Single 3.3 fs multiple plate compression light source in ultrafast transient absorption spectroscopy

Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (nonco...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 12847 - 8
Main Authors Tamming, Ronnie R., Lin, Chao-Yang, Hodgkiss, Justin M., Yang, Shang-Da, Chen, Kai, Lu, Chih-Hsuan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.06.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-92102-5

Cover

Abstract Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a Δ T / T noise level of 2.6 × 10 - 4 RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy.
AbstractList Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a $$\Delta T/T$$ Δ T / T noise level of $$2.6\times 10^{-4}$$ 2.6 × 10 - 4 RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy.
Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a ΔT/T noise level of 2.6×10-4 RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy.
Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a [Formula: see text] noise level of [Formula: see text] RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy.Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a [Formula: see text] noise level of [Formula: see text] RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy.
Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T/T$$\end{document} Δ T / T noise level of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.6\times 10^{-4}$$\end{document} 2.6 × 10 - 4 RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy.
Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a [Formula: see text] noise level of [Formula: see text] RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy.
Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a Δ T / T noise level of 2.6 × 10 - 4 RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy.
Abstract Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a $$\Delta T/T$$ Δ T / T noise level of $$2.6\times 10^{-4}$$ 2.6 × 10 - 4 RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy.
ArticleNumber 12847
Author Chen, Kai
Hodgkiss, Justin M.
Lin, Chao-Yang
Lu, Chih-Hsuan
Tamming, Ronnie R.
Yang, Shang-Da
Author_xml – sequence: 1
  givenname: Ronnie R.
  surname: Tamming
  fullname: Tamming, Ronnie R.
  organization: School of Chemical and Physical Sciences, Victoria University of Wellington, MacDiarmid Institute for Advanced Materials and Nanotechnology, Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington
– sequence: 2
  givenname: Chao-Yang
  surname: Lin
  fullname: Lin, Chao-Yang
  organization: Institute of Photonics Technologies, National Tsing Hua University
– sequence: 3
  givenname: Justin M.
  surname: Hodgkiss
  fullname: Hodgkiss, Justin M.
  organization: School of Chemical and Physical Sciences, Victoria University of Wellington, MacDiarmid Institute for Advanced Materials and Nanotechnology
– sequence: 4
  givenname: Shang-Da
  surname: Yang
  fullname: Yang, Shang-Da
  organization: Institute of Photonics Technologies, National Tsing Hua University
– sequence: 5
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  email: Kai.Chen@vuw.ac.nz
  organization: MacDiarmid Institute for Advanced Materials and Nanotechnology, Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington UniVentures, Victoria University of Wellington, The Dodd-Walls Centre for Photonic and Quantum Technologies
– sequence: 6
  givenname: Chih-Hsuan
  surname: Lu
  fullname: Lu, Chih-Hsuan
  email: lzch2000@hotmail.com
  organization: Institute of Photonics Technologies, National Tsing Hua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34145343$$D View this record in MEDLINE/PubMed
BookMark eNp9kstO3TAQhqOKqlDKC3RRReqmm1Db41y8qVShQpGQuih7y3EmwUc-dmo7lXh7HAItsMAb3775_Xtm3hcHzjssio-UnFIC3dfIaS26ijBaCUYJq-o3xREjvK4YMHbwZH1YnMS4I3nUTHAq3hWHwCmvgcNRMfw2brJYwimUYyz3i01mzvvZqoSl9vs5YIzGu9Ka6SaV0S9BY2lcmcmgRhVTmWcXDbpUqj76MKcVjzPqFHzUfr79ULwdlY148jAfF9fnP67PflZXvy4uz75fVbrmJFVUQEsFItCR86YVjGiEliiqSQsoWA-6U0Mjeqxb7IdWQ8O0woaLQfcNh-PicpMdvNrJOZi9CrfSKyPvD3yYpArJaIuybwV00OQXNXLaDwpYTo7iPJ_1fTtkrW-b1rz0exx0_l1Q9pno8xtnbuTk_8qOUehonQW-PAgE_2fBmOTeRI3WKod-iZLVHDinLSMZ_fwC3eUsu5yplWI1kFy3TH166uiflcdaZqDbAJ3THgOOUpuk1mJkg8ZKSuTaOXLrHJk7R953jlzNshehj-qvBsEWFDPsJgz_bb8SdQcBNNYP
CitedBy_id crossref_primary_10_1002_advs_202206076
crossref_primary_10_3389_fphot_2022_937622
crossref_primary_10_1080_23746149_2022_2065218
crossref_primary_10_1002_anie_202300815
crossref_primary_10_35848_1882_0786_ad08e4
crossref_primary_10_1364_OL_465661
crossref_primary_10_1002_ange_202300815
crossref_primary_10_1103_PhysRevResearch_4_013035
crossref_primary_10_1002_smll_202308676
crossref_primary_10_1007_s40242_025_4249_z
Cites_doi 10.1007/978-3-030-14995-6
10.1364/OPTICA.1.000400
10.1038/nphoton.2014.171
10.1038/srep04467
10.1103/RevModPhys.78.1135
10.1038/s41467-017-00546-z
10.1063/1.1523642
10.1364/JOSAB.31.001465
10.3952/physics.v57i3.3541
10.1021/acsphotonics.9b00091
10.1038/s41598-020-61847-w
10.1364/OL.17.001131
10.1021/jacs.8b12982
10.1103/PhysRevB.93.161205
10.1016/j.aca.2008.11.039
10.1038/s41467-017-01360-3
10.1007/s00340-018-6966-1
10.1364/oe.27.010320
10.1364/oe.22.016965
10.1063/1.5129123
10.1021/acsnano.6b02734
10.1103/PhysRevLett.90.113904
10.1364/oe.27.015638
10.1063/1.2800778
10.1038/ncomms9420
10.1021/acs.nanolett.7b05283
10.1364/ol.18.000574
10.1038/s41467-019-09872-w
10.1039/c2cp23649d
10.1016/j.optcom.2012.11.011
10.1364/OL.23.001283
10.1364/oe.19.003775
10.1063/1.123820
10.1364/ol.42.000474
10.1126/science.1243982
10.1007/s00340-009-3610-0
10.1103/PhysRevB.53.1749
10.1063/1.3492897
10.1364/ol.37.001880
10.1364/CLEOPR.2020.C6B_4
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-92102-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_b793836193ce41bda32529a44361bb7d
PMC8213815
34145343
10_1038_s41598_021_92102_5
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-193719ee31f4467920ce370a1c073e92b3c8ad69be57ebd7c362cae649dcb643
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:46 EDT 2025
Thu Aug 21 14:10:38 EDT 2025
Fri Sep 05 04:44:01 EDT 2025
Wed Aug 13 10:56:27 EDT 2025
Mon Jul 21 06:07:23 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
Tue Jul 01 03:48:42 EDT 2025
Fri Feb 21 02:39:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-193719ee31f4467920ce370a1c073e92b3c8ad69be57ebd7c362cae649dcb643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/b793836193ce41bda32529a44361bb7d
PMID 34145343
PQID 2542530294
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_b793836193ce41bda32529a44361bb7d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8213815
proquest_miscellaneous_2543441720
proquest_journals_2542530294
pubmed_primary_34145343
crossref_citationtrail_10_1038_s41598_021_92102_5
crossref_primary_10_1038_s41598_021_92102_5
springer_journals_10_1038_s41598_021_92102_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-18
PublicationDateYYYYMMDD 2021-06-18
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Engelsholm, Bang (CR16) 2019; 27
Tokunaga, Kobayashi, Terasaki (CR38) 1992; 17
Anand (CR33) 2016; 93
Kim (CR1) 2019; 10
CR18
Dudley, Genty, Coen (CR9) 2006; 78
Manser, Kamat (CR32) 2014; 8
Polli, Lüer, Cerullo (CR31) 2007; 78
Dubietis, Tamošauskas, Šuminas, Jukna, Couairon (CR7) 2017; 57
Shirakawa, Sakane, Takasaka, Kobayashi (CR21) 1999; 74
Kanal, Keiber, Eck, Brixner (CR27) 2014; 22
Fu (CR5) 2017; 8
Cerullo, Nisoli, Stagira, De Silvestri (CR19) 1998; 23
Zhu, Cheng (CR40) 2020; 152
Adamu (CR14) 2020; 10
Megerle, Pugliesi, Schriever, Sailer, Riedle (CR6) 2009; 96
Corwin (CR17) 2003; 90
Stuart (CR13) 1996; 53
Price (CR4) 2015; 6
Lu (CR24) 2019; 27
Umari, Mosconi, De Angelis (CR34) 2014; 4
Cerullo, De Silvestri (CR20) 2003; 74
Lu (CR22) 2014; 1
Dobryakov (CR28) 2010; 81
Bradler, Riedle (CR29) 2014; 31
He (CR23) 2017; 42
Tilchin (CR36) 2016; 10
Kobayashi, Kida (CR10) 2012; 14
Stranks (CR3) 2013; 342
CR25
Chandrabose (CR2) 2019; 141
Heidt (CR8) 2011; 19
Blanchet (CR30) 2009; 642
Dubietis, Couairon (CR12) 2019
Saha, Sarma (CR15) 2013; 291
Tamming (CR37) 2019; 6
Danielius (CR11) 1993; 18
Richter (CR35) 2017; 8
Choudhuri (CR26) 2018; 124
Huang (CR39) 2018; 18
L Blanchet (92102_CR30) 2009; 642
KL Corwin (92102_CR17) 2003; 90
RD Engelsholm (92102_CR16) 2019; 27
TW Kim (92102_CR1) 2019; 10
P He (92102_CR23) 2017; 42
J Tilchin (92102_CR36) 2016; 10
KC Huang (92102_CR39) 2018; 18
A Shirakawa (92102_CR21) 1999; 74
92102_CR18
M Bradler (92102_CR29) 2014; 31
JM Dudley (92102_CR9) 2006; 78
M Saha (92102_CR15) 2013; 291
E Tokunaga (92102_CR38) 1992; 17
J Fu (92102_CR5) 2017; 8
AL Dobryakov (92102_CR28) 2010; 81
A Dubietis (92102_CR7) 2017; 57
D Polli (92102_CR31) 2007; 78
AI Adamu (92102_CR14) 2020; 10
T Kobayashi (92102_CR10) 2012; 14
U Megerle (92102_CR6) 2009; 96
B Anand (92102_CR33) 2016; 93
MB Price (92102_CR4) 2015; 6
C-H Lu (92102_CR24) 2019; 27
P Umari (92102_CR34) 2014; 4
R Danielius (92102_CR11) 1993; 18
C-H Lu (92102_CR22) 2014; 1
A Dubietis (92102_CR12) 2019
B Stuart (92102_CR13) 1996; 53
RR Tamming (92102_CR37) 2019; 6
S Chandrabose (92102_CR2) 2019; 141
JM Richter (92102_CR35) 2017; 8
Y Zhu (92102_CR40) 2020; 152
SD Stranks (92102_CR3) 2013; 342
G Cerullo (92102_CR19) 1998; 23
JS Manser (92102_CR32) 2014; 8
A Choudhuri (92102_CR26) 2018; 124
AM Heidt (92102_CR8) 2011; 19
92102_CR25
G Cerullo (92102_CR20) 2003; 74
F Kanal (92102_CR27) 2014; 22
References_xml – ident: CR18
– year: 2019
  ident: CR12
  publication-title: Ultrafast Supercontinuum Generation in Transparent Solid-State Media
  doi: 10.1007/978-3-030-14995-6
– volume: 1
  start-page: 400
  year: 2014
  ident: CR22
  article-title: Generation of intense supercontinuum in condensed media
  publication-title: Optica
  doi: 10.1364/OPTICA.1.000400
– volume: 8
  start-page: 737
  year: 2014
  end-page: 743
  ident: CR32
  article-title: Band filling with free charge carriers in organometal halide perovskites
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.171
– volume: 4
  start-page: 1
  year: 2014
  end-page: 7
  ident: CR34
  article-title: Relativistic GW calculations on CH3 NH3 PbI 3 and CH3 NH3 SnI3 Perovskites for Solar Cell Applications
  publication-title: Sci. Rep.
  doi: 10.1038/srep04467
– volume: 78
  start-page: 1135
  year: 2006
  end-page: 1184
  ident: CR9
  article-title: Supercontinuum generation in photonic crystal fiber
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.78.1135
– volume: 8
  start-page: 1
  year: 2017
  end-page: 7
  ident: CR35
  article-title: Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00546-z
– volume: 74
  start-page: 1
  year: 2003
  end-page: 18
  ident: CR20
  article-title: Ultrafast optical parametric amplifiers
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1523642
– volume: 31
  start-page: 1465
  year: 2014
  end-page: 1475
  ident: CR29
  article-title: Temporal and spectral correlations in bulk continua and improved use in transient spectroscopy
  publication-title: J. Opt. Soc. Am.B
  doi: 10.1364/JOSAB.31.001465
– volume: 57
  start-page: 113
  year: 2017
  end-page: 157
  ident: CR7
  article-title: Ultrafast supercontinuum generation in bulk condensed media (Invited Review)
  publication-title: Lith. J. Phys.
  doi: 10.3952/physics.v57i3.3541
– volume: 6
  start-page: 345
  year: 2019
  end-page: 350
  ident: CR37
  article-title: Ultrafast spectrally resolved photoinduced complex refractive index changes in CsPbBr3 perovskites
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b00091
– volume: 10
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR14
  article-title: Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61847-w
– volume: 17
  start-page: 1131
  year: 1992
  ident: CR38
  article-title: Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy
  publication-title: Opt. Lett.
  doi: 10.1364/OL.17.001131
– ident: CR25
– volume: 141
  start-page: 6922
  year: 2019
  end-page: 6929
  ident: CR2
  article-title: High exciton diffusion coefficients in fused ring electron acceptor films
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12982
– volume: 93
  start-page: 1
  year: 2016
  end-page: 5
  ident: CR33
  article-title: Broadband transient absorption study of photoexcitations in lead halide perovskites: Towards a multiband picture
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.161205
– volume: 642
  start-page: 19
  year: 2009
  end-page: 26
  ident: CR30
  article-title: Chemometrics description of measurement error structure: Study of an ultrafast absorption spectroscopy experiment
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.11.039
– volume: 8
  start-page: 1300
  year: 2017
  ident: CR5
  article-title: Hot carrier cooling mechanisms in halide perovskites
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01360-3
– volume: 124
  start-page: 1
  year: 2018
  end-page: 6
  ident: CR26
  article-title: A spatio-spectral polarization analysis of 1 m-pumped bulk supercontinuum in a cubic crystal (YAG)
  publication-title: Appl. Phys. B Lasers Opt.
  doi: 10.1007/s00340-018-6966-1
– volume: 27
  start-page: 10320
  year: 2019
  ident: CR16
  article-title: Supercontinuum noise reduction by fiber undertapering
  publication-title: Opt. Express
  doi: 10.1364/oe.27.010320
– volume: 22
  start-page: 16965
  year: 2014
  ident: CR27
  article-title: 100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy
  publication-title: Opt. Express
  doi: 10.1364/oe.22.016965
– volume: 152
  start-page: 020901
  year: 2020
  ident: CR40
  article-title: Transient absorption microscopy: Technological innovations and applications in materials science and life science
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5129123
– volume: 10
  start-page: 6363
  year: 2016
  end-page: 6371
  ident: CR36
  article-title: Hydrogen-like Wannier–Mott excitons in single crystal of methylammonium lead bromide perovskite
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02734
– volume: 90
  start-page: 4
  year: 2003
  ident: CR17
  article-title: Fundamental noise limitations to supercontinuum generation in microstructure fiber
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.113904
– volume: 27
  start-page: 15638
  year: 2019
  ident: CR24
  article-title: Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration
  publication-title: Opt. Express
  doi: 10.1364/oe.27.015638
– volume: 78
  start-page: 103108
  year: 2007
  ident: CR31
  article-title: High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2800778
– volume: 6
  start-page: 1
  year: 2015
  end-page: 8
  ident: CR4
  article-title: Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9420
– volume: 18
  start-page: 1489
  year: 2018
  end-page: 1497
  ident: CR39
  article-title: High-speed spectroscopic transient absorption imaging of defects in graphene
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05283
– volume: 18
  start-page: 574
  year: 1993
  ident: CR11
  article-title: Self-diffraction through cascaded second-order frequency-mixing effects in -barium borate
  publication-title: Opt. Lett.
  doi: 10.1364/ol.18.000574
– volume: 10
  start-page: 1873
  year: 2019
  ident: CR1
  article-title: Ultrafast charge transfer coupled with lattice phonons in two-dimensional covalent organic frameworks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09872-w
– volume: 14
  start-page: 6200
  year: 2012
  end-page: 6210
  ident: CR10
  article-title: Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp23649d
– volume: 291
  start-page: 321
  year: 2013
  end-page: 325
  ident: CR15
  article-title: Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2012.11.011
– volume: 23
  start-page: 1283
  year: 1998
  ident: CR19
  article-title: Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible
  publication-title: Opt. Lett.
  doi: 10.1364/OL.23.001283
– volume: 19
  start-page: 3775
  year: 2011
  ident: CR8
  article-title: Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers
  publication-title: Opt. Express
  doi: 10.1364/oe.19.003775
– volume: 74
  start-page: 2268
  year: 1999
  end-page: 2270
  ident: CR21
  article-title: Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123820
– volume: 42
  start-page: 474
  year: 2017
  ident: CR23
  article-title: High-efficiency supercontinuum generation in solid thin plates at 01 TW level
  publication-title: Opt. Lett.
  doi: 10.1364/ol.42.000474
– volume: 342
  start-page: 341
  year: 2013
  end-page: 344
  ident: CR3
  article-title: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 96
  start-page: 215
  year: 2009
  end-page: 231
  ident: CR6
  article-title: Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground
  publication-title: Appl. Phys. B: Lasers Opt.
  doi: 10.1007/s00340-009-3610-0
– volume: 53
  start-page: 1749
  year: 1996
  end-page: 1761
  ident: CR13
  article-title: Nanosecond-to-femtosecond laser-induced breakdown in dielectrics
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.53.1749
– volume: 81
  start-page: 1130106
  year: 2010
  ident: CR28
  article-title: Femtosecond pump/supercontinuum-probe spectroscopy: Optimized setup and signal analysis for single-shot spectral referencing
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3492897
– volume: 291
  start-page: 321
  year: 2013
  ident: 92102_CR15
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2012.11.011
– volume: 10
  start-page: 6363
  year: 2016
  ident: 92102_CR36
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02734
– volume: 17
  start-page: 1131
  year: 1992
  ident: 92102_CR38
  publication-title: Opt. Lett.
  doi: 10.1364/OL.17.001131
– volume: 78
  start-page: 1135
  year: 2006
  ident: 92102_CR9
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.78.1135
– volume: 27
  start-page: 10320
  year: 2019
  ident: 92102_CR16
  publication-title: Opt. Express
  doi: 10.1364/oe.27.010320
– ident: 92102_CR18
  doi: 10.1364/ol.37.001880
– volume: 10
  start-page: 1
  year: 2020
  ident: 92102_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61847-w
– volume: 152
  start-page: 020901
  year: 2020
  ident: 92102_CR40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5129123
– volume: 22
  start-page: 16965
  year: 2014
  ident: 92102_CR27
  publication-title: Opt. Express
  doi: 10.1364/oe.22.016965
– volume: 8
  start-page: 1
  year: 2017
  ident: 92102_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00546-z
– volume: 74
  start-page: 2268
  year: 1999
  ident: 92102_CR21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123820
– volume: 8
  start-page: 737
  year: 2014
  ident: 92102_CR32
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.171
– volume: 42
  start-page: 474
  year: 2017
  ident: 92102_CR23
  publication-title: Opt. Lett.
  doi: 10.1364/ol.42.000474
– volume: 124
  start-page: 1
  year: 2018
  ident: 92102_CR26
  publication-title: Appl. Phys. B Lasers Opt.
  doi: 10.1007/s00340-018-6966-1
– volume: 78
  start-page: 103108
  year: 2007
  ident: 92102_CR31
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2800778
– volume: 14
  start-page: 6200
  year: 2012
  ident: 92102_CR10
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp23649d
– volume: 1
  start-page: 400
  year: 2014
  ident: 92102_CR22
  publication-title: Optica
  doi: 10.1364/OPTICA.1.000400
– volume: 81
  start-page: 1130106
  year: 2010
  ident: 92102_CR28
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3492897
– volume: 6
  start-page: 345
  year: 2019
  ident: 92102_CR37
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b00091
– volume-title: Ultrafast Supercontinuum Generation in Transparent Solid-State Media
  year: 2019
  ident: 92102_CR12
  doi: 10.1007/978-3-030-14995-6
– volume: 342
  start-page: 341
  year: 2013
  ident: 92102_CR3
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 90
  start-page: 4
  year: 2003
  ident: 92102_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.113904
– volume: 4
  start-page: 1
  year: 2014
  ident: 92102_CR34
  publication-title: Sci. Rep.
  doi: 10.1038/srep04467
– volume: 6
  start-page: 1
  year: 2015
  ident: 92102_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9420
– volume: 96
  start-page: 215
  year: 2009
  ident: 92102_CR6
  publication-title: Appl. Phys. B: Lasers Opt.
  doi: 10.1007/s00340-009-3610-0
– volume: 642
  start-page: 19
  year: 2009
  ident: 92102_CR30
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.11.039
– volume: 10
  start-page: 1873
  year: 2019
  ident: 92102_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09872-w
– volume: 18
  start-page: 574
  year: 1993
  ident: 92102_CR11
  publication-title: Opt. Lett.
  doi: 10.1364/ol.18.000574
– volume: 74
  start-page: 1
  year: 2003
  ident: 92102_CR20
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1523642
– ident: 92102_CR25
  doi: 10.1364/CLEOPR.2020.C6B_4
– volume: 53
  start-page: 1749
  year: 1996
  ident: 92102_CR13
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.53.1749
– volume: 57
  start-page: 113
  year: 2017
  ident: 92102_CR7
  publication-title: Lith. J. Phys.
  doi: 10.3952/physics.v57i3.3541
– volume: 23
  start-page: 1283
  year: 1998
  ident: 92102_CR19
  publication-title: Opt. Lett.
  doi: 10.1364/OL.23.001283
– volume: 93
  start-page: 1
  year: 2016
  ident: 92102_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.161205
– volume: 8
  start-page: 1300
  year: 2017
  ident: 92102_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01360-3
– volume: 18
  start-page: 1489
  year: 2018
  ident: 92102_CR39
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05283
– volume: 27
  start-page: 15638
  year: 2019
  ident: 92102_CR24
  publication-title: Opt. Express
  doi: 10.1364/oe.27.015638
– volume: 141
  start-page: 6922
  year: 2019
  ident: 92102_CR2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12982
– volume: 19
  start-page: 3775
  year: 2011
  ident: 92102_CR8
  publication-title: Opt. Express
  doi: 10.1364/oe.19.003775
– volume: 31
  start-page: 1465
  year: 2014
  ident: 92102_CR29
  publication-title: J. Opt. Soc. Am.B
  doi: 10.1364/JOSAB.31.001465
SSID ssj0000529419
Score 2.4082031
Snippet Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are...
Abstract Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12847
SubjectTerms 639/301
639/624
639/638
639/766
Absorption spectroscopy
Compressibility
Compression
Humanities and Social Sciences
Iodides
Light sources
multidisciplinary
Noise levels
Science
Science (multidisciplinary)
Spectrum analysis
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELZKERIXxN5AqYzEDULj2I7jEwLUqqoEF4r0bpa3QKWn5PGSHvrvmXGW6rH0mtiR45nxfOPZCHkjCmtlYWWunC5zEbTKbV0xAHJNEUNoLFeYnPzla3X2XZyv5Gq6cOunsMr5TEwHdeg83pEfgyFTYocbLT5sfuXYNQq9q1MLjTvkLgOoglytVmq5Y0EvlmB6ypUpeH3cg77CnDKMS0BjJ5c7-iiV7f8X1vw7ZPIPv2lSR6cPyYMJR9KPI-Efkb3YPib3xs6S109I-Aaz1pHy95w2PZ3DBulmDdiSYhz5GP_a0jVa53S8w6eXLYWRW9vYfqADqjFMl6TW9d02nS00ZWZiBcxuc_2UXJyeXHw-y6eGCrkHYDbkDIvf6Rg5a8AKVLosfOSqsMyDoEddOu5rGyrtolTRBeVBu3kbK6GDdwBdnpH9tmvjAaGC2QZTcF3lG-EktvBh0saoA36v5hlh864aPxUbx54Xa5Oc3rw2IyUMUMIkShiZkbfLnM1YauPW0Z-QWMtILJOdHnTbH2aSOuPg9Kk52IjcR8FcsLwElrBCwDPnVMjI4UxqM8lub244LSOvl9cgdehKsW3srtIYjs3byiIjz0fOWFYCuEBILmAP1A7P7Cx19017-TNV9q5LBggK_u3dzF03y_r_Vry4_S9ekvslMjw2XKoPyf6wvYqvAEkN7iiJy29IrRtk
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZKERIXxE5KQUbiBinxksUHhABRVUjlQiv1ZnkLVIqSR5JKff-eGSd56MGDE9fYjpxZPN_EsxDyUmbG5JnJ09IqnkqvytRUBQMgV2fB-9qIEpOTT78UJ-fy80V-sUeWdkczAYedrh32kzrvm6PrH-t3oPBvp5Tx6s0ARggTxTDYAD2YNL9BboJl4ijlpzPcn2p9cyWZmnNndi_dsk-xjP8u7PlnCOVv96jRPB3fJXdmXEnfT4Jwj-yF9j65NXWaXD8g_iusagIVR4LWA13CCOmqAaxJMa58iodtaYPeOp3-6dPLlsLM3tRmGOmIZg3TJ6mxQ9fHs4bGTE2siNmt1g_J2fGns48n6dxgIXUA1MaUYTE8FYJgNXiFpeKZC6LMDHOg-EFxK1xlfKFsyMtgfenA2jkTCqm8swBlHpH9tmvDE0IlMzWm5NrC1dLm2NKH5SYE5fF9lUgIW6iq3Vx8HHtgNDpegotKT5zQwAkdOaHzhLzarFlNpTf-OfsDMmszE8tmxwdd_03PWqgtnEaVAJ9RuCCZ9UZwEAkjJTyztvQJOVxYrRdR1OBCc-ytpGRCXmyGQQvxasW0obuKcwQ2c-NZQh5PkrHZCeAEmQsJNCi3ZGZrq9sj7eX3WOm74gwQFXzb60W6fm3r76Q4-B-keEpuc1QLbNNUHZL9sb8KzwB_jfZ5VKqfrTUrRg
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiHcDBRmJGwTiR-L4uCCqaiW4tEi9WX4FKq2S1SY99N8z4zzQQkHimowjxzPj-caeByFvZGFtWdgyV07zXAatcltXDIBcU8QQGisUJid_-VqdfZPry_LygPA5FyYF7aeSlmmbnqPDPvRgaDAZDAMK0EvJyzvkqFaCgzIerVbr8_VysoJ3V5LpKUOmEPUtg_esUCrWfxvC_DNQ8rfb0mSETh-Q-xN6pKtxvg_JQWwfkbtjP8mbxyScw6hNpOK9oE1P52BBut0AoqQYPT5GvbZ0gz45HU_u6VVLgXJnG9sPdEDjhUmS1Lq-26UdhaZ8TKx72W1vnpCL088Xn87yqY1C7gGODTnDknc6RsEa8P2U5oWPQhWWeVDvqLkTvrah0i6WKrqgPNg0b2MldfAOAMtTcth2bTwmVDLbYOKtq3wjXYmNe1hpY9QBv1eLjLB5VY2fSoxjp4uNSVfdojYjJwxwwiROmDIjb5cx27HAxj-pPyKzFkosjp0edLvvZhIW42DPqQV4hsJHyVywgoNIWCnhmXMqZORkZrWZNLY34Chz7KCkZUZeL69B1_ACxbaxu040Alu28SIjz0bJWGYCaECWQsIaqD2Z2Zvq_pv26keq511zBrgJ_u3dLF2_pvX3pXj-f-QvyD2OCoBtl-oTcjjsruNLwFODezUp0E8rRxqK
  priority: 102
  providerName: Springer Nature
Title Single 3.3 fs multiple plate compression light source in ultrafast transient absorption spectroscopy
URI https://link.springer.com/article/10.1038/s41598-021-92102-5
https://www.ncbi.nlm.nih.gov/pubmed/34145343
https://www.proquest.com/docview/2542530294
https://www.proquest.com/docview/2543441720
https://pubmed.ncbi.nlm.nih.gov/PMC8213815
https://doaj.org/article/b793836193ce41bda32529a44361bb7d
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0necpIsKvbVurJdlHTdLQlhIKE0KexOSJdPA4l12nUP-fWdk7zbb56UXG2TZyPPwfGPNg5D3snBOFU7l2huey2B07qqSAZBrihhC44TG5OSLy_L8q5zO1Oxeqy-MCevLA_eEO_YgQJUAmC_qKJkPTnDFjZMSxrzXAb--YMbuOVN9VW9uJDNDlkwhquM1WCrMJsOIBHRzcrVjiVLB_t-hzF-DJX_aMU2G6OwZeTogSDruV_6cPIjtC_K47yl595KEK7hrHqn4JGizppuAQbqcA6qkGEHeR762dI5-Oe3_3tOblsLMlWvcuqMdGjBMlKTOrxer9FWhKScTa18ulnevyPXZ6fXkPB9aKeQ1QLIuZ1j2zsQoWAP-nza8qKPQhWM1qHg03Iu6cqE0PiodfdA12LXaxVKaUHsALa_JXrto4z6hkrkGk299WTfSK2zew5SL0QR8XiUywjZUtfVQZhy7Xcxt2u4Wle05YYETNnHCqox82N6z7Its_HX2CTJrOxMLZKcBEBs7iI39l9hk5GjDajto7dqCs8yxi5KRGXm3vQz6hpsoro2L2zRHYNs2XmTkTS8Z25UAIpBKSKCB3pGZnaXuXmlvvqWa3hVngJ3g3T5upOvHsv5MioP_QYpD8oSjWmBDpuqI7HWr2_gWkFbnR-ShnukReTQeT6-mcD45vfz8BUYn5WSUFA6OF7L6DrgFKQM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYidQwEhwgrRJ7MTxASG2akqXC4M0N8tboNIoGSap0Pwo_iPvOclUw9Jbr4kdOX7Pb_FbPkJe8ETrPNF5LIzMYu6kiHVZpGDIVYl3rtJMYHHy8Ukx-co_z_LZFvk11sJgWuUoE4Ogdo3FO_I9cGQyRLiR_O3iR4yoURhdHSE0erY49Kuf4LK1bw4-An1fZtn-p-mHSTygCsQWrJMuTrEDnPSepRW4QkJmifVMJDq1wO1eZobZUrtCGp8Lb5ywIOKt9gWXzhrQ3_DZK-QqZwnHVv1iJtZXOhg046kcSnMSVu61oB6xhA3TINC3ivMN9RdQAv5l2v6doflHmDZov_1b5OZgttJ3PZ_dJlu-vkOu9UCWq7vEfYFZc0_ZLqNVS8csRbqYgylLMW29T7et6RwvA2gfMqCnNYWRS13ptqMdak2szqTatM0yiDIaCkGx4WazWN0j08vY6ftku25q_5BQnuoKK35NYStuckQMSnPtvXT4vZJFJB13VdmhtzlCbMxViLGzUvWUUEAJFSih8oi8Ws9Z9J09Lhz9Hom1HolducODZvlNDYdcGRB2JQOXlFnPU-M0y4AlNOfwzBjhIrIzkloNoqJV54wdkefr13DIMXKja9-chTEMseKyJCIPes5YrwTMEJ4zDnsgNnhmY6mbb-rT76GReJmlYLDBv70euet8Wf_fikcX_8Uzcn0yPT5SRwcnh4_JjQyZH7Geyh2y3S3P_BMw4jrzNBwdStQlH9XfDB9Xpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRSAuiJ1AASPBCdJJYmecHBACyqilUCFRpLlZ3gKVRskwmQrNT-Pf8Z6TTDUsvfWa2JHjt9pv-QCeiUTrPNF5LE2ZxcKVMtbFOEVHrkq8c5XmkoqTPx2N97-KD9N8ugW_hloYSqscdGJQ1K6xdEc-woNMRgg3pRhVfVrE573J6_mPmBCkKNI6wGl0LHLoVz_x-Na-OthDWj_Pssn743f7cY8wEFv0VJZxSt3gSu95WuGxSJZZYj2XiU4tcr4vM8Ntod24ND6X3jhpUd1b7ceidNagLcfPXoLLkgtO2WRyKtfXOxRAE2nZl-kkvBi1aCqpnI1SIuicFecbpjAgBvzLzf07W_OPkG2whJMbcL13Ydmbjuduwpavb8GVDtRydRvcF5w184zvcla1bMhYZPMZurWMUti71NuazehigHXhA3ZSMxy50JVul2xJFpQqNZk2bbMIao2FolBqvtnMV3fg-CJ2-i5s103t7wMTqa6o-teMbSVMTuhBaa69Lx19r-ARpMOuKtv3OSe4jZkK8XZeqI4SCimhAiVUHsGL9Zx51-Xj3NFviVjrkdShOzxoFt9UL_DKoOIrOB5PufUiNU7zDFlCC4HPjJEugp2B1KpXG606Y_IInq5fo8BTFEfXvjkNYzjhxmVJBPc6zlivBF0SkSM3RiA3eGZjqZtv6pPvoal4kaXovOG_vRy462xZ_9-KB-f_xRO4ikKqPh4cHT6EaxnxPsE-FTuwvVyc-kfozy3N4yA5DNQFS-pvNyRb4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+3.3+fs+multiple+plate+compression+light+source+in+ultrafast+transient+absorption+spectroscopy&rft.jtitle=Scientific+reports&rft.au=Ronnie+R.+Tamming&rft.au=Chao-Yang+Lin&rft.au=Justin+M.+Hodgkiss&rft.au=Shang-Da+Yang&rft.date=2021-06-18&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41598-021-92102-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b793836193ce41bda32529a44361bb7d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon