Compositional zero-inflated network estimation for microbiome data

Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abun...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 21; no. Suppl 21; pp. 581 - 20
Main Authors Ha, Min Jin, Kim, Junghi, Galloway-Peña, Jessica, Do, Kim-Anh, Peterson, Christine B.
Format Journal Article
LanguageEnglish
Published London BioMed Central 28.12.2020
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-020-03911-w

Cover

Abstract Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated. Results We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients. Conclusions Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE .
AbstractList Abstract Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated. Results We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients. Conclusions Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE .
The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated. We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients. Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE .
The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated.BACKGROUNDThe estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated.We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients.RESULTSWe propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients.Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE .CONCLUSIONSOur proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE .
Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated. Results We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients. Conclusions Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE .
Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However, there are a number of critical statistical challenges in the inference of such networks from high-throughput data. Since the abundances in each sample are constrained to have a fixed sum and there is incomplete overlap in microbial populations across subjects, the data are both compositional and zero-inflated. Results We propose the COmpositional Zero-Inflated Network Estimation (COZINE) method for inference of microbial networks which addresses these critical aspects of the data while maintaining computational scalability. COZINE relies on the multivariate Hurdle model to infer a sparse set of conditional dependencies which reflect not only relationships among the continuous values, but also among binary indicators of presence or absence and between the binary and continuous representations of the data. Our simulation results show that the proposed method is better able to capture various types of microbial relationships than existing approaches. We demonstrate the utility of the method with an application to understanding the oral microbiome network in a cohort of leukemic patients. Conclusions Our proposed method addresses important challenges in microbiome network estimation, and can be effectively applied to discover various types of dependence relationships in microbial communities. The procedure we have developed, which we refer to as COZINE, is available online at https://github.com/MinJinHa/COZINE.
ArticleNumber 581
Author Kim, Junghi
Galloway-Peña, Jessica
Do, Kim-Anh
Ha, Min Jin
Peterson, Christine B.
Author_xml – sequence: 1
  givenname: Min Jin
  orcidid: 0000-0002-5165-1642
  surname: Ha
  fullname: Ha, Min Jin
  email: MJHa@mdanderson.org
  organization: Department of Biostatistics, University of Texas MD Anderson Cancer Center
– sequence: 2
  givenname: Junghi
  surname: Kim
  fullname: Kim, Junghi
  organization: Center for Devices and Radiological Health, U.S. Food and Drug Administration
– sequence: 3
  givenname: Jessica
  surname: Galloway-Peña
  fullname: Galloway-Peña, Jessica
  organization: Department of Veterinary Pathobiology, Texas A&M University
– sequence: 4
  givenname: Kim-Anh
  surname: Do
  fullname: Do, Kim-Anh
  organization: Department of Biostatistics, University of Texas MD Anderson Cancer Center
– sequence: 5
  givenname: Christine B.
  surname: Peterson
  fullname: Peterson, Christine B.
  organization: Department of Biostatistics, University of Texas MD Anderson Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33371887$$D View this record in MEDLINE/PubMed
BookMark eNqNUUtv1DAYjFARfcAf4IAiceES8Od3Lkiw4lGpEhc4W05sL14Se7ETVuXX490spe2h4mTLnplvvpnz6iTEYKvqOaDXAJK_yYAlaxuEUYNIC9DsHlVnQAU0GBA7uXU_rc5z3iAEQiL2pDolhAiQUpxV71dx3MbsJx-DHurfNsXGBzfoyZo62GkX04_a5smPeg-pXUz16PsUOx9HWxs96afVY6eHbJ8dz4vq28cPX1efm6svny5X766anlE0NUCY0cyhFhGLmKOAwEEnZWcIpq7lDgym0GJnOg0dNxIbQIKANY5bbA25qC4XXRP1Rm1TsZSuVdReHR5iWiudJt8PVjGGhAONWFe0KWWaItMajqmknUXtXossWnPY6uudHoYbQUBqn65a0lUlXXVIV-0K6-3C2s7daE1vw5T0cMfK3Z_gv6t1_KWE4JJzXAReHQVS_DmXWNXoc2-HQQcb56wwFURQzgQp0Jf3oJs4p9LRASUF5sD2qBe3Hd1Y-VtwAeAFUCrLOVn3f3vKe6TeT4f-y1Z-eJh6DDaXOWFt0z_bD7D-AE5u2mk
CitedBy_id crossref_primary_10_1146_annurev_statistics_040522_120734
crossref_primary_10_1017_gmb_2023_12
crossref_primary_10_1128_msystems_00961_22
crossref_primary_10_1016_j_csbj_2021_05_001
crossref_primary_10_1093_bioadv_vbae167
crossref_primary_10_1128_aem_00092_24
crossref_primary_10_1186_s12866_023_02771_7
crossref_primary_10_1080_02331888_2024_2396023
crossref_primary_10_1093_biomtc_ujae111
crossref_primary_10_1186_s12859_020_03890_y
crossref_primary_10_1186_s12859_025_06083_7
Cites_doi 10.1093/jnci/djt300
10.1214/18-AOAS1213
10.1093/biomet/asu051
10.1089/cmb.2017.0054
10.1101/gr.104521.109
10.1038/s41598-016-0028-x
10.1146/annurev-pathol-011811-132421
10.1371/journal.pcbi.1004226
10.3390/jof5020049
10.1007/BF01031393
10.1007/s00520-011-1353-z
10.1007/978-3-642-36809-7
10.1371/journal.pcbi.1002606
10.1172/JCI58109
10.1371/journal.pone.0112373
10.1038/srep22943
10.1093/biostatistics/kxm045
10.1038/nature05192
10.1007/978-94-009-4109-0
10.1126/science.aan4236
10.1093/oso/9780198522195.001.0001
10.1038/nri2515
10.1093/bioinformatics/btv349
10.1214/009053606000000281
10.1214/aos/1176347003
10.1111/j.2517-6161.1982.tb01195.x
10.2307/1269547
10.1890/06-0286
10.1080/20002297.2020.1761135
10.1561/2200000001
10.1103/PhysRevE.67.026126
10.1053/j.gastro.2014.02.009
10.1182/bloodadvances.2020001827
10.1093/cid/ciz777
10.1080/10618600.2016.1237362
10.3389/fgene.2019.00516
10.1371/journal.pcbi.1002687
10.1093/bioinformatics/btv364
10.1126/science.286.5439.509
10.1016/j.cels.2016.12.012
10.1073/pnas.1522149113
10.1007/s12185-015-1781-5
ContentType Journal Article
Copyright The Author(s) 2020
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-020-03911-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Selected full-text)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 20
ExternalDocumentID oai_doaj_org_article_5507f1a05b324445a40d9d62484be09d
10.1186/s12859-020-03911-w
PMC7768662
33371887
10_1186_s12859_020_03911_w
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Allergy and Infectious Diseases
  grantid: 1K01 A1143881-01
  funderid: http://dx.doi.org/10.13039/100000060
– fundername: National Science Foundation
  grantid: 1811568; 1811445
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: National Cancer Institute
  grantid: P30CA016672; 5R21CA220299-02
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: NCI NIH HHS
  grantid: R21 CA220299
– fundername: NCI NIH HHS
  grantid: P30CA016672
– fundername: NCATS NIH HHS
  grantid: UL1 TR003167
– fundername: NIAID NIH HHS
  grantid: K01 AI143881
– fundername: NCI NIH HHS
  grantid: 5R21CA220299-02
– fundername: ;
  grantid: 1811568; 1811445
– fundername: ;
  grantid: P30CA016672; 5R21CA220299-02
– fundername: ;
  grantid: 1K01 A1143881-01
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c540t-135da5f0903e05f4101f1b88bd324f96f1d24192fdba1b6d82d10731edf6e2ed3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:53:26 EDT 2025
Sun Oct 26 04:38:34 EDT 2025
Tue Sep 30 16:23:25 EDT 2025
Tue Oct 21 13:50:53 EDT 2025
Tue Oct 07 05:14:16 EDT 2025
Mon Jul 21 06:01:22 EDT 2025
Wed Oct 01 04:15:36 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Sat Sep 06 07:27:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 21
Keywords Graphical model
Zero-inflation
Network
Microbiome
Compositional data
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-135da5f0903e05f4101f1b88bd324f96f1d24192fdba1b6d82d10731edf6e2ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5165-1642
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-020-03911-w
PMID 33371887
PQID 2478726153
PQPubID 44065
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_5507f1a05b324445a40d9d62484be09d
unpaywall_primary_10_1186_s12859_020_03911_w
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768662
proquest_miscellaneous_2473746573
proquest_journals_2478726153
pubmed_primary_33371887
crossref_primary_10_1186_s12859_020_03911_w
crossref_citationtrail_10_1186_s12859_020_03911_w
springer_journals_10_1186_s12859_020_03911_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-28
PublicationDateYYYYMMDD 2020-12-28
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References MC Horner-Devine (3911_CR23) 2007; 88
AL Barabási (3911_CR36) 1999; 286
AD Kostic (3911_CR2) 2014; 146
J Cheng (3911_CR31) 2017; 26
J Friedman (3911_CR10) 2012; 8
J Aitchison (3911_CR22) 1986
R Shouval (3911_CR37) 2020; 4
S Lauritzen (3911_CR30) 1996
JLC Mougeot (3911_CR38) 2020; 12
TV Karpinets (3911_CR20) 2018; 9
G Yoon (3911_CR21) 2019; 10
MJ Wainwright (3911_CR32) 2008; 1
V Gopalakrishnan (3911_CR5) 2018; 359
J Aitchison (3911_CR8) 1982; 44
KJ Pflughoeft (3911_CR7) 2012; 7
Y Cao (3911_CR13) 2018; 114
H Zhao (3911_CR40) 2017; 7
K Faust (3911_CR9) 2012; 8
T Woyke (3911_CR24) 2006; 443
SL Lauritzen (3911_CR29) 1989; 17
J Friedman (3911_CR15) 2008; 9
Y Shono (3911_CR6) 2015; 101
S Chaffron (3911_CR25) 2010; 20
E Yang (3911_CR33) 2014; 33
J Ahn (3911_CR3) 2013; 105
JL Round (3911_CR4) 2009; 9
K Wang (3911_CR43) 2016; 6
JR Galloway-Peña (3911_CR46) 2019; 71
D Lambert (3911_CR26) 1992; 34
H Fang (3911_CR11) 2015; 31
E Yang (3911_CR35) 2015; 16
ME Newman (3911_CR45) 2003; 67
S Chen (3911_CR34) 2014; 102
JLM Welch (3911_CR42) 2016; 113
H Fang (3911_CR18) 2017; 24
J Aitchison (3911_CR27) 1981; 13
PI Diaz (3911_CR39) 2019; 5
F De Filippis (3911_CR41) 2014; 9
KG Van den Boogaart (3911_CR28) 2013
CI Kang (3911_CR44) 2012; 20
H Tilg (3911_CR1) 2011; 121
A McDavid (3911_CR19) 2019; 13
ZD Kurtz (3911_CR16) 2015; 11
Y Yang (3911_CR17) 2017; 4
N Meinshausen (3911_CR14) 2006; 34
B Ban (3911_CR12) 2015; 31
References_xml – volume: 105
  start-page: 1907
  issue: 24
  year: 2013
  ident: 3911_CR3
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djt300
– volume: 13
  start-page: 848
  issue: 2
  year: 2019
  ident: 3911_CR19
  publication-title: Ann Appl Stat
  doi: 10.1214/18-AOAS1213
– volume: 102
  start-page: 47
  issue: 1
  year: 2014
  ident: 3911_CR34
  publication-title: Biometrika
  doi: 10.1093/biomet/asu051
– volume: 24
  start-page: 699
  issue: 7
  year: 2017
  ident: 3911_CR18
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2017.0054
– volume: 20
  start-page: 947
  year: 2010
  ident: 3911_CR25
  publication-title: Genome Res
  doi: 10.1101/gr.104521.109
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 3911_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-016-0028-x
– volume: 7
  start-page: 99
  year: 2012
  ident: 3911_CR7
  publication-title: Ann Rev Pathol Mech Dis
  doi: 10.1146/annurev-pathol-011811-132421
– volume: 11
  start-page: e1004226
  issue: 5
  year: 2015
  ident: 3911_CR16
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004226
– volume: 5
  start-page: 49
  issue: 2
  year: 2019
  ident: 3911_CR39
  publication-title: J Fungi
  doi: 10.3390/jof5020049
– volume: 13
  start-page: 175
  year: 1981
  ident: 3911_CR27
  publication-title: Math Geol
  doi: 10.1007/BF01031393
– volume: 20
  start-page: 2371
  issue: 10
  year: 2012
  ident: 3911_CR44
  publication-title: Support Care Cancer
  doi: 10.1007/s00520-011-1353-z
– volume-title: Analyzing compositional data with R
  year: 2013
  ident: 3911_CR28
  doi: 10.1007/978-3-642-36809-7
– volume: 8
  start-page: e1002606
  issue: 7
  year: 2012
  ident: 3911_CR9
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002606
– volume: 121
  start-page: 2126
  issue: 6
  year: 2011
  ident: 3911_CR1
  publication-title: J Clin Investig
  doi: 10.1172/JCI58109
– volume: 114
  start-page: 1
  year: 2018
  ident: 3911_CR13
  publication-title: J Am Stat Assoc.
– volume: 9
  start-page: e112373
  issue: 11
  year: 2014
  ident: 3911_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0112373
– volume: 6
  start-page: 22943
  year: 2016
  ident: 3911_CR43
  publication-title: Sci Rep
  doi: 10.1038/srep22943
– volume: 9
  start-page: 432
  issue: 3
  year: 2008
  ident: 3911_CR15
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm045
– volume: 443
  start-page: 950
  year: 2006
  ident: 3911_CR24
  publication-title: Nature
  doi: 10.1038/nature05192
– volume-title: The statistical analysis of compositional data
  year: 1986
  ident: 3911_CR22
  doi: 10.1007/978-94-009-4109-0
– volume: 359
  start-page: 97
  issue: 6371
  year: 2018
  ident: 3911_CR5
  publication-title: Science
  doi: 10.1126/science.aan4236
– volume-title: Graphical models
  year: 1996
  ident: 3911_CR30
  doi: 10.1093/oso/9780198522195.001.0001
– volume: 9
  start-page: 313
  issue: 5
  year: 2009
  ident: 3911_CR4
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2515
– volume: 31
  start-page: 3172
  issue: 19
  year: 2015
  ident: 3911_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv349
– volume: 34
  start-page: 1436
  issue: 3
  year: 2006
  ident: 3911_CR14
  publication-title: Ann Stat
  doi: 10.1214/009053606000000281
– volume: 17
  start-page: 31
  year: 1989
  ident: 3911_CR29
  publication-title: Ann Stat
  doi: 10.1214/aos/1176347003
– volume: 16
  start-page: 3813
  issue: 1
  year: 2015
  ident: 3911_CR35
  publication-title: J Mach Learn Res
– volume: 44
  start-page: 139
  year: 1982
  ident: 3911_CR8
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– volume: 9
  start-page: 1
  issue: 297
  year: 2018
  ident: 3911_CR20
  publication-title: Front Microbiol
– volume: 34
  start-page: 1
  issue: 1
  year: 1992
  ident: 3911_CR26
  publication-title: Technometrics
  doi: 10.2307/1269547
– volume: 88
  start-page: 1345
  year: 2007
  ident: 3911_CR23
  publication-title: Ecology
  doi: 10.1890/06-0286
– volume: 12
  start-page: 1761135
  issue: 1
  year: 2020
  ident: 3911_CR38
  publication-title: J Oral Microbiol
  doi: 10.1080/20002297.2020.1761135
– volume: 1
  start-page: 1
  issue: 1–2
  year: 2008
  ident: 3911_CR32
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000001
– volume: 67
  start-page: 026126
  issue: 2
  year: 2003
  ident: 3911_CR45
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.67.026126
– volume: 146
  start-page: 1489
  issue: 6
  year: 2014
  ident: 3911_CR2
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2014.02.009
– volume: 4
  start-page: 2912
  issue: 13
  year: 2020
  ident: 3911_CR37
  publication-title: Blood Adv
  doi: 10.1182/bloodadvances.2020001827
– volume: 71
  start-page: 63
  issue: 1
  year: 2019
  ident: 3911_CR46
  publication-title: Clin Infect Dis.
  doi: 10.1093/cid/ciz777
– volume: 26
  start-page: 367
  issue: 2
  year: 2017
  ident: 3911_CR31
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2016.1237362
– volume: 10
  start-page: 516
  year: 2019
  ident: 3911_CR21
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00516
– volume: 33
  start-page: 1042
  year: 2014
  ident: 3911_CR33
  publication-title: Artifi Intell Stat.
– volume: 8
  start-page: e1002687
  issue: 9
  year: 2012
  ident: 3911_CR10
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002687
– volume: 31
  start-page: 3322
  issue: 20
  year: 2015
  ident: 3911_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv364
– volume: 286
  start-page: 509
  issue: 5439
  year: 1999
  ident: 3911_CR36
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 4
  start-page: 129
  issue: 1
  year: 2017
  ident: 3911_CR17
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.12.012
– volume: 113
  start-page: E791
  issue: 6
  year: 2016
  ident: 3911_CR42
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1522149113
– volume: 101
  start-page: 428
  issue: 5
  year: 2015
  ident: 3911_CR6
  publication-title: Int J Hematol
  doi: 10.1007/s12185-015-1781-5
SSID ssj0017805
Score 2.443809
Snippet Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the...
The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the microbiome. However,...
Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the...
Abstract Background The estimation of microbial networks can provide important insight into the ecological relationships among the organisms that comprise the...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 581
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Compositional data
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Gene expression
Graphical model
Humans
Leukemia
Leukemia - microbiology
Life Sciences
Methodology
Methods
Microarrays
Microbial activity
Microbiome
Microbiomes
Microbiota
Microorganisms
Network
Networks
Random variables
Statistical inference
Zero-inflation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEB-kIOpB_G5qlQje7NLsZr9ytGIpgp4s9LZks7tYeM0rbR-P-td3JpvEPpTqwWsygc1vZ7IzmZnfALy3XIrOxJpVna8YJeJYI6NmTa3aYKpo_VBV-fWbPjqWX07Uya1RX1QTlumBM3D7xLeVeFspj0e_lKqVVWiCFtJKH6sm0Ne3ss0UTI35A2Lqn1pkrN6_5MTTxihUIkZ0ztYbx9DA1v8nF_P3Ssk5XfoIHqz68_Z63S4Wt06kwyfweHQly4_5FZ7Cvdg_g_t5uOT1czggUx9LslDsZ7xYMlSnBTqXoexz9XdJHBu5ebFE77U8O828TGexpNLRF3B8-Pn7pyM2TkxgHXpeNFdehVYl-vcSK5Uk2lvi3lofELzU6MSDoLRvCr7lXgcrAoZ_NY8h6ShiqF_CVr_s4zaUqkNL1zZY9GslT6apkgqNQCsNhlrPC-ATgK4b6cRpqsXCDWGF1S6D7hB0N4Du1gV8mJ85z2Qad0of0L7MkkSEPVxA9XCjeri_qUcBu9OuutE6L50gRiJBrm4B7-bbaFeULGn7uFwNMrWRWhmUeZWVYF5JXdd4pFtTgNlQj42lbt7pT38M3N0GwzutRQF7kyL9WtZdUOzNyvYPyO38D-Rew0NBBsOpfX8Xtq4uVvENOmBX_u1gazdtjSgc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFVEfxG9Xq6zgmw3dZPO1DyKetBTBQ8RC30J2k9TCdfe89jjqX29mv-qhHL7uzkIyO5P8kpn5DcBbTTmrlM9JVpUZwUAcKbiXpMiFdSrzumyzKr_M5PEJ_3wqTndgNtTCYFrlsCa2C7VrKrwjP2DIIsMQnnxY_CTYNQqjq0MLDdu3VnDvW4qxW7DLkBlrArvTw9nXb2NcARn8h9IZLQ8uKfK3ETxCIVM6JeuN7all8f8X9Pw7g3IMo96DO6t6Ya_Xdj7_Y6c6egD3e4iZfuxs4iHs-PoR3O6aTl4_hikuAX2qVhT75ZcNiWY2j6DTpXWXFZ4i90ZX1JhGVJtenHd8TRc-xZTSJ3BydPj90zHpOymQKiIy7DcvnBUB72R8JgKPfhhoqXXpIp4KhQzUMQwHB1daWkqnmYvHwpx6F6Rn3uVPYVI3tX8OqajiCiC10xHvchpUkQXhCha91yksSU-ADgo0VU8zjt0u5qY9bmhpOqWbqHTTKt2sE3g3frPoSDa2Sk_xv4ySSJDdPmiWZ6b3N4M0bYHaTJRxhpwLyzNXOMm45qXPCpfA3vBXTe-1l-bGxhJ4M76O_oZBFFv7ZtXK5IpLoaLMs84IxpHkeR63eq0SUBvmsTHUzTf1-Y-W01vFY5-ULIH9wZBuhrVNFfujsf2H5l5sn_RLuMvQFSgW7O_B5Gq58q8i5LoqX_d-9BvkHyc_
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BEQIOFV-F0BYFiRu1iB1_5UirVhUSnKjUmxXHtqi0zVZtV6vy65lxsqErqgquySRyxvPk58zMM8BHy6XoTKxZ1fmKUSKONTJq1tSqDaaK1ueqym_f9fGJ_HqqTkeZHOqFuZ2_51Z_vuKksMZok0Na5pwtH8IjXKR0TszqgyljQNr8q6aYO59bW3iyPv9dpPLv2sgpQfoMniz6i_Zm2c5mt9ago-ewOZLH8ssw2y_gQexfwuPhOMmbV7BP4B6LsNDsV7ycMwygGdLJUPZDvXdJqhpDu2KJfLU8PxuUmM5jScWir-Hk6PDHwTEbz0hgHXItOklehVYl-tsSK5UkIixxb60PyJRSoxMPghK9KfiWex2sCLjhq3kMSUcRQ70FG_28j2-hVB1iW9tgkclKnkxTJRUagbgMhprNC-ArB7puFBCncyxmLm8krHaD0x063WWnu2UBn6ZnLgb5jHut92leJkuSvs4XMCLciCRHAmyJt5Xy-IVSqlZWoQlaSCt9rJpQwM5qVt2IxysnSINIELkt4MN0G5FE6ZG2j_NFtqmN1MqgzZshCKaR1HWNi7g1BZi18Fgb6vqd_uxnVus2uKHTWhSwtwqkP8O6zxV7U7D9g-fe_d_bt-GpIGhwas3fgY3ry0XcRXJ17d9nVP0GoL8aDw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRBw4P0IFBQkbjTbOLEd59giqgqJqgdWKqcojm1YNZss212t2l_PTF50oapA4hYlE8WezEy-iWc-A7xTjEdFYuMgLHQY0EJckHIrgzQWuUlCq3RTVfn5WB5N-KdTcboFJ30vjJ4Velp3pKFEVDy-2oZeNrEbD4qzvblxrcsruXfOiIctoFSIGM9ZsL4F21IgOh_B9uT4ZP9r02SUsAAzHNH3zlx748b3qaHxvw57_llCOayj3oM7q2qeX6zzsrzyqTp8AD_6SbYVKmfj1VKPi8vf-B__pxYewv0O1_r7rSE-gi1bPYbb7U6XF0_ggOJOVx-GYpd2UQf44BKRrvGrthTdJ8KPtpPSxyH5s2lLEjWzPtWxPoXJ4ccvH46CbvuGoEAYSJvcC5MLRz-CbCgcR-d3TCulDYI4l0rHTERr0M7onGlpVGQwF42ZNU7ayJr4GYyqurIvwBcFhh2pjEKQzZlL0tAJk0YYMkxCffAesP6lZUXHbU5bbJRZk-MombW6yVA3WaObbO3B--GeecvscaP0AdnCIEms3M2JevEt65w8I244x_JQaJwh5yLnoUmNjLji2oap8WCnt6SsCxXnWUT0SBHhbg_eDpfRyWnlJq9svWpk4oRLkaDM89bwhpHEcYz4QiUeJBsmuTHUzSvV9HtDJJ5grill5MFub7y_hnWTKnYHA_8Lzb38N_FXcDciC2bEGrADo-ViZV8j7lvqN50r_wT1XlD0
  priority: 102
  providerName: Unpaywall
Title Compositional zero-inflated network estimation for microbiome data
URI https://link.springer.com/article/10.1186/s12859-020-03911-w
https://www.ncbi.nlm.nih.gov/pubmed/33371887
https://www.proquest.com/docview/2478726153
https://www.proquest.com/docview/2473746573
https://pubmed.ncbi.nlm.nih.gov/PMC7768662
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-020-03911-w
https://doaj.org/article/5507f1a05b324445a40d9d62484be09d
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (Selected full-text)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ8B4QHwTGFWQeGMZseM4zgNCbbUyVVo1AZXKU5TENkzq0tGtKuWv5y5fW0U1IV5aKb5IzuXO_l3u_DuAt4oJnkcm8Pw88z1KxHmxMNKLgzDVkW9UVlZVnozk8VgMJ-FkC5p2R7UCLzeGdtRPajyfHv76ufqIDv-hdHgl318yYmHzKBAivnPmLbdhF3eqmFo5nIjrrALx9zcHZzbetwd3gyDA5Zoq7G7sUyWd_yYM-ncpZZtPvQ_3FsVFulqm0-mNLWvwEB7UWNPtVsbxCLZM8RjuVN0nV0-gR2tBXbOFYr_NfOahBqaIPrVbVOXhLpFwVKcbXYS37vlZRdx0blyqLX0K48HR1_6xV7dU8HKEZtR4PtRpaOnjjPFDK9AhLcuUyjQCKxtLyzSnvLDVWcoyqRXXGB8GzGgrDTc6eAY7xawwL8ANc1wKpNIKga9gNop9G-qYoxvriM6mO8AaBSZ5zTdObS-mSRl3KJlU-k9Q_0mp_2TpwLv2nouKbeNW6R69l1aSmLLLC7P596R2vIT42ixL_TDDJxQiTIWvYy25UCIzfqwd2G_eatJYX8KJsogTFnbgTTuMjkfZlLQws0UpE0RChhHKPK-MoJ1JY0QORGvmsTbV9ZHi7EdJ7h1h_Ccld-CgMaTrad2mioPW2P5Bcy__e16vYI-TwzA61L8PO1fzhXmNsOwq68B2NInwVw0-dWC32x1-GeJ_72h0-hmv9mW_U37w6JQ-iSPj0Wn32x-pbTn3
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VItRyQLxaDAWMBCdq1bveXa8PCFGgSunj1Eq5LbZ3DZVSOySNovCj-I3M-FUiUMSl13gcrWdnxt94Zr8BeK2Z4HnsoiDMszCgQlyQCKeCJJKpjUOns7qr8uRUDc7Fl6EcrsGv7iwMtVV2MbEO1LbK6Rv5HicWGU7w5P34R0BTo6i62o3QaMziyC3mmLJN3x1-wv19w_nB57OPg6CdKhDkiE5o9rq0qSzo-4QLZSHQJguWaZ1ZxBZFogpmOZVGC5ulLFNWc4spUsScLZTjzkb4v7fgtogwlqD_xMM-wWM0H6A7mKPV3pQRO1xACRrxsLNgvvTyq2cE_AvY_t2f2Rdp78LGrByni3k6Gv3xHjy4D_daAOt_aCzuAay58iHcaUZaLh7BPgWYthEMxX66SRWgEY8Q0lq_bHrOfWL2aI5M-oiZ_cuLhg3q0vnUsPoYzm9Eo1uwXlalewK-zDG-KG01omnBijgJC2kTjrHBxnTg3QPWKdDkLYk5zdIYmTqZ0co0SjeodFMr3cw9eNvfM24oPFZK79O-9JJEv13_UE2-mdabDZHAFSwNZYZPKIRMRWgTq7jQInNhYj3Y6XbVtDFhaq4t2INX_WX0ZirRpKWrZrVMFAslY5TZboygX0kURQgkdOxBvGQeS0tdvlJefK8Zw2NMKpXiHux2hnS9rFWq2O2N7T8093T1Q7-EjcHZybE5Pjw9egabnNyCETXADqxfTWbuOYK7q-xF7VE-fL1pF_4Nw2tdgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEY8eEI8CoQWCxI1GjR3bcY7twqq8Kg5U6s1KYhsqbbOr7a5W5dczEydpV1QVXDeTyDuZT_6cmfkG4J1mgte5y5K0rtKEEnFJIZxKikyWNk-drtqqym9H6vBYfD6RJ1e6-Ntq9z4lGXoaSKWpWezNrA8Q12rvnJHuWkJHH1I4Z8nqNtwRuLvRDIORGg15BFLs71tlrr1vbTtqVfuvo5p_V0wOadNNuL9sZuXFqpxMruxM40fwsKOU8X6IgcdwyzVP4G4YMnnxFA4I8l1pFpr9dvNpgmE1QZJp4yZUgcektRGaGGNksfHZadBnOnMxlZBuwfH444_RYdJNTkhqZGA0X17aUnr6BuNS6QXizrNK68oif_KF8sxySv96W5WsUlZzi8fAjDnrlePOZs9go5k27gXEskbEK2018lvBfF6kXtqCI1ptTi3oEbDegabuZMVpusXEtMcLrUxwukGnm9bpZhXB--GeWRDVuNH6gN7LYEmC2O0P0_lP0-HLkCybZ2UqK_yHQshSpLawigstKpcWNoKd_q2aDqXnhpMyESfKG8Hb4TLii5ImZeOmy9Ymy4WSOdo8D0EwrCTLMtzadR5BvhYea0tdv9Kc_mo1vHM85inFI9jtA-lyWTe5YncItn_w3Mv_e_obuPf9w9h8_XT0ZRsecEIJo979HdhYzJfuFbKvRfW6BdgfaOMlRQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrRBw4P0IFBQkbjTbOLEd59giqgqJqgdWKqcojm1YNZss212t2l_PTF50oapA4hYlE8WezEy-iWc-A7xTjEdFYuMgLHQY0EJckHIrgzQWuUlCq3RTVfn5WB5N-KdTcboFJ30vjJ4Velp3pKFEVDy-2oZeNrEbD4qzvblxrcsruXfOiIctoFSIGM9ZsL4F21IgOh_B9uT4ZP9r02SUsAAzHNH3zlx748b3qaHxvw57_llCOayj3oM7q2qeX6zzsrzyqTp8AD_6SbYVKmfj1VKPi8vf-B__pxYewv0O1_r7rSE-gi1bPYbb7U6XF0_ggOJOVx-GYpd2UQf44BKRrvGrthTdJ8KPtpPSxyH5s2lLEjWzPtWxPoXJ4ccvH46CbvuGoEAYSJvcC5MLRz-CbCgcR-d3TCulDYI4l0rHTERr0M7onGlpVGQwF42ZNU7ayJr4GYyqurIvwBcFhh2pjEKQzZlL0tAJk0YYMkxCffAesP6lZUXHbU5bbJRZk-MombW6yVA3WaObbO3B--GeecvscaP0AdnCIEms3M2JevEt65w8I244x_JQaJwh5yLnoUmNjLji2oap8WCnt6SsCxXnWUT0SBHhbg_eDpfRyWnlJq9svWpk4oRLkaDM89bwhpHEcYz4QiUeJBsmuTHUzSvV9HtDJJ5grill5MFub7y_hnWTKnYHA_8Lzb38N_FXcDciC2bEGrADo-ViZV8j7lvqN50r_wT1XlD0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compositional+zero-inflated+network+estimation+for+microbiome+data&rft.jtitle=BMC+bioinformatics&rft.au=Ha%2C+Min+Jin&rft.au=Kim%2C+Junghi&rft.au=Galloway-Pe%C3%B1a%2C+Jessica&rft.au=Do%2C+Kim-Anh&rft.date=2020-12-28&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=21&rft.issue=Suppl+21&rft_id=info:doi/10.1186%2Fs12859-020-03911-w&rft_id=info%3Apmid%2F33371887&rft.externalDocID=PMC7768662
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon