Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction

Reliability of prognostics and health management systems relies upon accurate understanding of critical components’ degradation process to predict the remaining useful life (RUL). Traditionally, degradation process is represented in the form of physical or expert models. Such models require extensiv...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent manufacturing Vol. 27; no. 5; pp. 1037 - 1048
Main Authors Mosallam, A., Medjaher, K., Zerhouni, N.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2016
Springer Nature B.V
Springer Verlag (Germany)
Subjects
Online AccessGet full text
ISSN0956-5515
1572-8145
1572-8145
DOI10.1007/s10845-014-0933-4

Cover

Abstract Reliability of prognostics and health management systems relies upon accurate understanding of critical components’ degradation process to predict the remaining useful life (RUL). Traditionally, degradation process is represented in the form of physical or expert models. Such models require extensive experimentation and verification that are not always feasible. Another approach that builds up knowledge about the system degradation over the time from component sensor data is known as data driven. Data driven models, however, require that sufficient historical data have been collected. In this paper, a two phases data driven method for RUL prediction is presented. In the offline phase, the proposed method builds on finding variables that contain information about the degradation behavior using unsupervised variable selection method. Different health indicators (HIs) are constructed from the selected variables, which represent the degradation as a function of time, and saved in the offline database as reference models. In the online phase, the method finds the most similar offline HI, to the online HI, using k-nearest neighbors classifier to use it as a RUL predictor. The method finally estimates the degradation state using discrete Bayesian filter. The method is verified using battery and turbofan engine degradation simulation data acquired from NASA data repository. The results show the effectiveness of the method in predicting the RUL for both applications.
AbstractList Reliability of prognostics and health management systems (PHM) relies upon accurate understanding of critical components' degradation process to predict the remaining useful life (RUL). Traditionally, degradation process is represented in the form of data or expert models. Such models require extensive experimentation and verification that are not always feasible. Another approach that builds up knowledge about the system degradation over the time from component sensor data is known as data driven. Data driven models, however, require that sufficient historical data have been collected. In this paper, a two phases data driven method for RUL prediction is presented. In the offline phase, the proposed method builds on finding variables that contain information about the degradation behavior using unsupervised variable selection method. Different health indicators (HI) are constructed from the selected variables, which represent the degradation as a function of time, and saved in the offline database as reference models. In the online phase, the method finds the most similar offline health indicator, to the online health indicator, using k-nearest neighbors (k-NN) classifier to use it as a RUL predictor. The method finally estimates the degradation state using discrete Bayesian filter. The method is verified using battery and turbofan engine degradation simulation data acquired from NASA data repository. The results show the effectiveness of the method in predicting the RUL for both applications.
Reliability of prognostics and health management systems relies upon accurate understanding of critical components' degradation process to predict the remaining useful life (RUL). Traditionally, degradation process is represented in the form of physical or expert models. Such models require extensive experimentation and verification that are not always feasible. Another approach that builds up knowledge about the system degradation over the time from component sensor data is known as data driven. Data driven models, however, require that sufficient historical data have been collected. In this paper, a two phases data driven method for RUL prediction is presented. In the offline phase, the proposed method builds on finding variables that contain information about the degradation behavior using unsupervised variable selection method. Different health indicators (HIs) are constructed from the selected variables, which represent the degradation as a function of time, and saved in the offline database as reference models. In the online phase, the method finds the most similar offline HI, to the online HI, using k-nearest neighbors classifier to use it as a RUL predictor. The method finally estimates the degradation state using discrete Bayesian filter. The method is verified using battery and turbofan engine degradation simulation data acquired from NASA data repository. The results show the effectiveness of the method in predicting the RUL for both applications.
Author Medjaher, K.
Zerhouni, N.
Mosallam, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Mosallam
  fullname: Mosallam, A.
  organization: FEMTO-ST Institute, AS2M Department, University of Franche-Comté/CNRS/ENSMM/UTBM
– sequence: 2
  givenname: K.
  surname: Medjaher
  fullname: Medjaher, K.
  email: kamal.medjaher@ens2m.fr
  organization: FEMTO-ST Institute, AS2M Department, University of Franche-Comté/CNRS/ENSMM/UTBM
– sequence: 3
  givenname: N.
  surname: Zerhouni
  fullname: Zerhouni, N.
  organization: FEMTO-ST Institute, AS2M Department, University of Franche-Comté/CNRS/ENSMM/UTBM
BackLink https://hal.science/hal-01025442$$DView record in HAL
BookMark eNqNkMFq3DAQhkVJoJs0D9CboJf24HZkS7Z1TNMmKSz0kpzFWB7vKnilrWSn7Nv0Wfpk1eJAS6Clp4Hh-39mvjN24oMnxl4LeC8Amg9JQCtVAUIWoKuqkC_YSqimLFoh1QlbgVZ1oZRQL9lZSg8AoNtarNjmE05Y9NE9kuf7GDY-pMlZvqNpG3reYaKeB88_4oGSQ89xnym0W0p8CPHnj95FshOPtEPnnd_wOdEwj3x0A-VC6p2dXPCv2OmAY6KLp3nO7q8_313dFuuvN1-uLteFVRKmolQNdT0gUWURQElL2NUDiEoPUnQDNUOHraZOS-o70FJ1pLCxVjd1mXfVOSuX3tnv8fAdx9Hso9thPBgB5qjKLKpMVmWOqozMoXdLaIu_8YDO3F6uzXEHAkolZfkoMvt2YbOGbzOlyexcsjSO6CnMyYjc3eiyLXVG3zxDH8IcfX4_U6KWQssaMtUslI0hpUiDsW7Co7Mpohv_ebZ4lvyfV5_8pMz6DcU_bvpr6Bc3zroO
CitedBy_id crossref_primary_10_1016_j_inffus_2018_10_005
crossref_primary_10_1115_1_4041674
crossref_primary_10_3390_s20030920
crossref_primary_10_1142_S021853932150042X
crossref_primary_10_1016_j_isatra_2020_03_017
crossref_primary_10_1109_ACCESS_2017_2759325
crossref_primary_10_3389_fmats_2019_00061
crossref_primary_10_1007_s12046_018_0991_y
crossref_primary_10_1016_j_procir_2018_03_076
crossref_primary_10_3390_app13063694
crossref_primary_10_3390_electronics10030285
crossref_primary_10_1016_j_istruc_2023_105518
crossref_primary_10_1177_0954406219888544
crossref_primary_10_1007_s10845_021_01894_w
crossref_primary_10_1016_j_est_2024_114736
crossref_primary_10_1007_s10845_018_1431_x
crossref_primary_10_1007_s11831_019_09339_7
crossref_primary_10_1016_j_jmsy_2020_07_008
crossref_primary_10_1177_1687814020984388
crossref_primary_10_3390_s23135931
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_1109_ACCESS_2021_3116813
crossref_primary_10_3390_app13042524
crossref_primary_10_1080_24725854_2021_1874080
crossref_primary_10_3390_en12224366
crossref_primary_10_1002_er_5574
crossref_primary_10_1177_09544062241245199
crossref_primary_10_1007_s00170_022_09280_3
crossref_primary_10_1007_s10845_018_1445_4
crossref_primary_10_1007_s10845_019_01483_y
crossref_primary_10_1109_ACCESS_2019_2925634
crossref_primary_10_1016_j_jpowsour_2022_231818
crossref_primary_10_3390_s24248022
crossref_primary_10_3390_machines10100884
crossref_primary_10_1016_j_eswa_2021_114569
crossref_primary_10_1109_TIM_2020_3029382
crossref_primary_10_1109_ACCESS_2022_3233220
crossref_primary_10_1016_j_engappai_2024_109356
crossref_primary_10_1016_j_asoc_2018_10_014
crossref_primary_10_1016_j_jmsy_2024_01_009
crossref_primary_10_1109_TII_2019_2921032
crossref_primary_10_3233_JIFS_169547
crossref_primary_10_3390_en14082135
crossref_primary_10_1007_s10845_021_01750_x
crossref_primary_10_3390_s18092871
crossref_primary_10_1016_j_asoc_2018_05_015
crossref_primary_10_1109_TIE_2017_2733469
crossref_primary_10_1109_TMECH_2021_3079729
crossref_primary_10_1016_j_jmsy_2020_11_016
crossref_primary_10_1007_s10845_015_1077_x
crossref_primary_10_1007_s40430_021_03121_2
crossref_primary_10_1007_s40799_018_0235_4
crossref_primary_10_1016_j_measurement_2024_116589
crossref_primary_10_3390_en17010019
crossref_primary_10_1016_j_ress_2019_03_018
crossref_primary_10_1109_TII_2022_3143148
crossref_primary_10_3390_app14010436
crossref_primary_10_1109_TR_2015_2494682
crossref_primary_10_3390_app10248977
crossref_primary_10_1109_TIM_2022_3149094
crossref_primary_10_1007_s10845_018_1430_y
crossref_primary_10_1155_2021_5876299
crossref_primary_10_1007_s11771_020_4450_7
crossref_primary_10_1016_j_ymssp_2024_111795
crossref_primary_10_3390_app10041378
crossref_primary_10_1016_j_heliyon_2022_e12111
crossref_primary_10_3390_fi13030057
crossref_primary_10_3390_app8060925
crossref_primary_10_1109_JSEN_2023_3337365
crossref_primary_10_1007_s10845_018_1448_1
crossref_primary_10_3390_app12094737
crossref_primary_10_21595_vp_2019_21161
crossref_primary_10_1016_j_eswa_2020_113952
crossref_primary_10_1016_j_ymssp_2017_11_016
crossref_primary_10_1007_s10845_015_1107_8
crossref_primary_10_1109_TIE_2016_2623260
crossref_primary_10_1115_1_4049525
crossref_primary_10_7232_JKIIE_2023_49_2_107
crossref_primary_10_1016_j_aei_2024_102506
crossref_primary_10_3233_JIFS_179277
crossref_primary_10_1016_j_ress_2018_06_021
crossref_primary_10_3390_e23070791
crossref_primary_10_1007_s10845_024_02336_z
crossref_primary_10_23939_mmc2023_04_1023
crossref_primary_10_1017_dsi_2019_90
crossref_primary_10_3390_s23198124
crossref_primary_10_1080_00207543_2018_1530475
crossref_primary_10_1016_j_ymssp_2022_109788
crossref_primary_10_3390_s20174657
crossref_primary_10_1109_ACCESS_2020_3032445
crossref_primary_10_1177_1748006X221110969
crossref_primary_10_3390_machines11100923
crossref_primary_10_3390_s20247273
crossref_primary_10_1016_j_ast_2018_09_044
crossref_primary_10_3390_en13153762
crossref_primary_10_1007_s13198_018_0708_y
crossref_primary_10_1007_s00170_017_1268_z
crossref_primary_10_1109_TVT_2021_3138959
crossref_primary_10_1016_j_jmsy_2021_06_006
crossref_primary_10_1016_j_cie_2022_108559
crossref_primary_10_1007_s10845_020_01609_7
crossref_primary_10_1016_j_procir_2022_02_009
crossref_primary_10_1109_ACCESS_2019_2919566
crossref_primary_10_1016_j_aei_2024_102558
crossref_primary_10_1142_S0218539319500128
crossref_primary_10_1016_j_ymssp_2024_111737
crossref_primary_10_3390_electronics10121497
crossref_primary_10_3390_s23135970
crossref_primary_10_1016_j_apenergy_2022_119284
crossref_primary_10_1016_j_ress_2023_109206
crossref_primary_10_3390_en14185841
crossref_primary_10_3390_a13030064
crossref_primary_10_3390_jmse12030387
crossref_primary_10_1016_j_fss_2018_10_008
crossref_primary_10_1080_08982112_2023_2218923
crossref_primary_10_1109_TR_2021_3124944
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122383
crossref_primary_10_1016_j_compind_2017_09_003
crossref_primary_10_1016_j_ress_2025_111004
crossref_primary_10_1109_TSIPN_2023_3328275
crossref_primary_10_1115_1_4038074
crossref_primary_10_3390_en16062513
crossref_primary_10_1155_2023_1091276
crossref_primary_10_1007_s10845_018_1428_5
crossref_primary_10_1177_09544054241310485
crossref_primary_10_1016_j_rineng_2024_102935
crossref_primary_10_1016_j_measen_2023_100944
crossref_primary_10_1177_1687814016685004
crossref_primary_10_3390_machines12110762
crossref_primary_10_1016_j_engappai_2020_103849
crossref_primary_10_3390_s24030824
crossref_primary_10_1016_j_future_2018_12_009
crossref_primary_10_1016_j_ifacol_2020_11_003
crossref_primary_10_3390_e21090861
crossref_primary_10_1007_s00521_021_05716_1
crossref_primary_10_1007_s10845_017_1380_9
crossref_primary_10_3390_s22072817
crossref_primary_10_1016_j_ymssp_2025_112431
crossref_primary_10_1109_TAI_2024_3396422
crossref_primary_10_1007_s00521_022_07316_z
crossref_primary_10_1109_ACCESS_2020_3010066
crossref_primary_10_1016_j_renene_2021_10_062
crossref_primary_10_1541_ieejjia_22004793
crossref_primary_10_1007_s11042_017_5204_x
crossref_primary_10_3390_machines13030215
crossref_primary_10_1016_j_neucom_2020_06_052
crossref_primary_10_1109_TIM_2021_3055788
crossref_primary_10_3390_batteries10030106
crossref_primary_10_1016_j_aei_2021_101404
crossref_primary_10_1109_TIM_2021_3059500
crossref_primary_10_3389_fmech_2021_719718
crossref_primary_10_3390_s19030532
crossref_primary_10_1088_1757_899X_806_1_012041
crossref_primary_10_1007_s10462_022_10260_y
crossref_primary_10_1142_S0218539324500086
crossref_primary_10_1016_j_istruc_2020_09_002
crossref_primary_10_1109_TTE_2024_3457621
crossref_primary_10_1007_s00170_020_05303_z
crossref_primary_10_1007_s10845_015_1143_4
crossref_primary_10_3389_fmats_2019_00110
crossref_primary_10_3390_electronics12244941
crossref_primary_10_3390_s22103687
crossref_primary_10_1007_s40430_022_03638_0
crossref_primary_10_1007_s00521_021_06089_1
crossref_primary_10_3390_s21010182
crossref_primary_10_1177_1475921720972926
crossref_primary_10_1016_j_measurement_2021_109756
crossref_primary_10_1108_WJE_06_2022_0244
crossref_primary_10_3390_a18030130
crossref_primary_10_1016_j_oceaneng_2024_118893
crossref_primary_10_1016_j_isatra_2018_07_010
crossref_primary_10_1007_s10845_017_1341_3
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1115_1_4043191
crossref_primary_10_1016_j_ymssp_2023_110910
crossref_primary_10_3390_app10041323
crossref_primary_10_2139_ssrn_4105395
crossref_primary_10_1155_2020_8814658
crossref_primary_10_1016_j_asoc_2019_105622
Cites_doi 10.1007/3-540-30368-5
10.1016/j.ijpe.2009.05.006
10.1016/j.ymssp.2008.06.009
10.1109/AERO.2011.5747581
10.1109/TIE.2004.824875
10.1016/j.compind.2006.02.014
10.1007/s00170-013-5065-z
10.1080/09537280412331309208
10.1109/ICPHM.2013.6621413
10.1007/s00170-004-2131-6
10.1016/j.ymssp.2005.09.012
10.1007/s10845-009-0356-9
10.1007/s10845-009-0249-y
10.1080/01621459.2000.10474241
10.1007/s10845-013-0774-6
10.1007/s10845-010-0443-y
10.1007/s10845-009-0348-9
10.1016/j.euromechsol.2008.07.007
10.1016/j.ymssp.2005.11.008
10.1023/A:1026583821221
10.1109/PHM.2008.4711421
10.1016/j.ejor.2012.03.027
10.1007/s00170-009-2482-0
10.1109/AERO.2008.4526631
10.1109/TR.2012.2194177
10.1016/j.ijfatigue.2006.03.004
10.1109/TR.2012.2194175
10.1007/s10845-012-0657-2
10.1109/IECON.2013.6699844
10.1109/PES.2005.1489277
10.1109/TSMCB.2012.2198882
10.1007/s10845-009-0352-0
10.1109/TSP.2012.2208638
10.1098/rspa.1998.0193
10.1002/9780470117842
10.1007/s10845-010-0436-x
10.1007/s10845-009-0310-x
10.1016/j.snb.2009.03.018
10.1109/ICEMI.2007.4350749
10.1109/AERO.2006.1656108
10.2514/6.2005-7002
10.1109/CIMSim.2012.56
10.1109/TIM.2008.2004340
10.1016/S0925-2312(01)00702-0
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
Springer Science+Business Media New York 2016
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: Springer Science+Business Media New York 2016
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88E
8AL
8AO
8FD
8FE
8FG
8FJ
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M0S
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
VOOES
ADTOC
UNPAY
DOI 10.1007/s10845-014-0933-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Health & Medical Collection (Alumni Edition)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Technology Research Database
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Physics
EISSN 1572-8145
EndPage 1048
ExternalDocumentID oai:HAL:hal-01025442v1
4169733881
10_1007_s10845_014_0933_4
Genre Feature
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FE
8FG
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c540t-257ebd0aee3ca0054ceab6f0139f41bfe7fba89eb94edb0945be5a7cc976294e3
IEDL.DBID UNPAY
ISSN 0956-5515
1572-8145
IngestDate Sun Oct 26 04:12:27 EDT 2025
Tue Oct 14 20:34:45 EDT 2025
Thu Oct 02 05:14:40 EDT 2025
Sat Aug 23 14:10:45 EDT 2025
Wed Oct 01 03:40:57 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
Fri Feb 21 02:35:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Discrete Bayes filter
Uncertainty representation
Data-driven PHM
Online estimation
Degradation modeling
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-257ebd0aee3ca0054ceab6f0139f41bfe7fba89eb94edb0945be5a7cc976294e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-01025442
PQID 1816419460
PQPubID 32407
PageCount 12
ParticipantIDs unpaywall_primary_10_1007_s10845_014_0933_4
hal_primary_oai_HAL_hal_01025442v1
proquest_miscellaneous_1845792829
proquest_journals_1816419460
crossref_citationtrail_10_1007_s10845_014_0933_4
crossref_primary_10_1007_s10845_014_0933_4
springer_journals_10_1007_s10845_014_0933_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: London
PublicationTitle Journal of intelligent manufacturing
PublicationTitleAbbrev J Intell Manuf
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Springer Verlag (Germany)
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag (Germany)
References ChoiKihoonSinghSatnamKodaliAnuradhaPattipatiKrishna RSheppardJohn WNamburuSetu MadhaviNovel classifier fusion approaches for fault diagnosis in automotive systemsIEEE Transactions on Instrumentation and Measurement200958360261110.1109/TIM.2008.2004340
XiaTangbinXiLifengZhouXiaojunLeeJayDynamic maintenance decision-making for series-parallel hybrid multi-unit manufacturing system based on MAM-MTW methodologyEuropean Journal of Operational Research201222123124010.1016/j.ejor.2012.03.027
IyerNGoebelKBonissonePFramework for post-prognostic decision supportIEEE Aerospace Conference20069139623971
Lei, Z., Xingshan, L., Jinsong, Y., ZhanBao, G. (2007). A genetic training algorithm of wavelet neural networks for fault prognostics in condition based maintenance. In Proceedings of the eighth international conference on electronic measurement and instruments (pp. 584–589). IEEE
YanJKocMLeeJA prognostic algorithm for machine performance assessment and its applicationProduction Planning and Control20047679680110.1080/09537280412331309208
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. In Proceedings of the royal society of London series A mathematical Physical and engineering sciences (pp. 903–995).
Tobon-MejiaDiego AMedjaherKamalZerhouniNoureddineTripotGerardA data-driven failure prognostics method based on mixture of Gaussians hidden Markov modelsIEEE Transactions on Reliability201261249150310.1109/TR.2012.2194177
SikorskaJZHodkiewiczMMaLPrognostic modelling options for remaining useful life estimation by industryMechanical Systems and Signal Processing20112551803183610.1016/j.ymssp.2010.11.018
WangTianyiJianboYuSiegelDLeeJA similarity-based prognostics approach for remaining useful life estimation of engineered systemsIEEE International Conference on Prognostics and Health Management20081669
BrezakDMajeticDUdiljakTKasacJTool wear estimation using an analytic fuzzy classifier and support vector machinesJournal of Intelligent Manufacturing20122379780910.1007/s10845-010-0436-x
Purushothaman, S. (2010). Tool wear monitoring using artificial neural network based on extended Kalman filter weight updation with transformed input patterns. Journal of Intelligent Manufacturing, 21, 717–730.
VachtsevanosGLewisFRoemerMHessAWuBIntelligent fault diagnosis and prognosis for engineering systems2006Hoboken, New JerseyWiley10.1002/9780470117842
KothamasuRanganathHuangSamuel HVerDuinWilliam HSystem health monitoring and prognostics a review of current paradigms and practicesThe International Journal of Advanced Manufacturing Technology2006289–101012102410.1007/s00170-004-2131-6
Luo, J., Namburu, M., Pattipati, K., Qiao, L., Kawamoto, M., & Chigusa, S. (2003). Model-based prognostic techniques, Anaheim, CA, United States: 2003 (pp. 330–340). Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers Inc.
YeoSHKhooLPNeoSSTool condition monitoring using reflectance of chip surface and neural networkJournal of Intelligent Manufacturing20001150751410.1023/A:1026583821221
Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., Varnier, C. (2012) “Pronostia: An experimental platform for bearings accelerated degradation tests”. In IEEE international conference on prognostics and health management, Denver, Colorado, USA.
Saha, B., Goebel, K. (2007). “Battery Data Set”, NASA Ames Prognostics Data Repository. [http://ti.arc.nasa.gov/project/prognostic-data-repository]. NASA Ames, Moffett Field, CA
HengAiwinaZhangShengTanAndy C CMathewJosephRotating machinery prognostics: State of the art, challenges and opportunitiesMechanical Systems and Signal Processing200923372473910.1016/j.ymssp.2008.06.009
Satish, B., & Sarma, N. D. R. (2005). A fuzzy BP approach for diagnosis and prognosis of bearing faults in induction motors. In: IEEE power engineering society general meeting (pp. 2291–2294). IEEE
LeeJNiJDjurdjanovicDQiuHLiaoHIntelligent prognostics tools and e-maintenanceComputers in Industry200657647648910.1016/j.compind.2006.02.014
RamassoEmmanuelRombautMichleZerhouniNoureddineJoint prediction of continuous and discrete states in time-series based on belief functionsIEEE Transactions on Cybernetics2013431375010.1109/TSMCB.2012.2198882
Mosallam, A., Byttner, S., Svensson, M. T. R. (2011). “Nonlinear relation mining for maintenance prediction”. In IEEE Aerospace Conference, (pp. 1–9), March 2011. doi:10.1109/AERO.2011.5747581.
Schwabacher, M. A. (2005). A survey of data-driven prognostic. In Infotech@Aerospace (pp. 26–29). Arlington, Virginia.
LiLinNiJunShort-term decision support system for maintenance task prioritizationInternational Journal of Production Economics2009121119520210.1016/j.ijpe.2009.05.006
JardineAndrew K SLinDamingBanjevicDraganA review on machinery diagnostics and prognostics implementing condition-based maintenanceMechanical Systems and Signal Processing20062071483151010.1016/j.ymssp.2005.09.012
Saxena, A., Goebel, K. (2008). “C-MAPSS Data Set”, NASA Ames Prognostics Data Repository. [http://ti.arc.nasa.gov/project/prognostic-data-repository]. NASA Ames, Moffett Field, CA
ZhangZhenyouWangYiWangKeshengFault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural networkJournal of Intelligent Manufacturing20132461213122710.1007/s10845-012-0657-2
DongJianfeiVerhaegenMichelGustafssonFredrikRobust fault detection with statistical uncertainty in identified parametersIEEE Transactions on Signal Processing201260105064507610.1109/TSP.2012.2208638
MontgomeryNBanjevicDJardineAKSMinor maintenance actions and their impact on diagnostic and prognostic CBM modelsJournal of Intelligent Manufacturing201223230331110.1007/s10845-009-0352-0
MosallamAMedjaherKZerhouniNNonparametric time series modelling for industrial prognostics and health managementThe International Journal of Advanced Manufacturing Technology20136951685169910.1007/s00170-013-5065-z
ChaariFakherFakhfakhTaharHaddarMohamedAnalytical modelling of spur gear tooth crack and influence on gearmesh stiffnessEuropean Journal of Mechanics-A/Solids200928346146810.1016/j.euromechsol.2008.07.007
LewisFApplied optimal control and estimation: Digital design and implementation1992Englewood Cliffs, NJPrentice-Hall
Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S. (2013). “Health assessment and life prediction of cutting tools based on support vector regression”. Journal of Intelligent Manufacturing, article published online 19 April 2013. doi:10.1007/s10845-013-0774-6.
BoxGEPJenkinsGMTime series analysis: Forecasting and control1976San FranciscoHolden-Day
GebraeelNLawleyMLiuRParmeshwaranVResidual life predictions from vibration-based degradation signals: A neural network approachIEEE Transactions on Industrial Electronics200451369470010.1109/TIE.2004.824875
MedjaherKamalTobon-MejiaDiego AZerhouniNoureddineRemaining useful life estimation of critical components with application to bearingsIEEE Transactions on Reliability201261229230210.1109/TR.2012.2194175
ZhangGPTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing20035015917510.1016/S0925-2312(01)00702-0
HuangRXiLLiXQiuHLeeJResidual life predictions for ball bearings based on self-organizing map and back propagation neural network methodsMechanical Systems and Signal Processing200721119320710.1016/j.ymssp.2005.11.008
Trincavelli, M., Coradeschi, S., & Loutfi, A. (2009). Odour classification system for continuous monitoring applications. Sensors and Actuators B: Chemical, 139(2), 265–273, 4 June 2009, ISSN: 0925–4005. doi:10.1016/j.snb.2009.03.018.
Sarah S. S., Radzi, N. H. M., Haron, H. (2012). “Review on scheduling techniques of preventive maintenance activities of railway”. In Fourth international conference on computational intelligence, modelling and simulation (CIMSiM) (pp. 310–315), 25–27 Sept. 2012, Kuantan, Malaysia. doi:10.1109/CIMSim.2012.56.
WuWHuJZhangJPrognostics of machine health condition using an improved ARIMA-based prediction method2007Harbin, ChinaIEEE10621067
SahaBhaskarGoebelKaiUncertainty management for diagnostics and prognostics of batteries using Bayesian techniquesIEEE Aerospace Conference20081818
Tian, Zhigang. (2012). An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing, 23(2), 227–237. doi:10.1007/s10845-009-0356-9.
He, D., Li, R., & Bechhoefer, E. (2012). Stochastic modeling of damage physics for mechanical component prognostics using condition indicators. Journal of Intelligent Manufacturing, 23, 221–226.
Javed, K., Gouriveau, R., & Zerhouni, N. (2013) “ Novel failure prognostics approach with dynamic thresholds for machine degradation”. In 39th annual conference of the IEEE industrial electronics society, (IECON), (pp. 4404–4409), 10–13 November 2013 doi:10.1109/IECON.2013.6699844.
Javed, K., Gouriveau, R., Zerhouni, N., & Nectoux, P. (2013) “A feature extraction procedure based on trigonometric functions and cumulative descriptors to enhance prognostics modeling”. In IEEE prognostics and health management (PHM) conference (Vol. 1(7), pp. 24–27). doi:10.1109/ICPHM.2013.6621413.
PalSHeynsPSFreyerBHTheronNJPalSKTool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertaintiesJournal of Intelligent Manufacturing20112249150410.1007/s10845-009-0310-x
TsayRSTime series and forecasting: Brief history and future researchJournal of the American Statistical Association20009545063864310.1080/01621459.2000.10474241
IsermannRFault-diagnosis systems: An introduction from fault detection to fault tolerance2006HeidelbergSpringer10.1007/3-540-30368-5
GajateAHaberRDel ToroRVegaPBustilloATool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning processJournal of Intelligent Manufacturing20122386988210.1007/s10845-010-0443-y
Go
Kihoon Choi (933_CR5) 2009; 58
933_CR9
Emmanuel Ramasso (933_CR33) 2013; 43
F Lewis (933_CR22) 1992
GP Zhang (933_CR52) 2003; 50
N Montgomery (933_CR26) 2012; 23
Lin Li (933_CR23) 2009; 121
933_CR12
933_CR10
N Iyer (933_CR15) 2006; 9
933_CR17
933_CR18
Ranganath Kothamasu (933_CR19) 2006; 28
RS Tsay (933_CR44) 2000; 95
Bhaskar Saha (933_CR35) 2008; 1
Tianyi Wang (933_CR47) 2008; 1
GEP Box (933_CR2) 1976
933_CR41
W Wu (933_CR48) 2007
Jianfei Dong (933_CR6) 2012; 60
933_CR43
Fakher Chaari (933_CR4) 2009; 28
Kamal Medjaher (933_CR25) 2012; 61
SH Yeo (933_CR51) 2000; 11
Andrew K S Jardine (933_CR16) 2006; 20
J Lee (933_CR20) 2006; 57
S Pal (933_CR30) 2011; 22
D Brezak (933_CR3) 2012; 23
R Isermann (933_CR14) 2006
A Mosallam (933_CR28) 2013; 69
G Vachtsevanos (933_CR45) 2006
933_CR34
933_CR32
933_CR38
933_CR39
933_CR36
933_CR37
J Yan (933_CR50) 2004; 76
R Huang (933_CR13) 2007; 21
Zhenyou Zhang (933_CR53) 2013; 24
AP Vassilopoulos (933_CR46) 2007; 29
A Gajate (933_CR7) 2012; 23
N Gebraeel (933_CR8) 2004; 51
933_CR24
Tangbin Xia (933_CR49) 2012; 221
933_CR21
JZ Sikorska (933_CR40) 2011; 25
933_CR27
933_CR1
Diego A Tobon-Mejia (933_CR42) 2012; 61
Aiwina Heng (933_CR11) 2009; 23
933_CR29
Ying Peng (933_CR31) 2010; 50
References_xml – reference: Trincavelli, M., Coradeschi, S., & Loutfi, A. (2009). Odour classification system for continuous monitoring applications. Sensors and Actuators B: Chemical, 139(2), 265–273, 4 June 2009, ISSN: 0925–4005. doi:10.1016/j.snb.2009.03.018.
– reference: ZhangZhenyouWangYiWangKeshengFault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural networkJournal of Intelligent Manufacturing20132461213122710.1007/s10845-012-0657-2
– reference: TsayRSTime series and forecasting: Brief history and future researchJournal of the American Statistical Association20009545063864310.1080/01621459.2000.10474241
– reference: YanJKocMLeeJA prognostic algorithm for machine performance assessment and its applicationProduction Planning and Control20047679680110.1080/09537280412331309208
– reference: IyerNGoebelKBonissonePFramework for post-prognostic decision supportIEEE Aerospace Conference20069139623971
– reference: Schwabacher, M. A. (2005). A survey of data-driven prognostic. In Infotech@Aerospace (pp. 26–29). Arlington, Virginia.
– reference: VassilopoulosAPGeorgopoulosEFDionysopoulosVArtificial neural networks in spectrum fatigue life prediction of composite materialsInternational Journal of Fatigue2007291202910.1016/j.ijfatigue.2006.03.004
– reference: Javed, K., Gouriveau, R., & Zerhouni, N. (2013) “ Novel failure prognostics approach with dynamic thresholds for machine degradation”. In 39th annual conference of the IEEE industrial electronics society, (IECON), (pp. 4404–4409), 10–13 November 2013 doi:10.1109/IECON.2013.6699844.
– reference: ZhangGPTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing20035015917510.1016/S0925-2312(01)00702-0
– reference: Saha, B., Goebel, K. (2007). “Battery Data Set”, NASA Ames Prognostics Data Repository. [http://ti.arc.nasa.gov/project/prognostic-data-repository]. NASA Ames, Moffett Field, CA
– reference: Tobon-MejiaDiego AMedjaherKamalZerhouniNoureddineTripotGerardA data-driven failure prognostics method based on mixture of Gaussians hidden Markov modelsIEEE Transactions on Reliability201261249150310.1109/TR.2012.2194177
– reference: PalSHeynsPSFreyerBHTheronNJPalSKTool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertaintiesJournal of Intelligent Manufacturing20112249150410.1007/s10845-009-0310-x
– reference: SikorskaJZHodkiewiczMMaLPrognostic modelling options for remaining useful life estimation by industryMechanical Systems and Signal Processing20112551803183610.1016/j.ymssp.2010.11.018
– reference: HuangRXiLLiXQiuHLeeJResidual life predictions for ball bearings based on self-organizing map and back propagation neural network methodsMechanical Systems and Signal Processing200721119320710.1016/j.ymssp.2005.11.008
– reference: Javed, K., Gouriveau, R., Zerhouni, N., & Nectoux, P. (2013) “A feature extraction procedure based on trigonometric functions and cumulative descriptors to enhance prognostics modeling”. In IEEE prognostics and health management (PHM) conference (Vol. 1(7), pp. 24–27). doi:10.1109/ICPHM.2013.6621413.
– reference: Tian, Zhigang. (2012). An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing, 23(2), 227–237. doi:10.1007/s10845-009-0356-9.
– reference: RamassoEmmanuelRombautMichleZerhouniNoureddineJoint prediction of continuous and discrete states in time-series based on belief functionsIEEE Transactions on Cybernetics2013431375010.1109/TSMCB.2012.2198882
– reference: MedjaherKamalTobon-MejiaDiego AZerhouniNoureddineRemaining useful life estimation of critical components with application to bearingsIEEE Transactions on Reliability201261229230210.1109/TR.2012.2194175
– reference: HengAiwinaZhangShengTanAndy C CMathewJosephRotating machinery prognostics: State of the art, challenges and opportunitiesMechanical Systems and Signal Processing200923372473910.1016/j.ymssp.2008.06.009
– reference: PengYingDongMingZuoMing JianCurrent status of machine prognostics in condition-based maintenance: A reviewThe International Journal of Advanced Manufacturing Technology2010501–429731310.1007/s00170-009-2482-0
– reference: XiaTangbinXiLifengZhouXiaojunLeeJayDynamic maintenance decision-making for series-parallel hybrid multi-unit manufacturing system based on MAM-MTW methodologyEuropean Journal of Operational Research201222123124010.1016/j.ejor.2012.03.027
– reference: Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S. (2013). “Health assessment and life prediction of cutting tools based on support vector regression”. Journal of Intelligent Manufacturing, article published online 19 April 2013. doi:10.1007/s10845-013-0774-6.
– reference: DongJianfeiVerhaegenMichelGustafssonFredrikRobust fault detection with statistical uncertainty in identified parametersIEEE Transactions on Signal Processing201260105064507610.1109/TSP.2012.2208638
– reference: BrezakDMajeticDUdiljakTKasacJTool wear estimation using an analytic fuzzy classifier and support vector machinesJournal of Intelligent Manufacturing20122379780910.1007/s10845-010-0436-x
– reference: Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., Varnier, C. (2012) “Pronostia: An experimental platform for bearings accelerated degradation tests”. In IEEE international conference on prognostics and health management, Denver, Colorado, USA.
– reference: MosallamAMedjaherKZerhouniNNonparametric time series modelling for industrial prognostics and health managementThe International Journal of Advanced Manufacturing Technology20136951685169910.1007/s00170-013-5065-z
– reference: Purushothaman, S. (2010). Tool wear monitoring using artificial neural network based on extended Kalman filter weight updation with transformed input patterns. Journal of Intelligent Manufacturing, 21, 717–730.
– reference: ChoiKihoonSinghSatnamKodaliAnuradhaPattipatiKrishna RSheppardJohn WNamburuSetu MadhaviNovel classifier fusion approaches for fault diagnosis in automotive systemsIEEE Transactions on Instrumentation and Measurement200958360261110.1109/TIM.2008.2004340
– reference: Sarah S. S., Radzi, N. H. M., Haron, H. (2012). “Review on scheduling techniques of preventive maintenance activities of railway”. In Fourth international conference on computational intelligence, modelling and simulation (CIMSiM) (pp. 310–315), 25–27 Sept. 2012, Kuantan, Malaysia. doi:10.1109/CIMSim.2012.56.
– reference: Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. In Proceedings of the royal society of London series A mathematical Physical and engineering sciences (pp. 903–995).
– reference: GajateAHaberRDel ToroRVegaPBustilloATool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning processJournal of Intelligent Manufacturing20122386988210.1007/s10845-010-0443-y
– reference: Luo, J., Namburu, M., Pattipati, K., Qiao, L., Kawamoto, M., & Chigusa, S. (2003). Model-based prognostic techniques, Anaheim, CA, United States: 2003 (pp. 330–340). Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers Inc.
– reference: Gorjian, N., Ma, L., Mittinty, M., Yarlagadda, P., Sun, Y. (2009) Review on degradation models in reliability analysis. In: Proceedings of the 4th world congress on engineering asset management, 28–30 Sept, Athens, Greece.
– reference: MontgomeryNBanjevicDJardineAKSMinor maintenance actions and their impact on diagnostic and prognostic CBM modelsJournal of Intelligent Manufacturing201223230331110.1007/s10845-009-0352-0
– reference: Satish, B., & Sarma, N. D. R. (2005). A fuzzy BP approach for diagnosis and prognosis of bearing faults in induction motors. In: IEEE power engineering society general meeting (pp. 2291–2294). IEEE
– reference: GebraeelNLawleyMLiuRParmeshwaranVResidual life predictions from vibration-based degradation signals: A neural network approachIEEE Transactions on Industrial Electronics200451369470010.1109/TIE.2004.824875
– reference: Saxena, A., Goebel, K. (2008). “C-MAPSS Data Set”, NASA Ames Prognostics Data Repository. [http://ti.arc.nasa.gov/project/prognostic-data-repository]. NASA Ames, Moffett Field, CA
– reference: VachtsevanosGLewisFRoemerMHessAWuBIntelligent fault diagnosis and prognosis for engineering systems2006Hoboken, New JerseyWiley10.1002/9780470117842
– reference: LiLinNiJunShort-term decision support system for maintenance task prioritizationInternational Journal of Production Economics2009121119520210.1016/j.ijpe.2009.05.006
– reference: He, D., Li, R., & Bechhoefer, E. (2012). Stochastic modeling of damage physics for mechanical component prognostics using condition indicators. Journal of Intelligent Manufacturing, 23, 221–226.
– reference: SahaBhaskarGoebelKaiUncertainty management for diagnostics and prognostics of batteries using Bayesian techniquesIEEE Aerospace Conference20081818
– reference: WuWHuJZhangJPrognostics of machine health condition using an improved ARIMA-based prediction method2007Harbin, ChinaIEEE10621067
– reference: Mosallam, A., Byttner, S., Svensson, M. T. R. (2011). “Nonlinear relation mining for maintenance prediction”. In IEEE Aerospace Conference, (pp. 1–9), March 2011. doi:10.1109/AERO.2011.5747581.
– reference: IsermannRFault-diagnosis systems: An introduction from fault detection to fault tolerance2006HeidelbergSpringer10.1007/3-540-30368-5
– reference: ChaariFakherFakhfakhTaharHaddarMohamedAnalytical modelling of spur gear tooth crack and influence on gearmesh stiffnessEuropean Journal of Mechanics-A/Solids200928346146810.1016/j.euromechsol.2008.07.007
– reference: BoxGEPJenkinsGMTime series analysis: Forecasting and control1976San FranciscoHolden-Day
– reference: LewisFApplied optimal control and estimation: Digital design and implementation1992Englewood Cliffs, NJPrentice-Hall
– reference: LeeJNiJDjurdjanovicDQiuHLiaoHIntelligent prognostics tools and e-maintenanceComputers in Industry200657647648910.1016/j.compind.2006.02.014
– reference: Lei, Z., Xingshan, L., Jinsong, Y., ZhanBao, G. (2007). A genetic training algorithm of wavelet neural networks for fault prognostics in condition based maintenance. In Proceedings of the eighth international conference on electronic measurement and instruments (pp. 584–589). IEEE
– reference: YeoSHKhooLPNeoSSTool condition monitoring using reflectance of chip surface and neural networkJournal of Intelligent Manufacturing20001150751410.1023/A:1026583821221
– reference: JardineAndrew K SLinDamingBanjevicDraganA review on machinery diagnostics and prognostics implementing condition-based maintenanceMechanical Systems and Signal Processing20062071483151010.1016/j.ymssp.2005.09.012
– reference: WangTianyiJianboYuSiegelDLeeJA similarity-based prognostics approach for remaining useful life estimation of engineered systemsIEEE International Conference on Prognostics and Health Management20081669
– reference: KothamasuRanganathHuangSamuel HVerDuinWilliam HSystem health monitoring and prognostics a review of current paradigms and practicesThe International Journal of Advanced Manufacturing Technology2006289–101012102410.1007/s00170-004-2131-6
– ident: 933_CR29
– volume-title: Fault-diagnosis systems: An introduction from fault detection to fault tolerance
  year: 2006
  ident: 933_CR14
  doi: 10.1007/3-540-30368-5
– volume: 121
  start-page: 195
  issue: 1
  year: 2009
  ident: 933_CR23
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2009.05.006
– volume-title: Time series analysis: Forecasting and control
  year: 1976
  ident: 933_CR2
– ident: 933_CR9
– volume-title: Applied optimal control and estimation: Digital design and implementation
  year: 1992
  ident: 933_CR22
– ident: 933_CR38
– volume: 23
  start-page: 724
  issue: 3
  year: 2009
  ident: 933_CR11
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2008.06.009
– ident: 933_CR27
  doi: 10.1109/AERO.2011.5747581
– volume: 51
  start-page: 694
  issue: 3
  year: 2004
  ident: 933_CR8
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2004.824875
– volume: 57
  start-page: 476
  issue: 6
  year: 2006
  ident: 933_CR20
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2006.02.014
– volume: 69
  start-page: 1685
  issue: 5
  year: 2013
  ident: 933_CR28
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-013-5065-z
– volume: 76
  start-page: 796
  year: 2004
  ident: 933_CR50
  publication-title: Production Planning and Control
  doi: 10.1080/09537280412331309208
– ident: 933_CR18
  doi: 10.1109/ICPHM.2013.6621413
– volume: 28
  start-page: 1012
  issue: 9–10
  year: 2006
  ident: 933_CR19
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-004-2131-6
– volume: 20
  start-page: 14831510
  issue: 7
  year: 2006
  ident: 933_CR16
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.09.012
– ident: 933_CR24
– ident: 933_CR41
  doi: 10.1007/s10845-009-0356-9
– ident: 933_CR32
  doi: 10.1007/s10845-009-0249-y
– ident: 933_CR34
– volume: 95
  start-page: 638
  issue: 450
  year: 2000
  ident: 933_CR44
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2000.10474241
– ident: 933_CR1
  doi: 10.1007/s10845-013-0774-6
– volume: 23
  start-page: 869
  year: 2012
  ident: 933_CR7
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-010-0443-y
– ident: 933_CR10
  doi: 10.1007/s10845-009-0348-9
– volume: 28
  start-page: 461
  issue: 3
  year: 2009
  ident: 933_CR4
  publication-title: European Journal of Mechanics-A/Solids
  doi: 10.1016/j.euromechsol.2008.07.007
– volume: 21
  start-page: 193
  issue: 1
  year: 2007
  ident: 933_CR13
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.11.008
– volume: 11
  start-page: 507
  year: 2000
  ident: 933_CR51
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1023/A:1026583821221
– volume: 1
  start-page: 6
  issue: 6
  year: 2008
  ident: 933_CR47
  publication-title: IEEE International Conference on Prognostics and Health Management
  doi: 10.1109/PHM.2008.4711421
– volume: 221
  start-page: 231
  year: 2012
  ident: 933_CR49
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.03.027
– volume: 50
  start-page: 297
  issue: 1–4
  year: 2010
  ident: 933_CR31
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-009-2482-0
– volume: 1
  start-page: 1
  issue: 8
  year: 2008
  ident: 933_CR35
  publication-title: IEEE Aerospace Conference
  doi: 10.1109/AERO.2008.4526631
– volume: 61
  start-page: 491
  issue: 2
  year: 2012
  ident: 933_CR42
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2012.2194177
– volume: 29
  start-page: 20
  issue: 1
  year: 2007
  ident: 933_CR46
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2006.03.004
– volume: 61
  start-page: 292
  issue: 2
  year: 2012
  ident: 933_CR25
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2012.2194175
– volume: 24
  start-page: 1213
  issue: 6
  year: 2013
  ident: 933_CR53
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-012-0657-2
– ident: 933_CR17
  doi: 10.1109/IECON.2013.6699844
– volume: 25
  start-page: 1803
  issue: 5
  year: 2011
  ident: 933_CR40
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.09.012
– ident: 933_CR37
  doi: 10.1109/PES.2005.1489277
– volume: 43
  start-page: 37
  issue: 1
  year: 2013
  ident: 933_CR33
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2198882
– start-page: 1062
  volume-title: Prognostics of machine health condition using an improved ARIMA-based prediction method
  year: 2007
  ident: 933_CR48
– volume: 23
  start-page: 303
  issue: 2
  year: 2012
  ident: 933_CR26
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-009-0352-0
– volume: 60
  start-page: 5064
  issue: 10
  year: 2012
  ident: 933_CR6
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2012.2208638
– ident: 933_CR12
  doi: 10.1098/rspa.1998.0193
– volume-title: Intelligent fault diagnosis and prognosis for engineering systems
  year: 2006
  ident: 933_CR45
  doi: 10.1002/9780470117842
– volume: 23
  start-page: 797
  year: 2012
  ident: 933_CR3
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-010-0436-x
– volume: 22
  start-page: 491
  year: 2011
  ident: 933_CR30
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-009-0310-x
– ident: 933_CR43
  doi: 10.1016/j.snb.2009.03.018
– ident: 933_CR21
  doi: 10.1109/ICEMI.2007.4350749
– volume: 9
  start-page: 3962
  issue: 1
  year: 2006
  ident: 933_CR15
  publication-title: IEEE Aerospace Conference
  doi: 10.1109/AERO.2006.1656108
– ident: 933_CR39
  doi: 10.2514/6.2005-7002
– ident: 933_CR36
  doi: 10.1109/CIMSim.2012.56
– volume: 58
  start-page: 602
  issue: 3
  year: 2009
  ident: 933_CR5
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2008.2004340
– volume: 50
  start-page: 159
  year: 2003
  ident: 933_CR52
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
SSID ssj0009861
Score 2.5771885
Snippet Reliability of prognostics and health management systems relies upon accurate understanding of critical components’ degradation process to predict the...
Reliability of prognostics and health management systems relies upon accurate understanding of critical components' degradation process to predict the...
Reliability of prognostics and health management systems (PHM) relies upon accurate understanding of critical components' degradation process to predict the...
SourceID unpaywall
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1037
SubjectTerms Accumulation
Algorithms
Bayesian analysis
Business and Management
Computer simulation
Construction
Control
Decision making
Degradation
Engineering Sciences
Machine learning
Machines
Manufacturing
Mathematical models
Mechatronics
Methods
Micro and nanotechnologies
Microelectronics
Partial differential equations
Physics
Predictions
Preventive maintenance
Processes
Production
Production management
Repositories
Robotics
Sensors
Studies
Useful life
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fj5QwEJ7c7cXoPfhj1YiephqfvDSyUAo8GHOnd9kY3RjjJfdG2jKNJgjr7qK5_94OUHZ98HyFQoCZ6Xxlpt8H8NL5SKliEXNpMOHC5DOuMU24JYqfLI3RdNIJnxZyfiE-XCaXe7Dwe2GordLPid1EXTaG_pG_dplICrfiluHb5U9OqlFUXfUSGmqQVijfdBRj-3AQETPWBA5Ozxafv2xpeLOOQbVj33MDE1_n7DfTZYIa2QSnVT4Xf2Wq_W_UJ7kDQse66SHcbOuluvqtqmonNZ3fhdsDpmQnvRPcgz2sp3DH6zWwIXyncLhDPjiFG13zp1nfB_tebRQvVzTxMWrYqhtib2a9ujSjRFeypman6gppzyXzROS4Zg7zsj4tshX-6OUmWLtG21as-m7R3Y9KQWT-B3Bxfvb13ZwP-gvcOBy34S6aUZehQoyNImxnUGlpCTRaMdMWU6tVlqPOBZbarRMTjYlKjXEQJ3LH4ocwqZsaHwFL9CxUUlhp3aW5kkpHCrMw1rJ0E1weBRD6b12YgZycNDKqYkurTOYpnHkKMk8hAng1XrLsmTmuG_zCGXAcR5za85OPBR0jUr1EiOjXLIAjb99iiOR1sfW7AJ6Pp10MUmFF1di0NEYkaU416QCOvV_s3OLfT3U8us7_3-Hx9Y_3BG45MCf7RsMjmGxWLT51gGmjnw1R8Ae39w_R
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QF6oFBABFpkECcqV8nGdpLjAi0rXqdWKqfIdiYFEbLVbgJqf01_C78MT15NEQ_16tgj25kZf9aMvwF47nQk06EIubIoubBJwA1GkudE8RNHIdqmdMKHj2p-JN4ey-PuHfeqz3bvQ5KNpx49dosFJZoJTrdwLtZgvaHbmsD67M2nd_uXXLtxQ5PaUOw5QCD7YOafhFw5jtY-UzLkCGkOwdENuFmXp_rshy6K0flzsAmH_czbtJOve3Vl9uz5b6SO11zaHbjd4VE2axXoLtzAcgs2-1oPrDP9LdgYERfeg5PXutI8W5KrZJTiVS6I75m19agZHY0ZW5TspT5DeqXJeupyXDGHkn9etCcpW-K3tkIFq1eY1wUrvuToBFL0iDTmPhwd7B--mvOuZAO3DvpV3DkANJmvEUOrCQ5a1EblhDNzEZgco9zoOEGTCMyMu1pKg1JH1jpUNHVt4QOYlIsSHwKTJvC1ErnK3dBEK22mGmM_NCpzPjGZeuD3fy61HZ85ldUo0ksmZtrW1G1rStuaCg9eDENOWzKPf3V-5tRh6Ec03PPZ-5TaiIdPCjH9Hniw3WtL2hn_KnWgSYkgEcr34Onw2ZktxWJ0iYua-ggZJRTG9mC3V4qRiL_PandQxP-v4dG1ZD-GWw4OqjZVcRsm1bLGHQe5KvOkM7FfvZAg5Q
  priority: 102
  providerName: Springer Nature
Title Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction
URI https://link.springer.com/article/10.1007/s10845-014-0933-4
https://www.proquest.com/docview/1816419460
https://www.proquest.com/docview/1845792829
https://hal.science/hal-01025442
UnpaywallVersion submittedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: ADMLS
  dateStart: 20080201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1572-8145
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9NADLa29gH2wGCACIzqQDwx3dQ2d5fmsWPtKtiqCai0PUV3icPQsnRqG9D4NfwWfhl2k5SCxBBPiXJOlMj2-bvY9xngFdlIYn3lSxOjlioOO9JhoGXKFD-9wMd42TrhZGxGE_X2TJ9tgKj3wlwQ4qzmfj6XTHmmlaJJtmk0oe0GNCfj0_55TaFHAV8vKVGDLv_N0nXistwd11NcmaYkL9ul-i30bF5w4eMaqlwlQrfgTpFf25uvNsvWYs1wu6x5nC8pCrnE5HK_WLj9-NsfBI63fcZ9uFcBTdEvLeMBbGC-A9t1EwdR-fQObK0xEj6ET4d2YWUy4zlQcO1WPmUiZ1E2mhYc8xIxzcWBvUHefilqTnKcC4K_P76XIVLM8KpsPSGKOaZFJrLPKdIDOS3EpvAIJsPBxzcjWfVikDFhuoUkz0aXtC2iH1vGeTFaZ1IGkKnquBSD1NleiC5UmDhaM2qH2gZxTHCnS9f8x9DIpzk-AaFdp22NSk1Kt4bWWNe12Gv7ziQ02YVdD9q1mqK4IirnfhlZ9ItimTUbkWYj1mykPHi9uuW6ZOm4TfglqWQlx_zao_5xxNdqNX3peLBbm0ZUefU8IjRkVCdUpu3Bi9Uw-SMnWWyO04JllA5Czk97sFeb1Noj_v5Weyur-_c3PP0v6Wdwl3CeKWsQd6GxmBX4nLDUwrVgszc8akGzf3hy_IGPR-fvBnQ8GIxP39PopNtvVS73E5SmHWs
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71IVR64BFAGAosCC5UKxJ7bceHCrW0VUrTCKFW6s3dXY8FkrFDnFDlz_HbmPEjCQfKqVd7d7X2zM7M7sx-H8Bb0pFEe8qTgUVfKhv1pMHQlylD_PRDD21FnXA2CgYX6vOlf7kGv9u7MFxW2drEylAnheUz8g_kiQJFO-6g-3H8UzJrFGdXWwoN3VArJHsVxFhzseMU59e0hSv3Tg5J3u9c9_jo_NNANiwD0lK0MpWks2iSrkb0rOYIxqI2QcqhUap6JsUwNbofoYkUJoZ2Q75BX4fWkiN36ZlH467DpvJURJu_zYOj0ZevS9jffoXYWqH90cT8Nq9aX97rKy6cU5JPFaT6yzOuf-O6zJWgd5Gn3YatWT7W82udZSuu8PgB3GtiWLFfK91DWMO8A_dbfgjRmIsObK-AHXbgTlVsastHkB7qqZbJhA2t4AKxvGC0aFGzWQt2rIkocnGg58h3PEULfI6loBhb1G5YTPBHTW8hZiWms0xk31Ok8Tj1xOr2GC5uRRJPYCMvcnwKwje9rg5UGqTUNdKBNq7GftczQUIGNXId6Lb_OrYNGDpzcmTxEsaZxROTeGIWT6wceL_oMq6RQG5q_IYEuGjHGN6D_WHMzxjEz1fK_dVzYKeVb9xYjjJe6rkDrxevac1zIkfnWMy4jfLDiHPgDuy2erEyxL9ntbtQnf9_w7Obp_cKtgbnZ8N4eDI6fQ53KZAM6iLHHdiYTmb4goK1qXnZrAgBV7e9CP8Ag0NPKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RTx64LFQsVDAILhQWc0mzuuAUGFZtrRUHKjUW7Cdiai0JMtml2r_Gr-Ombx2OVBOvSa25WTGM589428AXpKOpNpTngws-lLZeCANhr7MmOInCj20VemEzyfB-FR9OvPPNuB3exeG0ypbm1gZ6rSwfEa-T54oULTjDpz9rEmL-DIcvZ3-lFxBiiOtbTmNWkWOcHlB27fyzeGQZP3KdUcfvr4fy6bCgLSEVOaS9BVN6mhEz2pGLxa1CTKGRZkamAzDzOgoRhMrTA3thHyDvg6tJSfu0jOPxt2EayGzuPMt9dHHFeFvVHG1Vjx_hEr8NqJaX9uLFKfMKcnnCVL95RM3v3NG5hrc7SK023BzkU_18kJPJmtOcHQXbjfoVRzU6nYPNjDvwZ22MoRoDEUPttdoDntwvUozteV9yIZ6rmU6YxMrODUsL5gnWtR1rAW71FQUuXinl8i3O0VLeY6lIHQtagcsZvijLmwhFiWSnMTkPEMaj4NOrGgP4PRK5LADW3mR40MQvhk4OlBZkFHXWAfauBojxzNBSqY0dvvgtP86sQ0NOlfjmCQrAmcWT0LiSVg8ierD667LtOYAuazxCxJg147Zu8cHxwk_Y_o-Xyn316APu618k8ZmlMlKw_vwvHtNq51DODrHYsFtlB_GHP3uw16rF2tD_HtWe53q_P8bHl0-vWdwg5Zecnx4cvQYbhGCDOrsxl3Yms8W-IRQ2tw8rZaDgG9Xvf7-AFLWTMU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6V7QF6oFBABAoyiBOVq2RjO5vj8lOtEFQcWKmcItuZUETIVrtJq_I0PAtPxszmhwWJIm6RY1uxZsbzOTP-BuAZ6UhuYxVL41FL5dNIOky0LJjiZ5LE6NelE94dm9lcvTnRJ1sg-rswp4Q4u72fnyVTnmmlaJPdNprQ9gi258fvpx97Cj1y-HpNiZqM-W-W7gOX7e24ieLMNCX52C7Vb67n2iknPm6gyiEQugPXm-rMXl7YstzwNUe7bc7jak1RyCkmXw6b2h36b38QOF61jFtwswOaYtpqxm3YwmoPdvsiDqKz6T3Y2WAkvAOfXtnaynzJe6Dg3K1qwUTOoi00Ldjn5WJRiRf2Evn6peg5yXElCP7--N66SLHEr23pCdGssGhKUX4ukCbksBCrwl2YH73-8HImu1oM0hOmqyVZNro8tIixt4zzPFpnCgaQhYpcgUnh7CRFlyrMHZ0ZtUNtE-8J7oypLb4Ho2pR4X0Q2kWhNaowBQ1NrbFubHESxs7ktNml4wDCXkyZ74jKuV5Gmf2iWGbJZiTZjCWbqQCeD0POWpaOqzo_JZEM_ZhfezZ9m3FbL6bzKID9XjWyzqpXGaEho6JUmTCAJ8NrskcOstgKFw33UTpJOT4dwEGvUhtT_P2rDgat-_caHvxX74dwg3CeaXMQ92FULxt8RFiqdo87c_oJ9CkW2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+prognostic+method+based+on+Bayesian+approaches+for+direct+remaining+useful+life+prediction&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Mosallam%2C+A&rft.au=Medjaher%2C+K&rft.au=Zerhouni%2C+N&rft.date=2016-10-01&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=27&rft.issue=5&rft.spage=1037&rft.epage=1048&rft_id=info:doi/10.1007%2Fs10845-014-0933-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon