Muteki, Koji
  email: koji.muteki@pfizer.com
  organization: Pfizer Global Research & Development
– sequence: 2
  givenname: Vidya
  surname: Swaminathan
  fullname: Swaminathan, Vidya
  organization: Pfizer Global Research & Development
– sequence: 3
  givenname: Sonja S.
  surname: Sekulic
  fullname: Sekulic, Sonja S.
  organization: Pfizer Global Research & Development
– sequence: 4
  givenname: George L.
  surname: Reid
  fullname: Reid, George L.
  organization: Pfizer Global Research & Development
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21969245$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URD_gB3BBvsGBgD-SZn1BQuVT2qo9bLlaE2eSuCT2YjugcuWP4-0uUDisONnSPO_MO-8ckwPnHRLymLMXXLDFy8iFKFXBOC9UzVhR3iNHvJKsUEqKgzv_Q3Ic4zVjQnIlH5BDwdWpEmV1RH68wSLY-Nm6nl4OECYwOCdrYKQraEZM9Bzc3IFJc0C6GoKf-4FeBm8wRnrlWgwxgWuz_jldQkKX6CcIdqOl577F8baSCXqxTnay3yFZ7-gKzeD86HuL8SG538EY8dHuPSFX796uzj4Uy4v3H89eLwtTlSwVUqq6airTtQbbTnUVx45By0-RL6DthGh4bfKKYiGbUtVGQosCDaCoVFeDlCdEbPvObg0332Ac9TrYCcKN5kxvEtXbRHVOVG8S1WUWvdqK1nMzYR7tUoA_Qg9W_11xdtC9_6qlEFXFRW7wdNcg-C8zxqQnGw2OIzj0c9SK1Syzi82oZ3tJzkUlSiYVz-iTu65-2_l12AzUW8AEH2PAThubbqPPJu24d2H-j_J_QtolGzPregz62s_B5WPuEf0E74raMw
CitedBy_id crossref_primary_10_1002_jps_23322
crossref_primary_10_2116_analsci_34_207
crossref_primary_10_1016_j_ijpharm_2019_04_002
crossref_primary_10_1016_j_ejpb_2019_12_007
crossref_primary_10_1021_ie3034587
crossref_primary_10_1002_pca_2463
crossref_primary_10_1007_s12247_021_09570_5
crossref_primary_10_1016_j_chemolab_2014_02_006
crossref_primary_10_1007_s12247_012_9141_y
crossref_primary_10_1002_jps_23472
crossref_primary_10_1016_j_ijpharm_2013_08_074
crossref_primary_10_2751_jcac_16_15
crossref_primary_10_1016_j_ifacol_2015_08_198
crossref_primary_10_1080_03639045_2017_1409755
crossref_primary_10_1208_s12249_019_1348_5
crossref_primary_10_1080_03639045_2020_1851244
crossref_primary_10_3109_10837450_2014_898656
crossref_primary_10_3390_pharmaceutics11020079
crossref_primary_10_1080_10837450_2019_1673774
Cites_doi 10.1002/cem.1180020306
10.1016/S0098-1354(00)00406-3
10.1017/S0962492900002518
10.1002/aic.11494
10.1016/j.chemolab.2006.08.003
10.1016/S0378-5173(97)00191-9
10.1007/s11095-007-9511-1
10.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO;2-1
10.1016/j.ejpb.2009.08.005
10.1016/j.compchemeng.2010.02.027
10.1016/j.ijpharm.2009.07.031
10.1016/0169-7439(89)80111-X
10.1007/s12247-008-9023-5
10.1021/ie050953b
10.1016/0169-7439(92)80093-J
10.1016/j.chemolab.2003.10.004
ContentType Journal Article
Copyright American Association of Pharmaceutical Scientists 2011
Copyright_xml – notice: American Association of Pharmaceutical Scientists 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1208/s12249-011-9700-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Engineering Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1530-9932
EndPage 1334
ExternalDocumentID 10.1208/s12249-011-9700-4
PMC3225512
21969245
10_1208_s12249_011_9700_4
Genre Journal Article
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5GY
5VS
67N
6J9
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKDD
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACKNC
ACMDZ
ACMJI
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARMRJ
AXYYD
B-.
BA0
BAWUL
BDATZ
BGNMA
BSONS
C1A
CAG
COF
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GX1
H13
HG6
HH5
HMJXF
HRMNR
HYE
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KPH
LGEZI
LLZTM
LOTEE
M4Y
MA-
NADUK
NPVJJ
NQJWS
NU0
NXXTH
O9-
O93
O9I
O9J
OK1
OVD
P2P
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TR2
TSG
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z81
Z87
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33
IEDL.DBID UNPAY
ISSN 1530-9932
IngestDate Wed Oct 01 16:01:18 EDT 2025
Tue Sep 30 16:40:13 EDT 2025
Thu Sep 04 16:37:27 EDT 2025
Mon Oct 06 18:07:21 EDT 2025
Mon Jul 21 05:58:08 EDT 2025
Wed Oct 01 02:24:10 EDT 2025
Thu Apr 24 23:10:30 EDT 2025
Fri Feb 21 02:33:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords latent variable modeling
quality by design
process optimization
partial least squares
design space
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Guest Editors: Robin Bogner, James Drennen, Mansoor Khan, Cynthia Oksanen, and Gintaras Reklaitis
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1208/s12249-011-9700-4.pdf
PMID 21969245
PQID 1125240391
PQPubID 23462
PageCount 11
ParticipantIDs unpaywall_primary_10_1208_s12249_011_9700_4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3225512
proquest_miscellaneous_907032284
proquest_miscellaneous_1125240391
pubmed_primary_21969245
crossref_citationtrail_10_1208_s12249_011_9700_4
crossref_primary_10_1208_s12249_011_9700_4
springer_journals_10_1208_s12249_011_9700_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle AAPS PharmSciTech
PublicationTitleAbbrev AAPS PharmSciTech
PublicationTitleAlternate AAPS PharmSciTech
PublicationYear 2011
Publisher Springer US
Publisher_xml – name: Springer US
References HöskuldssonAPLS regression methodsJ Chemom1988221122810.1002/cem.1180020306
Martens H, Tormod N. Multivariate calibration, Wiley & Sons, (1991).
WoldSNonlinear partial least squaers modeling: spline inner relationChemom Intell Lab Syst199214718410.1016/0169-7439(92)80093-J1:CAS:528:DyaK38XltFyltL8%3D
YacoubFMacGregorJFProduct optimization and control in the latent variable space of nonlinear PLS modelsChemom Intell Lab Syst2004701637410.1016/j.chemolab.2003.10.0041:CAS:528:DC%2BD2cXksFSktA%3D%3D
Garcia-MunozSDolphSWardHWIIHandling uncertainty in the establishment of a design space for the manufacture of a pharmaceutical productComput Chem Eng2010341098110710.1016/j.compchemeng.2010.02.0271:CAS:528:DC%2BC3cXmvFylsbw%3D
WoldSJohanssonECocchiM3D QSAR in drug design: theory, methods, and applications1993LeidenESCOM523550
MacGregorJFBruwerMAFramework for the development of design and control spacesJ Pharm Innov20083152210.1007/s12247-008-9023-5
BurnhamAJMacGregorJFViverosRFrameworks for latent variable regressionJ Chemom199610314510.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO;2-11:CAS:528:DyaK28XlsFemtA%3D%3D
WesterhuisJCoenegrachtPMJLerkCFMultivariate modeling of the tablet manufacturing process with wet granulation for tablet optimization and in-process controlInt J Pharm199715610911710.1016/S0378-5173(97)00191-91:CAS:528:DyaK2sXmsFajtb8%3D
MutekiKMacGregorJFUedaTMixture designs and models for the simultaneous selection of ingredients and their ratiosChemom Intell Lab Syst2007861172510.1016/j.chemolab.2006.08.0031:CAS:528:DC%2BD2sXisVSqsLY%3D
Boggs P.T, Tolle J.W. Sequential quadratic programming, Acta Numerica. 1995; pp.1–51.
HawareRVThoIBauer-BrandlAMultivariate analysis of relationship between material properties, process parameters and tablet tensile strength for α-lactose monohydratesEur J Pharm Biopharm20097334244311969878410.1016/j.ejpb.2009.08.0051:CAS:528:DC%2BD1MXhtlCntLfK
Yu L.X. Pharmaceutical Quality by Design: Product and Process Development, Understanding and Control, Pharm. Res.Vol.25 (2008) No.4.
WoldSKettaneh-WoldNSkagerbergBNonlinear PLS modelingChemom Intell Lab Syst19897536510.1016/0169-7439(89)80111-X1:CAS:528:DyaK3cXhvVKhtLo%3D
Edgar T.F, Himmelblau D.M, Mautner D. Optimization of Chemical Processes, New York, 1988.
MutekiKMacGregorJFOptimal purchasing of raw materials: a data-driven approachAICHE J20085461554155910.1002/aic.114941:CAS:528:DC%2BD1cXmt1Smt7w%3D
HuangJKaulGCaiCChatlapalliRHernandez-AbadPGhoshKQuality by design case study: an integrated multivariate approach to drug product and process developmentInt J Pharm200938223321966469810.1016/j.ijpharm.2009.07.0311:CAS:528:DC%2BD1MXhtlSlur7N
USDA (2006), Guidance for industry: Q8 pharmaceutical development, Office of training and communication, division of drug information, HFD-240, center for drug evaluation and research, Food and Drug Administration, 5600 Fishers Lane, Rockville, MD 20857, USA.
LakshminarayananSFujiiHGrosmanBDassauELewinDRNew product design via analysis of historical databasesComput Chem Eng20002467167610.1016/S0098-1354(00)00406-31:CAS:528:DC%2BD3cXlsVers74%3D
MutekiKMacGregorJFUedaTRapid development of new polymer blends: the optimal selection of materials and blend ratiosInd Eng Chem Res200645134653466010.1021/ie050953b1:CAS:528:DC%2BD28XkvVGgtb4%3D
AJ Burnham (9700_CR6) 1996; 10
S Wold (9700_CR19) 1993
JF MacGregor (9700_CR3) 2008; 3
9700_CR20
K Muteki (9700_CR17) 2007; 86
S Garcia-Munoz (9700_CR15) 2010; 34
9700_CR2
F Yacoub (9700_CR14) 2004; 70
J Huang (9700_CR11) 2009; 382
9700_CR1
S Wold (9700_CR7) 1989; 7
S Wold (9700_CR8) 1992; 14
K Muteki (9700_CR16) 2006; 45
9700_CR4
A Höskuldsson (9700_CR5) 1988; 2
J Westerhuis (9700_CR10) 1997; 156
9700_CR13
K Muteki (9700_CR18) 2008; 54
RV Haware (9700_CR12) 2009; 73
S Lakshminarayanan (9700_CR9) 2000; 24
18185986 - Pharm Res. 2008 Apr;25(4):781-91
19698784 - Eur J Pharm Biopharm. 2009 Nov;73(3):424-31
19664698 - Int J Pharm. 2009 Dec 1;382(1-2):23-32
References_xml – reference: Garcia-MunozSDolphSWardHWIIHandling uncertainty in the establishment of a design space for the manufacture of a pharmaceutical productComput Chem Eng2010341098110710.1016/j.compchemeng.2010.02.0271:CAS:528:DC%2BC3cXmvFylsbw%3D
– reference: MutekiKMacGregorJFUedaTRapid development of new polymer blends: the optimal selection of materials and blend ratiosInd Eng Chem Res200645134653466010.1021/ie050953b1:CAS:528:DC%2BD28XkvVGgtb4%3D
– reference: WoldSJohanssonECocchiM3D QSAR in drug design: theory, methods, and applications1993LeidenESCOM523550
– reference: Martens H, Tormod N. Multivariate calibration, Wiley & Sons, (1991).
– reference: WoldSNonlinear partial least squaers modeling: spline inner relationChemom Intell Lab Syst199214718410.1016/0169-7439(92)80093-J1:CAS:528:DyaK38XltFyltL8%3D
– reference: YacoubFMacGregorJFProduct optimization and control in the latent variable space of nonlinear PLS modelsChemom Intell Lab Syst2004701637410.1016/j.chemolab.2003.10.0041:CAS:528:DC%2BD2cXksFSktA%3D%3D
– reference: HöskuldssonAPLS regression methodsJ Chemom1988221122810.1002/cem.1180020306
– reference: MacGregorJFBruwerMAFramework for the development of design and control spacesJ Pharm Innov20083152210.1007/s12247-008-9023-5
– reference: WoldSKettaneh-WoldNSkagerbergBNonlinear PLS modelingChemom Intell Lab Syst19897536510.1016/0169-7439(89)80111-X1:CAS:528:DyaK3cXhvVKhtLo%3D
– reference: BurnhamAJMacGregorJFViverosRFrameworks for latent variable regressionJ Chemom199610314510.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO;2-11:CAS:528:DyaK28XlsFemtA%3D%3D
– reference: Yu L.X. Pharmaceutical Quality by Design: Product and Process Development, Understanding and Control, Pharm. Res.Vol.25 (2008) No.4.
– reference: USDA (2006), Guidance for industry: Q8 pharmaceutical development, Office of training and communication, division of drug information, HFD-240, center for drug evaluation and research, Food and Drug Administration, 5600 Fishers Lane, Rockville, MD 20857, USA.
– reference: LakshminarayananSFujiiHGrosmanBDassauELewinDRNew product design via analysis of historical databasesComput Chem Eng20002467167610.1016/S0098-1354(00)00406-31:CAS:528:DC%2BD3cXlsVers74%3D
– reference: MutekiKMacGregorJFOptimal purchasing of raw materials: a data-driven approachAICHE J20085461554155910.1002/aic.114941:CAS:528:DC%2BD1cXmt1Smt7w%3D
– reference: Boggs P.T, Tolle J.W. Sequential quadratic programming, Acta Numerica. 1995; pp.1–51.
– reference: WesterhuisJCoenegrachtPMJLerkCFMultivariate modeling of the tablet manufacturing process with wet granulation for tablet optimization and in-process controlInt J Pharm199715610911710.1016/S0378-5173(97)00191-91:CAS:528:DyaK2sXmsFajtb8%3D
– reference: Edgar T.F, Himmelblau D.M, Mautner D. Optimization of Chemical Processes, New York, 1988.
– reference: HuangJKaulGCaiCChatlapalliRHernandez-AbadPGhoshKQuality by design case study: an integrated multivariate approach to drug product and process developmentInt J Pharm200938223321966469810.1016/j.ijpharm.2009.07.0311:CAS:528:DC%2BD1MXhtlSlur7N
– reference: HawareRVThoIBauer-BrandlAMultivariate analysis of relationship between material properties, process parameters and tablet tensile strength for α-lactose monohydratesEur J Pharm Biopharm20097334244311969878410.1016/j.ejpb.2009.08.0051:CAS:528:DC%2BD1MXhtlCntLfK
– reference: MutekiKMacGregorJFUedaTMixture designs and models for the simultaneous selection of ingredients and their ratiosChemom Intell Lab Syst2007861172510.1016/j.chemolab.2006.08.0031:CAS:528:DC%2BD2sXisVSqsLY%3D
– volume: 2
  start-page: 211
  year: 1988
  ident: 9700_CR5
  publication-title: J Chemom
  doi: 10.1002/cem.1180020306
– ident: 9700_CR4
– volume: 24
  start-page: 671
  year: 2000
  ident: 9700_CR9
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(00)00406-3
– ident: 9700_CR1
– ident: 9700_CR20
  doi: 10.1017/S0962492900002518
– volume: 54
  start-page: 1554
  issue: 6
  year: 2008
  ident: 9700_CR18
  publication-title: AICHE J
  doi: 10.1002/aic.11494
– volume: 86
  start-page: 17
  issue: 1
  year: 2007
  ident: 9700_CR17
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2006.08.003
– volume: 156
  start-page: 109
  year: 1997
  ident: 9700_CR10
  publication-title: Int J Pharm
  doi: 10.1016/S0378-5173(97)00191-9
– start-page: 523
  volume-title: 3D QSAR in drug design: theory, methods, and applications
  year: 1993
  ident: 9700_CR19
– ident: 9700_CR2
  doi: 10.1007/s11095-007-9511-1
– volume: 10
  start-page: 31
  year: 1996
  ident: 9700_CR6
  publication-title: J Chemom
  doi: 10.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO;2-1
– volume: 73
  start-page: 424
  issue: 3
  year: 2009
  ident: 9700_CR12
  publication-title: Eur J Pharm Biopharm
  doi: 10.1016/j.ejpb.2009.08.005
– volume: 34
  start-page: 1098
  year: 2010
  ident: 9700_CR15
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2010.02.027
– volume: 382
  start-page: 23
  year: 2009
  ident: 9700_CR11
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2009.07.031
– volume: 7
  start-page: 53
  year: 1989
  ident: 9700_CR7
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/0169-7439(89)80111-X
– ident: 9700_CR13
– volume: 3
  start-page: 15
  year: 2008
  ident: 9700_CR3
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-008-9023-5
– volume: 45
  start-page: 4653
  issue: 13
  year: 2006
  ident: 9700_CR16
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie050953b
– volume: 14
  start-page: 71
  year: 1992
  ident: 9700_CR8
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/0169-7439(92)80093-J
– volume: 70
  start-page: 63
  issue: 1
  year: 2004
  ident: 9700_CR14
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2003.10.004
– reference: 18185986 - Pharm Res. 2008 Apr;25(4):781-91
– reference: 19698784 - Eur J Pharm Biopharm. 2009 Nov;73(3):424-31
– reference: 19664698 - Int J Pharm. 2009 Dec 1;382(1-2):23-32
SSID ssj0023193
Score 2.120243
Snippet In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1324
SubjectTerms Biochemistry
Biomedical and Life Sciences
Biomedicine
Biotechnology
Chemistry, Pharmaceutical
Computer Simulation
Drug Compounding
Hardness
Indexing in process
Kinetics
Least-Squares Analysis
Models, Chemical
Pharmaceutical Preparations - chemistry
Pharmaceutical Preparations - standards
Pharmacology/Toxicology
Pharmacy
Quality Control
Research Article
Solubility
Tablets
Technology, Pharmaceutical - methods
Technology, Pharmaceutical - standards
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V7aFwQH3wCI_KSGgPsBGJ47yOq1K0qqBw2EXcIidxBNIS0CYR2jN_nJnECay2perZY0fJTMYznvk-AxxiGssDC43X4wk3BcYcZkgokNijop3N09QjoPDFb280Eb9u3BuN4y7abve2JFl76poBwQpOCqoBUW-PbYa-ZZliBT66xOaFRjzhwy7LQptydPnyj9MWN6ClqHK5ObKrkK7Bpyp_lPMnOZ2-2YTOPsO6jh7ZsFH3F_ig8q_Qv2rop-cDNn5FUxUD1mdXr8TU82_wfKpMaiXHx7Qj-iybjQlBVbILmVcEdahmCteqb_BhGkrAJm9hMAN2jkFqXrJrzLVpLqNL1ab1CEqwS_RE9xriybrje8zKN2By9nP8Y2TqSxjMBIO50nQwYHFjN8nwg6RZmLm2yiyZ2p6yA5lmnMe2n-BXxzAlFqGfODJVXCVSYV6V-dJxNqGXP-RqG5jPlROjiCdiX4SeCFIrE4njSzvIYmmFBlitZqJEM5TTRRnTiDIVVGbUKDNCZUakzEgYcNRNeWzoOd4TPmjVHeFPRJURmauHqsA0iLtETBjaBrC_yITkHDnu5gZsNRbSPZETxxAXrgH-gu10AsThvTiS393WXN7kTzHmMuC4tbJIO5HivRc57gzx36-9819r78JqfWxed-zsQa-cVWof464y_l7_Zy8g0yfx
  priority: 102
  providerName: Springer Nature
Title De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies
URI https://link.springer.com/article/10.1208/s12249-011-9700-4
https://www.ncbi.nlm.nih.gov/pubmed/21969245
https://www.proquest.com/docview/1125240391
https://www.proquest.com/docview/907032284
https://pubmed.ncbi.nlm.nih.gov/PMC3225512
https://link.springer.com/content/pdf/10.1208/s12249-011-9700-4.pdf
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1530-9932
  dateEnd: 20161231
  omitProxy: true
  ssIdentifier: ssj0023193
  issn: 1530-9932
  databaseCode: HH5
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1530-9932
  dateEnd: 20161231
  omitProxy: true
  ssIdentifier: ssj0023193
  issn: 1530-9932
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1530-9932
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023193
  issn: 1530-9932
  databaseCode: AFBBN
  dateStart: 20000901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1530-9932
  dateEnd: 20161231
  omitProxy: true
  ssIdentifier: ssj0023193
  issn: 1530-9932
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1530-9932
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023193
  issn: 1530-9932
  databaseCode: AGYKE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1530-9932
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023193
  issn: 1530-9932
  databaseCode: U2A
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61yQE48H6YR7RIqAcap_Z6_TpGpaUCWnKIUXuy1vZaVAQ3qm2hcOWPM2Ov3YZCEeK8s3F2NN79xjPftwCvMI3lgYXB6_GUmwIxhxkSCyTxqGhn8yzziCh8eOQdROLdsXu8AbsdF6bpdu9Kki2ngVSaimpnmeWtGoIV7JRUD6I-H9sMfcsyxQRHN2HouQjIBzCMjmbTk1Yp1TLxBOa6nvnbuesn0hWYebVbsi-Z3oIbdbGUq29ysbh0Ku3fgaxbT9uM8mVSV8kk_f6L1ON_Lvgu3NaolU3bMLsHG6q4D1uzVvZ6NWbzCxZXOWZbbHYhiL16AD_eKJNa2PHh3Yj-hs7mxNyq2KEsaqJY1OcKf6u5OYhpCgOLLtNvxuyDpL_NPmGOT3MZXea2aEbQgn3EHfCrppayvmxwqsqHEO3vzXcPTH35g5kiiKxMB4GSm7hpjn7P8jB3bZVbMrM9ZQcyyzlPbD9FwIHwKBGhnzoyU1ylUmE-l_vScR7BoDgr1BNgPldOgiaeSHwReiLIrFykji_tIE-kFRpgdQEQp1oZnS7oWMSUIaH749b9Mbo_JvfHwoDX_ZRlKwtynfHLLqpifHmpIiMLdVaXmH5xlwQRQ9sA9gebkDZljijCgMdtIPZP5KRtxIVrgL8Wor0BaYevjxSnnxsNcdrHEesZsN3FXqw3r_K6hWz38f73ZT_9J-tncLP5XN90Cj2HQXVeqxeI96pkBMPp25P3eyPYjPh0pN_un4hsUqs
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9lA48H6Ep5FQD3RTEsd5HStoWehu6SGLyslyEkcglrRqEqHlyh9nJnHSLoWinj2O5cl48k1m5jPASwxjeeSg8QY847ZAzGHH1AWSBpS0c3meB9QoPNsPJnPx4dA_NH3cVV_t3qckW0_dMiA40euKckBU2-Paceg4trgKawLjEz6Cte13n_d2hjgLrcozCcy_Tlz9BJ3DlefLI4cc6XVYb8pjtfyhFoszn6Hdm5D0G-iqT75tNXW6lf38g9vxkju8BTcMLGXbnR3dhiu6vAMbBx2v9XLMktM2rWrMNtjBKeP18i78eqttqlHHxfoR85OcJdSaVbOZKhvqoWhOND6rvRqImR4FNj_bXzNmU0S_Zc0-YRBPcxnd1rZoR1CCfUQX9930jrIhL4Dh_j2Y7-4kbya2ud3BzhAl1raHSMhP_axAPedFXPiuLhyVu4F2I5UXnKdumOHLRPyTijjMPJVrrjOlMWArQuV592FUHpX6IbCQay9FkUCkoYgDEeVOITIvVG5UpMqJLXD6Fy4zQ31ON3AsJIVAqHrZqV6i6iWpXgoLXg1Tjjvej4uEX_RWJPF0UspFlfqoqTC-4j4xHsauBewfMjF5XY4wwYIHneENK3IiL-LCtyBcMclBgMjBV0fKr19aknBy1AjmLNjsbU0a71RdtJHNwb7_v-1Hl3r2c1ifJLOpnL7f33sM19p_821Z0BMY1SeNforgrk6fmcP8G0ujR58
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VOrjUJU-Qx-4UsWhbETiOK8jKqyAAt3DbsXNchJbrbQNK5Ko2nP_ODOJE1jRgnr2OFE8E3vGM983AJ8wjOWJh8Yb8Zy7An0ONyUUSBZR0s7nRRERUPjkNDqYiaOz8Mz2Oa36avc-JdlhGoilqax3FoXp2BC8ZKeifBDV-fhuGnueK-7DA0E8CWjQM747RFxoX4FNZf512uphdMPDvFkoOWRLn8Cjplyo5W81n187kMbP4Kn1JNlup_p1uKfL57A16aiolyM2vUJWVSO2xSZXJNXLF_BnT7tUVo6v6UfsvTabEpqqZieqbAj20FxofFbbzYdZWAGbXYfEjNixorVj3zHuprmMGqzN2xGUYN9wV_pl4Z5suMrHCP0lzMb70y8Hrm3I4Obo2NVugM5LmIW5wQUpTGpCXxtPFX6k_UQVhvPMj3NcdXRZMpHGeaAKzXWuNMZYJlZB8ArWyvNSvwEWcx1kKBKJLBZpJJLCMyIPYuUnJlNe6oDXa0bmlq2cmmbMJUUtqEzZKVOiMiUpUwoHPg9TFh1Vx23CH3t1S_yhKEuiSn3eVBgS8ZBIClPfAfYPmZQ2So4nuwOvOwsZ3siJb4iL0IF4xXYGAeLzXh0pf_5oeb1pb0X_y4Ht3sqk3VCq2z5kezDEuz9747-evQkPJ3tjeXx4-vUtPG5v09tCnnewVl80-j26Y3X2of3lLgGj2i8Z
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48H6El4yEeqCbreM4r2NVqCpEyx52UTlFduKIiiVdNYnQcuWPMxMnaZdCEeLs8WY9mtjfZOb7DPAK01gRcwzeUGTClYg53IRYIDqkop0n8jwkovDhUXgwl--Og-MN2Ou5MG23e1-StJwGUmkq651lXlg1BB7vVFQPoj4fz00izl05wdFrsBkGCMhHsDk_mu5-skqp3MUTWHT1zN_OXT-RLsHMy92SQ8n0JlxvyqVafVOLxYVTaf825P16bDPKl0lT60n2_Repx_9c8B241aFWtmvD7C5smPIebE2t7PVqzGbnLK5qzLbY9FwQe3UffrwxLrWw48P7ke4bOpsRc6tmh6psiGLRnBn8rfbmINZRGNj8Iv1mzN4r-tvsI-b4NJfRZW6LdgQt2AfcAb921FI2lA1OTPUA5vtvZ3sHbnf5g5shiKxdH4FSoIOsQL_nRVIEnim4yr3QeLHKCyG0F2UIOBAeaZlEma9yI0ymDOZzRaR8_yGMytPSPAYWCeNrNAmljmQSyjjnhcz8SHlxoRVPHOB9AKRZp4xOF3QsUsqQ0P2pdX-K7k_J_al04PUwZWllQa4yftlHVYovL1VkVGlOmwrTLxGQIGLiOcD-YJPQpiwQRTjwyAbi8ERB2kZCBg5EayE6GJB2-PpIefK51RCnfRyxngPbfeyl3eZVXbWQ7SHe_77sJ_9k_RRutJ_r206hZzCqzxrzHPFerV907_NPGDNQLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De-risking+Pharmaceutical+Tablet+Manufacture+Through+Process+Understanding%2C+Latent+Variable+Modeling%2C+and+Optimization+Technologies&rft.jtitle=AAPS+PharmSciTech&rft.au=Muteki%2C+Koji&rft.au=Swaminathan%2C+Vidya&rft.au=Sekulic%2C+Sonja+S.&rft.au=Reid%2C+George+L.&rft.date=2011-12-01&rft.issn=1530-9932&rft.eissn=1530-9932&rft.volume=12&rft.issue=4&rft.spage=1324&rft.epage=1334&rft_id=info:doi/10.1208%2Fs12249-011-9700-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1208_s12249_011_9700_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon