Forecasting of excavation problems for high-rise building in Vietnam using planet optimization algorithm

In this paper, a new method in forecasting the horizontal displacement of diaphragm wall (D.W.) for high-rise buildings is introduced. A new stochastic optimizer, called Planet Optimization Algorithm (P.O.A.), is employed to assess how proper finite element (F.E.) simulation is against field data. T...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 23809 - 10
Main Authors Sang-To, Thanh, Hoang-Le, Minh, Khatir, Samir, Mirjalili, Seyedali, Wahab, Magd Abdel, Cuong-Le, Thanh
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.12.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-03097-y

Cover

More Information
Summary:In this paper, a new method in forecasting the horizontal displacement of diaphragm wall (D.W.) for high-rise buildings is introduced. A new stochastic optimizer, called Planet Optimization Algorithm (P.O.A.), is employed to assess how proper finite element (F.E.) simulation is against field data. The process is adopted for a real phased excavation measured at the field. To automatically run the iterative optimization tasks, a source code is constructed directly in the Geotechnical Engineering Software (PLAXIS) by using Python to ensure that the operation between optimization algorithm and F.E. simulations are smooth to guarantee the accuracy of the complex calculation for the soil problem. The proposed process consists of two steps. (1) The parameters will be optimized at the early phases of the excavation. (2) The responses of D.W. displacements are forecasted at the subsequent phases. The aim of the process is to predict the displacements of D.W. of the building from the result of the nearby excavation or to provide early warning about the risks of excavation that may happen under vital phases. The proposed procedure also provides an effective method for optimization-based soil parameters updating in real engineering practice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-03097-y