Compositional zero-inflated network estimation for microbiome data
Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abun...
Saved in:
| Published in | BMC bioinformatics Vol. 21; no. Suppl 21; pp. 581 - 20 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
28.12.2020
Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-020-03911-w |
Cover
| Abstract | Background
The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated.
Results
We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients.
Conclusions
Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at
https://github.com/MinJinHa/COZINE
. |
|---|---|
| AbstractList | Abstract Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated. Results We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients. Conclusions Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE . The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated. We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients. Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE . The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated.BACKGROUNDThe estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated.We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients.RESULTSWe propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients.Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE .CONCLUSIONSOur proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE . Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated. Results We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients. Conclusions Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE . Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated. Results We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients. Conclusions Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE. |
| ArticleNumber | 581 |
| Author | Kim, Junghi Galloway-Peña, Jessica Do, Kim-Anh Ha, Min Jin Peterson, Christine B. |
| Author_xml | – sequence: 1 givenname: Min Jin orcidid: 0000-0002-5165-1642 surname: Ha fullname: Ha, Min Jin email: MJHa@mdanderson.org organization: Department of Biostatistics, University of Texas MD Anderson Cancer Center – sequence: 2 givenname: Junghi surname: Kim fullname: Kim, Junghi organization: Center for Devices and Radiological Health, U.S. Food and Drug Administration – sequence: 3 givenname: Jessica surname: Galloway-Peña fullname: Galloway-Peña, Jessica organization: Department of Veterinary Pathobiology, Texas A&M University – sequence: 4 givenname: Kim-Anh surname: Do fullname: Do, Kim-Anh organization: Department of Biostatistics, University of Texas MD Anderson Cancer Center – sequence: 5 givenname: Christine B. surname: Peterson fullname: Peterson, Christine B. organization: Department of Biostatistics, University of Texas MD Anderson Cancer Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33371887$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUUtv1DAYjFARfcAf4IAiceES8Od3Lkiw4lGpEhc4W05sL14Se7ETVuXX490spe2h4mTLnplvvpnz6iTEYKvqOaDXAJK_yYAlaxuEUYNIC9DsHlVnQAU0GBA7uXU_rc5z3iAEQiL2pDolhAiQUpxV71dx3MbsJx-DHurfNsXGBzfoyZo62GkX04_a5smPeg-pXUz16PsUOx9HWxs96afVY6eHbJ8dz4vq28cPX1efm6svny5X766anlE0NUCY0cyhFhGLmKOAwEEnZWcIpq7lDgym0GJnOg0dNxIbQIKANY5bbA25qC4XXRP1Rm1TsZSuVdReHR5iWiudJt8PVjGGhAONWFe0KWWaItMajqmknUXtXossWnPY6uudHoYbQUBqn65a0lUlXXVIV-0K6-3C2s7daE1vw5T0cMfK3Z_gv6t1_KWE4JJzXAReHQVS_DmXWNXoc2-HQQcb56wwFURQzgQp0Jf3oJs4p9LRASUF5sD2qBe3Hd1Y-VtwAeAFUCrLOVn3f3vKe6TeT4f-y1Z-eJh6DDaXOWFt0z_bD7D-AE5u2mk |
| CitedBy_id | crossref_primary_10_1146_annurev_statistics_040522_120734 crossref_primary_10_1017_gmb_2023_12 crossref_primary_10_1128_msystems_00961_22 crossref_primary_10_1016_j_csbj_2021_05_001 crossref_primary_10_1093_bioadv_vbae167 crossref_primary_10_1128_aem_00092_24 crossref_primary_10_1186_s12866_023_02771_7 crossref_primary_10_1080_02331888_2024_2396023 crossref_primary_10_1093_biomtc_ujae111 crossref_primary_10_1186_s12859_020_03890_y crossref_primary_10_1186_s12859_025_06083_7 |
| Cites_doi | 10.1093/jnci/djt300 10.1214/18-AOAS1213 10.1093/biomet/asu051 10.1089/cmb.2017.0054 10.1101/gr.104521.109 10.1038/s41598-016-0028-x 10.1146/annurev-pathol-011811-132421 10.1371/journal.pcbi.1004226 10.3390/jof5020049 10.1007/BF01031393 10.1007/s00520-011-1353-z 10.1007/978-3-642-36809-7 10.1371/journal.pcbi.1002606 10.1172/JCI58109 10.1371/journal.pone.0112373 10.1038/srep22943 10.1093/biostatistics/kxm045 10.1038/nature05192 10.1007/978-94-009-4109-0 10.1126/science.aan4236 10.1093/oso/9780198522195.001.0001 10.1038/nri2515 10.1093/bioinformatics/btv349 10.1214/009053606000000281 10.1214/aos/1176347003 10.1111/j.2517-6161.1982.tb01195.x 10.2307/1269547 10.1890/06-0286 10.1080/20002297.2020.1761135 10.1561/2200000001 10.1103/PhysRevE.67.026126 10.1053/j.gastro.2014.02.009 10.1182/bloodadvances.2020001827 10.1093/cid/ciz777 10.1080/10618600.2016.1237362 10.3389/fgene.2019.00516 10.1371/journal.pcbi.1002687 10.1093/bioinformatics/btv364 10.1126/science.286.5439.509 10.1016/j.cels.2016.12.012 10.1073/pnas.1522149113 10.1007/s12185-015-1781-5 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-020-03911-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Selected full-text) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_5507f1a05b324445a40d9d62484be09d 10.1186/s12859-020-03911-w PMC7768662 33371887 10_1186_s12859_020_03911_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Institute of Allergy and Infectious Diseases grantid: 1K01 A1143881-01 funderid: http://dx.doi.org/10.13039/100000060 – fundername: National Science Foundation grantid: 1811568; 1811445 funderid: http://dx.doi.org/10.13039/100000001 – fundername: National Cancer Institute grantid: P30CA016672; 5R21CA220299-02 funderid: http://dx.doi.org/10.13039/100000054 – fundername: NCI NIH HHS grantid: R21 CA220299 – fundername: NCI NIH HHS grantid: P30CA016672 – fundername: NCATS NIH HHS grantid: UL1 TR003167 – fundername: NIAID NIH HHS grantid: K01 AI143881 – fundername: NCI NIH HHS grantid: 5R21CA220299-02 – fundername: ; grantid: 1811568; 1811445 – fundername: ; grantid: P30CA016672; 5R21CA220299-02 – fundername: ; grantid: 1K01 A1143881-01 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c540t-135da5f0903e05f4101f1b88bd324f96f1d24192fdba1b6d82d10731edf6e2ed3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:53:26 EDT 2025 Sun Oct 26 04:38:34 EDT 2025 Tue Sep 30 16:23:25 EDT 2025 Tue Oct 21 13:50:53 EDT 2025 Tue Oct 07 05:14:16 EDT 2025 Mon Jul 21 06:01:22 EDT 2025 Wed Oct 01 04:15:36 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Sat Sep 06 07:27:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 21 |
| Keywords | Graphical model Zero-inflation Network Microbiome Compositional data |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-135da5f0903e05f4101f1b88bd324f96f1d24192fdba1b6d82d10731edf6e2ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5165-1642 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-020-03911-w |
| PMID | 33371887 |
| PQID | 2478726153 |
| PQPubID | 44065 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5507f1a05b324445a40d9d62484be09d unpaywall_primary_10_1186_s12859_020_03911_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768662 proquest_miscellaneous_2473746573 proquest_journals_2478726153 pubmed_primary_33371887 crossref_primary_10_1186_s12859_020_03911_w crossref_citationtrail_10_1186_s12859_020_03911_w springer_journals_10_1186_s12859_020_03911_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-28 |
| PublicationDateYYYYMMDD | 2020-12-28 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2020 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | MC Horner-Devine (3911_CR23) 2007; 88 AL Barabási (3911_CR36) 1999; 286 AD Kostic (3911_CR2) 2014; 146 J Cheng (3911_CR31) 2017; 26 J Friedman (3911_CR10) 2012; 8 J Aitchison (3911_CR22) 1986 R Shouval (3911_CR37) 2020; 4 S Lauritzen (3911_CR30) 1996 JLC Mougeot (3911_CR38) 2020; 12 TV Karpinets (3911_CR20) 2018; 9 G Yoon (3911_CR21) 2019; 10 MJ Wainwright (3911_CR32) 2008; 1 V Gopalakrishnan (3911_CR5) 2018; 359 J Aitchison (3911_CR8) 1982; 44 KJ Pflughoeft (3911_CR7) 2012; 7 Y Cao (3911_CR13) 2018; 114 H Zhao (3911_CR40) 2017; 7 K Faust (3911_CR9) 2012; 8 T Woyke (3911_CR24) 2006; 443 SL Lauritzen (3911_CR29) 1989; 17 J Friedman (3911_CR15) 2008; 9 Y Shono (3911_CR6) 2015; 101 S Chaffron (3911_CR25) 2010; 20 E Yang (3911_CR33) 2014; 33 J Ahn (3911_CR3) 2013; 105 JL Round (3911_CR4) 2009; 9 K Wang (3911_CR43) 2016; 6 JR Galloway-Peña (3911_CR46) 2019; 71 D Lambert (3911_CR26) 1992; 34 H Fang (3911_CR11) 2015; 31 E Yang (3911_CR35) 2015; 16 ME Newman (3911_CR45) 2003; 67 S Chen (3911_CR34) 2014; 102 JLM Welch (3911_CR42) 2016; 113 H Fang (3911_CR18) 2017; 24 J Aitchison (3911_CR27) 1981; 13 PI Diaz (3911_CR39) 2019; 5 F De Filippis (3911_CR41) 2014; 9 KG Van den Boogaart (3911_CR28) 2013 CI Kang (3911_CR44) 2012; 20 H Tilg (3911_CR1) 2011; 121 A McDavid (3911_CR19) 2019; 13 ZD Kurtz (3911_CR16) 2015; 11 Y Yang (3911_CR17) 2017; 4 N Meinshausen (3911_CR14) 2006; 34 B Ban (3911_CR12) 2015; 31 |
| References_xml | – volume: 105 start-page: 1907 issue: 24 year: 2013 ident: 3911_CR3 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djt300 – volume: 13 start-page: 848 issue: 2 year: 2019 ident: 3911_CR19 publication-title: Ann Appl Stat doi: 10.1214/18-AOAS1213 – volume: 102 start-page: 47 issue: 1 year: 2014 ident: 3911_CR34 publication-title: Biometrika doi: 10.1093/biomet/asu051 – volume: 24 start-page: 699 issue: 7 year: 2017 ident: 3911_CR18 publication-title: J Comput Biol doi: 10.1089/cmb.2017.0054 – volume: 20 start-page: 947 year: 2010 ident: 3911_CR25 publication-title: Genome Res doi: 10.1101/gr.104521.109 – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 3911_CR40 publication-title: Sci Rep doi: 10.1038/s41598-016-0028-x – volume: 7 start-page: 99 year: 2012 ident: 3911_CR7 publication-title: Ann Rev Pathol Mech Dis doi: 10.1146/annurev-pathol-011811-132421 – volume: 11 start-page: e1004226 issue: 5 year: 2015 ident: 3911_CR16 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004226 – volume: 5 start-page: 49 issue: 2 year: 2019 ident: 3911_CR39 publication-title: J Fungi doi: 10.3390/jof5020049 – volume: 13 start-page: 175 year: 1981 ident: 3911_CR27 publication-title: Math Geol doi: 10.1007/BF01031393 – volume: 20 start-page: 2371 issue: 10 year: 2012 ident: 3911_CR44 publication-title: Support Care Cancer doi: 10.1007/s00520-011-1353-z – volume-title: Analyzing compositional data with R year: 2013 ident: 3911_CR28 doi: 10.1007/978-3-642-36809-7 – volume: 8 start-page: e1002606 issue: 7 year: 2012 ident: 3911_CR9 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002606 – volume: 121 start-page: 2126 issue: 6 year: 2011 ident: 3911_CR1 publication-title: J Clin Investig doi: 10.1172/JCI58109 – volume: 114 start-page: 1 year: 2018 ident: 3911_CR13 publication-title: J Am Stat Assoc. – volume: 9 start-page: e112373 issue: 11 year: 2014 ident: 3911_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0112373 – volume: 6 start-page: 22943 year: 2016 ident: 3911_CR43 publication-title: Sci Rep doi: 10.1038/srep22943 – volume: 9 start-page: 432 issue: 3 year: 2008 ident: 3911_CR15 publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – volume: 443 start-page: 950 year: 2006 ident: 3911_CR24 publication-title: Nature doi: 10.1038/nature05192 – volume-title: The statistical analysis of compositional data year: 1986 ident: 3911_CR22 doi: 10.1007/978-94-009-4109-0 – volume: 359 start-page: 97 issue: 6371 year: 2018 ident: 3911_CR5 publication-title: Science doi: 10.1126/science.aan4236 – volume-title: Graphical models year: 1996 ident: 3911_CR30 doi: 10.1093/oso/9780198522195.001.0001 – volume: 9 start-page: 313 issue: 5 year: 2009 ident: 3911_CR4 publication-title: Nat Rev Immunol doi: 10.1038/nri2515 – volume: 31 start-page: 3172 issue: 19 year: 2015 ident: 3911_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv349 – volume: 34 start-page: 1436 issue: 3 year: 2006 ident: 3911_CR14 publication-title: Ann Stat doi: 10.1214/009053606000000281 – volume: 17 start-page: 31 year: 1989 ident: 3911_CR29 publication-title: Ann Stat doi: 10.1214/aos/1176347003 – volume: 16 start-page: 3813 issue: 1 year: 2015 ident: 3911_CR35 publication-title: J Mach Learn Res – volume: 44 start-page: 139 year: 1982 ident: 3911_CR8 publication-title: J R Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1982.tb01195.x – volume: 9 start-page: 1 issue: 297 year: 2018 ident: 3911_CR20 publication-title: Front Microbiol – volume: 34 start-page: 1 issue: 1 year: 1992 ident: 3911_CR26 publication-title: Technometrics doi: 10.2307/1269547 – volume: 88 start-page: 1345 year: 2007 ident: 3911_CR23 publication-title: Ecology doi: 10.1890/06-0286 – volume: 12 start-page: 1761135 issue: 1 year: 2020 ident: 3911_CR38 publication-title: J Oral Microbiol doi: 10.1080/20002297.2020.1761135 – volume: 1 start-page: 1 issue: 1–2 year: 2008 ident: 3911_CR32 publication-title: Found Trends Mach Learn doi: 10.1561/2200000001 – volume: 67 start-page: 026126 issue: 2 year: 2003 ident: 3911_CR45 publication-title: Phys Rev E doi: 10.1103/PhysRevE.67.026126 – volume: 146 start-page: 1489 issue: 6 year: 2014 ident: 3911_CR2 publication-title: Gastroenterology doi: 10.1053/j.gastro.2014.02.009 – volume: 4 start-page: 2912 issue: 13 year: 2020 ident: 3911_CR37 publication-title: Blood Adv doi: 10.1182/bloodadvances.2020001827 – volume: 71 start-page: 63 issue: 1 year: 2019 ident: 3911_CR46 publication-title: Clin Infect Dis. doi: 10.1093/cid/ciz777 – volume: 26 start-page: 367 issue: 2 year: 2017 ident: 3911_CR31 publication-title: J Comput Graph Stat doi: 10.1080/10618600.2016.1237362 – volume: 10 start-page: 516 year: 2019 ident: 3911_CR21 publication-title: Front Genet doi: 10.3389/fgene.2019.00516 – volume: 33 start-page: 1042 year: 2014 ident: 3911_CR33 publication-title: Artifi Intell Stat. – volume: 8 start-page: e1002687 issue: 9 year: 2012 ident: 3911_CR10 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002687 – volume: 31 start-page: 3322 issue: 20 year: 2015 ident: 3911_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv364 – volume: 286 start-page: 509 issue: 5439 year: 1999 ident: 3911_CR36 publication-title: Science doi: 10.1126/science.286.5439.509 – volume: 4 start-page: 129 issue: 1 year: 2017 ident: 3911_CR17 publication-title: Cell Syst doi: 10.1016/j.cels.2016.12.012 – volume: 113 start-page: E791 issue: 6 year: 2016 ident: 3911_CR42 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1522149113 – volume: 101 start-page: 428 issue: 5 year: 2015 ident: 3911_CR6 publication-title: Int J Hematol doi: 10.1007/s12185-015-1781-5 |
| SSID | ssj0017805 |
| Score | 2.443809 |
| Snippet | Background
The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the... The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However,... Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the... Abstract Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 581 |
| SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Compositional data Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Gene expression Graphical model Humans Leukemia Leukemia - microbiology Life Sciences Methodology Methods Microarrays Microbial activity Microbiome Microbiomes Microbiota Microorganisms Network Networks Random variables Statistical inference Zero-inflation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEB-kIOpB_G5qlQje7NLsZr9ytGIpgp4s9LZks7tYeM0rbR-P-td3JpvEPpTqwWsygc1vZ7IzmZnfALy3XIrOxJpVna8YJeJYI6NmTa3aYKpo_VBV-fWbPjqWX07Uya1RX1QTlumBM3D7xLeVeFspj0e_lKqVVWiCFtJKH6sm0Ne3ss0UTI35A2Lqn1pkrN6_5MTTxihUIkZ0ztYbx9DA1v8nF_P3Ssk5XfoIHqz68_Z63S4Wt06kwyfweHQly4_5FZ7Cvdg_g_t5uOT1czggUx9LslDsZ7xYMlSnBTqXoexz9XdJHBu5ebFE77U8O828TGexpNLRF3B8-Pn7pyM2TkxgHXpeNFdehVYl-vcSK5Uk2lvi3lofELzU6MSDoLRvCr7lXgcrAoZ_NY8h6ShiqF_CVr_s4zaUqkNL1zZY9GslT6apkgqNQCsNhlrPC-ATgK4b6cRpqsXCDWGF1S6D7hB0N4Du1gV8mJ85z2Qad0of0L7MkkSEPVxA9XCjeri_qUcBu9OuutE6L50gRiJBrm4B7-bbaFeULGn7uFwNMrWRWhmUeZWVYF5JXdd4pFtTgNlQj42lbt7pT38M3N0GwzutRQF7kyL9WtZdUOzNyvYPyO38D-Rew0NBBsOpfX8Xtq4uVvENOmBX_u1gazdtjSgc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFVEfxG9Xq6zgmw3dZPO1DyKetBTBQ8RC30J2k9TCdfe89jjqX29mv-qhHL7uzkIyO5P8kpn5DcBbTTmrlM9JVpUZwUAcKbiXpMiFdSrzumyzKr_M5PEJ_3wqTndgNtTCYFrlsCa2C7VrKrwjP2DIIsMQnnxY_CTYNQqjq0MLDdu3VnDvW4qxW7DLkBlrArvTw9nXb2NcARn8h9IZLQ8uKfK3ETxCIVM6JeuN7all8f8X9Pw7g3IMo96DO6t6Ya_Xdj7_Y6c6egD3e4iZfuxs4iHs-PoR3O6aTl4_hikuAX2qVhT75ZcNiWY2j6DTpXWXFZ4i90ZX1JhGVJtenHd8TRc-xZTSJ3BydPj90zHpOymQKiIy7DcvnBUB72R8JgKPfhhoqXXpIp4KhQzUMQwHB1daWkqnmYvHwpx6F6Rn3uVPYVI3tX8OqajiCiC10xHvchpUkQXhCha91yksSU-ADgo0VU8zjt0u5qY9bmhpOqWbqHTTKt2sE3g3frPoSDa2Sk_xv4ySSJDdPmiWZ6b3N4M0bYHaTJRxhpwLyzNXOMm45qXPCpfA3vBXTe-1l-bGxhJ4M76O_oZBFFv7ZtXK5IpLoaLMs84IxpHkeR63eq0SUBvmsTHUzTf1-Y-W01vFY5-ULIH9wZBuhrVNFfujsf2H5l5sn_RLuMvQFSgW7O_B5Gq58q8i5LoqX_d-9BvkHyc_ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BEQIOFV-F0BYFiRu1iB1_5UirVhUSnKjUmxXHtqi0zVZtV6vy65lxsqErqgquySRyxvPk58zMM8BHy6XoTKxZ1fmKUSKONTJq1tSqDaaK1ueqym_f9fGJ_HqqTkeZHOqFuZ2_51Z_vuKksMZok0Na5pwtH8IjXKR0TszqgyljQNr8q6aYO59bW3iyPv9dpPLv2sgpQfoMniz6i_Zm2c5mt9ago-ewOZLH8ssw2y_gQexfwuPhOMmbV7BP4B6LsNDsV7ycMwygGdLJUPZDvXdJqhpDu2KJfLU8PxuUmM5jScWir-Hk6PDHwTEbz0hgHXItOklehVYl-tsSK5UkIixxb60PyJRSoxMPghK9KfiWex2sCLjhq3kMSUcRQ70FG_28j2-hVB1iW9tgkclKnkxTJRUagbgMhprNC-ArB7puFBCncyxmLm8krHaD0x063WWnu2UBn6ZnLgb5jHut92leJkuSvs4XMCLciCRHAmyJt5Xy-IVSqlZWoQlaSCt9rJpQwM5qVt2IxysnSINIELkt4MN0G5FE6ZG2j_NFtqmN1MqgzZshCKaR1HWNi7g1BZi18Fgb6vqd_uxnVus2uKHTWhSwtwqkP8O6zxV7U7D9g-fe_d_bt-GpIGhwas3fgY3ry0XcRXJ17d9nVP0GoL8aDw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRBw4P0IFBQkbjTbOLEd59giqgqJqgdWKqcojm1YNZss212t2l_PTF50oapA4hYlE8WezEy-iWc-A7xTjEdFYuMgLHQY0EJckHIrgzQWuUlCq3RTVfn5WB5N-KdTcboFJ30vjJ4Velp3pKFEVDy-2oZeNrEbD4qzvblxrcsruXfOiIctoFSIGM9ZsL4F21IgOh_B9uT4ZP9r02SUsAAzHNH3zlx748b3qaHxvw57_llCOayj3oM7q2qeX6zzsrzyqTp8AD_6SbYVKmfj1VKPi8vf-B__pxYewv0O1_r7rSE-gi1bPYbb7U6XF0_ggOJOVx-GYpd2UQf44BKRrvGrthTdJ8KPtpPSxyH5s2lLEjWzPtWxPoXJ4ccvH46CbvuGoEAYSJvcC5MLRz-CbCgcR-d3TCulDYI4l0rHTERr0M7onGlpVGQwF42ZNU7ayJr4GYyqurIvwBcFhh2pjEKQzZlL0tAJk0YYMkxCffAesP6lZUXHbU5bbJRZk-MombW6yVA3WaObbO3B--GeecvscaP0AdnCIEms3M2JevEt65w8I244x_JQaJwh5yLnoUmNjLji2oap8WCnt6SsCxXnWUT0SBHhbg_eDpfRyWnlJq9svWpk4oRLkaDM89bwhpHEcYz4QiUeJBsmuTHUzSvV9HtDJJ5grill5MFub7y_hnWTKnYHA_8Lzb38N_FXcDciC2bEGrADo-ViZV8j7lvqN50r_wT1XlD0 priority: 102 providerName: Unpaywall |
| Title | Compositional zero-inflated network estimation for microbiome data |
| URI | https://link.springer.com/article/10.1186/s12859-020-03911-w https://www.ncbi.nlm.nih.gov/pubmed/33371887 https://www.proquest.com/docview/2478726153 https://www.proquest.com/docview/2473746573 https://pubmed.ncbi.nlm.nih.gov/PMC7768662 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-020-03911-w https://doaj.org/article/5507f1a05b324445a40d9d62484be09d |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (Selected full-text) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ8B4QHwTGFWQeGMZseM4zgNCbbUyVVo1AZXKU5TENkzq0tGtKuWv5y5fW0U1IV5aKb5IzuXO_l3u_DuAt4oJnkcm8Pw88z1KxHmxMNKLgzDVkW9UVlZVnozk8VgMJ-FkC5p2R7UCLzeGdtRPajyfHv76ufqIDv-hdHgl318yYmHzKBAivnPmLbdhF3eqmFo5nIjrrALx9zcHZzbetwd3gyDA5Zoq7G7sUyWd_yYM-ncpZZtPvQ_3FsVFulqm0-mNLWvwEB7UWNPtVsbxCLZM8RjuVN0nV0-gR2tBXbOFYr_NfOahBqaIPrVbVOXhLpFwVKcbXYS37vlZRdx0blyqLX0K48HR1_6xV7dU8HKEZtR4PtRpaOnjjPFDK9AhLcuUyjQCKxtLyzSnvLDVWcoyqRXXGB8GzGgrDTc6eAY7xawwL8ANc1wKpNIKga9gNop9G-qYoxvriM6mO8AaBSZ5zTdObS-mSRl3KJlU-k9Q_0mp_2TpwLv2nouKbeNW6R69l1aSmLLLC7P596R2vIT42ixL_TDDJxQiTIWvYy25UCIzfqwd2G_eatJYX8KJsogTFnbgTTuMjkfZlLQws0UpE0RChhHKPK-MoJ1JY0QORGvmsTbV9ZHi7EdJ7h1h_Ccld-CgMaTrad2mioPW2P5Bcy__e16vYI-TwzA61L8PO1fzhXmNsOwq68B2NInwVw0-dWC32x1-GeJ_72h0-hmv9mW_U37w6JQ-iSPj0Wn32x-pbTn3 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VItRyQLxaDAWMBCdq1bveXa8PCFGgSunj1Eq5LbZ3DZVSOySNovCj-I3M-FUiUMSl13gcrWdnxt94Zr8BeK2Z4HnsoiDMszCgQlyQCKeCJJKpjUOns7qr8uRUDc7Fl6EcrsGv7iwMtVV2MbEO1LbK6Rv5HicWGU7w5P34R0BTo6i62o3QaMziyC3mmLJN3x1-wv19w_nB57OPg6CdKhDkiE5o9rq0qSzo-4QLZSHQJguWaZ1ZxBZFogpmOZVGC5ulLFNWc4spUsScLZTjzkb4v7fgtogwlqD_xMM-wWM0H6A7mKPV3pQRO1xACRrxsLNgvvTyq2cE_AvY_t2f2Rdp78LGrByni3k6Gv3xHjy4D_daAOt_aCzuAay58iHcaUZaLh7BPgWYthEMxX66SRWgEY8Q0lq_bHrOfWL2aI5M-oiZ_cuLhg3q0vnUsPoYzm9Eo1uwXlalewK-zDG-KG01omnBijgJC2kTjrHBxnTg3QPWKdDkLYk5zdIYmTqZ0co0SjeodFMr3cw9eNvfM24oPFZK79O-9JJEv13_UE2-mdabDZHAFSwNZYZPKIRMRWgTq7jQInNhYj3Y6XbVtDFhaq4t2INX_WX0ZirRpKWrZrVMFAslY5TZboygX0kURQgkdOxBvGQeS0tdvlJefK8Zw2NMKpXiHux2hnS9rFWq2O2N7T8093T1Q7-EjcHZybE5Pjw9egabnNyCETXADqxfTWbuOYK7q-xF7VE-fL1pF_4Nw2tdgA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEY8eEI8CoQWCxI1GjR3bcY7twqq8Kg5U6s1KYhsqbbOr7a5W5dczEydpV1QVXDeTyDuZT_6cmfkG4J1mgte5y5K0rtKEEnFJIZxKikyWNk-drtqqym9H6vBYfD6RJ1e6-Ntq9z4lGXoaSKWpWezNrA8Q12rvnJHuWkJHH1I4Z8nqNtwRuLvRDIORGg15BFLs71tlrr1vbTtqVfuvo5p_V0wOadNNuL9sZuXFqpxMruxM40fwsKOU8X6IgcdwyzVP4G4YMnnxFA4I8l1pFpr9dvNpgmE1QZJp4yZUgcektRGaGGNksfHZadBnOnMxlZBuwfH444_RYdJNTkhqZGA0X17aUnr6BuNS6QXizrNK68oif_KF8sxySv96W5WsUlZzi8fAjDnrlePOZs9go5k27gXEskbEK2018lvBfF6kXtqCI1ptTi3oEbDegabuZMVpusXEtMcLrUxwukGnm9bpZhXB--GeWRDVuNH6gN7LYEmC2O0P0_lP0-HLkCybZ2UqK_yHQshSpLawigstKpcWNoKd_q2aDqXnhpMyESfKG8Hb4TLii5ImZeOmy9Ymy4WSOdo8D0EwrCTLMtzadR5BvhYea0tdv9Kc_mo1vHM85inFI9jtA-lyWTe5YncItn_w3Mv_e_obuPf9w9h8_XT0ZRsecEIJo979HdhYzJfuFbKvRfW6BdgfaOMlRQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRBw4P0IFBQkbjTbOLEd59giqgqJqgdWKqcojm1YNZss212t2l_PTF50oapA4hYlE8WezEy-iWc-A7xTjEdFYuMgLHQY0EJckHIrgzQWuUlCq3RTVfn5WB5N-KdTcboFJ30vjJ4Velp3pKFEVDy-2oZeNrEbD4qzvblxrcsruXfOiIctoFSIGM9ZsL4F21IgOh_B9uT4ZP9r02SUsAAzHNH3zlx748b3qaHxvw57_llCOayj3oM7q2qeX6zzsrzyqTp8AD_6SbYVKmfj1VKPi8vf-B__pxYewv0O1_r7rSE-gi1bPYbb7U6XF0_ggOJOVx-GYpd2UQf44BKRrvGrthTdJ8KPtpPSxyH5s2lLEjWzPtWxPoXJ4ccvH46CbvuGoEAYSJvcC5MLRz-CbCgcR-d3TCulDYI4l0rHTERr0M7onGlpVGQwF42ZNU7ayJr4GYyqurIvwBcFhh2pjEKQzZlL0tAJk0YYMkxCffAesP6lZUXHbU5bbJRZk-MombW6yVA3WaObbO3B--GeecvscaP0AdnCIEms3M2JevEt65w8I244x_JQaJwh5yLnoUmNjLji2oap8WCnt6SsCxXnWUT0SBHhbg_eDpfRyWnlJq9svWpk4oRLkaDM89bwhpHEcYz4QiUeJBsmuTHUzSvV9HtDJJ5grill5MFub7y_hnWTKnYHA_8Lzb38N_FXcDciC2bEGrADo-ViZV8j7lvqN50r_wT1XlD0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compositional+zero-inflated+network+estimation+for+microbiome+data&rft.jtitle=BMC+bioinformatics&rft.au=Ha%2C+Min+Jin&rft.au=Kim%2C+Junghi&rft.au=Galloway-Pe%C3%B1a%2C+Jessica&rft.au=Do%2C+Kim-Anh&rft.date=2020-12-28&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=21&rft.issue=Suppl+21&rft_id=info:doi/10.1186%2Fs12859-020-03911-w&rft_id=info%3Apmid%2F33371887&rft.externalDocID=PMC7768662 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |