Single 3.3 fs multiple plate compression light source in ultrafast transient absorption spectroscopy
Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (nonco...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 12847 - 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.06.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-021-92102-5 |
Cover
Abstract | Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a
Δ
T
/
T
noise level of
2.6
×
10
-
4
RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy. |
---|---|
AbstractList | Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a
$$\Delta T/T$$
Δ
T
/
T
noise level of
$$2.6\times 10^{-4}$$
2.6
×
10
-
4
RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy. Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a ΔT/T noise level of 2.6×10-4 RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy. Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a [Formula: see text] noise level of [Formula: see text] RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy.Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a [Formula: see text] noise level of [Formula: see text] RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy. Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T/T$$\end{document} Δ T / T noise level of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.6\times 10^{-4}$$\end{document} 2.6 × 10 - 4 RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy. Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a [Formula: see text] noise level of [Formula: see text] RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy. Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a Δ T / T noise level of 2.6 × 10 - 4 RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy. Abstract Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility. Recently, a new intense broadband light source is being developed, the multi-plate compression, which promises to overcome these limitations. In this paper, we analyze the supercontinuum generated by a single Multiple Plate Compression system to set a benchmark for its use in the field of ultrafast pump-probe spectroscopy. We have compressed the supercontinuum to 3.3 fs using chirp mirrors alone, making it an excellent candidate for pump-probe experiments requiring high temporal resolution. Furthermore, the single light source can be used to generate both probe and pump pulses due to its high spectral density (>14.5 nJ/nm) between 490 and 890 nm. The intensity has an average shot-to-shot relative standard deviation of 4.6 % over 490 to 890 nm, calculated over 2,000 sequential shots. By using only 1,000 shot pairs, a $$\Delta T/T$$ Δ T / T noise level of $$2.6\times 10^{-4}$$ 2.6 × 10 - 4 RMS is achieved. Finally, as a proof of concept, the transient absorption spectrum of a methylammonium lead iodide perovskite film is taken, showing great signal to noise with only 1,000 shot pairs. These results show great potential for the employment of this technique in other spectroscopic techniques such as coherent multidimensional spectroscopy. |
ArticleNumber | 12847 |
Author | Chen, Kai Hodgkiss, Justin M. Lin, Chao-Yang Lu, Chih-Hsuan Tamming, Ronnie R. Yang, Shang-Da |
Author_xml | – sequence: 1 givenname: Ronnie R. surname: Tamming fullname: Tamming, Ronnie R. organization: School of Chemical and Physical Sciences, Victoria University of Wellington, MacDiarmid Institute for Advanced Materials and Nanotechnology, Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington – sequence: 2 givenname: Chao-Yang surname: Lin fullname: Lin, Chao-Yang organization: Institute of Photonics Technologies, National Tsing Hua University – sequence: 3 givenname: Justin M. surname: Hodgkiss fullname: Hodgkiss, Justin M. organization: School of Chemical and Physical Sciences, Victoria University of Wellington, MacDiarmid Institute for Advanced Materials and Nanotechnology – sequence: 4 givenname: Shang-Da surname: Yang fullname: Yang, Shang-Da organization: Institute of Photonics Technologies, National Tsing Hua University – sequence: 5 givenname: Kai surname: Chen fullname: Chen, Kai email: Kai.Chen@vuw.ac.nz organization: MacDiarmid Institute for Advanced Materials and Nanotechnology, Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington UniVentures, Victoria University of Wellington, The Dodd-Walls Centre for Photonic and Quantum Technologies – sequence: 6 givenname: Chih-Hsuan surname: Lu fullname: Lu, Chih-Hsuan email: lzch2000@hotmail.com organization: Institute of Photonics Technologies, National Tsing Hua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34145343$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstO3TAQhqOKqlDKC3RRReqmm1Db41y8qVShQpGQuih7y3EmwUc-dmo7lXh7HAItsMAb3775_Xtm3hcHzjssio-UnFIC3dfIaS26ijBaCUYJq-o3xREjvK4YMHbwZH1YnMS4I3nUTHAq3hWHwCmvgcNRMfw2brJYwimUYyz3i01mzvvZqoSl9vs5YIzGu9Ka6SaV0S9BY2lcmcmgRhVTmWcXDbpUqj76MKcVjzPqFHzUfr79ULwdlY148jAfF9fnP67PflZXvy4uz75fVbrmJFVUQEsFItCR86YVjGiEliiqSQsoWA-6U0Mjeqxb7IdWQ8O0woaLQfcNh-PicpMdvNrJOZi9CrfSKyPvD3yYpArJaIuybwV00OQXNXLaDwpYTo7iPJ_1fTtkrW-b1rz0exx0_l1Q9pno8xtnbuTk_8qOUehonQW-PAgE_2fBmOTeRI3WKod-iZLVHDinLSMZ_fwC3eUsu5yplWI1kFy3TH166uiflcdaZqDbAJ3THgOOUpuk1mJkg8ZKSuTaOXLrHJk7R953jlzNshehj-qvBsEWFDPsJgz_bb8SdQcBNNYP |
CitedBy_id | crossref_primary_10_1002_advs_202206076 crossref_primary_10_3389_fphot_2022_937622 crossref_primary_10_1080_23746149_2022_2065218 crossref_primary_10_1002_anie_202300815 crossref_primary_10_35848_1882_0786_ad08e4 crossref_primary_10_1364_OL_465661 crossref_primary_10_1002_ange_202300815 crossref_primary_10_1103_PhysRevResearch_4_013035 crossref_primary_10_1002_smll_202308676 crossref_primary_10_1007_s40242_025_4249_z |
Cites_doi | 10.1007/978-3-030-14995-6 10.1364/OPTICA.1.000400 10.1038/nphoton.2014.171 10.1038/srep04467 10.1103/RevModPhys.78.1135 10.1038/s41467-017-00546-z 10.1063/1.1523642 10.1364/JOSAB.31.001465 10.3952/physics.v57i3.3541 10.1021/acsphotonics.9b00091 10.1038/s41598-020-61847-w 10.1364/OL.17.001131 10.1021/jacs.8b12982 10.1103/PhysRevB.93.161205 10.1016/j.aca.2008.11.039 10.1038/s41467-017-01360-3 10.1007/s00340-018-6966-1 10.1364/oe.27.010320 10.1364/oe.22.016965 10.1063/1.5129123 10.1021/acsnano.6b02734 10.1103/PhysRevLett.90.113904 10.1364/oe.27.015638 10.1063/1.2800778 10.1038/ncomms9420 10.1021/acs.nanolett.7b05283 10.1364/ol.18.000574 10.1038/s41467-019-09872-w 10.1039/c2cp23649d 10.1016/j.optcom.2012.11.011 10.1364/OL.23.001283 10.1364/oe.19.003775 10.1063/1.123820 10.1364/ol.42.000474 10.1126/science.1243982 10.1007/s00340-009-3610-0 10.1103/PhysRevB.53.1749 10.1063/1.3492897 10.1364/ol.37.001880 10.1364/CLEOPR.2020.C6B_4 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-92102-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_b793836193ce41bda32529a44361bb7d PMC8213815 34145343 10_1038_s41598_021_92102_5 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-193719ee31f4467920ce370a1c073e92b3c8ad69be57ebd7c362cae649dcb643 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:28:46 EDT 2025 Thu Aug 21 14:10:38 EDT 2025 Fri Sep 05 04:44:01 EDT 2025 Wed Aug 13 10:56:27 EDT 2025 Mon Jul 21 06:07:23 EDT 2025 Thu Apr 24 23:12:55 EDT 2025 Tue Jul 01 03:48:42 EDT 2025 Fri Feb 21 02:39:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-193719ee31f4467920ce370a1c073e92b3c8ad69be57ebd7c362cae649dcb643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/b793836193ce41bda32529a44361bb7d |
PMID | 34145343 |
PQID | 2542530294 |
PQPubID | 2041939 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b793836193ce41bda32529a44361bb7d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8213815 proquest_miscellaneous_2543441720 proquest_journals_2542530294 pubmed_primary_34145343 crossref_citationtrail_10_1038_s41598_021_92102_5 crossref_primary_10_1038_s41598_021_92102_5 springer_journals_10_1038_s41598_021_92102_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-18 |
PublicationDateYYYYMMDD | 2021-06-18 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Engelsholm, Bang (CR16) 2019; 27 Tokunaga, Kobayashi, Terasaki (CR38) 1992; 17 Anand (CR33) 2016; 93 Kim (CR1) 2019; 10 CR18 Dudley, Genty, Coen (CR9) 2006; 78 Manser, Kamat (CR32) 2014; 8 Polli, Lüer, Cerullo (CR31) 2007; 78 Dubietis, Tamošauskas, Šuminas, Jukna, Couairon (CR7) 2017; 57 Shirakawa, Sakane, Takasaka, Kobayashi (CR21) 1999; 74 Kanal, Keiber, Eck, Brixner (CR27) 2014; 22 Fu (CR5) 2017; 8 Cerullo, Nisoli, Stagira, De Silvestri (CR19) 1998; 23 Zhu, Cheng (CR40) 2020; 152 Adamu (CR14) 2020; 10 Megerle, Pugliesi, Schriever, Sailer, Riedle (CR6) 2009; 96 Corwin (CR17) 2003; 90 Stuart (CR13) 1996; 53 Price (CR4) 2015; 6 Lu (CR24) 2019; 27 Umari, Mosconi, De Angelis (CR34) 2014; 4 Cerullo, De Silvestri (CR20) 2003; 74 Lu (CR22) 2014; 1 Dobryakov (CR28) 2010; 81 Bradler, Riedle (CR29) 2014; 31 He (CR23) 2017; 42 Tilchin (CR36) 2016; 10 Kobayashi, Kida (CR10) 2012; 14 Stranks (CR3) 2013; 342 CR25 Chandrabose (CR2) 2019; 141 Heidt (CR8) 2011; 19 Blanchet (CR30) 2009; 642 Dubietis, Couairon (CR12) 2019 Saha, Sarma (CR15) 2013; 291 Tamming (CR37) 2019; 6 Danielius (CR11) 1993; 18 Richter (CR35) 2017; 8 Choudhuri (CR26) 2018; 124 Huang (CR39) 2018; 18 L Blanchet (92102_CR30) 2009; 642 KL Corwin (92102_CR17) 2003; 90 RD Engelsholm (92102_CR16) 2019; 27 TW Kim (92102_CR1) 2019; 10 P He (92102_CR23) 2017; 42 J Tilchin (92102_CR36) 2016; 10 KC Huang (92102_CR39) 2018; 18 A Shirakawa (92102_CR21) 1999; 74 92102_CR18 M Bradler (92102_CR29) 2014; 31 JM Dudley (92102_CR9) 2006; 78 M Saha (92102_CR15) 2013; 291 E Tokunaga (92102_CR38) 1992; 17 J Fu (92102_CR5) 2017; 8 AL Dobryakov (92102_CR28) 2010; 81 A Dubietis (92102_CR7) 2017; 57 D Polli (92102_CR31) 2007; 78 AI Adamu (92102_CR14) 2020; 10 T Kobayashi (92102_CR10) 2012; 14 U Megerle (92102_CR6) 2009; 96 B Anand (92102_CR33) 2016; 93 MB Price (92102_CR4) 2015; 6 C-H Lu (92102_CR24) 2019; 27 P Umari (92102_CR34) 2014; 4 R Danielius (92102_CR11) 1993; 18 C-H Lu (92102_CR22) 2014; 1 A Dubietis (92102_CR12) 2019 B Stuart (92102_CR13) 1996; 53 RR Tamming (92102_CR37) 2019; 6 S Chandrabose (92102_CR2) 2019; 141 JM Richter (92102_CR35) 2017; 8 Y Zhu (92102_CR40) 2020; 152 SD Stranks (92102_CR3) 2013; 342 G Cerullo (92102_CR19) 1998; 23 JS Manser (92102_CR32) 2014; 8 A Choudhuri (92102_CR26) 2018; 124 AM Heidt (92102_CR8) 2011; 19 92102_CR25 G Cerullo (92102_CR20) 2003; 74 F Kanal (92102_CR27) 2014; 22 |
References_xml | – ident: CR18 – year: 2019 ident: CR12 publication-title: Ultrafast Supercontinuum Generation in Transparent Solid-State Media doi: 10.1007/978-3-030-14995-6 – volume: 1 start-page: 400 year: 2014 ident: CR22 article-title: Generation of intense supercontinuum in condensed media publication-title: Optica doi: 10.1364/OPTICA.1.000400 – volume: 8 start-page: 737 year: 2014 end-page: 743 ident: CR32 article-title: Band filling with free charge carriers in organometal halide perovskites publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.171 – volume: 4 start-page: 1 year: 2014 end-page: 7 ident: CR34 article-title: Relativistic GW calculations on CH3 NH3 PbI 3 and CH3 NH3 SnI3 Perovskites for Solar Cell Applications publication-title: Sci. Rep. doi: 10.1038/srep04467 – volume: 78 start-page: 1135 year: 2006 end-page: 1184 ident: CR9 article-title: Supercontinuum generation in photonic crystal fiber publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.78.1135 – volume: 8 start-page: 1 year: 2017 end-page: 7 ident: CR35 article-title: Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy publication-title: Nat. Commun. doi: 10.1038/s41467-017-00546-z – volume: 74 start-page: 1 year: 2003 end-page: 18 ident: CR20 article-title: Ultrafast optical parametric amplifiers publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1523642 – volume: 31 start-page: 1465 year: 2014 end-page: 1475 ident: CR29 article-title: Temporal and spectral correlations in bulk continua and improved use in transient spectroscopy publication-title: J. Opt. Soc. Am.B doi: 10.1364/JOSAB.31.001465 – volume: 57 start-page: 113 year: 2017 end-page: 157 ident: CR7 article-title: Ultrafast supercontinuum generation in bulk condensed media (Invited Review) publication-title: Lith. J. Phys. doi: 10.3952/physics.v57i3.3541 – volume: 6 start-page: 345 year: 2019 end-page: 350 ident: CR37 article-title: Ultrafast spectrally resolved photoinduced complex refractive index changes in CsPbBr3 perovskites publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b00091 – volume: 10 start-page: 1 year: 2020 end-page: 10 ident: CR14 article-title: Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses publication-title: Sci. Rep. doi: 10.1038/s41598-020-61847-w – volume: 17 start-page: 1131 year: 1992 ident: CR38 article-title: Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy publication-title: Opt. Lett. doi: 10.1364/OL.17.001131 – ident: CR25 – volume: 141 start-page: 6922 year: 2019 end-page: 6929 ident: CR2 article-title: High exciton diffusion coefficients in fused ring electron acceptor films publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12982 – volume: 93 start-page: 1 year: 2016 end-page: 5 ident: CR33 article-title: Broadband transient absorption study of photoexcitations in lead halide perovskites: Towards a multiband picture publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.161205 – volume: 642 start-page: 19 year: 2009 end-page: 26 ident: CR30 article-title: Chemometrics description of measurement error structure: Study of an ultrafast absorption spectroscopy experiment publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2008.11.039 – volume: 8 start-page: 1300 year: 2017 ident: CR5 article-title: Hot carrier cooling mechanisms in halide perovskites publication-title: Nat. Commun. doi: 10.1038/s41467-017-01360-3 – volume: 124 start-page: 1 year: 2018 end-page: 6 ident: CR26 article-title: A spatio-spectral polarization analysis of 1 m-pumped bulk supercontinuum in a cubic crystal (YAG) publication-title: Appl. Phys. B Lasers Opt. doi: 10.1007/s00340-018-6966-1 – volume: 27 start-page: 10320 year: 2019 ident: CR16 article-title: Supercontinuum noise reduction by fiber undertapering publication-title: Opt. Express doi: 10.1364/oe.27.010320 – volume: 22 start-page: 16965 year: 2014 ident: CR27 article-title: 100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump-probe spectroscopy publication-title: Opt. Express doi: 10.1364/oe.22.016965 – volume: 152 start-page: 020901 year: 2020 ident: CR40 article-title: Transient absorption microscopy: Technological innovations and applications in materials science and life science publication-title: J. Chem. Phys. doi: 10.1063/1.5129123 – volume: 10 start-page: 6363 year: 2016 end-page: 6371 ident: CR36 article-title: Hydrogen-like Wannier–Mott excitons in single crystal of methylammonium lead bromide perovskite publication-title: ACS Nano doi: 10.1021/acsnano.6b02734 – volume: 90 start-page: 4 year: 2003 ident: CR17 article-title: Fundamental noise limitations to supercontinuum generation in microstructure fiber publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.113904 – volume: 27 start-page: 15638 year: 2019 ident: CR24 article-title: Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration publication-title: Opt. Express doi: 10.1364/oe.27.015638 – volume: 78 start-page: 103108 year: 2007 ident: CR31 article-title: High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2800778 – volume: 6 start-page: 1 year: 2015 end-page: 8 ident: CR4 article-title: Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites publication-title: Nat. Commun. doi: 10.1038/ncomms9420 – volume: 18 start-page: 1489 year: 2018 end-page: 1497 ident: CR39 article-title: High-speed spectroscopic transient absorption imaging of defects in graphene publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05283 – volume: 18 start-page: 574 year: 1993 ident: CR11 article-title: Self-diffraction through cascaded second-order frequency-mixing effects in -barium borate publication-title: Opt. Lett. doi: 10.1364/ol.18.000574 – volume: 10 start-page: 1873 year: 2019 ident: CR1 article-title: Ultrafast charge transfer coupled with lattice phonons in two-dimensional covalent organic frameworks publication-title: Nat. Commun. doi: 10.1038/s41467-019-09872-w – volume: 14 start-page: 6200 year: 2012 end-page: 6210 ident: CR10 article-title: Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp23649d – volume: 291 start-page: 321 year: 2013 end-page: 325 ident: CR15 article-title: Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects publication-title: Opt. Commun. doi: 10.1016/j.optcom.2012.11.011 – volume: 23 start-page: 1283 year: 1998 ident: CR19 article-title: Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible publication-title: Opt. Lett. doi: 10.1364/OL.23.001283 – volume: 19 start-page: 3775 year: 2011 ident: CR8 article-title: Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers publication-title: Opt. Express doi: 10.1364/oe.19.003775 – volume: 74 start-page: 2268 year: 1999 end-page: 2270 ident: CR21 article-title: Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification publication-title: Appl. Phys. Lett. doi: 10.1063/1.123820 – volume: 42 start-page: 474 year: 2017 ident: CR23 article-title: High-efficiency supercontinuum generation in solid thin plates at 01 TW level publication-title: Opt. Lett. doi: 10.1364/ol.42.000474 – volume: 342 start-page: 341 year: 2013 end-page: 344 ident: CR3 article-title: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber publication-title: Science doi: 10.1126/science.1243982 – volume: 96 start-page: 215 year: 2009 end-page: 231 ident: CR6 article-title: Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground publication-title: Appl. Phys. B: Lasers Opt. doi: 10.1007/s00340-009-3610-0 – volume: 53 start-page: 1749 year: 1996 end-page: 1761 ident: CR13 article-title: Nanosecond-to-femtosecond laser-induced breakdown in dielectrics publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.53.1749 – volume: 81 start-page: 1130106 year: 2010 ident: CR28 article-title: Femtosecond pump/supercontinuum-probe spectroscopy: Optimized setup and signal analysis for single-shot spectral referencing publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3492897 – volume: 291 start-page: 321 year: 2013 ident: 92102_CR15 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2012.11.011 – volume: 10 start-page: 6363 year: 2016 ident: 92102_CR36 publication-title: ACS Nano doi: 10.1021/acsnano.6b02734 – volume: 17 start-page: 1131 year: 1992 ident: 92102_CR38 publication-title: Opt. Lett. doi: 10.1364/OL.17.001131 – volume: 78 start-page: 1135 year: 2006 ident: 92102_CR9 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.78.1135 – volume: 27 start-page: 10320 year: 2019 ident: 92102_CR16 publication-title: Opt. Express doi: 10.1364/oe.27.010320 – ident: 92102_CR18 doi: 10.1364/ol.37.001880 – volume: 10 start-page: 1 year: 2020 ident: 92102_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-020-61847-w – volume: 152 start-page: 020901 year: 2020 ident: 92102_CR40 publication-title: J. Chem. Phys. doi: 10.1063/1.5129123 – volume: 22 start-page: 16965 year: 2014 ident: 92102_CR27 publication-title: Opt. Express doi: 10.1364/oe.22.016965 – volume: 8 start-page: 1 year: 2017 ident: 92102_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00546-z – volume: 74 start-page: 2268 year: 1999 ident: 92102_CR21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.123820 – volume: 8 start-page: 737 year: 2014 ident: 92102_CR32 publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.171 – volume: 42 start-page: 474 year: 2017 ident: 92102_CR23 publication-title: Opt. Lett. doi: 10.1364/ol.42.000474 – volume: 124 start-page: 1 year: 2018 ident: 92102_CR26 publication-title: Appl. Phys. B Lasers Opt. doi: 10.1007/s00340-018-6966-1 – volume: 78 start-page: 103108 year: 2007 ident: 92102_CR31 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2800778 – volume: 14 start-page: 6200 year: 2012 ident: 92102_CR10 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp23649d – volume: 1 start-page: 400 year: 2014 ident: 92102_CR22 publication-title: Optica doi: 10.1364/OPTICA.1.000400 – volume: 81 start-page: 1130106 year: 2010 ident: 92102_CR28 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3492897 – volume: 6 start-page: 345 year: 2019 ident: 92102_CR37 publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b00091 – volume-title: Ultrafast Supercontinuum Generation in Transparent Solid-State Media year: 2019 ident: 92102_CR12 doi: 10.1007/978-3-030-14995-6 – volume: 342 start-page: 341 year: 2013 ident: 92102_CR3 publication-title: Science doi: 10.1126/science.1243982 – volume: 90 start-page: 4 year: 2003 ident: 92102_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.113904 – volume: 4 start-page: 1 year: 2014 ident: 92102_CR34 publication-title: Sci. Rep. doi: 10.1038/srep04467 – volume: 6 start-page: 1 year: 2015 ident: 92102_CR4 publication-title: Nat. Commun. doi: 10.1038/ncomms9420 – volume: 96 start-page: 215 year: 2009 ident: 92102_CR6 publication-title: Appl. Phys. B: Lasers Opt. doi: 10.1007/s00340-009-3610-0 – volume: 642 start-page: 19 year: 2009 ident: 92102_CR30 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2008.11.039 – volume: 10 start-page: 1873 year: 2019 ident: 92102_CR1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09872-w – volume: 18 start-page: 574 year: 1993 ident: 92102_CR11 publication-title: Opt. Lett. doi: 10.1364/ol.18.000574 – volume: 74 start-page: 1 year: 2003 ident: 92102_CR20 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1523642 – ident: 92102_CR25 doi: 10.1364/CLEOPR.2020.C6B_4 – volume: 53 start-page: 1749 year: 1996 ident: 92102_CR13 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.53.1749 – volume: 57 start-page: 113 year: 2017 ident: 92102_CR7 publication-title: Lith. J. Phys. doi: 10.3952/physics.v57i3.3541 – volume: 23 start-page: 1283 year: 1998 ident: 92102_CR19 publication-title: Opt. Lett. doi: 10.1364/OL.23.001283 – volume: 93 start-page: 1 year: 2016 ident: 92102_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.161205 – volume: 8 start-page: 1300 year: 2017 ident: 92102_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01360-3 – volume: 18 start-page: 1489 year: 2018 ident: 92102_CR39 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05283 – volume: 27 start-page: 15638 year: 2019 ident: 92102_CR24 publication-title: Opt. Express doi: 10.1364/oe.27.015638 – volume: 141 start-page: 6922 year: 2019 ident: 92102_CR2 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12982 – volume: 19 start-page: 3775 year: 2011 ident: 92102_CR8 publication-title: Opt. Express doi: 10.1364/oe.19.003775 – volume: 31 start-page: 1465 year: 2014 ident: 92102_CR29 publication-title: J. Opt. Soc. Am.B doi: 10.1364/JOSAB.31.001465 |
SSID | ssj0000529419 |
Score | 2.4082031 |
Snippet | Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are... Abstract Ultrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12847 |
SubjectTerms | 639/301 639/624 639/638 639/766 Absorption spectroscopy Compressibility Compression Humanities and Social Sciences Iodides Light sources multidisciplinary Noise levels Science Science (multidisciplinary) Spectrum analysis |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELZKERIXxN5AqYzEDULj2I7jEwLUqqoEF4r0bpa3QKWn5PGSHvrvmXGW6rH0mtiR45nxfOPZCHkjCmtlYWWunC5zEbTKbV0xAHJNEUNoLFeYnPzla3X2XZyv5Gq6cOunsMr5TEwHdeg83pEfgyFTYocbLT5sfuXYNQq9q1MLjTvkLgOoglytVmq5Y0EvlmB6ypUpeH3cg77CnDKMS0BjJ5c7-iiV7f8X1vw7ZPIPv2lSR6cPyYMJR9KPI-Efkb3YPib3xs6S109I-Aaz1pHy95w2PZ3DBulmDdiSYhz5GP_a0jVa53S8w6eXLYWRW9vYfqADqjFMl6TW9d02nS00ZWZiBcxuc_2UXJyeXHw-y6eGCrkHYDbkDIvf6Rg5a8AKVLosfOSqsMyDoEddOu5rGyrtolTRBeVBu3kbK6GDdwBdnpH9tmvjAaGC2QZTcF3lG-EktvBh0saoA36v5hlh864aPxUbx54Xa5Oc3rw2IyUMUMIkShiZkbfLnM1YauPW0Z-QWMtILJOdHnTbH2aSOuPg9Kk52IjcR8FcsLwElrBCwDPnVMjI4UxqM8lub244LSOvl9cgdehKsW3srtIYjs3byiIjz0fOWFYCuEBILmAP1A7P7Cx19017-TNV9q5LBggK_u3dzF03y_r_Vry4_S9ekvslMjw2XKoPyf6wvYqvAEkN7iiJy29IrRtk priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9UwELZKERIXxE5KQUbiBinxksUHhABRVUjlQiv1ZnkLVIqSR5JKff-eGSd56MGDE9fYjpxZPN_EsxDyUmbG5JnJ09IqnkqvytRUBQMgV2fB-9qIEpOTT78UJ-fy80V-sUeWdkczAYedrh32kzrvm6PrH-t3oPBvp5Tx6s0ARggTxTDYAD2YNL9BboJl4ijlpzPcn2p9cyWZmnNndi_dsk-xjP8u7PlnCOVv96jRPB3fJXdmXEnfT4Jwj-yF9j65NXWaXD8g_iusagIVR4LWA13CCOmqAaxJMa58iodtaYPeOp3-6dPLlsLM3tRmGOmIZg3TJ6mxQ9fHs4bGTE2siNmt1g_J2fGns48n6dxgIXUA1MaUYTE8FYJgNXiFpeKZC6LMDHOg-EFxK1xlfKFsyMtgfenA2jkTCqm8swBlHpH9tmvDE0IlMzWm5NrC1dLm2NKH5SYE5fF9lUgIW6iq3Vx8HHtgNDpegotKT5zQwAkdOaHzhLzarFlNpTf-OfsDMmszE8tmxwdd_03PWqgtnEaVAJ9RuCCZ9UZwEAkjJTyztvQJOVxYrRdR1OBCc-ytpGRCXmyGQQvxasW0obuKcwQ2c-NZQh5PkrHZCeAEmQsJNCi3ZGZrq9sj7eX3WOm74gwQFXzb60W6fm3r76Q4-B-keEpuc1QLbNNUHZL9sb8KzwB_jfZ5VKqfrTUrRg priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiHcDBRmJGwTiR-L4uCCqaiW4tEi9WX4FKq2S1SY99N8z4zzQQkHimowjxzPj-caeByFvZGFtWdgyV07zXAatcltXDIBcU8QQGisUJid_-VqdfZPry_LygPA5FyYF7aeSlmmbnqPDPvRgaDAZDAMK0EvJyzvkqFaCgzIerVbr8_VysoJ3V5LpKUOmEPUtg_esUCrWfxvC_DNQ8rfb0mSETh-Q-xN6pKtxvg_JQWwfkbtjP8mbxyScw6hNpOK9oE1P52BBut0AoqQYPT5GvbZ0gz45HU_u6VVLgXJnG9sPdEDjhUmS1Lq-26UdhaZ8TKx72W1vnpCL088Xn87yqY1C7gGODTnDknc6RsEa8P2U5oWPQhWWeVDvqLkTvrah0i6WKrqgPNg0b2MldfAOAMtTcth2bTwmVDLbYOKtq3wjXYmNe1hpY9QBv1eLjLB5VY2fSoxjp4uNSVfdojYjJwxwwiROmDIjb5cx27HAxj-pPyKzFkosjp0edLvvZhIW42DPqQV4hsJHyVywgoNIWCnhmXMqZORkZrWZNLY34Chz7KCkZUZeL69B1_ACxbaxu040Alu28SIjz0bJWGYCaECWQsIaqD2Z2Zvq_pv26keq511zBrgJ_u3dLF2_pvX3pXj-f-QvyD2OCoBtl-oTcjjsruNLwFODezUp0E8rRxqK priority: 102 providerName: Springer Nature |
Title | Single 3.3 fs multiple plate compression light source in ultrafast transient absorption spectroscopy |
URI | https://link.springer.com/article/10.1038/s41598-021-92102-5 https://www.ncbi.nlm.nih.gov/pubmed/34145343 https://www.proquest.com/docview/2542530294 https://www.proquest.com/docview/2543441720 https://pubmed.ncbi.nlm.nih.gov/PMC8213815 https://doaj.org/article/b793836193ce41bda32529a44361bb7d |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0necpIsKvbVurJdlHTdLQlhIKE0KexOSJdPA4l12nUP-fWdk7zbb56UXG2TZyPPwfGPNg5D3snBOFU7l2huey2B07qqSAZBrihhC44TG5OSLy_L8q5zO1Oxeqy-MCevLA_eEO_YgQJUAmC_qKJkPTnDFjZMSxrzXAb--YMbuOVN9VW9uJDNDlkwhquM1WCrMJsOIBHRzcrVjiVLB_t-hzF-DJX_aMU2G6OwZeTogSDruV_6cPIjtC_K47yl595KEK7hrHqn4JGizppuAQbqcA6qkGEHeR762dI5-Oe3_3tOblsLMlWvcuqMdGjBMlKTOrxer9FWhKScTa18ulnevyPXZ6fXkPB9aKeQ1QLIuZ1j2zsQoWAP-nza8qKPQhWM1qHg03Iu6cqE0PiodfdA12LXaxVKaUHsALa_JXrto4z6hkrkGk299WTfSK2zew5SL0QR8XiUywjZUtfVQZhy7Xcxt2u4Wle05YYETNnHCqox82N6z7Its_HX2CTJrOxMLZKcBEBs7iI39l9hk5GjDajto7dqCs8yxi5KRGXm3vQz6hpsoro2L2zRHYNs2XmTkTS8Z25UAIpBKSKCB3pGZnaXuXmlvvqWa3hVngJ3g3T5upOvHsv5MioP_QYpD8oSjWmBDpuqI7HWr2_gWkFbnR-ShnukReTQeT6-mcD45vfz8BUYn5WSUFA6OF7L6DrgFKQM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYidQwEhwgrRJ7MTxASG2akqXC4M0N8tboNIoGSap0Pwo_iPvOclUw9Jbr4kdOX7Pb_FbPkJe8ETrPNF5LIzMYu6kiHVZpGDIVYl3rtJMYHHy8Ukx-co_z_LZFvk11sJgWuUoE4Ogdo3FO_I9cGQyRLiR_O3iR4yoURhdHSE0erY49Kuf4LK1bw4-An1fZtn-p-mHSTygCsQWrJMuTrEDnPSepRW4QkJmifVMJDq1wO1eZobZUrtCGp8Lb5ywIOKt9gWXzhrQ3_DZK-QqZwnHVv1iJtZXOhg046kcSnMSVu61oB6xhA3TINC3ivMN9RdQAv5l2v6doflHmDZov_1b5OZgttJ3PZ_dJlu-vkOu9UCWq7vEfYFZc0_ZLqNVS8csRbqYgylLMW29T7et6RwvA2gfMqCnNYWRS13ptqMdak2szqTatM0yiDIaCkGx4WazWN0j08vY6ftku25q_5BQnuoKK35NYStuckQMSnPtvXT4vZJFJB13VdmhtzlCbMxViLGzUvWUUEAJFSih8oi8Ws9Z9J09Lhz9Hom1HolducODZvlNDYdcGRB2JQOXlFnPU-M0y4AlNOfwzBjhIrIzkloNoqJV54wdkefr13DIMXKja9-chTEMseKyJCIPes5YrwTMEJ4zDnsgNnhmY6mbb-rT76GReJmlYLDBv70euet8Wf_fikcX_8Uzcn0yPT5SRwcnh4_JjQyZH7Geyh2y3S3P_BMw4jrzNBwdStQlH9XfDB9Xpg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRSAuiJ1AASPBCdJJYmecHBACyqilUCFRpLlZ3gKVRskwmQrNT-Pf8Z6TTDUsvfWa2JHjt9pv-QCeiUTrPNF5LE2ZxcKVMtbFOEVHrkq8c5XmkoqTPx2N97-KD9N8ugW_hloYSqscdGJQ1K6xdEc-woNMRgg3pRhVfVrE573J6_mPmBCkKNI6wGl0LHLoVz_x-Na-OthDWj_Pssn743f7cY8wEFv0VJZxSt3gSu95WuGxSJZZYj2XiU4tcr4vM8Ntod24ND6X3jhpUd1b7ceidNagLcfPXoLLkgtO2WRyKtfXOxRAE2nZl-kkvBi1aCqpnI1SIuicFecbpjAgBvzLzf07W_OPkG2whJMbcL13Ydmbjuduwpavb8GVDtRydRvcF5w184zvcla1bMhYZPMZurWMUti71NuazehigHXhA3ZSMxy50JVul2xJFpQqNZk2bbMIao2FolBqvtnMV3fg-CJ2-i5s103t7wMTqa6o-teMbSVMTuhBaa69Lx19r-ARpMOuKtv3OSe4jZkK8XZeqI4SCimhAiVUHsGL9Zx51-Xj3NFviVjrkdShOzxoFt9UL_DKoOIrOB5PufUiNU7zDFlCC4HPjJEugp2B1KpXG606Y_IInq5fo8BTFEfXvjkNYzjhxmVJBPc6zlivBF0SkSM3RiA3eGZjqZtv6pPvoal4kaXovOG_vRy462xZ_9-KB-f_xRO4ikKqPh4cHT6EaxnxPsE-FTuwvVyc-kfozy3N4yA5DNQFS-pvNyRb4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+3.3+fs+multiple+plate+compression+light+source+in+ultrafast+transient+absorption+spectroscopy&rft.jtitle=Scientific+reports&rft.au=Ronnie+R.+Tamming&rft.au=Chao-Yang+Lin&rft.au=Justin+M.+Hodgkiss&rft.au=Shang-Da+Yang&rft.date=2021-06-18&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41598-021-92102-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b793836193ce41bda32529a44361bb7d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |