De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies
In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach in...
        Saved in:
      
    
          | Published in | AAPS PharmSciTech Vol. 12; no. 4; pp. 1324 - 1334 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Boston
          Springer US
    
        01.12.2011
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1530-9932 1530-9932  | 
| DOI | 10.1208/s12249-011-9700-4 | 
Cover
| Abstract | In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes
in silico
without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA
2006
). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study. | 
    
|---|---|
| AbstractList | In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study. In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006 ). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study. In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. The resulting models are used in an optimization framework to then find optimal process parameters which can satisfy all the desired requirements for the final tablet attributes, subject to the incoming raw material lots. In order to de-risk the potential (lot-to-lot) variability of raw materials on the drug product quality, the effect of raw material lot variability on the final tablet attributes was investigated using a raw material database containing a large number of lots. In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.  | 
    
| Author | Swaminathan, Vidya Sekulic, Sonja S. Muteki, Koji Reid, George L.  | 
    
| Author_xml | – sequence: 1 givenname: Koji surname: Muteki fullname: Muteki, Koji email: koji.muteki@pfizer.com organization: Pfizer Global Research & Development – sequence: 2 givenname: Vidya surname: Swaminathan fullname: Swaminathan, Vidya organization: Pfizer Global Research & Development – sequence: 3 givenname: Sonja S. surname: Sekulic fullname: Sekulic, Sonja S. organization: Pfizer Global Research & Development – sequence: 4 givenname: George L. surname: Reid fullname: Reid, George L. organization: Pfizer Global Research & Development  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21969245$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU1v1DAQhi1URD_gB3BBvsGBgD-SZn1BQuVT2qo9bLlaE2eSuCT2YjugcuWP4-0uUDisONnSPO_MO-8ckwPnHRLymLMXXLDFy8iFKFXBOC9UzVhR3iNHvJKsUEqKgzv_Q3Ic4zVjQnIlH5BDwdWpEmV1RH68wSLY-Nm6nl4OECYwOCdrYKQraEZM9Bzc3IFJc0C6GoKf-4FeBm8wRnrlWgwxgWuz_jldQkKX6CcIdqOl577F8baSCXqxTnay3yFZ7-gKzeD86HuL8SG538EY8dHuPSFX796uzj4Uy4v3H89eLwtTlSwVUqq6airTtQbbTnUVx45By0-RL6DthGh4bfKKYiGbUtVGQosCDaCoVFeDlCdEbPvObg0332Ac9TrYCcKN5kxvEtXbRHVOVG8S1WUWvdqK1nMzYR7tUoA_Qg9W_11xdtC9_6qlEFXFRW7wdNcg-C8zxqQnGw2OIzj0c9SK1Syzi82oZ3tJzkUlSiYVz-iTu65-2_l12AzUW8AEH2PAThubbqPPJu24d2H-j_J_QtolGzPregz62s_B5WPuEf0E74raMw | 
    
| CitedBy_id | crossref_primary_10_1002_jps_23322 crossref_primary_10_2116_analsci_34_207 crossref_primary_10_1016_j_ijpharm_2019_04_002 crossref_primary_10_1016_j_ejpb_2019_12_007 crossref_primary_10_1021_ie3034587 crossref_primary_10_1002_pca_2463 crossref_primary_10_1007_s12247_021_09570_5 crossref_primary_10_1016_j_chemolab_2014_02_006 crossref_primary_10_1007_s12247_012_9141_y crossref_primary_10_1002_jps_23472 crossref_primary_10_1016_j_ijpharm_2013_08_074 crossref_primary_10_2751_jcac_16_15 crossref_primary_10_1016_j_ifacol_2015_08_198 crossref_primary_10_1080_03639045_2017_1409755 crossref_primary_10_1208_s12249_019_1348_5 crossref_primary_10_1080_03639045_2020_1851244 crossref_primary_10_3109_10837450_2014_898656 crossref_primary_10_3390_pharmaceutics11020079 crossref_primary_10_1080_10837450_2019_1673774  | 
    
| Cites_doi | 10.1002/cem.1180020306 10.1016/S0098-1354(00)00406-3 10.1017/S0962492900002518 10.1002/aic.11494 10.1016/j.chemolab.2006.08.003 10.1016/S0378-5173(97)00191-9 10.1007/s11095-007-9511-1 10.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO;2-1 10.1016/j.ejpb.2009.08.005 10.1016/j.compchemeng.2010.02.027 10.1016/j.ijpharm.2009.07.031 10.1016/0169-7439(89)80111-X 10.1007/s12247-008-9023-5 10.1021/ie050953b 10.1016/0169-7439(92)80093-J 10.1016/j.chemolab.2003.10.004  | 
    
| ContentType | Journal Article | 
    
| Copyright | American Association of Pharmaceutical Scientists 2011 | 
    
| Copyright_xml | – notice: American Association of Pharmaceutical Scientists 2011 | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1208/s12249-011-9700-4 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Pharmacy, Therapeutics, & Pharmacology | 
    
| EISSN | 1530-9932 | 
    
| EndPage | 1334 | 
    
| ExternalDocumentID | 10.1208/s12249-011-9700-4 PMC3225512 21969245 10_1208_s12249_011_9700_4  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 53G 5GY 5VS 67N 6J9 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKDD AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACKNC ACMDZ ACMJI ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AOIJS ARMRJ AXYYD B-. BA0 BAWUL BDATZ BGNMA BSONS C1A CAG COF CS3 CSCUP DDRTE DIK DNIVK DPUIP E3Z EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GX1 H13 HG6 HH5 HMJXF HRMNR HYE HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KPH LGEZI LLZTM LOTEE M4Y MA- NADUK NPVJJ NQJWS NU0 NXXTH O9- O93 O9I O9J OK1 OVD P2P PF0 PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S1Z S27 S3A S3B SAP SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TR2 TSG TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB YLTOR Z45 Z7U Z7V Z7W Z7X Z81 Z87 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1530-9932 | 
    
| IngestDate | Wed Oct 01 16:01:18 EDT 2025 Tue Sep 30 16:40:13 EDT 2025 Thu Sep 04 16:37:27 EDT 2025 Mon Oct 06 18:07:21 EDT 2025 Mon Jul 21 05:58:08 EDT 2025 Wed Oct 01 02:24:10 EDT 2025 Thu Apr 24 23:10:30 EDT 2025 Fri Feb 21 02:33:15 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | latent variable modeling quality by design process optimization partial least squares design space  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c540t-33975b5cfdcedf9f51ef0ad16e18adf22b17c023283b497c3ade2ecae259f7a33 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Guest Editors: Robin Bogner, James Drennen, Mansoor Khan, Cynthia Oksanen, and Gintaras Reklaitis  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1208/s12249-011-9700-4.pdf | 
    
| PMID | 21969245 | 
    
| PQID | 1125240391 | 
    
| PQPubID | 23462 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | unpaywall_primary_10_1208_s12249_011_9700_4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3225512 proquest_miscellaneous_907032284 proquest_miscellaneous_1125240391 pubmed_primary_21969245 crossref_citationtrail_10_1208_s12249_011_9700_4 crossref_primary_10_1208_s12249_011_9700_4 springer_journals_10_1208_s12249_011_9700_4  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2011-12-01 | 
    
| PublicationDateYYYYMMDD | 2011-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Boston | 
    
| PublicationPlace_xml | – name: Boston – name: United States  | 
    
| PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists | 
    
| PublicationTitle | AAPS PharmSciTech | 
    
| PublicationTitleAbbrev | AAPS PharmSciTech | 
    
| PublicationTitleAlternate | AAPS PharmSciTech | 
    
| PublicationYear | 2011 | 
    
| Publisher | Springer US | 
    
| Publisher_xml | – name: Springer US | 
    
| References | HöskuldssonAPLS regression methodsJ Chemom1988221122810.1002/cem.1180020306 Martens H, Tormod N. Multivariate calibration, Wiley & Sons, (1991). WoldSNonlinear partial least squaers modeling: spline inner relationChemom Intell Lab Syst199214718410.1016/0169-7439(92)80093-J1:CAS:528:DyaK38XltFyltL8%3D YacoubFMacGregorJFProduct optimization and control in the latent variable space of nonlinear PLS modelsChemom Intell Lab Syst2004701637410.1016/j.chemolab.2003.10.0041:CAS:528:DC%2BD2cXksFSktA%3D%3D Garcia-MunozSDolphSWardHWIIHandling uncertainty in the establishment of a design space for the manufacture of a pharmaceutical productComput Chem Eng2010341098110710.1016/j.compchemeng.2010.02.0271:CAS:528:DC%2BC3cXmvFylsbw%3D WoldSJohanssonECocchiM3D QSAR in drug design: theory, methods, and applications1993LeidenESCOM523550 MacGregorJFBruwerMAFramework for the development of design and control spacesJ Pharm Innov20083152210.1007/s12247-008-9023-5 BurnhamAJMacGregorJFViverosRFrameworks for latent variable regressionJ Chemom199610314510.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO;2-11:CAS:528:DyaK28XlsFemtA%3D%3D WesterhuisJCoenegrachtPMJLerkCFMultivariate modeling of the tablet manufacturing process with wet granulation for tablet optimization and in-process controlInt J Pharm199715610911710.1016/S0378-5173(97)00191-91:CAS:528:DyaK2sXmsFajtb8%3D MutekiKMacGregorJFUedaTMixture designs and models for the simultaneous selection of ingredients and their ratiosChemom Intell Lab Syst2007861172510.1016/j.chemolab.2006.08.0031:CAS:528:DC%2BD2sXisVSqsLY%3D Boggs P.T, Tolle J.W. Sequential quadratic programming, Acta Numerica. 1995; pp.1–51. HawareRVThoIBauer-BrandlAMultivariate analysis of relationship between material properties, process parameters and tablet tensile strength for α-lactose monohydratesEur J Pharm Biopharm20097334244311969878410.1016/j.ejpb.2009.08.0051:CAS:528:DC%2BD1MXhtlCntLfK Yu L.X. Pharmaceutical Quality by Design: Product and Process Development, Understanding and Control, Pharm. Res.Vol.25 (2008) No.4. WoldSKettaneh-WoldNSkagerbergBNonlinear PLS modelingChemom Intell Lab Syst19897536510.1016/0169-7439(89)80111-X1:CAS:528:DyaK3cXhvVKhtLo%3D Edgar T.F, Himmelblau D.M, Mautner D. Optimization of Chemical Processes, New York, 1988. MutekiKMacGregorJFOptimal purchasing of raw materials: a data-driven approachAICHE J20085461554155910.1002/aic.114941:CAS:528:DC%2BD1cXmt1Smt7w%3D HuangJKaulGCaiCChatlapalliRHernandez-AbadPGhoshKQuality by design case study: an integrated multivariate approach to drug product and process developmentInt J Pharm200938223321966469810.1016/j.ijpharm.2009.07.0311:CAS:528:DC%2BD1MXhtlSlur7N USDA (2006), Guidance for industry: Q8 pharmaceutical development, Office of training and communication, division of drug information, HFD-240, center for drug evaluation and research, Food and Drug Administration, 5600 Fishers Lane, Rockville, MD 20857, USA. LakshminarayananSFujiiHGrosmanBDassauELewinDRNew product design via analysis of historical databasesComput Chem Eng20002467167610.1016/S0098-1354(00)00406-31:CAS:528:DC%2BD3cXlsVers74%3D MutekiKMacGregorJFUedaTRapid development of new polymer blends: the optimal selection of materials and blend ratiosInd Eng Chem Res200645134653466010.1021/ie050953b1:CAS:528:DC%2BD28XkvVGgtb4%3D AJ Burnham (9700_CR6) 1996; 10 S Wold (9700_CR19) 1993 JF MacGregor (9700_CR3) 2008; 3 9700_CR20 K Muteki (9700_CR17) 2007; 86 S Garcia-Munoz (9700_CR15) 2010; 34 9700_CR2 F Yacoub (9700_CR14) 2004; 70 J Huang (9700_CR11) 2009; 382 9700_CR1 S Wold (9700_CR7) 1989; 7 S Wold (9700_CR8) 1992; 14 K Muteki (9700_CR16) 2006; 45 9700_CR4 A Höskuldsson (9700_CR5) 1988; 2 J Westerhuis (9700_CR10) 1997; 156 9700_CR13 K Muteki (9700_CR18) 2008; 54 RV Haware (9700_CR12) 2009; 73 S Lakshminarayanan (9700_CR9) 2000; 24 18185986 - Pharm Res. 2008 Apr;25(4):781-91 19698784 - Eur J Pharm Biopharm. 2009 Nov;73(3):424-31 19664698 - Int J Pharm. 2009 Dec 1;382(1-2):23-32  | 
    
| References_xml | – reference: Garcia-MunozSDolphSWardHWIIHandling uncertainty in the establishment of a design space for the manufacture of a pharmaceutical productComput Chem Eng2010341098110710.1016/j.compchemeng.2010.02.0271:CAS:528:DC%2BC3cXmvFylsbw%3D – reference: MutekiKMacGregorJFUedaTRapid development of new polymer blends: the optimal selection of materials and blend ratiosInd Eng Chem Res200645134653466010.1021/ie050953b1:CAS:528:DC%2BD28XkvVGgtb4%3D – reference: WoldSJohanssonECocchiM3D QSAR in drug design: theory, methods, and applications1993LeidenESCOM523550 – reference: Martens H, Tormod N. Multivariate calibration, Wiley & Sons, (1991). – reference: WoldSNonlinear partial least squaers modeling: spline inner relationChemom Intell Lab Syst199214718410.1016/0169-7439(92)80093-J1:CAS:528:DyaK38XltFyltL8%3D – reference: YacoubFMacGregorJFProduct optimization and control in the latent variable space of nonlinear PLS modelsChemom Intell Lab Syst2004701637410.1016/j.chemolab.2003.10.0041:CAS:528:DC%2BD2cXksFSktA%3D%3D – reference: HöskuldssonAPLS regression methodsJ Chemom1988221122810.1002/cem.1180020306 – reference: MacGregorJFBruwerMAFramework for the development of design and control spacesJ Pharm Innov20083152210.1007/s12247-008-9023-5 – reference: WoldSKettaneh-WoldNSkagerbergBNonlinear PLS modelingChemom Intell Lab Syst19897536510.1016/0169-7439(89)80111-X1:CAS:528:DyaK3cXhvVKhtLo%3D – reference: BurnhamAJMacGregorJFViverosRFrameworks for latent variable regressionJ Chemom199610314510.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO;2-11:CAS:528:DyaK28XlsFemtA%3D%3D – reference: Yu L.X. Pharmaceutical Quality by Design: Product and Process Development, Understanding and Control, Pharm. Res.Vol.25 (2008) No.4. – reference: USDA (2006), Guidance for industry: Q8 pharmaceutical development, Office of training and communication, division of drug information, HFD-240, center for drug evaluation and research, Food and Drug Administration, 5600 Fishers Lane, Rockville, MD 20857, USA. – reference: LakshminarayananSFujiiHGrosmanBDassauELewinDRNew product design via analysis of historical databasesComput Chem Eng20002467167610.1016/S0098-1354(00)00406-31:CAS:528:DC%2BD3cXlsVers74%3D – reference: MutekiKMacGregorJFOptimal purchasing of raw materials: a data-driven approachAICHE J20085461554155910.1002/aic.114941:CAS:528:DC%2BD1cXmt1Smt7w%3D – reference: Boggs P.T, Tolle J.W. Sequential quadratic programming, Acta Numerica. 1995; pp.1–51. – reference: WesterhuisJCoenegrachtPMJLerkCFMultivariate modeling of the tablet manufacturing process with wet granulation for tablet optimization and in-process controlInt J Pharm199715610911710.1016/S0378-5173(97)00191-91:CAS:528:DyaK2sXmsFajtb8%3D – reference: Edgar T.F, Himmelblau D.M, Mautner D. Optimization of Chemical Processes, New York, 1988. – reference: HuangJKaulGCaiCChatlapalliRHernandez-AbadPGhoshKQuality by design case study: an integrated multivariate approach to drug product and process developmentInt J Pharm200938223321966469810.1016/j.ijpharm.2009.07.0311:CAS:528:DC%2BD1MXhtlSlur7N – reference: HawareRVThoIBauer-BrandlAMultivariate analysis of relationship between material properties, process parameters and tablet tensile strength for α-lactose monohydratesEur J Pharm Biopharm20097334244311969878410.1016/j.ejpb.2009.08.0051:CAS:528:DC%2BD1MXhtlCntLfK – reference: MutekiKMacGregorJFUedaTMixture designs and models for the simultaneous selection of ingredients and their ratiosChemom Intell Lab Syst2007861172510.1016/j.chemolab.2006.08.0031:CAS:528:DC%2BD2sXisVSqsLY%3D – volume: 2 start-page: 211 year: 1988 ident: 9700_CR5 publication-title: J Chemom doi: 10.1002/cem.1180020306 – ident: 9700_CR4 – volume: 24 start-page: 671 year: 2000 ident: 9700_CR9 publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(00)00406-3 – ident: 9700_CR1 – ident: 9700_CR20 doi: 10.1017/S0962492900002518 – volume: 54 start-page: 1554 issue: 6 year: 2008 ident: 9700_CR18 publication-title: AICHE J doi: 10.1002/aic.11494 – volume: 86 start-page: 17 issue: 1 year: 2007 ident: 9700_CR17 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2006.08.003 – volume: 156 start-page: 109 year: 1997 ident: 9700_CR10 publication-title: Int J Pharm doi: 10.1016/S0378-5173(97)00191-9 – start-page: 523 volume-title: 3D QSAR in drug design: theory, methods, and applications year: 1993 ident: 9700_CR19 – ident: 9700_CR2 doi: 10.1007/s11095-007-9511-1 – volume: 10 start-page: 31 year: 1996 ident: 9700_CR6 publication-title: J Chemom doi: 10.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO;2-1 – volume: 73 start-page: 424 issue: 3 year: 2009 ident: 9700_CR12 publication-title: Eur J Pharm Biopharm doi: 10.1016/j.ejpb.2009.08.005 – volume: 34 start-page: 1098 year: 2010 ident: 9700_CR15 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2010.02.027 – volume: 382 start-page: 23 year: 2009 ident: 9700_CR11 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2009.07.031 – volume: 7 start-page: 53 year: 1989 ident: 9700_CR7 publication-title: Chemom Intell Lab Syst doi: 10.1016/0169-7439(89)80111-X – ident: 9700_CR13 – volume: 3 start-page: 15 year: 2008 ident: 9700_CR3 publication-title: J Pharm Innov doi: 10.1007/s12247-008-9023-5 – volume: 45 start-page: 4653 issue: 13 year: 2006 ident: 9700_CR16 publication-title: Ind Eng Chem Res doi: 10.1021/ie050953b – volume: 14 start-page: 71 year: 1992 ident: 9700_CR8 publication-title: Chemom Intell Lab Syst doi: 10.1016/0169-7439(92)80093-J – volume: 70 start-page: 63 issue: 1 year: 2004 ident: 9700_CR14 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2003.10.004 – reference: 18185986 - Pharm Res. 2008 Apr;25(4):781-91 – reference: 19698784 - Eur J Pharm Biopharm. 2009 Nov;73(3):424-31 – reference: 19664698 - Int J Pharm. 2009 Dec 1;382(1-2):23-32  | 
    
| SSID | ssj0023193 | 
    
| Score | 2.120243 | 
    
| Snippet | In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1324 | 
    
| SubjectTerms | Biochemistry Biomedical and Life Sciences Biomedicine Biotechnology Chemistry, Pharmaceutical Computer Simulation Drug Compounding Hardness Indexing in process Kinetics Least-Squares Analysis Models, Chemical Pharmaceutical Preparations - chemistry Pharmaceutical Preparations - standards Pharmacology/Toxicology Pharmacy Quality Control Research Article Solubility Tablets Technology, Pharmaceutical - methods Technology, Pharmaceutical - standards  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V7aFwQH3wCI_KSGgPsBGJ47yOq1K0qqBw2EXcIidxBNIS0CYR2jN_nJnECay2perZY0fJTMYznvk-AxxiGssDC43X4wk3BcYcZkgokNijop3N09QjoPDFb280Eb9u3BuN4y7abve2JFl76poBwQpOCqoBUW-PbYa-ZZliBT66xOaFRjzhwy7LQptydPnyj9MWN6ClqHK5ObKrkK7Bpyp_lPMnOZ2-2YTOPsO6jh7ZsFH3F_ig8q_Qv2rop-cDNn5FUxUD1mdXr8TU82_wfKpMaiXHx7Qj-iybjQlBVbILmVcEdahmCteqb_BhGkrAJm9hMAN2jkFqXrJrzLVpLqNL1ab1CEqwS_RE9xriybrje8zKN2By9nP8Y2TqSxjMBIO50nQwYHFjN8nwg6RZmLm2yiyZ2p6yA5lmnMe2n-BXxzAlFqGfODJVXCVSYV6V-dJxNqGXP-RqG5jPlROjiCdiX4SeCFIrE4njSzvIYmmFBlitZqJEM5TTRRnTiDIVVGbUKDNCZUakzEgYcNRNeWzoOd4TPmjVHeFPRJURmauHqsA0iLtETBjaBrC_yITkHDnu5gZsNRbSPZETxxAXrgH-gu10AsThvTiS393WXN7kTzHmMuC4tbJIO5HivRc57gzx36-9819r78JqfWxed-zsQa-cVWof464y_l7_Zy8g0yfx priority: 102 providerName: Springer Nature  | 
    
| Title | De-risking Pharmaceutical Tablet Manufacture Through Process Understanding, Latent Variable Modeling, and Optimization Technologies | 
    
| URI | https://link.springer.com/article/10.1208/s12249-011-9700-4 https://www.ncbi.nlm.nih.gov/pubmed/21969245 https://www.proquest.com/docview/1125240391 https://www.proquest.com/docview/907032284 https://pubmed.ncbi.nlm.nih.gov/PMC3225512 https://link.springer.com/content/pdf/10.1208/s12249-011-9700-4.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1530-9932 dateEnd: 20161231 omitProxy: true ssIdentifier: ssj0023193 issn: 1530-9932 databaseCode: HH5 dateStart: 20000101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1530-9932 dateEnd: 20161231 omitProxy: true ssIdentifier: ssj0023193 issn: 1530-9932 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1530-9932 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023193 issn: 1530-9932 databaseCode: AFBBN dateStart: 20000901 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1530-9932 dateEnd: 20161231 omitProxy: true ssIdentifier: ssj0023193 issn: 1530-9932 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1530-9932 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023193 issn: 1530-9932 databaseCode: AGYKE dateStart: 20000101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1530-9932 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023193 issn: 1530-9932 databaseCode: U2A dateStart: 20000301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61yQE48H6YR7RIqAcap_Z6_TpGpaUCWnKIUXuy1vZaVAQ3qm2hcOWPM2Ov3YZCEeK8s3F2NN79xjPftwCvMI3lgYXB6_GUmwIxhxkSCyTxqGhn8yzziCh8eOQdROLdsXu8AbsdF6bpdu9Kki2ngVSaimpnmeWtGoIV7JRUD6I-H9sMfcsyxQRHN2HouQjIBzCMjmbTk1Yp1TLxBOa6nvnbuesn0hWYebVbsi-Z3oIbdbGUq29ysbh0Ku3fgaxbT9uM8mVSV8kk_f6L1ON_Lvgu3NaolU3bMLsHG6q4D1uzVvZ6NWbzCxZXOWZbbHYhiL16AD_eKJNa2PHh3Yj-hs7mxNyq2KEsaqJY1OcKf6u5OYhpCgOLLtNvxuyDpL_NPmGOT3MZXea2aEbQgn3EHfCrppayvmxwqsqHEO3vzXcPTH35g5kiiKxMB4GSm7hpjn7P8jB3bZVbMrM9ZQcyyzlPbD9FwIHwKBGhnzoyU1ylUmE-l_vScR7BoDgr1BNgPldOgiaeSHwReiLIrFykji_tIE-kFRpgdQEQp1oZnS7oWMSUIaH749b9Mbo_JvfHwoDX_ZRlKwtynfHLLqpifHmpIiMLdVaXmH5xlwQRQ9sA9gebkDZljijCgMdtIPZP5KRtxIVrgL8Wor0BaYevjxSnnxsNcdrHEesZsN3FXqw3r_K6hWz38f73ZT_9J-tncLP5XN90Cj2HQXVeqxeI96pkBMPp25P3eyPYjPh0pN_un4hsUqs | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9lA48H6Ep5FQD3RTEsd5HStoWehu6SGLyslyEkcglrRqEqHlyh9nJnHSLoWinj2O5cl48k1m5jPASwxjeeSg8QY847ZAzGHH1AWSBpS0c3meB9QoPNsPJnPx4dA_NH3cVV_t3qckW0_dMiA40euKckBU2-Paceg4trgKawLjEz6Cte13n_d2hjgLrcozCcy_Tlz9BJ3DlefLI4cc6XVYb8pjtfyhFoszn6Hdm5D0G-iqT75tNXW6lf38g9vxkju8BTcMLGXbnR3dhiu6vAMbBx2v9XLMktM2rWrMNtjBKeP18i78eqttqlHHxfoR85OcJdSaVbOZKhvqoWhOND6rvRqImR4FNj_bXzNmU0S_Zc0-YRBPcxnd1rZoR1CCfUQX9930jrIhL4Dh_j2Y7-4kbya2ud3BzhAl1raHSMhP_axAPedFXPiuLhyVu4F2I5UXnKdumOHLRPyTijjMPJVrrjOlMWArQuV592FUHpX6IbCQay9FkUCkoYgDEeVOITIvVG5UpMqJLXD6Fy4zQ31ON3AsJIVAqHrZqV6i6iWpXgoLXg1Tjjvej4uEX_RWJPF0UspFlfqoqTC-4j4xHsauBewfMjF5XY4wwYIHneENK3IiL-LCtyBcMclBgMjBV0fKr19aknBy1AjmLNjsbU0a71RdtJHNwb7_v-1Hl3r2c1ifJLOpnL7f33sM19p_821Z0BMY1SeNforgrk6fmcP8G0ujR58 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VOrjUJU-Qx-4UsWhbETiOK8jKqyAAt3DbsXNchJbrbQNK5Ko2nP_ODOJE1jRgnr2OFE8E3vGM983AJ8wjOWJh8Yb8Zy7An0ONyUUSBZR0s7nRRERUPjkNDqYiaOz8Mz2Oa36avc-JdlhGoilqax3FoXp2BC8ZKeifBDV-fhuGnueK-7DA0E8CWjQM747RFxoX4FNZf512uphdMPDvFkoOWRLn8Cjplyo5W81n187kMbP4Kn1JNlup_p1uKfL57A16aiolyM2vUJWVSO2xSZXJNXLF_BnT7tUVo6v6UfsvTabEpqqZieqbAj20FxofFbbzYdZWAGbXYfEjNixorVj3zHuprmMGqzN2xGUYN9wV_pl4Z5suMrHCP0lzMb70y8Hrm3I4Obo2NVugM5LmIW5wQUpTGpCXxtPFX6k_UQVhvPMj3NcdXRZMpHGeaAKzXWuNMZYJlZB8ArWyvNSvwEWcx1kKBKJLBZpJJLCMyIPYuUnJlNe6oDXa0bmlq2cmmbMJUUtqEzZKVOiMiUpUwoHPg9TFh1Vx23CH3t1S_yhKEuiSn3eVBgS8ZBIClPfAfYPmZQ2So4nuwOvOwsZ3siJb4iL0IF4xXYGAeLzXh0pf_5oeb1pb0X_y4Ht3sqk3VCq2z5kezDEuz9747-evQkPJ3tjeXx4-vUtPG5v09tCnnewVl80-j26Y3X2of3lLgGj2i8Z | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48H6El4yEeqCbreM4r2NVqCpEyx52UTlFduKIiiVdNYnQcuWPMxMnaZdCEeLs8WY9mtjfZOb7DPAK01gRcwzeUGTClYg53IRYIDqkop0n8jwkovDhUXgwl--Og-MN2Ou5MG23e1-StJwGUmkq651lXlg1BB7vVFQPoj4fz00izl05wdFrsBkGCMhHsDk_mu5-skqp3MUTWHT1zN_OXT-RLsHMy92SQ8n0JlxvyqVafVOLxYVTaf825P16bDPKl0lT60n2_Repx_9c8B241aFWtmvD7C5smPIebE2t7PVqzGbnLK5qzLbY9FwQe3UffrwxLrWw48P7ke4bOpsRc6tmh6psiGLRnBn8rfbmINZRGNj8Iv1mzN4r-tvsI-b4NJfRZW6LdgQt2AfcAb921FI2lA1OTPUA5vtvZ3sHbnf5g5shiKxdH4FSoIOsQL_nRVIEnim4yr3QeLHKCyG0F2UIOBAeaZlEma9yI0ymDOZzRaR8_yGMytPSPAYWCeNrNAmljmQSyjjnhcz8SHlxoRVPHOB9AKRZp4xOF3QsUsqQ0P2pdX-K7k_J_al04PUwZWllQa4yftlHVYovL1VkVGlOmwrTLxGQIGLiOcD-YJPQpiwQRTjwyAbi8ERB2kZCBg5EayE6GJB2-PpIefK51RCnfRyxngPbfeyl3eZVXbWQ7SHe_77sJ_9k_RRutJ_r206hZzCqzxrzHPFerV907_NPGDNQLg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De-risking+Pharmaceutical+Tablet+Manufacture+Through+Process+Understanding%2C+Latent+Variable+Modeling%2C+and+Optimization+Technologies&rft.jtitle=AAPS+PharmSciTech&rft.au=Muteki%2C+Koji&rft.au=Swaminathan%2C+Vidya&rft.au=Sekulic%2C+Sonja+S.&rft.au=Reid%2C+George+L.&rft.date=2011-12-01&rft.issn=1530-9932&rft.eissn=1530-9932&rft.volume=12&rft.issue=4&rft.spage=1324&rft.epage=1334&rft_id=info:doi/10.1208%2Fs12249-011-9700-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1208_s12249_011_9700_4 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9932&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9932&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9932&client=summon |