Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction
Reliability of prognostics and health management systems relies upon accurate understanding of critical components’ degradation process to predict the remaining useful life (RUL). Traditionally, degradation process is represented in the form of physical or expert models. Such models require extensiv...
Saved in:
| Published in | Journal of intelligent manufacturing Vol. 27; no. 5; pp. 1037 - 1048 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2016
Springer Nature B.V Springer Verlag (Germany) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0956-5515 1572-8145 1572-8145 |
| DOI | 10.1007/s10845-014-0933-4 |
Cover
| Abstract | Reliability of prognostics and health management systems relies upon accurate understanding of critical components’ degradation process to predict the remaining useful life (RUL). Traditionally, degradation process is represented in the form of physical or expert models. Such models require extensive experimentation and verification that are not always feasible. Another approach that builds up knowledge about the system degradation over the time from component sensor data is known as data driven. Data driven models, however, require that sufficient historical data have been collected. In this paper, a two phases data driven method for RUL prediction is presented. In the offline phase, the proposed method builds on finding variables that contain information about the degradation behavior using unsupervised variable selection method. Different health indicators (HIs) are constructed from the selected variables, which represent the degradation as a function of time, and saved in the offline database as reference models. In the online phase, the method finds the most similar offline HI, to the online HI, using k-nearest neighbors classifier to use it as a RUL predictor. The method finally estimates the degradation state using discrete Bayesian filter. The method is verified using battery and turbofan engine degradation simulation data acquired from NASA data repository. The results show the effectiveness of the method in predicting the RUL for both applications. |
|---|---|
| AbstractList | Reliability of prognostics and health management systems (PHM) relies upon accurate understanding of critical components' degradation process to predict the remaining useful life (RUL). Traditionally, degradation process is represented in the form of data or expert models. Such models require extensive experimentation and verification that are not always feasible. Another approach that builds up knowledge about the system degradation over the time from component sensor data is known as data driven. Data driven models, however, require that sufficient historical data have been collected. In this paper, a two phases data driven method for RUL prediction is presented. In the offline phase, the proposed method builds on finding variables that contain information about the degradation behavior using unsupervised variable selection method. Different health indicators (HI) are constructed from the selected variables, which represent the degradation as a function of time, and saved in the offline database as reference models. In the online phase, the method finds the most similar offline health indicator, to the online health indicator, using k-nearest neighbors (k-NN) classifier to use it as a RUL predictor. The method finally estimates the degradation state using discrete Bayesian filter. The method is verified using battery and turbofan engine degradation simulation data acquired from NASA data repository. The results show the effectiveness of the method in predicting the RUL for both applications. Reliability of prognostics and health management systems relies upon accurate understanding of critical components' degradation process to predict the remaining useful life (RUL). Traditionally, degradation process is represented in the form of physical or expert models. Such models require extensive experimentation and verification that are not always feasible. Another approach that builds up knowledge about the system degradation over the time from component sensor data is known as data driven. Data driven models, however, require that sufficient historical data have been collected. In this paper, a two phases data driven method for RUL prediction is presented. In the offline phase, the proposed method builds on finding variables that contain information about the degradation behavior using unsupervised variable selection method. Different health indicators (HIs) are constructed from the selected variables, which represent the degradation as a function of time, and saved in the offline database as reference models. In the online phase, the method finds the most similar offline HI, to the online HI, using k-nearest neighbors classifier to use it as a RUL predictor. The method finally estimates the degradation state using discrete Bayesian filter. The method is verified using battery and turbofan engine degradation simulation data acquired from NASA data repository. The results show the effectiveness of the method in predicting the RUL for both applications. |
| Author | Medjaher, K. Zerhouni, N. Mosallam, A. |
| Author_xml | – sequence: 1 givenname: A. surname: Mosallam fullname: Mosallam, A. organization: FEMTO-ST Institute, AS2M Department, University of Franche-Comté/CNRS/ENSMM/UTBM – sequence: 2 givenname: K. surname: Medjaher fullname: Medjaher, K. email: kamal.medjaher@ens2m.fr organization: FEMTO-ST Institute, AS2M Department, University of Franche-Comté/CNRS/ENSMM/UTBM – sequence: 3 givenname: N. surname: Zerhouni fullname: Zerhouni, N. organization: FEMTO-ST Institute, AS2M Department, University of Franche-Comté/CNRS/ENSMM/UTBM |
| BackLink | https://hal.science/hal-01025442$$DView record in HAL |
| BookMark | eNqNkMFq3DAQhkVJoJs0D9CboJf24HZkS7Z1TNMmKSz0kpzFWB7vKnilrWSn7Nv0Wfpk1eJAS6Clp4Hh-39mvjN24oMnxl4LeC8Amg9JQCtVAUIWoKuqkC_YSqimLFoh1QlbgVZ1oZRQL9lZSg8AoNtarNjmE05Y9NE9kuf7GDY-pMlZvqNpG3reYaKeB88_4oGSQ89xnym0W0p8CPHnj95FshOPtEPnnd_wOdEwj3x0A-VC6p2dXPCv2OmAY6KLp3nO7q8_313dFuuvN1-uLteFVRKmolQNdT0gUWURQElL2NUDiEoPUnQDNUOHraZOS-o70FJ1pLCxVjd1mXfVOSuX3tnv8fAdx9Hso9thPBgB5qjKLKpMVmWOqozMoXdLaIu_8YDO3F6uzXEHAkolZfkoMvt2YbOGbzOlyexcsjSO6CnMyYjc3eiyLXVG3zxDH8IcfX4_U6KWQssaMtUslI0hpUiDsW7Co7Mpohv_ebZ4lvyfV5_8pMz6DcU_bvpr6Bc3zroO |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2018_10_005 crossref_primary_10_1115_1_4041674 crossref_primary_10_3390_s20030920 crossref_primary_10_1142_S021853932150042X crossref_primary_10_1016_j_isatra_2020_03_017 crossref_primary_10_1109_ACCESS_2017_2759325 crossref_primary_10_3389_fmats_2019_00061 crossref_primary_10_1007_s12046_018_0991_y crossref_primary_10_1016_j_procir_2018_03_076 crossref_primary_10_3390_app13063694 crossref_primary_10_3390_electronics10030285 crossref_primary_10_1016_j_istruc_2023_105518 crossref_primary_10_1177_0954406219888544 crossref_primary_10_1007_s10845_021_01894_w crossref_primary_10_1016_j_est_2024_114736 crossref_primary_10_1007_s10845_018_1431_x crossref_primary_10_1007_s11831_019_09339_7 crossref_primary_10_1016_j_jmsy_2020_07_008 crossref_primary_10_1177_1687814020984388 crossref_primary_10_3390_s23135931 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_1109_ACCESS_2021_3116813 crossref_primary_10_3390_app13042524 crossref_primary_10_1080_24725854_2021_1874080 crossref_primary_10_3390_en12224366 crossref_primary_10_1002_er_5574 crossref_primary_10_1177_09544062241245199 crossref_primary_10_1007_s00170_022_09280_3 crossref_primary_10_1007_s10845_018_1445_4 crossref_primary_10_1007_s10845_019_01483_y crossref_primary_10_1109_ACCESS_2019_2925634 crossref_primary_10_1016_j_jpowsour_2022_231818 crossref_primary_10_3390_s24248022 crossref_primary_10_3390_machines10100884 crossref_primary_10_1016_j_eswa_2021_114569 crossref_primary_10_1109_TIM_2020_3029382 crossref_primary_10_1109_ACCESS_2022_3233220 crossref_primary_10_1016_j_engappai_2024_109356 crossref_primary_10_1016_j_asoc_2018_10_014 crossref_primary_10_1016_j_jmsy_2024_01_009 crossref_primary_10_1109_TII_2019_2921032 crossref_primary_10_3233_JIFS_169547 crossref_primary_10_3390_en14082135 crossref_primary_10_1007_s10845_021_01750_x crossref_primary_10_3390_s18092871 crossref_primary_10_1016_j_asoc_2018_05_015 crossref_primary_10_1109_TIE_2017_2733469 crossref_primary_10_1109_TMECH_2021_3079729 crossref_primary_10_1016_j_jmsy_2020_11_016 crossref_primary_10_1007_s10845_015_1077_x crossref_primary_10_1007_s40430_021_03121_2 crossref_primary_10_1007_s40799_018_0235_4 crossref_primary_10_1016_j_measurement_2024_116589 crossref_primary_10_3390_en17010019 crossref_primary_10_1016_j_ress_2019_03_018 crossref_primary_10_1109_TII_2022_3143148 crossref_primary_10_3390_app14010436 crossref_primary_10_1109_TR_2015_2494682 crossref_primary_10_3390_app10248977 crossref_primary_10_1109_TIM_2022_3149094 crossref_primary_10_1007_s10845_018_1430_y crossref_primary_10_1155_2021_5876299 crossref_primary_10_1007_s11771_020_4450_7 crossref_primary_10_1016_j_ymssp_2024_111795 crossref_primary_10_3390_app10041378 crossref_primary_10_1016_j_heliyon_2022_e12111 crossref_primary_10_3390_fi13030057 crossref_primary_10_3390_app8060925 crossref_primary_10_1109_JSEN_2023_3337365 crossref_primary_10_1007_s10845_018_1448_1 crossref_primary_10_3390_app12094737 crossref_primary_10_21595_vp_2019_21161 crossref_primary_10_1016_j_eswa_2020_113952 crossref_primary_10_1016_j_ymssp_2017_11_016 crossref_primary_10_1007_s10845_015_1107_8 crossref_primary_10_1109_TIE_2016_2623260 crossref_primary_10_1115_1_4049525 crossref_primary_10_7232_JKIIE_2023_49_2_107 crossref_primary_10_1016_j_aei_2024_102506 crossref_primary_10_3233_JIFS_179277 crossref_primary_10_1016_j_ress_2018_06_021 crossref_primary_10_3390_e23070791 crossref_primary_10_1007_s10845_024_02336_z crossref_primary_10_23939_mmc2023_04_1023 crossref_primary_10_1017_dsi_2019_90 crossref_primary_10_3390_s23198124 crossref_primary_10_1080_00207543_2018_1530475 crossref_primary_10_1016_j_ymssp_2022_109788 crossref_primary_10_3390_s20174657 crossref_primary_10_1109_ACCESS_2020_3032445 crossref_primary_10_1177_1748006X221110969 crossref_primary_10_3390_machines11100923 crossref_primary_10_3390_s20247273 crossref_primary_10_1016_j_ast_2018_09_044 crossref_primary_10_3390_en13153762 crossref_primary_10_1007_s13198_018_0708_y crossref_primary_10_1007_s00170_017_1268_z crossref_primary_10_1109_TVT_2021_3138959 crossref_primary_10_1016_j_jmsy_2021_06_006 crossref_primary_10_1016_j_cie_2022_108559 crossref_primary_10_1007_s10845_020_01609_7 crossref_primary_10_1016_j_procir_2022_02_009 crossref_primary_10_1109_ACCESS_2019_2919566 crossref_primary_10_1016_j_aei_2024_102558 crossref_primary_10_1142_S0218539319500128 crossref_primary_10_1016_j_ymssp_2024_111737 crossref_primary_10_3390_electronics10121497 crossref_primary_10_3390_s23135970 crossref_primary_10_1016_j_apenergy_2022_119284 crossref_primary_10_1016_j_ress_2023_109206 crossref_primary_10_3390_en14185841 crossref_primary_10_3390_a13030064 crossref_primary_10_3390_jmse12030387 crossref_primary_10_1016_j_fss_2018_10_008 crossref_primary_10_1080_08982112_2023_2218923 crossref_primary_10_1109_TR_2021_3124944 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122383 crossref_primary_10_1016_j_compind_2017_09_003 crossref_primary_10_1016_j_ress_2025_111004 crossref_primary_10_1109_TSIPN_2023_3328275 crossref_primary_10_1115_1_4038074 crossref_primary_10_3390_en16062513 crossref_primary_10_1155_2023_1091276 crossref_primary_10_1007_s10845_018_1428_5 crossref_primary_10_1177_09544054241310485 crossref_primary_10_1016_j_rineng_2024_102935 crossref_primary_10_1016_j_measen_2023_100944 crossref_primary_10_1177_1687814016685004 crossref_primary_10_3390_machines12110762 crossref_primary_10_1016_j_engappai_2020_103849 crossref_primary_10_3390_s24030824 crossref_primary_10_1016_j_future_2018_12_009 crossref_primary_10_1016_j_ifacol_2020_11_003 crossref_primary_10_3390_e21090861 crossref_primary_10_1007_s00521_021_05716_1 crossref_primary_10_1007_s10845_017_1380_9 crossref_primary_10_3390_s22072817 crossref_primary_10_1016_j_ymssp_2025_112431 crossref_primary_10_1109_TAI_2024_3396422 crossref_primary_10_1007_s00521_022_07316_z crossref_primary_10_1109_ACCESS_2020_3010066 crossref_primary_10_1016_j_renene_2021_10_062 crossref_primary_10_1541_ieejjia_22004793 crossref_primary_10_1007_s11042_017_5204_x crossref_primary_10_3390_machines13030215 crossref_primary_10_1016_j_neucom_2020_06_052 crossref_primary_10_1109_TIM_2021_3055788 crossref_primary_10_3390_batteries10030106 crossref_primary_10_1016_j_aei_2021_101404 crossref_primary_10_1109_TIM_2021_3059500 crossref_primary_10_3389_fmech_2021_719718 crossref_primary_10_3390_s19030532 crossref_primary_10_1088_1757_899X_806_1_012041 crossref_primary_10_1007_s10462_022_10260_y crossref_primary_10_1142_S0218539324500086 crossref_primary_10_1016_j_istruc_2020_09_002 crossref_primary_10_1109_TTE_2024_3457621 crossref_primary_10_1007_s00170_020_05303_z crossref_primary_10_1007_s10845_015_1143_4 crossref_primary_10_3389_fmats_2019_00110 crossref_primary_10_3390_electronics12244941 crossref_primary_10_3390_s22103687 crossref_primary_10_1007_s40430_022_03638_0 crossref_primary_10_1007_s00521_021_06089_1 crossref_primary_10_3390_s21010182 crossref_primary_10_1177_1475921720972926 crossref_primary_10_1016_j_measurement_2021_109756 crossref_primary_10_1108_WJE_06_2022_0244 crossref_primary_10_3390_a18030130 crossref_primary_10_1016_j_oceaneng_2024_118893 crossref_primary_10_1016_j_isatra_2018_07_010 crossref_primary_10_1007_s10845_017_1341_3 crossref_primary_10_1088_1361_6501_ad2bcc crossref_primary_10_1115_1_4043191 crossref_primary_10_1016_j_ymssp_2023_110910 crossref_primary_10_3390_app10041323 crossref_primary_10_2139_ssrn_4105395 crossref_primary_10_1155_2020_8814658 crossref_primary_10_1016_j_asoc_2019_105622 |
| Cites_doi | 10.1007/3-540-30368-5 10.1016/j.ijpe.2009.05.006 10.1016/j.ymssp.2008.06.009 10.1109/AERO.2011.5747581 10.1109/TIE.2004.824875 10.1016/j.compind.2006.02.014 10.1007/s00170-013-5065-z 10.1080/09537280412331309208 10.1109/ICPHM.2013.6621413 10.1007/s00170-004-2131-6 10.1016/j.ymssp.2005.09.012 10.1007/s10845-009-0356-9 10.1007/s10845-009-0249-y 10.1080/01621459.2000.10474241 10.1007/s10845-013-0774-6 10.1007/s10845-010-0443-y 10.1007/s10845-009-0348-9 10.1016/j.euromechsol.2008.07.007 10.1016/j.ymssp.2005.11.008 10.1023/A:1026583821221 10.1109/PHM.2008.4711421 10.1016/j.ejor.2012.03.027 10.1007/s00170-009-2482-0 10.1109/AERO.2008.4526631 10.1109/TR.2012.2194177 10.1016/j.ijfatigue.2006.03.004 10.1109/TR.2012.2194175 10.1007/s10845-012-0657-2 10.1109/IECON.2013.6699844 10.1109/PES.2005.1489277 10.1109/TSMCB.2012.2198882 10.1007/s10845-009-0352-0 10.1109/TSP.2012.2208638 10.1098/rspa.1998.0193 10.1002/9780470117842 10.1007/s10845-010-0436-x 10.1007/s10845-009-0310-x 10.1016/j.snb.2009.03.018 10.1109/ICEMI.2007.4350749 10.1109/AERO.2006.1656108 10.2514/6.2005-7002 10.1109/CIMSim.2012.56 10.1109/TIM.2008.2004340 10.1016/S0925-2312(01)00702-0 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2014 Springer Science+Business Media New York 2016 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: Springer Science+Business Media New York 2016 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88E 8AL 8AO 8FD 8FE 8FG 8FJ 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. L.- L6V L7M L~C L~D M0C M0N M0S M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC VOOES ADTOC UNPAY |
| DOI | 10.1007/s10845-014-0933-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Health & Medical Collection (Alumni Edition) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Technology Research Database ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Physics |
| EISSN | 1572-8145 |
| EndPage | 1048 |
| ExternalDocumentID | oai:HAL:hal-01025442v1 4169733881 10_1007_s10845_014_0933_4 |
| Genre | Feature |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FE 8FG 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z88 Z8N Z92 ZMTXR ZYFGU ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c540t-257ebd0aee3ca0054ceab6f0139f41bfe7fba89eb94edb0945be5a7cc976294e3 |
| IEDL.DBID | UNPAY |
| ISSN | 0956-5515 1572-8145 |
| IngestDate | Sun Oct 26 04:12:27 EDT 2025 Tue Oct 14 20:34:45 EDT 2025 Thu Oct 02 05:14:40 EDT 2025 Sat Aug 23 14:10:45 EDT 2025 Wed Oct 01 03:40:57 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 Fri Feb 21 02:35:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Discrete Bayes filter Uncertainty representation Data-driven PHM Online estimation Degradation modeling |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-257ebd0aee3ca0054ceab6f0139f41bfe7fba89eb94edb0945be5a7cc976294e3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-01025442 |
| PQID | 1816419460 |
| PQPubID | 32407 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1007_s10845_014_0933_4 hal_primary_oai_HAL_hal_01025442v1 proquest_miscellaneous_1845792829 proquest_journals_1816419460 crossref_citationtrail_10_1007_s10845_014_0933_4 crossref_primary_10_1007_s10845_014_0933_4 springer_journals_10_1007_s10845_014_0933_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: London |
| PublicationTitle | Journal of intelligent manufacturing |
| PublicationTitleAbbrev | J Intell Manuf |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V Springer Verlag (Germany) |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag (Germany) |
| References | ChoiKihoonSinghSatnamKodaliAnuradhaPattipatiKrishna RSheppardJohn WNamburuSetu MadhaviNovel classifier fusion approaches for fault diagnosis in automotive systemsIEEE Transactions on Instrumentation and Measurement200958360261110.1109/TIM.2008.2004340 XiaTangbinXiLifengZhouXiaojunLeeJayDynamic maintenance decision-making for series-parallel hybrid multi-unit manufacturing system based on MAM-MTW methodologyEuropean Journal of Operational Research201222123124010.1016/j.ejor.2012.03.027 IyerNGoebelKBonissonePFramework for post-prognostic decision supportIEEE Aerospace Conference20069139623971 Lei, Z., Xingshan, L., Jinsong, Y., ZhanBao, G. (2007). A genetic training algorithm of wavelet neural networks for fault prognostics in condition based maintenance. In Proceedings of the eighth international conference on electronic measurement and instruments (pp. 584–589). IEEE YanJKocMLeeJA prognostic algorithm for machine performance assessment and its applicationProduction Planning and Control20047679680110.1080/09537280412331309208 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. In Proceedings of the royal society of London series A mathematical Physical and engineering sciences (pp. 903–995). Tobon-MejiaDiego AMedjaherKamalZerhouniNoureddineTripotGerardA data-driven failure prognostics method based on mixture of Gaussians hidden Markov modelsIEEE Transactions on Reliability201261249150310.1109/TR.2012.2194177 SikorskaJZHodkiewiczMMaLPrognostic modelling options for remaining useful life estimation by industryMechanical Systems and Signal Processing20112551803183610.1016/j.ymssp.2010.11.018 WangTianyiJianboYuSiegelDLeeJA similarity-based prognostics approach for remaining useful life estimation of engineered systemsIEEE International Conference on Prognostics and Health Management20081669 BrezakDMajeticDUdiljakTKasacJTool wear estimation using an analytic fuzzy classifier and support vector machinesJournal of Intelligent Manufacturing20122379780910.1007/s10845-010-0436-x Purushothaman, S. (2010). Tool wear monitoring using artificial neural network based on extended Kalman filter weight updation with transformed input patterns. Journal of Intelligent Manufacturing, 21, 717–730. VachtsevanosGLewisFRoemerMHessAWuBIntelligent fault diagnosis and prognosis for engineering systems2006Hoboken, New JerseyWiley10.1002/9780470117842 KothamasuRanganathHuangSamuel HVerDuinWilliam HSystem health monitoring and prognostics a review of current paradigms and practicesThe International Journal of Advanced Manufacturing Technology2006289–101012102410.1007/s00170-004-2131-6 Luo, J., Namburu, M., Pattipati, K., Qiao, L., Kawamoto, M., & Chigusa, S. (2003). Model-based prognostic techniques, Anaheim, CA, United States: 2003 (pp. 330–340). Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers Inc. YeoSHKhooLPNeoSSTool condition monitoring using reflectance of chip surface and neural networkJournal of Intelligent Manufacturing20001150751410.1023/A:1026583821221 Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., Varnier, C. (2012) “Pronostia: An experimental platform for bearings accelerated degradation tests”. In IEEE international conference on prognostics and health management, Denver, Colorado, USA. Saha, B., Goebel, K. (2007). “Battery Data Set”, NASA Ames Prognostics Data Repository. [http://ti.arc.nasa.gov/project/prognostic-data-repository]. NASA Ames, Moffett Field, CA HengAiwinaZhangShengTanAndy C CMathewJosephRotating machinery prognostics: State of the art, challenges and opportunitiesMechanical Systems and Signal Processing200923372473910.1016/j.ymssp.2008.06.009 Satish, B., & Sarma, N. D. R. (2005). A fuzzy BP approach for diagnosis and prognosis of bearing faults in induction motors. In: IEEE power engineering society general meeting (pp. 2291–2294). IEEE LeeJNiJDjurdjanovicDQiuHLiaoHIntelligent prognostics tools and e-maintenanceComputers in Industry200657647648910.1016/j.compind.2006.02.014 RamassoEmmanuelRombautMichleZerhouniNoureddineJoint prediction of continuous and discrete states in time-series based on belief functionsIEEE Transactions on Cybernetics2013431375010.1109/TSMCB.2012.2198882 Mosallam, A., Byttner, S., Svensson, M. T. R. (2011). “Nonlinear relation mining for maintenance prediction”. In IEEE Aerospace Conference, (pp. 1–9), March 2011. doi:10.1109/AERO.2011.5747581. Schwabacher, M. A. (2005). A survey of data-driven prognostic. In Infotech@Aerospace (pp. 26–29). Arlington, Virginia. LiLinNiJunShort-term decision support system for maintenance task prioritizationInternational Journal of Production Economics2009121119520210.1016/j.ijpe.2009.05.006 JardineAndrew K SLinDamingBanjevicDraganA review on machinery diagnostics and prognostics implementing condition-based maintenanceMechanical Systems and Signal Processing20062071483151010.1016/j.ymssp.2005.09.012 Saxena, A., Goebel, K. (2008). “C-MAPSS Data Set”, NASA Ames Prognostics Data Repository. [http://ti.arc.nasa.gov/project/prognostic-data-repository]. NASA Ames, Moffett Field, CA ZhangZhenyouWangYiWangKeshengFault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural networkJournal of Intelligent Manufacturing20132461213122710.1007/s10845-012-0657-2 DongJianfeiVerhaegenMichelGustafssonFredrikRobust fault detection with statistical uncertainty in identified parametersIEEE Transactions on Signal Processing201260105064507610.1109/TSP.2012.2208638 MontgomeryNBanjevicDJardineAKSMinor maintenance actions and their impact on diagnostic and prognostic CBM modelsJournal of Intelligent Manufacturing201223230331110.1007/s10845-009-0352-0 MosallamAMedjaherKZerhouniNNonparametric time series modelling for industrial prognostics and health managementThe International Journal of Advanced Manufacturing Technology20136951685169910.1007/s00170-013-5065-z ChaariFakherFakhfakhTaharHaddarMohamedAnalytical modelling of spur gear tooth crack and influence on gearmesh stiffnessEuropean Journal of Mechanics-A/Solids200928346146810.1016/j.euromechsol.2008.07.007 LewisFApplied optimal control and estimation: Digital design and implementation1992Englewood Cliffs, NJPrentice-Hall Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S. (2013). “Health assessment and life prediction of cutting tools based on support vector regression”. Journal of Intelligent Manufacturing, article published online 19 April 2013. doi:10.1007/s10845-013-0774-6. BoxGEPJenkinsGMTime series analysis: Forecasting and control1976San FranciscoHolden-Day GebraeelNLawleyMLiuRParmeshwaranVResidual life predictions from vibration-based degradation signals: A neural network approachIEEE Transactions on Industrial Electronics200451369470010.1109/TIE.2004.824875 MedjaherKamalTobon-MejiaDiego AZerhouniNoureddineRemaining useful life estimation of critical components with application to bearingsIEEE Transactions on Reliability201261229230210.1109/TR.2012.2194175 ZhangGPTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing20035015917510.1016/S0925-2312(01)00702-0 HuangRXiLLiXQiuHLeeJResidual life predictions for ball bearings based on self-organizing map and back propagation neural network methodsMechanical Systems and Signal Processing200721119320710.1016/j.ymssp.2005.11.008 Trincavelli, M., Coradeschi, S., & Loutfi, A. (2009). Odour classification system for continuous monitoring applications. Sensors and Actuators B: Chemical, 139(2), 265–273, 4 June 2009, ISSN: 0925–4005. doi:10.1016/j.snb.2009.03.018. Sarah S. S., Radzi, N. H. M., Haron, H. (2012). “Review on scheduling techniques of preventive maintenance activities of railway”. In Fourth international conference on computational intelligence, modelling and simulation (CIMSiM) (pp. 310–315), 25–27 Sept. 2012, Kuantan, Malaysia. doi:10.1109/CIMSim.2012.56. WuWHuJZhangJPrognostics of machine health condition using an improved ARIMA-based prediction method2007Harbin, ChinaIEEE10621067 SahaBhaskarGoebelKaiUncertainty management for diagnostics and prognostics of batteries using Bayesian techniquesIEEE Aerospace Conference20081818 Tian, Zhigang. (2012). An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing, 23(2), 227–237. doi:10.1007/s10845-009-0356-9. He, D., Li, R., & Bechhoefer, E. (2012). Stochastic modeling of damage physics for mechanical component prognostics using condition indicators. Journal of Intelligent Manufacturing, 23, 221–226. Javed, K., Gouriveau, R., & Zerhouni, N. (2013) “ Novel failure prognostics approach with dynamic thresholds for machine degradation”. In 39th annual conference of the IEEE industrial electronics society, (IECON), (pp. 4404–4409), 10–13 November 2013 doi:10.1109/IECON.2013.6699844. Javed, K., Gouriveau, R., Zerhouni, N., & Nectoux, P. (2013) “A feature extraction procedure based on trigonometric functions and cumulative descriptors to enhance prognostics modeling”. In IEEE prognostics and health management (PHM) conference (Vol. 1(7), pp. 24–27). doi:10.1109/ICPHM.2013.6621413. PalSHeynsPSFreyerBHTheronNJPalSKTool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertaintiesJournal of Intelligent Manufacturing20112249150410.1007/s10845-009-0310-x TsayRSTime series and forecasting: Brief history and future researchJournal of the American Statistical Association20009545063864310.1080/01621459.2000.10474241 IsermannRFault-diagnosis systems: An introduction from fault detection to fault tolerance2006HeidelbergSpringer10.1007/3-540-30368-5 GajateAHaberRDel ToroRVegaPBustilloATool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning processJournal of Intelligent Manufacturing20122386988210.1007/s10845-010-0443-y Go Kihoon Choi (933_CR5) 2009; 58 933_CR9 Emmanuel Ramasso (933_CR33) 2013; 43 F Lewis (933_CR22) 1992 GP Zhang (933_CR52) 2003; 50 N Montgomery (933_CR26) 2012; 23 Lin Li (933_CR23) 2009; 121 933_CR12 933_CR10 N Iyer (933_CR15) 2006; 9 933_CR17 933_CR18 Ranganath Kothamasu (933_CR19) 2006; 28 RS Tsay (933_CR44) 2000; 95 Bhaskar Saha (933_CR35) 2008; 1 Tianyi Wang (933_CR47) 2008; 1 GEP Box (933_CR2) 1976 933_CR41 W Wu (933_CR48) 2007 Jianfei Dong (933_CR6) 2012; 60 933_CR43 Fakher Chaari (933_CR4) 2009; 28 Kamal Medjaher (933_CR25) 2012; 61 SH Yeo (933_CR51) 2000; 11 Andrew K S Jardine (933_CR16) 2006; 20 J Lee (933_CR20) 2006; 57 S Pal (933_CR30) 2011; 22 D Brezak (933_CR3) 2012; 23 R Isermann (933_CR14) 2006 A Mosallam (933_CR28) 2013; 69 G Vachtsevanos (933_CR45) 2006 933_CR34 933_CR32 933_CR38 933_CR39 933_CR36 933_CR37 J Yan (933_CR50) 2004; 76 R Huang (933_CR13) 2007; 21 Zhenyou Zhang (933_CR53) 2013; 24 AP Vassilopoulos (933_CR46) 2007; 29 A Gajate (933_CR7) 2012; 23 N Gebraeel (933_CR8) 2004; 51 933_CR24 Tangbin Xia (933_CR49) 2012; 221 933_CR21 JZ Sikorska (933_CR40) 2011; 25 933_CR27 933_CR1 Diego A Tobon-Mejia (933_CR42) 2012; 61 Aiwina Heng (933_CR11) 2009; 23 933_CR29 Ying Peng (933_CR31) 2010; 50 |
| References_xml | – reference: Trincavelli, M., Coradeschi, S., & Loutfi, A. (2009). Odour classification system for continuous monitoring applications. Sensors and Actuators B: Chemical, 139(2), 265–273, 4 June 2009, ISSN: 0925–4005. doi:10.1016/j.snb.2009.03.018. – reference: ZhangZhenyouWangYiWangKeshengFault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural networkJournal of Intelligent Manufacturing20132461213122710.1007/s10845-012-0657-2 – reference: TsayRSTime series and forecasting: Brief history and future researchJournal of the American Statistical Association20009545063864310.1080/01621459.2000.10474241 – reference: YanJKocMLeeJA prognostic algorithm for machine performance assessment and its applicationProduction Planning and Control20047679680110.1080/09537280412331309208 – reference: IyerNGoebelKBonissonePFramework for post-prognostic decision supportIEEE Aerospace Conference20069139623971 – reference: Schwabacher, M. A. (2005). A survey of data-driven prognostic. In Infotech@Aerospace (pp. 26–29). Arlington, Virginia. – reference: VassilopoulosAPGeorgopoulosEFDionysopoulosVArtificial neural networks in spectrum fatigue life prediction of composite materialsInternational Journal of Fatigue2007291202910.1016/j.ijfatigue.2006.03.004 – reference: Javed, K., Gouriveau, R., & Zerhouni, N. (2013) “ Novel failure prognostics approach with dynamic thresholds for machine degradation”. In 39th annual conference of the IEEE industrial electronics society, (IECON), (pp. 4404–4409), 10–13 November 2013 doi:10.1109/IECON.2013.6699844. – reference: ZhangGPTime series forecasting using a hybrid ARIMA and neural network modelNeurocomputing20035015917510.1016/S0925-2312(01)00702-0 – reference: Saha, B., Goebel, K. (2007). “Battery Data Set”, NASA Ames Prognostics Data Repository. [http://ti.arc.nasa.gov/project/prognostic-data-repository]. NASA Ames, Moffett Field, CA – reference: Tobon-MejiaDiego AMedjaherKamalZerhouniNoureddineTripotGerardA data-driven failure prognostics method based on mixture of Gaussians hidden Markov modelsIEEE Transactions on Reliability201261249150310.1109/TR.2012.2194177 – reference: PalSHeynsPSFreyerBHTheronNJPalSKTool wear monitoring and selection of optimum cutting conditions with progressive tool wear effect and input uncertaintiesJournal of Intelligent Manufacturing20112249150410.1007/s10845-009-0310-x – reference: SikorskaJZHodkiewiczMMaLPrognostic modelling options for remaining useful life estimation by industryMechanical Systems and Signal Processing20112551803183610.1016/j.ymssp.2010.11.018 – reference: HuangRXiLLiXQiuHLeeJResidual life predictions for ball bearings based on self-organizing map and back propagation neural network methodsMechanical Systems and Signal Processing200721119320710.1016/j.ymssp.2005.11.008 – reference: Javed, K., Gouriveau, R., Zerhouni, N., & Nectoux, P. (2013) “A feature extraction procedure based on trigonometric functions and cumulative descriptors to enhance prognostics modeling”. In IEEE prognostics and health management (PHM) conference (Vol. 1(7), pp. 24–27). doi:10.1109/ICPHM.2013.6621413. – reference: Tian, Zhigang. (2012). An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing, 23(2), 227–237. doi:10.1007/s10845-009-0356-9. – reference: RamassoEmmanuelRombautMichleZerhouniNoureddineJoint prediction of continuous and discrete states in time-series based on belief functionsIEEE Transactions on Cybernetics2013431375010.1109/TSMCB.2012.2198882 – reference: MedjaherKamalTobon-MejiaDiego AZerhouniNoureddineRemaining useful life estimation of critical components with application to bearingsIEEE Transactions on Reliability201261229230210.1109/TR.2012.2194175 – reference: HengAiwinaZhangShengTanAndy C CMathewJosephRotating machinery prognostics: State of the art, challenges and opportunitiesMechanical Systems and Signal Processing200923372473910.1016/j.ymssp.2008.06.009 – reference: PengYingDongMingZuoMing JianCurrent status of machine prognostics in condition-based maintenance: A reviewThe International Journal of Advanced Manufacturing Technology2010501–429731310.1007/s00170-009-2482-0 – reference: XiaTangbinXiLifengZhouXiaojunLeeJayDynamic maintenance decision-making for series-parallel hybrid multi-unit manufacturing system based on MAM-MTW methodologyEuropean Journal of Operational Research201222123124010.1016/j.ejor.2012.03.027 – reference: Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S. (2013). “Health assessment and life prediction of cutting tools based on support vector regression”. Journal of Intelligent Manufacturing, article published online 19 April 2013. doi:10.1007/s10845-013-0774-6. – reference: DongJianfeiVerhaegenMichelGustafssonFredrikRobust fault detection with statistical uncertainty in identified parametersIEEE Transactions on Signal Processing201260105064507610.1109/TSP.2012.2208638 – reference: BrezakDMajeticDUdiljakTKasacJTool wear estimation using an analytic fuzzy classifier and support vector machinesJournal of Intelligent Manufacturing20122379780910.1007/s10845-010-0436-x – reference: Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., Varnier, C. (2012) “Pronostia: An experimental platform for bearings accelerated degradation tests”. In IEEE international conference on prognostics and health management, Denver, Colorado, USA. – reference: MosallamAMedjaherKZerhouniNNonparametric time series modelling for industrial prognostics and health managementThe International Journal of Advanced Manufacturing Technology20136951685169910.1007/s00170-013-5065-z – reference: Purushothaman, S. (2010). Tool wear monitoring using artificial neural network based on extended Kalman filter weight updation with transformed input patterns. Journal of Intelligent Manufacturing, 21, 717–730. – reference: ChoiKihoonSinghSatnamKodaliAnuradhaPattipatiKrishna RSheppardJohn WNamburuSetu MadhaviNovel classifier fusion approaches for fault diagnosis in automotive systemsIEEE Transactions on Instrumentation and Measurement200958360261110.1109/TIM.2008.2004340 – reference: Sarah S. S., Radzi, N. H. M., Haron, H. (2012). “Review on scheduling techniques of preventive maintenance activities of railway”. In Fourth international conference on computational intelligence, modelling and simulation (CIMSiM) (pp. 310–315), 25–27 Sept. 2012, Kuantan, Malaysia. doi:10.1109/CIMSim.2012.56. – reference: Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. In Proceedings of the royal society of London series A mathematical Physical and engineering sciences (pp. 903–995). – reference: GajateAHaberRDel ToroRVegaPBustilloATool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning processJournal of Intelligent Manufacturing20122386988210.1007/s10845-010-0443-y – reference: Luo, J., Namburu, M., Pattipati, K., Qiao, L., Kawamoto, M., & Chigusa, S. (2003). Model-based prognostic techniques, Anaheim, CA, United States: 2003 (pp. 330–340). Piscataway, NJ, United States: Institute of Electrical and Electronics Engineers Inc. – reference: Gorjian, N., Ma, L., Mittinty, M., Yarlagadda, P., Sun, Y. (2009) Review on degradation models in reliability analysis. In: Proceedings of the 4th world congress on engineering asset management, 28–30 Sept, Athens, Greece. – reference: MontgomeryNBanjevicDJardineAKSMinor maintenance actions and their impact on diagnostic and prognostic CBM modelsJournal of Intelligent Manufacturing201223230331110.1007/s10845-009-0352-0 – reference: Satish, B., & Sarma, N. D. R. (2005). A fuzzy BP approach for diagnosis and prognosis of bearing faults in induction motors. In: IEEE power engineering society general meeting (pp. 2291–2294). IEEE – reference: GebraeelNLawleyMLiuRParmeshwaranVResidual life predictions from vibration-based degradation signals: A neural network approachIEEE Transactions on Industrial Electronics200451369470010.1109/TIE.2004.824875 – reference: Saxena, A., Goebel, K. (2008). “C-MAPSS Data Set”, NASA Ames Prognostics Data Repository. [http://ti.arc.nasa.gov/project/prognostic-data-repository]. NASA Ames, Moffett Field, CA – reference: VachtsevanosGLewisFRoemerMHessAWuBIntelligent fault diagnosis and prognosis for engineering systems2006Hoboken, New JerseyWiley10.1002/9780470117842 – reference: LiLinNiJunShort-term decision support system for maintenance task prioritizationInternational Journal of Production Economics2009121119520210.1016/j.ijpe.2009.05.006 – reference: He, D., Li, R., & Bechhoefer, E. (2012). Stochastic modeling of damage physics for mechanical component prognostics using condition indicators. Journal of Intelligent Manufacturing, 23, 221–226. – reference: SahaBhaskarGoebelKaiUncertainty management for diagnostics and prognostics of batteries using Bayesian techniquesIEEE Aerospace Conference20081818 – reference: WuWHuJZhangJPrognostics of machine health condition using an improved ARIMA-based prediction method2007Harbin, ChinaIEEE10621067 – reference: Mosallam, A., Byttner, S., Svensson, M. T. R. (2011). “Nonlinear relation mining for maintenance prediction”. In IEEE Aerospace Conference, (pp. 1–9), March 2011. doi:10.1109/AERO.2011.5747581. – reference: IsermannRFault-diagnosis systems: An introduction from fault detection to fault tolerance2006HeidelbergSpringer10.1007/3-540-30368-5 – reference: ChaariFakherFakhfakhTaharHaddarMohamedAnalytical modelling of spur gear tooth crack and influence on gearmesh stiffnessEuropean Journal of Mechanics-A/Solids200928346146810.1016/j.euromechsol.2008.07.007 – reference: BoxGEPJenkinsGMTime series analysis: Forecasting and control1976San FranciscoHolden-Day – reference: LewisFApplied optimal control and estimation: Digital design and implementation1992Englewood Cliffs, NJPrentice-Hall – reference: LeeJNiJDjurdjanovicDQiuHLiaoHIntelligent prognostics tools and e-maintenanceComputers in Industry200657647648910.1016/j.compind.2006.02.014 – reference: Lei, Z., Xingshan, L., Jinsong, Y., ZhanBao, G. (2007). A genetic training algorithm of wavelet neural networks for fault prognostics in condition based maintenance. In Proceedings of the eighth international conference on electronic measurement and instruments (pp. 584–589). IEEE – reference: YeoSHKhooLPNeoSSTool condition monitoring using reflectance of chip surface and neural networkJournal of Intelligent Manufacturing20001150751410.1023/A:1026583821221 – reference: JardineAndrew K SLinDamingBanjevicDraganA review on machinery diagnostics and prognostics implementing condition-based maintenanceMechanical Systems and Signal Processing20062071483151010.1016/j.ymssp.2005.09.012 – reference: WangTianyiJianboYuSiegelDLeeJA similarity-based prognostics approach for remaining useful life estimation of engineered systemsIEEE International Conference on Prognostics and Health Management20081669 – reference: KothamasuRanganathHuangSamuel HVerDuinWilliam HSystem health monitoring and prognostics a review of current paradigms and practicesThe International Journal of Advanced Manufacturing Technology2006289–101012102410.1007/s00170-004-2131-6 – ident: 933_CR29 – volume-title: Fault-diagnosis systems: An introduction from fault detection to fault tolerance year: 2006 ident: 933_CR14 doi: 10.1007/3-540-30368-5 – volume: 121 start-page: 195 issue: 1 year: 2009 ident: 933_CR23 publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2009.05.006 – volume-title: Time series analysis: Forecasting and control year: 1976 ident: 933_CR2 – ident: 933_CR9 – volume-title: Applied optimal control and estimation: Digital design and implementation year: 1992 ident: 933_CR22 – ident: 933_CR38 – volume: 23 start-page: 724 issue: 3 year: 2009 ident: 933_CR11 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2008.06.009 – ident: 933_CR27 doi: 10.1109/AERO.2011.5747581 – volume: 51 start-page: 694 issue: 3 year: 2004 ident: 933_CR8 publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2004.824875 – volume: 57 start-page: 476 issue: 6 year: 2006 ident: 933_CR20 publication-title: Computers in Industry doi: 10.1016/j.compind.2006.02.014 – volume: 69 start-page: 1685 issue: 5 year: 2013 ident: 933_CR28 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-013-5065-z – volume: 76 start-page: 796 year: 2004 ident: 933_CR50 publication-title: Production Planning and Control doi: 10.1080/09537280412331309208 – ident: 933_CR18 doi: 10.1109/ICPHM.2013.6621413 – volume: 28 start-page: 1012 issue: 9–10 year: 2006 ident: 933_CR19 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-004-2131-6 – volume: 20 start-page: 14831510 issue: 7 year: 2006 ident: 933_CR16 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.09.012 – ident: 933_CR24 – ident: 933_CR41 doi: 10.1007/s10845-009-0356-9 – ident: 933_CR32 doi: 10.1007/s10845-009-0249-y – ident: 933_CR34 – volume: 95 start-page: 638 issue: 450 year: 2000 ident: 933_CR44 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2000.10474241 – ident: 933_CR1 doi: 10.1007/s10845-013-0774-6 – volume: 23 start-page: 869 year: 2012 ident: 933_CR7 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-010-0443-y – ident: 933_CR10 doi: 10.1007/s10845-009-0348-9 – volume: 28 start-page: 461 issue: 3 year: 2009 ident: 933_CR4 publication-title: European Journal of Mechanics-A/Solids doi: 10.1016/j.euromechsol.2008.07.007 – volume: 21 start-page: 193 issue: 1 year: 2007 ident: 933_CR13 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.11.008 – volume: 11 start-page: 507 year: 2000 ident: 933_CR51 publication-title: Journal of Intelligent Manufacturing doi: 10.1023/A:1026583821221 – volume: 1 start-page: 6 issue: 6 year: 2008 ident: 933_CR47 publication-title: IEEE International Conference on Prognostics and Health Management doi: 10.1109/PHM.2008.4711421 – volume: 221 start-page: 231 year: 2012 ident: 933_CR49 publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2012.03.027 – volume: 50 start-page: 297 issue: 1–4 year: 2010 ident: 933_CR31 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-009-2482-0 – volume: 1 start-page: 1 issue: 8 year: 2008 ident: 933_CR35 publication-title: IEEE Aerospace Conference doi: 10.1109/AERO.2008.4526631 – volume: 61 start-page: 491 issue: 2 year: 2012 ident: 933_CR42 publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2012.2194177 – volume: 29 start-page: 20 issue: 1 year: 2007 ident: 933_CR46 publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2006.03.004 – volume: 61 start-page: 292 issue: 2 year: 2012 ident: 933_CR25 publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2012.2194175 – volume: 24 start-page: 1213 issue: 6 year: 2013 ident: 933_CR53 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-012-0657-2 – ident: 933_CR17 doi: 10.1109/IECON.2013.6699844 – volume: 25 start-page: 1803 issue: 5 year: 2011 ident: 933_CR40 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.09.012 – ident: 933_CR37 doi: 10.1109/PES.2005.1489277 – volume: 43 start-page: 37 issue: 1 year: 2013 ident: 933_CR33 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TSMCB.2012.2198882 – start-page: 1062 volume-title: Prognostics of machine health condition using an improved ARIMA-based prediction method year: 2007 ident: 933_CR48 – volume: 23 start-page: 303 issue: 2 year: 2012 ident: 933_CR26 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-009-0352-0 – volume: 60 start-page: 5064 issue: 10 year: 2012 ident: 933_CR6 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2012.2208638 – ident: 933_CR12 doi: 10.1098/rspa.1998.0193 – volume-title: Intelligent fault diagnosis and prognosis for engineering systems year: 2006 ident: 933_CR45 doi: 10.1002/9780470117842 – volume: 23 start-page: 797 year: 2012 ident: 933_CR3 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-010-0436-x – volume: 22 start-page: 491 year: 2011 ident: 933_CR30 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-009-0310-x – ident: 933_CR43 doi: 10.1016/j.snb.2009.03.018 – ident: 933_CR21 doi: 10.1109/ICEMI.2007.4350749 – volume: 9 start-page: 3962 issue: 1 year: 2006 ident: 933_CR15 publication-title: IEEE Aerospace Conference doi: 10.1109/AERO.2006.1656108 – ident: 933_CR39 doi: 10.2514/6.2005-7002 – ident: 933_CR36 doi: 10.1109/CIMSim.2012.56 – volume: 58 start-page: 602 issue: 3 year: 2009 ident: 933_CR5 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2008.2004340 – volume: 50 start-page: 159 year: 2003 ident: 933_CR52 publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 |
| SSID | ssj0009861 |
| Score | 2.5771885 |
| Snippet | Reliability of prognostics and health management systems relies upon accurate understanding of critical components’ degradation process to predict the... Reliability of prognostics and health management systems relies upon accurate understanding of critical components' degradation process to predict the... Reliability of prognostics and health management systems (PHM) relies upon accurate understanding of critical components' degradation process to predict the... |
| SourceID | unpaywall hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1037 |
| SubjectTerms | Accumulation Algorithms Bayesian analysis Business and Management Computer simulation Construction Control Decision making Degradation Engineering Sciences Machine learning Machines Manufacturing Mathematical models Mechatronics Methods Micro and nanotechnologies Microelectronics Partial differential equations Physics Predictions Preventive maintenance Processes Production Production management Repositories Robotics Sensors Studies Useful life |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fj5QwEJ7c7cXoPfhj1YiephqfvDSyUAo8GHOnd9kY3RjjJfdG2jKNJgjr7qK5_94OUHZ98HyFQoCZ6Xxlpt8H8NL5SKliEXNpMOHC5DOuMU24JYqfLI3RdNIJnxZyfiE-XCaXe7Dwe2GordLPid1EXTaG_pG_dplICrfiluHb5U9OqlFUXfUSGmqQVijfdBRj-3AQETPWBA5Ozxafv2xpeLOOQbVj33MDE1_n7DfTZYIa2QSnVT4Xf2Wq_W_UJ7kDQse66SHcbOuluvqtqmonNZ3fhdsDpmQnvRPcgz2sp3DH6zWwIXyncLhDPjiFG13zp1nfB_tebRQvVzTxMWrYqhtib2a9ujSjRFeypman6gppzyXzROS4Zg7zsj4tshX-6OUmWLtG21as-m7R3Y9KQWT-B3Bxfvb13ZwP-gvcOBy34S6aUZehQoyNImxnUGlpCTRaMdMWU6tVlqPOBZbarRMTjYlKjXEQJ3LH4ocwqZsaHwFL9CxUUlhp3aW5kkpHCrMw1rJ0E1weBRD6b12YgZycNDKqYkurTOYpnHkKMk8hAng1XrLsmTmuG_zCGXAcR5za85OPBR0jUr1EiOjXLIAjb99iiOR1sfW7AJ6Pp10MUmFF1di0NEYkaU416QCOvV_s3OLfT3U8us7_3-Hx9Y_3BG45MCf7RsMjmGxWLT51gGmjnw1R8Ae39w_R priority: 102 providerName: ProQuest – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QF6oFBABFpkECcqV8nGdpLjAi0rXqdWKqfIdiYFEbLVbgJqf01_C78MT15NEQ_16tgj25kZf9aMvwF47nQk06EIubIoubBJwA1GkudE8RNHIdqmdMKHj2p-JN4ey-PuHfeqz3bvQ5KNpx49dosFJZoJTrdwLtZgvaHbmsD67M2nd_uXXLtxQ5PaUOw5QCD7YOafhFw5jtY-UzLkCGkOwdENuFmXp_rshy6K0flzsAmH_czbtJOve3Vl9uz5b6SO11zaHbjd4VE2axXoLtzAcgs2-1oPrDP9LdgYERfeg5PXutI8W5KrZJTiVS6I75m19agZHY0ZW5TspT5DeqXJeupyXDGHkn9etCcpW-K3tkIFq1eY1wUrvuToBFL0iDTmPhwd7B--mvOuZAO3DvpV3DkANJmvEUOrCQ5a1EblhDNzEZgco9zoOEGTCMyMu1pKg1JH1jpUNHVt4QOYlIsSHwKTJvC1ErnK3dBEK22mGmM_NCpzPjGZeuD3fy61HZ85ldUo0ksmZtrW1G1rStuaCg9eDENOWzKPf3V-5tRh6Ec03PPZ-5TaiIdPCjH9Hniw3WtL2hn_KnWgSYkgEcr34Onw2ZktxWJ0iYua-ggZJRTG9mC3V4qRiL_PandQxP-v4dG1ZD-GWw4OqjZVcRsm1bLGHQe5KvOkM7FfvZAg5Q priority: 102 providerName: Springer Nature |
| Title | Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction |
| URI | https://link.springer.com/article/10.1007/s10845-014-0933-4 https://www.proquest.com/docview/1816419460 https://www.proquest.com/docview/1845792829 https://hal.science/hal-01025442 |
| UnpaywallVersion | submittedVersion |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1572-8145 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: ADMLS dateStart: 20080201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1572-8145 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1572-8145 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9NADLa29gH2wGCACIzqQDwx3dQ2d5fmsWPtKtiqCai0PUV3icPQsnRqG9D4NfwWfhl2k5SCxBBPiXJOlMj2-bvY9xngFdlIYn3lSxOjlioOO9JhoGXKFD-9wMd42TrhZGxGE_X2TJ9tgKj3wlwQ4qzmfj6XTHmmlaJJtmk0oe0GNCfj0_55TaFHAV8vKVGDLv_N0nXistwd11NcmaYkL9ul-i30bF5w4eMaqlwlQrfgTpFf25uvNsvWYs1wu6x5nC8pCrnE5HK_WLj9-NsfBI63fcZ9uFcBTdEvLeMBbGC-A9t1EwdR-fQObK0xEj6ET4d2YWUy4zlQcO1WPmUiZ1E2mhYc8xIxzcWBvUHefilqTnKcC4K_P76XIVLM8KpsPSGKOaZFJrLPKdIDOS3EpvAIJsPBxzcjWfVikDFhuoUkz0aXtC2iH1vGeTFaZ1IGkKnquBSD1NleiC5UmDhaM2qH2gZxTHCnS9f8x9DIpzk-AaFdp22NSk1Kt4bWWNe12Gv7ziQ02YVdD9q1mqK4IirnfhlZ9ItimTUbkWYj1mykPHi9uuW6ZOm4TfglqWQlx_zao_5xxNdqNX3peLBbm0ZUefU8IjRkVCdUpu3Bi9Uw-SMnWWyO04JllA5Czk97sFeb1Noj_v5Weyur-_c3PP0v6Wdwl3CeKWsQd6GxmBX4nLDUwrVgszc8akGzf3hy_IGPR-fvBnQ8GIxP39PopNtvVS73E5SmHWs |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71IVR64BFAGAosCC5UKxJ7bceHCrW0VUrTCKFW6s3dXY8FkrFDnFDlz_HbmPEjCQfKqVd7d7X2zM7M7sx-H8Bb0pFEe8qTgUVfKhv1pMHQlylD_PRDD21FnXA2CgYX6vOlf7kGv9u7MFxW2drEylAnheUz8g_kiQJFO-6g-3H8UzJrFGdXWwoN3VArJHsVxFhzseMU59e0hSv3Tg5J3u9c9_jo_NNANiwD0lK0MpWks2iSrkb0rOYIxqI2QcqhUap6JsUwNbofoYkUJoZ2Q75BX4fWkiN36ZlH467DpvJURJu_zYOj0ZevS9jffoXYWqH90cT8Nq9aX97rKy6cU5JPFaT6yzOuf-O6zJWgd5Gn3YatWT7W82udZSuu8PgB3GtiWLFfK91DWMO8A_dbfgjRmIsObK-AHXbgTlVsastHkB7qqZbJhA2t4AKxvGC0aFGzWQt2rIkocnGg58h3PEULfI6loBhb1G5YTPBHTW8hZiWms0xk31Ok8Tj1xOr2GC5uRRJPYCMvcnwKwje9rg5UGqTUNdKBNq7GftczQUIGNXId6Lb_OrYNGDpzcmTxEsaZxROTeGIWT6wceL_oMq6RQG5q_IYEuGjHGN6D_WHMzxjEz1fK_dVzYKeVb9xYjjJe6rkDrxevac1zIkfnWMy4jfLDiHPgDuy2erEyxL9ntbtQnf9_w7Obp_cKtgbnZ8N4eDI6fQ53KZAM6iLHHdiYTmb4goK1qXnZrAgBV7e9CP8Ag0NPKw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RTx64LFQsVDAILhQWc0mzuuAUGFZtrRUHKjUW7Cdiai0JMtml2r_Gr-Ombx2OVBOvSa25WTGM589428AXpKOpNpTngws-lLZeCANhr7MmOInCj20VemEzyfB-FR9OvPPNuB3exeG0ypbm1gZ6rSwfEa-T54oULTjDpz9rEmL-DIcvZ3-lFxBiiOtbTmNWkWOcHlB27fyzeGQZP3KdUcfvr4fy6bCgLSEVOaS9BVN6mhEz2pGLxa1CTKGRZkamAzDzOgoRhMrTA3thHyDvg6tJSfu0jOPxt2EayGzuPMt9dHHFeFvVHG1Vjx_hEr8NqJaX9uLFKfMKcnnCVL95RM3v3NG5hrc7SK023BzkU_18kJPJmtOcHQXbjfoVRzU6nYPNjDvwZ22MoRoDEUPttdoDntwvUozteV9yIZ6rmU6YxMrODUsL5gnWtR1rAW71FQUuXinl8i3O0VLeY6lIHQtagcsZvijLmwhFiWSnMTkPEMaj4NOrGgP4PRK5LADW3mR40MQvhk4OlBZkFHXWAfauBojxzNBSqY0dvvgtP86sQ0NOlfjmCQrAmcWT0LiSVg8ierD667LtOYAuazxCxJg147Zu8cHxwk_Y_o-Xyn316APu618k8ZmlMlKw_vwvHtNq51DODrHYsFtlB_GHP3uw16rF2tD_HtWe53q_P8bHl0-vWdwg5Zecnx4cvQYbhGCDOrsxl3Yms8W-IRQ2tw8rZaDgG9Xvf7-AFLWTMU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6V7QF6oFBABAoyiBOVq2RjO5vj8lOtEFQcWKmcItuZUETIVrtJq_I0PAtPxszmhwWJIm6RY1uxZsbzOTP-BuAZ6UhuYxVL41FL5dNIOky0LJjiZ5LE6NelE94dm9lcvTnRJ1sg-rswp4Q4u72fnyVTnmmlaJPdNprQ9gi258fvpx97Cj1y-HpNiZqM-W-W7gOX7e24ieLMNCX52C7Vb67n2iknPm6gyiEQugPXm-rMXl7YstzwNUe7bc7jak1RyCkmXw6b2h36b38QOF61jFtwswOaYtpqxm3YwmoPdvsiDqKz6T3Y2WAkvAOfXtnaynzJe6Dg3K1qwUTOoi00Ldjn5WJRiRf2Evn6peg5yXElCP7--N66SLHEr23pCdGssGhKUX4ukCbksBCrwl2YH73-8HImu1oM0hOmqyVZNro8tIixt4zzPFpnCgaQhYpcgUnh7CRFlyrMHZ0ZtUNtE-8J7oypLb4Ho2pR4X0Q2kWhNaowBQ1NrbFubHESxs7ktNml4wDCXkyZ74jKuV5Gmf2iWGbJZiTZjCWbqQCeD0POWpaOqzo_JZEM_ZhfezZ9m3FbL6bzKID9XjWyzqpXGaEho6JUmTCAJ8NrskcOstgKFw33UTpJOT4dwEGvUhtT_P2rDgat-_caHvxX74dwg3CeaXMQ92FULxt8RFiqdo87c_oJ9CkW2g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+prognostic+method+based+on+Bayesian+approaches+for+direct+remaining+useful+life+prediction&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Mosallam%2C+A&rft.au=Medjaher%2C+K&rft.au=Zerhouni%2C+N&rft.date=2016-10-01&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=27&rft.issue=5&rft.spage=1037&rft.epage=1048&rft_id=info:doi/10.1007%2Fs10845-014-0933-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon |