Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation
Ionizing radiation causes oxidative stress, leading to acute and late cellular responses. We previously demonstrated that irradiation of non-proliferating endothelial cells, as observed in normal tissues, induces early apoptosis, which can be inhibited by pretreatment with Sphingosine-1-Phosphate. W...
Saved in:
Published in | Free radical biology & medicine Vol. 108; pp. 750 - 759 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2017
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0891-5849 1873-4596 1873-4596 |
DOI | 10.1016/j.freeradbiomed.2017.04.019 |
Cover
Abstract | Ionizing radiation causes oxidative stress, leading to acute and late cellular responses. We previously demonstrated that irradiation of non-proliferating endothelial cells, as observed in normal tissues, induces early apoptosis, which can be inhibited by pretreatment with Sphingosine-1-Phosphate. We now propose to better characterize the long-term radiation response of endothelial cells by studying the molecular pathways associated with senescence and its link with acute apoptosis. First, senescence was validated in irradiated quiescent microvascular HMVEC-L in a dose- and time-dependent manner by SA β-galactosidase staining, p16Ink4a and p21Waf1 expression, pro-inflammatory IL-8 secretion and DNA damage response activation. This premature aging was induced independently of Sphingosine 1-Phosphate treatment, supporting its non-connection with acute IR-induced apoptosis. Then, senescence under these conditions showed persistent activation of p53 pathway and mitochondrial dysfunctions, characterized by O2·- generation, inhibition of respiratory complex II activity and over-expression of SOD2 and GPX1 detoxification enzymes. Senescence was significantly inhibited by treatment with pifithrin–α, a p53 inhibitor, or by MnTBAP, a superoxide dismutase mimetic, validating those molecular actors in IR-induced endothelial cell aging. However, MnTBAP, but not pifithrin–α, was able to limit superoxide generation and to rescue the respiratory complex II activity. Furthermore, MnTBAP was not modulating p53 up-regulation, suggesting that IR-induced senescence in quiescent endothelial cells is provided by at least 2 different pathways dependent of the mitochondrial oxidative stress response and the p53 activation. Further characterization of the actors involved in the respiratory complex II dysfunction will open new pharmacological strategies to modulate late radiation toxicity.
[Display omitted]
•Ionizing radiation induces long-term senescence in non-proliferating endothelial cells.•Apoptosis inhibition by Sphingosine 1-phosphate does not modulate senescence.•p53 activity, mitochondrial superoxide generation and loss of respiratory complex II activity are observed during senescence.•Superoxide dismutase mimetic or pharmacological inhibition of p53 activation prevents senescence.•SOD mimetic, but not p53 inhibition, blocks superoxide generation and revert respiratory complex II dysfunction. |
---|---|
AbstractList | Ionizing radiation causes oxidative stress, leading to acute and late cellular responses. We previously demonstrated that irradiation of non-proliferating endothelial cells, as observed in normal tissues, induces early apoptosis, which can be inhibited by pretreatment with Sphingosine-1-Phosphate. We now propose to better characterize the long-term radiation response of endothelial cells by studying the molecular pathways associated with senescence and its link with acute apoptosis. First, senescence was validated in irradiated quiescent microvascular HMVEC-L in a dose- and time-dependent manner by SA β-galactosidase staining, p16Ink4a and p21Waf1 expression, pro-inflammatory IL-8 secretion and DNA damage response activation. This premature aging was induced independently of Sphingosine 1-Phosphate treatment, supporting its non-connection with acute IR-induced apoptosis. Then, senescence under these conditions showed persistent activation of p53 pathway and mitochondrial dysfunctions, characterized by O2·- generation, inhibition of respiratory complex II activity and over-expression of SOD2 and GPX1 detoxification enzymes. Senescence was significantly inhibited by treatment with pifithrin–α, a p53 inhibitor, or by MnTBAP, a superoxide dismutase mimetic, validating those molecular actors in IR-induced endothelial cell aging. However, MnTBAP, but not pifithrin–α, was able to limit superoxide generation and to rescue the respiratory complex II activity. Furthermore, MnTBAP was not modulating p53 up-regulation, suggesting that IR-induced senescence in quiescent endothelial cells is provided by at least 2 different pathways dependent of the mitochondrial oxidative stress response and the p53 activation. Further characterization of the actors involved in the respiratory complex II dysfunction will open new pharmacological strategies to modulate late radiation toxicity.
[Display omitted]
•Ionizing radiation induces long-term senescence in non-proliferating endothelial cells.•Apoptosis inhibition by Sphingosine 1-phosphate does not modulate senescence.•p53 activity, mitochondrial superoxide generation and loss of respiratory complex II activity are observed during senescence.•Superoxide dismutase mimetic or pharmacological inhibition of p53 activation prevents senescence.•SOD mimetic, but not p53 inhibition, blocks superoxide generation and revert respiratory complex II dysfunction. Ionizing radiation causes oxidative stress, leading to acute and late cellular responses. We previously demonstrated that irradiation of non-proliferating endothelial cells, as observed in normal tissues, induces early apoptosis, which can be inhibited by pretreatment with Sphingosine-1-Phosphate. We now propose to better characterize the long-term radiation response of endothelial cells by studying the molecular pathways associated with senescence and its link with acute apoptosis. First, senescence was validated in irradiated quiescent microvascular HMVEC-L in a dose- and time-dependent manner by SA β-galactosidase staining, p16Ink4a and p21Waf1 expression, pro-inflammatory IL-8 secretion and DNA damage responseactivation. This premature aging was induced independently of Sphingosine 1-Phosphate treatment, supporting its non-connection with acute IR-induced apoptosis. Then, senescence under these conditions showed persistent activation of p53 pathway and mitochondrial dysfunctions, characterized by O2●- generation, inhibition of respiratory complex II activity andover-expression of SOD2 and GPX1 detoxification enzymes. Senescence was significantly inhibited by treatment with pifithrin–α, a p53 inhibitor, or by MnTBAP, a superoxide dismutase mimetic, validating those molecular actors in IR-induced endothelial cell aging. However, MnTBAP, but not pifithrin–α, was able to limit superoxide generation and to rescue the respiratory complex II activity. Furthermore, MnTBAP was not modulating p53 up-regulation, suggesting that IR-induced senescence in quiescent endothelial cells is provided by at least 2 different pathways dependent of the mitochondrial oxidative stress response and the p53 activation. Further characterization of the actors involved in the respiratory complex II dysfunction will open new pharmacological strategies to modulate late radiation toxicity. Ionizing radiation causes oxidative stress, leading to acute and late cellular responses. We previously demonstrated that irradiation of non-proliferating endothelial cells, as observed in normal tissues, induces early apoptosis, which can be inhibited by pretreatment with Sphingosine-1-Phosphate. We now propose to better characterize the long-term radiation response of endothelial cells by studying the molecular pathways associated with senescence and its link with acute apoptosis. First, senescence was validated in irradiated quiescent microvascular HMVEC-L in a dose- and time-dependent manner by SA β-galactosidase staining, p16Ink4a and p21Waf1 expression, pro-inflammatory IL-8 secretion and DNA damage response activation. This premature aging was induced independently of Sphingosine 1-Phosphate treatment, supporting its non-connection with acute IR-induced apoptosis. Then, senescence under these conditions showed persistent activation of p53 pathway and mitochondrial dysfunctions, characterized by O2·- generation, inhibition of respiratory complex II activity and over-expression of SOD2 and GPX1 detoxification enzymes. Senescence was significantly inhibited by treatment with pifithrin-α, a p53 inhibitor, or by MnTBAP, a superoxide dismutase mimetic, validating those molecular actors in IR-induced endothelial cell aging. However, MnTBAP, but not pifithrin-α, was able to limit superoxide generation and to rescue the respiratory complex II activity. Furthermore, MnTBAP was not modulating p53 up-regulation, suggesting that IR-induced senescence in quiescent endothelial cells is provided by at least 2 different pathways dependent of the mitochondrial oxidative stress response and the p53 activation. Further characterization of the actors involved in the respiratory complex II dysfunction will open new pharmacological strategies to modulate late radiation toxicity.Ionizing radiation causes oxidative stress, leading to acute and late cellular responses. We previously demonstrated that irradiation of non-proliferating endothelial cells, as observed in normal tissues, induces early apoptosis, which can be inhibited by pretreatment with Sphingosine-1-Phosphate. We now propose to better characterize the long-term radiation response of endothelial cells by studying the molecular pathways associated with senescence and its link with acute apoptosis. First, senescence was validated in irradiated quiescent microvascular HMVEC-L in a dose- and time-dependent manner by SA β-galactosidase staining, p16Ink4a and p21Waf1 expression, pro-inflammatory IL-8 secretion and DNA damage response activation. This premature aging was induced independently of Sphingosine 1-Phosphate treatment, supporting its non-connection with acute IR-induced apoptosis. Then, senescence under these conditions showed persistent activation of p53 pathway and mitochondrial dysfunctions, characterized by O2·- generation, inhibition of respiratory complex II activity and over-expression of SOD2 and GPX1 detoxification enzymes. Senescence was significantly inhibited by treatment with pifithrin-α, a p53 inhibitor, or by MnTBAP, a superoxide dismutase mimetic, validating those molecular actors in IR-induced endothelial cell aging. However, MnTBAP, but not pifithrin-α, was able to limit superoxide generation and to rescue the respiratory complex II activity. Furthermore, MnTBAP was not modulating p53 up-regulation, suggesting that IR-induced senescence in quiescent endothelial cells is provided by at least 2 different pathways dependent of the mitochondrial oxidative stress response and the p53 activation. Further characterization of the actors involved in the respiratory complex II dysfunction will open new pharmacological strategies to modulate late radiation toxicity. Ionizing radiation causes oxidative stress, leading to acute and late cellular responses. We previously demonstrated that irradiation of non-proliferating endothelial cells, as observed in normal tissues, induces early apoptosis, which can be inhibited by pretreatment with Sphingosine-1-Phosphate. We now propose to better characterize the long-term radiation response of endothelial cells by studying the molecular pathways associated with senescence and its link with acute apoptosis. First, senescence was validated in irradiated quiescent microvascular HMVEC-L in a dose- and time-dependent manner by SA β-galactosidase staining, p16 and p21 expression, pro-inflammatory IL-8 secretion and DNA damage response activation. This premature aging was induced independently of Sphingosine 1-Phosphate treatment, supporting its non-connection with acute IR-induced apoptosis. Then, senescence under these conditions showed persistent activation of p53 pathway and mitochondrial dysfunctions, characterized by O2·- generation, inhibition of respiratory complex II activity and over-expression of SOD2 and GPX1 detoxification enzymes. Senescence was significantly inhibited by treatment with pifithrin-α, a p53 inhibitor, or by MnTBAP, a superoxide dismutase mimetic, validating those molecular actors in IR-induced endothelial cell aging. However, MnTBAP, but not pifithrin-α, was able to limit superoxide generation and to rescue the respiratory complex II activity. Furthermore, MnTBAP was not modulating p53 up-regulation, suggesting that IR-induced senescence in quiescent endothelial cells is provided by at least 2 different pathways dependent of the mitochondrial oxidative stress response and the p53 activation. Further characterization of the actors involved in the respiratory complex II dysfunction will open new pharmacological strategies to modulate late radiation toxicity. |
Author | Gaugler, Marie-Hélène Lafargue, Audrey Corre, Isabelle Degorre, Charlotte Paris, François Vallette, François Pecqueur, Claire Alves-Guerra, Marie-Clotilde |
Author_xml | – sequence: 1 givenname: Audrey surname: Lafargue fullname: Lafargue, Audrey organization: CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France – sequence: 2 givenname: Charlotte surname: Degorre fullname: Degorre, Charlotte organization: CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France – sequence: 3 givenname: Isabelle surname: Corre fullname: Corre, Isabelle organization: CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France – sequence: 4 givenname: Marie-Clotilde surname: Alves-Guerra fullname: Alves-Guerra, Marie-Clotilde organization: Inserm UMR1016, Paris F-75014, France – sequence: 5 givenname: Marie-Hélène surname: Gaugler fullname: Gaugler, Marie-Hélène organization: CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France – sequence: 6 givenname: François surname: Vallette fullname: Vallette, François organization: CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France – sequence: 7 givenname: Claire surname: Pecqueur fullname: Pecqueur, Claire organization: CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France – sequence: 8 givenname: François surname: Paris fullname: Paris, François email: francois.paris@inserm.fr organization: CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28431961$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-01514403$$DView record in HAL |
BookMark | eNqNUcFu1DAUtFAR3RZ-AVniwoEEe2MnsTitqkJXWokLnC3Hedl4ldjBdqpuf4TfxdltkeDU0zu8eTNvZq7QhXUWEPpASU4JLT8f8s4DeNU2xo3Q5mtCq5ywnFDxCq1oXRUZ46K8QCtSC5rxmolLdBXCgRDCeFG_QZfrmhVUlHSFfm-dNY_G7nEiNCoaZ7Gx7awh4MHZfRbBjziAhaDBakhLDLZ1sYfBqAFrGIaAY-_dvO_xaKLTvbOtX3YewmS8is4fsXbjNMAD3m5xewzdbPVJStkWh3kC7x5MC3ifdPzpibfodaeGAO-e5jX6-fX2x81dtvv-bXuz2WWaFyJmutGCl1AlM4xpVRNKeFWzilKmyboreFmWdcnLRinepZygXncNB84LSoUQvLhGn868vRrk5M2o_FE6ZeTdZieNDcm9JJRTxkhxTxP84xk-efdrhhDlaMKSgbLg5iBpSpym9EWVoO-foHOTavpL_px9AmzOAO1dCB46qU08mY9emUFSIpe-5UH-07dc-paEpbdE4vjyH8ezzMuub8_XkBK-N-Bl0GZpuTUedJStMy_i-QNtp9Ie |
CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2019_11_012 crossref_primary_10_2174_1874467211666180802164449 crossref_primary_10_1016_j_jtbi_2019_01_007 crossref_primary_10_1186_s13014_021_01764_y crossref_primary_10_1016_j_ijrobp_2019_10_045 crossref_primary_10_1016_j_mrrev_2019_01_001 crossref_primary_10_3389_fmicb_2021_583834 crossref_primary_10_1016_j_mad_2018_05_007 crossref_primary_10_1016_j_lfs_2020_117570 crossref_primary_10_1007_s00432_024_06017_5 crossref_primary_10_1161_ATVBAHA_124_319866 crossref_primary_10_1016_j_bone_2018_12_006 crossref_primary_10_3390_cells13010039 crossref_primary_10_1186_s10020_025_01148_y crossref_primary_10_18632_aging_203202 crossref_primary_10_1016_j_brainresbull_2024_110924 crossref_primary_10_1038_s41598_018_34893_8 crossref_primary_10_1089_ars_2020_8242 crossref_primary_10_3390_ijms24043436 crossref_primary_10_3389_fphar_2021_662437 crossref_primary_10_1007_s00018_018_2956_z crossref_primary_10_1080_09553002_2019_1589654 crossref_primary_10_3389_fonc_2019_00118 crossref_primary_10_1016_j_ijrobp_2021_11_019 crossref_primary_10_1111_acel_13875 crossref_primary_10_1016_j_biopha_2019_109560 crossref_primary_10_1038_s41598_019_50908_4 crossref_primary_10_1007_s11684_024_1116_0 crossref_primary_10_1016_j_heliyon_2024_e38571 crossref_primary_10_1186_s13287_019_1197_x crossref_primary_10_20517_jca_2023_45 crossref_primary_10_3390_cells9102146 crossref_primary_10_1259_bjr_20170762 crossref_primary_10_1016_j_phrs_2020_104745 crossref_primary_10_1016_j_critrevonc_2018_06_012 crossref_primary_10_1038_s41419_020_02922_y crossref_primary_10_3389_fphys_2021_693067 crossref_primary_10_1016_j_bprint_2021_e00178 crossref_primary_10_3390_cells8070686 crossref_primary_10_1016_j_bcp_2018_11_019 crossref_primary_10_1186_s11658_023_00451_y crossref_primary_10_3390_ijms25042269 crossref_primary_10_1039_C9FO01611B crossref_primary_10_3390_ijms241411344 crossref_primary_10_3390_ijms241411460 crossref_primary_10_1186_s12964_025_02067_5 crossref_primary_10_1038_s41467_019_13314_y crossref_primary_10_1177_15353702221116592 crossref_primary_10_1038_s41590_019_0561_4 crossref_primary_10_1016_j_lfs_2023_121976 crossref_primary_10_1038_s41419_018_0634_6 crossref_primary_10_1038_s41598_017_13949_1 crossref_primary_10_18632_aging_101327 crossref_primary_10_1186_s12967_023_04554_0 crossref_primary_10_3390_cancers17010054 crossref_primary_10_1038_s41569_022_00739_0 crossref_primary_10_3390_ijms22179323 crossref_primary_10_3390_toxics10100628 crossref_primary_10_1016_j_etap_2021_103611 crossref_primary_10_3390_cells13060550 crossref_primary_10_1007_s12079_021_00634_2 crossref_primary_10_1080_09553002_2019_1704908 crossref_primary_10_1016_j_biopha_2024_117150 crossref_primary_10_1038_s41574_021_00626_7 crossref_primary_10_3390_ijms21207580 crossref_primary_10_1002_hed_26805 crossref_primary_10_3390_ijms232314786 crossref_primary_10_3389_fcvm_2023_1133315 crossref_primary_10_1016_j_omto_2020_05_008 crossref_primary_10_1089_ars_2017_7453 crossref_primary_10_1016_j_bbadis_2024_167443 crossref_primary_10_3390_ijms18122525 crossref_primary_10_5483_BMBRep_2019_52_1_291 crossref_primary_10_1016_j_bbadis_2022_166352 crossref_primary_10_1093_jnci_djab064 crossref_primary_10_3389_fimmu_2018_01679 crossref_primary_10_3390_ijms21093279 crossref_primary_10_3389_fphar_2020_00268 crossref_primary_10_1016_j_radmp_2020_01_005 crossref_primary_10_1016_j_isci_2021_103685 crossref_primary_10_1002_cbf_3861 crossref_primary_10_3390_proteomes8040030 crossref_primary_10_1016_j_pharmthera_2020_107751 crossref_primary_10_1667_RR14696_1 |
Cites_doi | 10.1073/pnas.92.20.9363 10.18632/oncotarget.6962 10.1161/HYPERTENSIONAHA.111.176701 10.18632/aging.100673 10.3390/ijms141122678 10.1371/journal.pbio.0060301 10.1371/journal.pone.0078589 10.1016/j.freeradbiomed.2012.10.530 10.1038/sj.cdd.4401466 10.1259/bjr/24511652 10.3748/wjg.v13.i22.3047 10.1038/onc.2012.640 10.1242/jcs.01097 10.1007/s11357-016-9922-1 10.1074/jbc.M702294200 10.1016/j.canlet.2011.12.012 10.1074/jbc.M110.125138 10.1016/j.bbabio.2006.03.013 10.1038/bjc.1984.66 10.1126/science.285.5434.1733 10.1111/febs.12086 10.1038/sj.onc.1204101 10.1158/0008-5472.CAN-10-2043 10.1158/0008-5472.CAN-06-2802 10.1074/jbc.M308489200 10.1371/journal.pone.0027811 10.1016/j.radonc.2012.11.014 10.1038/sj.gt.3300580 10.1016/j.cub.2004.12.025 10.1667/RR1423.1 10.1126/science.1060191 10.1038/80442 10.3109/09553002.2014.859763 10.1093/gerona/glt057 10.1126/science.281.5383.1674 10.1016/j.freeradbiomed.2007.07.027 10.1667/0033-7587(2001)156[0232:IOASLP]2.0.CO;2 10.1038/ncb1909 10.1007/s00411-012-0439-4 10.3109/09553002.2012.711502 10.1038/cddis.2015.13 10.1016/j.ijrobp.2010.05.048 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES |
DOI | 10.1016/j.freeradbiomed.2017.04.019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1873-4596 |
EndPage | 759 |
ExternalDocumentID | oai_HAL_inserm_01514403v1 28431961 10_1016_j_freeradbiomed_2017_04_019 S0891584917302228 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .GJ .HR .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HLW HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LCYCR LX3 LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K TEORI WUQ XPP ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 EFKBS 1XC VOOES |
ID | FETCH-LOGICAL-c539t-cbc956e719644ca801057847114c02f356668656baa5f017e82fb5e5531199953 |
IEDL.DBID | AIKHN |
ISSN | 0891-5849 1873-4596 |
IngestDate | Tue Sep 09 06:31:55 EDT 2025 Thu Sep 04 20:57:17 EDT 2025 Wed Feb 19 02:33:18 EST 2025 Thu Apr 24 22:56:44 EDT 2025 Thu Jul 03 08:33:57 EDT 2025 Fri Feb 23 02:23:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mitochondrial oxidative stress Senescence Endothelial cell Ionizing radiation DDR ROS IR SASP O/N mitochondrial oxidative stress endothelial cell ionizing radiation |
Language | English |
License | Copyright © 2017 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c539t-cbc956e719644ca801057847114c02f356668656baa5f017e82fb5e5531199953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7918-1216 0000-0003-2932-9443 0000-0002-7612-1672 0000-0001-6444-1145 0000-0002-0176-7348 |
OpenAccessLink | https://inserm.hal.science/inserm-01514403 |
PMID | 28431961 |
PQID | 1891145997 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_inserm_01514403v1 proquest_miscellaneous_1891145997 pubmed_primary_28431961 crossref_citationtrail_10_1016_j_freeradbiomed_2017_04_019 crossref_primary_10_1016_j_freeradbiomed_2017_04_019 elsevier_sciencedirect_doi_10_1016_j_freeradbiomed_2017_04_019 |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Free radical biology & medicine |
PublicationTitleAlternate | Free Radic Biol Med |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Campisi (bib9) 2000; 14 Yoon, Byun, Cho, Kim, Yoon (bib38) 2003; 278 Choksi, Nuss, Boylston, Rabek, Papaconstantinou (bib40) 2007; 43 Epperly, Bray, Kraeger, Zwacka, Engelhardt, Travis, Greenberger (bib46) 1998; 5 Barjaktarovic, Anastasov, Azimzadeh, Sriharshan, Sarioglu, Ueffing, Tammio, Hakanen, Leszczynski, Atkinson, Tapio (bib16) 2013; 52 Grivennikova, Vinogradov (bib36) 2006; 1757 Coppe, Patil, Rodier, Sun, Munoz, Goldstein, Nelson, Desprez, Campisi (bib10) 2008; 6 Igarashi, Miura (bib14) 2008; 170 Barjaktarovic, Schmaltz, Shyla, Azimzadeh, Schulz, Haagen, Dorr, Sarioglu, Schafer, Atkinson, Zischka, Tapio (bib32) 2011; 6 Moreno-Sanchez, Hernandez-Esquivel, Rivero-Segura, Marin-Hernandez, Neuzil, Ralph, Rodriguez-Enriquez (bib37) 2013; 280 Oh, Bump, Kim, Janigro, Mayberg (bib28) 2001; 156 Banin, Moyal, Shieh, Taya, Anderson, Chessa, Smorodinsky, Prives, Reiss, Shiloh, Ziv (bib35) 1998; 281 Rodier, Coppe, Patil, Hoeijmakers, Munoz, Raza, Freund, Campeau, Davalos, Campisi (bib11) 2009; 11 Bonnaud, Niaudet, Legoux, Corre, Delpon, Saulquin, Fuks, Gaugler, Kolesnick, Paris (bib8) 2010; 70 Gaugler (bib1) 2005; 27 Rufini, Tucci, Celardo, Melino (bib24) 2013; 32 Xu, Yan, Gao, Mao, Cotrim, Zheng, Zhang, Baum, Wang (bib7) 2010; 78 Kim, Kim, Choi, Bae, Kim (bib29) 2014; 90 Azzam, Jay-Gerin, Pain (bib43) 2012; 327 Chakraborty, Rasool, Kumar, Nayak, Rah, Katoch, Amin, Ali, Goswami (bib33) 2016; 38 Hobson, Denekamp (bib18) 1984; 49 Wang, Boerma, Fu, Hauer-Jensen (bib3) 2007; 13 Nistico, Ventrice, Dagostino, Lauro, Ilari, Gliozzi, Colica, Musolino, Carresi, Strongoli, Vecchio, Rizzo, Mollace, Muscoli (bib26) 2013; 27 Morita, Perez, Paris, Miranda, Ehleiter, Haimovitz-Friedman, Fuks, Xie, Reed, Schuchman, Kolesnick, Tilly (bib19) 2000; 6 Zhang, Zhai, Wang, Zhang, Wu, Wang, Li, Li, Lu, Wang, Chang, Hou, Ju, Zhou, Meng (bib42) 2013; 54 Oizel, Gratas, Nadaradjane, Oliver, Vallette, Pecqueur (bib22) 2015; 6 Borodkina, Shatrova, Abushik, Nikolsky, Burova (bib44) 2014; 6 Li, Chen, Haimovitz-Friedman, Reilly, Wong (bib5) 2003; 63 Dimri, Lee, Basile, Acosta, Scott, Roskelley, Medrano, Linskens, Rubelj, Pereira-Smith (bib21) 1995; 92 Bonnaud, Niaudet, Pottier, Gaugler, Millour, Barbet, Sabatier, Paris (bib20) 2007; 67 Lagadic-Gossmann, Huc, Lecureur (bib39) 2004; 11 Zhan, Suzuki, Aizawa, Miyagawa, Nagai (bib13) 2010; 285 Panganiban, Mungunsukh, Day (bib30) 2013; 89 Paris, Fuks, Kang, Capodieci, Juan, Ehleiter, Haimovitz-Friedman, Cordon-Cardo, Kolesnick (bib4) 2001; 293 Komarov, Komarova, Kondratov, Christov-Tselkov, Coon, Chernov, Gudkov (bib25) 1999; 285 Potiron, Abderrahmani, Giang, Chiavassa, Di Tomaso, Maira, Paris, Supiot (bib23) 2013; 106 Panganiban, Day (bib31) 2013; 8 Heo, Kim, Choi, Bae, Jeong, Kim (bib17) 2016; 7 Corre, Guillonneau, Paris (bib2) 2013; 14 Kurz, Decary, Hong, Trivier, Akhmedov, Erusalimsky (bib27) 2004; 117 Jacobs, de Lange (bib34) 2004; 14 Drane, Bravard, Bouvard, May (bib45) 2001; 20 Ungvari, Podlutsky, Sosnowska, Tucsek, Toth, Deak, Gautam, Csiszar, Sonntag (bib15) 2013; 68 Chen, Chen, Pfeiffer, Zweier (bib41) 2007; 282 Pena, Fuks, Kolesnick (bib6) 2000; 60 Uraoka, Ikeda, Kurimoto-Nakano, Nakagawa, Koide, Akakabe, Kitamura, Ueyama, Matoba, Yamada, Okigaki, Matsubara (bib12) 2011; 58 Heo (10.1016/j.freeradbiomed.2017.04.019_bib17) 2016; 7 Zhan (10.1016/j.freeradbiomed.2017.04.019_bib13) 2010; 285 Drane (10.1016/j.freeradbiomed.2017.04.019_bib45) 2001; 20 Coppe (10.1016/j.freeradbiomed.2017.04.019_bib10) 2008; 6 Barjaktarovic (10.1016/j.freeradbiomed.2017.04.019_bib16) 2013; 52 Lagadic-Gossmann (10.1016/j.freeradbiomed.2017.04.019_bib39) 2004; 11 Nistico (10.1016/j.freeradbiomed.2017.04.019_bib26) 2013; 27 Bonnaud (10.1016/j.freeradbiomed.2017.04.019_bib8) 2010; 70 Chen (10.1016/j.freeradbiomed.2017.04.019_bib41) 2007; 282 Borodkina (10.1016/j.freeradbiomed.2017.04.019_bib44) 2014; 6 Jacobs (10.1016/j.freeradbiomed.2017.04.019_bib34) 2004; 14 Epperly (10.1016/j.freeradbiomed.2017.04.019_bib46) 1998; 5 Gaugler (10.1016/j.freeradbiomed.2017.04.019_bib1) 2005; 27 Kurz (10.1016/j.freeradbiomed.2017.04.019_bib27) 2004; 117 Oizel (10.1016/j.freeradbiomed.2017.04.019_bib22) 2015; 6 Oh (10.1016/j.freeradbiomed.2017.04.019_bib28) 2001; 156 Azzam (10.1016/j.freeradbiomed.2017.04.019_bib43) 2012; 327 Banin (10.1016/j.freeradbiomed.2017.04.019_bib35) 1998; 281 Xu (10.1016/j.freeradbiomed.2017.04.019_bib7) 2010; 78 Morita (10.1016/j.freeradbiomed.2017.04.019_bib19) 2000; 6 Dimri (10.1016/j.freeradbiomed.2017.04.019_bib21) 1995; 92 Bonnaud (10.1016/j.freeradbiomed.2017.04.019_bib20) 2007; 67 Rodier (10.1016/j.freeradbiomed.2017.04.019_bib11) 2009; 11 Panganiban (10.1016/j.freeradbiomed.2017.04.019_bib30) 2013; 89 Wang (10.1016/j.freeradbiomed.2017.04.019_bib3) 2007; 13 Choksi (10.1016/j.freeradbiomed.2017.04.019_bib40) 2007; 43 Hobson (10.1016/j.freeradbiomed.2017.04.019_bib18) 1984; 49 Campisi (10.1016/j.freeradbiomed.2017.04.019_bib9) 2000; 14 Ungvari (10.1016/j.freeradbiomed.2017.04.019_bib15) 2013; 68 Grivennikova (10.1016/j.freeradbiomed.2017.04.019_bib36) 2006; 1757 Pena (10.1016/j.freeradbiomed.2017.04.019_bib6) 2000; 60 Yoon (10.1016/j.freeradbiomed.2017.04.019_bib38) 2003; 278 Paris (10.1016/j.freeradbiomed.2017.04.019_bib4) 2001; 293 Igarashi (10.1016/j.freeradbiomed.2017.04.019_bib14) 2008; 170 Uraoka (10.1016/j.freeradbiomed.2017.04.019_bib12) 2011; 58 Zhang (10.1016/j.freeradbiomed.2017.04.019_bib42) 2013; 54 Panganiban (10.1016/j.freeradbiomed.2017.04.019_bib31) 2013; 8 Corre (10.1016/j.freeradbiomed.2017.04.019_bib2) 2013; 14 Rufini (10.1016/j.freeradbiomed.2017.04.019_bib24) 2013; 32 Barjaktarovic (10.1016/j.freeradbiomed.2017.04.019_bib32) 2011; 6 Potiron (10.1016/j.freeradbiomed.2017.04.019_bib23) 2013; 106 Kim (10.1016/j.freeradbiomed.2017.04.019_bib29) 2014; 90 Chakraborty (10.1016/j.freeradbiomed.2017.04.019_bib33) 2016; 38 Moreno-Sanchez (10.1016/j.freeradbiomed.2017.04.019_bib37) 2013; 280 Komarov (10.1016/j.freeradbiomed.2017.04.019_bib25) 1999; 285 Li (10.1016/j.freeradbiomed.2017.04.019_bib5) 2003; 63 |
References_xml | – volume: 278 start-page: 51577 year: 2003 end-page: 51586 ident: bib38 article-title: Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest publication-title: J. Biol. Chem. – volume: 38 start-page: 62 year: 2016 ident: bib33 article-title: Cristacarpin promotes ER stress-mediated ROS generation leading to premature senescence by activation of p21(waf-1) publication-title: Age (Dordr.) – volume: 14 start-page: 183 year: 2000 end-page: 188 ident: bib9 article-title: Cancer, aging and cellular senescence publication-title: Vivo – volume: 6 start-page: 1109 year: 2000 end-page: 1114 ident: bib19 article-title: Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy publication-title: Nat. Med. – volume: 58 start-page: 254 year: 2011 end-page: 263 ident: bib12 article-title: Loss of bcl-2 during the senescence exacerbates the impaired angiogenic functions in endothelial cells by deteriorating the mitochondrial redox state publication-title: Hypertension – volume: 63 start-page: 5950 year: 2003 end-page: 5956 ident: bib5 article-title: Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation publication-title: Cancer Res – volume: 6 start-page: 481 year: 2014 end-page: 495 ident: bib44 article-title: Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells publication-title: Aging (Albany NY) – volume: 7 start-page: 5118 year: 2016 end-page: 5130 ident: bib17 article-title: XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence publication-title: Oncotarget – volume: 14 start-page: 2302 year: 2004 end-page: 2308 ident: bib34 article-title: Significant role for p16INK4a in p53-independent telomere-directed senescence publication-title: Curr. Biol. – volume: 1757 start-page: 553 year: 2006 end-page: 561 ident: bib36 article-title: Generation of superoxide by the mitochondrial complex I publication-title: Biochim Biophys. Acta – volume: 11 start-page: 973 year: 2009 end-page: 979 ident: bib11 article-title: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion publication-title: Nat. Cell Biol. – volume: 92 start-page: 9363 year: 1995 end-page: 9367 ident: bib21 article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo publication-title: Proc. Natl. Acad. Sci. USA – volume: 281 start-page: 1674 year: 1998 end-page: 1677 ident: bib35 article-title: Enhanced phosphorylation of p53 by ATM in response to DNA damage publication-title: Science – volume: 6 start-page: 2853 year: 2008 end-page: 2868 ident: bib10 article-title: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor publication-title: PLoS Biol. – volume: 32 start-page: 5129 year: 2013 end-page: 5143 ident: bib24 article-title: Senescence and aging: the critical roles of p53 publication-title: Oncogene – volume: 117 start-page: 2417 year: 2004 end-page: 2426 ident: bib27 article-title: Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells publication-title: J. Cell Sci. – volume: 89 start-page: 656 year: 2013 end-page: 667 ident: bib30 article-title: X-irradiation induces ER stress, apoptosis, and senescence in pulmonary artery endothelial cells publication-title: Int J. Radiat. Biol. – volume: 285 start-page: 1733 year: 1999 end-page: 1737 ident: bib25 article-title: A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy publication-title: Science – volume: 20 start-page: 430 year: 2001 end-page: 439 ident: bib45 article-title: Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis publication-title: Oncogene – volume: 293 start-page: 293 year: 2001 end-page: 297 ident: bib4 article-title: Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice publication-title: Science – volume: 6 start-page: e27811 year: 2011 ident: bib32 article-title: Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays publication-title: PLoS One – volume: 52 start-page: 87 year: 2013 end-page: 98 ident: bib16 article-title: Integrative proteomic and microRNA analysis of primary human coronary artery endothelial cells exposed to low-dose gamma radiation publication-title: Radiat. Environ. Biophys. – volume: 8 start-page: e78589 year: 2013 ident: bib31 article-title: Inhibition of IGF-1R prevents ionizing radiation-induced primary endothelial cell senescence publication-title: PLoS One – volume: 54 start-page: 40 year: 2013 end-page: 50 ident: bib42 article-title: Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice publication-title: Free Radic. Biol. Med. – volume: 70 start-page: 9905 year: 2010 end-page: 9915 ident: bib8 article-title: Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis publication-title: Cancer Res. – volume: 327 start-page: 48 year: 2012 end-page: 60 ident: bib43 article-title: Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury publication-title: Cancer Lett. – volume: 13 start-page: 3047 year: 2007 end-page: 3055 ident: bib3 article-title: Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy publication-title: World J. Gastroenterol. – volume: 106 start-page: 138 year: 2013 end-page: 146 ident: bib23 article-title: Radiosensitization of prostate cancer cells by the dual PI3K/mTOR inhibitor BEZ235 under normoxic and hypoxic conditions publication-title: Radiother. Oncol. – volume: 90 start-page: 71 year: 2014 end-page: 80 ident: bib29 article-title: Characterization of DNA damage-induced cellular senescence by ionizing radiation in endothelial cells publication-title: Int J. Radiat. Biol. – volume: 5 start-page: 196 year: 1998 end-page: 208 ident: bib46 article-title: Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy publication-title: Gene Ther. – volume: 78 start-page: 897 year: 2010 end-page: 903 ident: bib7 article-title: Effect of irradiation on microvascular endothelial cells of parotid glands in the miniature pig publication-title: Int J. Radiat. Oncol. Biol. Phys. – volume: 68 start-page: 1443 year: 2013 end-page: 1457 ident: bib15 article-title: Ionizing radiation promotes the acquisition of a senescence-associated secretory phenotype and impairs angiogenic capacity in cerebromicrovascular endothelial cells: role of increased DNA damage and decreased DNA repair capacity in microvascular radiosensitivity publication-title: J. Gerontol. A Biol. Sci. Med Sci. – volume: 49 start-page: 405 year: 1984 end-page: 413 ident: bib18 article-title: Endothelial proliferation in tumours and normal tissues: continuous labelling studies publication-title: Br. J. Cancer – volume: 285 start-page: 29662 year: 2010 end-page: 29670 ident: bib13 article-title: Ataxia telangiectasia mutated (ATM)-mediated DNA damage response in oxidative stress-induced vascular endothelial cell senescence publication-title: J. Biol. Chem. – volume: 282 start-page: 32640 year: 2007 end-page: 32654 ident: bib41 article-title: Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation publication-title: J. Biol. Chem. – volume: 14 start-page: 22678 year: 2013 end-page: 22696 ident: bib2 article-title: Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity publication-title: Int J. Mol. Sci. – volume: 170 start-page: 534 year: 2008 end-page: 539 ident: bib14 article-title: Inhibition of a radiation-induced senescence-like phenotype: a possible mechanism for potentially lethal damage repair in vascular endothelial cells publication-title: Radiat. Res. – volume: 6 start-page: e1704 year: 2015 ident: bib22 article-title: D-2-Hydroxyglutarate does not mimic all the IDH mutation effects, in particular the reduced etoposide-triggered apoptosis mediated by an alteration in mitochondrial NADH publication-title: Cell Death Dis. – volume: 11 start-page: 953 year: 2004 end-page: 961 ident: bib39 article-title: Alterations of intracellular pH homeostasis in apoptosis: origins and roles publication-title: Cell Death Differ. – volume: 280 start-page: 927 year: 2013 end-page: 938 ident: bib37 article-title: Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I publication-title: Febs J. – volume: 27 start-page: 781 year: 2013 end-page: 790 ident: bib26 article-title: Effect of MN (III) tetrakis (4-benzoic acid) porphyrin by photodynamically generated free radicals on SODs keratinocytes publication-title: J. Biol. Regul. Homeost. Agents – volume: 156 start-page: 232 year: 2001 end-page: 240 ident: bib28 article-title: Induction of a senescence-like phenotype in bovine aortic endothelial cells by ionizing radiation publication-title: Radiat. Res. – volume: 43 start-page: 1423 year: 2007 end-page: 1438 ident: bib40 article-title: Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes publication-title: Free Radic. Biol. Med – volume: 60 start-page: 321 year: 2000 end-page: 327 ident: bib6 article-title: Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency publication-title: Cancer Res. – volume: 27 start-page: 100 year: 2005 end-page: 105 ident: bib1 article-title: A unifying system: does the vascular endothelium have a role to play in multi-organ failure following radiation exposure? publication-title: BJR Suppl. – volume: 67 start-page: 1803 year: 2007 end-page: 1811 ident: bib20 article-title: Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death publication-title: Cancer Res. – volume: 92 start-page: 9363 issue: 20 year: 1995 ident: 10.1016/j.freeradbiomed.2017.04.019_bib21 article-title: A biomarker that identifies senescent human cells in culture and in aging skin in vivo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.20.9363 – volume: 7 start-page: 5118 issue: 5 year: 2016 ident: 10.1016/j.freeradbiomed.2017.04.019_bib17 article-title: XIAP-associating factor 1, a transcriptional target of BRD7, contributes to endothelial cell senescence publication-title: Oncotarget doi: 10.18632/oncotarget.6962 – volume: 58 start-page: 254 issue: 2 year: 2011 ident: 10.1016/j.freeradbiomed.2017.04.019_bib12 article-title: Loss of bcl-2 during the senescence exacerbates the impaired angiogenic functions in endothelial cells by deteriorating the mitochondrial redox state publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.111.176701 – volume: 6 start-page: 481 issue: 6 year: 2014 ident: 10.1016/j.freeradbiomed.2017.04.019_bib44 article-title: Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells publication-title: Aging (Albany NY) doi: 10.18632/aging.100673 – volume: 14 start-page: 22678 issue: 11 year: 2013 ident: 10.1016/j.freeradbiomed.2017.04.019_bib2 article-title: Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity publication-title: Int J. Mol. Sci. doi: 10.3390/ijms141122678 – volume: 6 start-page: 2853 issue: 12 year: 2008 ident: 10.1016/j.freeradbiomed.2017.04.019_bib10 article-title: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060301 – volume: 8 start-page: e78589 issue: 10 year: 2013 ident: 10.1016/j.freeradbiomed.2017.04.019_bib31 article-title: Inhibition of IGF-1R prevents ionizing radiation-induced primary endothelial cell senescence publication-title: PLoS One doi: 10.1371/journal.pone.0078589 – volume: 54 start-page: 40 year: 2013 ident: 10.1016/j.freeradbiomed.2017.04.019_bib42 article-title: Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.10.530 – volume: 11 start-page: 953 issue: 9 year: 2004 ident: 10.1016/j.freeradbiomed.2017.04.019_bib39 article-title: Alterations of intracellular pH homeostasis in apoptosis: origins and roles publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401466 – volume: 27 start-page: 100 year: 2005 ident: 10.1016/j.freeradbiomed.2017.04.019_bib1 article-title: A unifying system: does the vascular endothelium have a role to play in multi-organ failure following radiation exposure? publication-title: BJR Suppl. doi: 10.1259/bjr/24511652 – volume: 13 start-page: 3047 issue: 22 year: 2007 ident: 10.1016/j.freeradbiomed.2017.04.019_bib3 article-title: Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v13.i22.3047 – volume: 32 start-page: 5129 issue: 43 year: 2013 ident: 10.1016/j.freeradbiomed.2017.04.019_bib24 article-title: Senescence and aging: the critical roles of p53 publication-title: Oncogene doi: 10.1038/onc.2012.640 – volume: 117 start-page: 2417 issue: Pt 11 year: 2004 ident: 10.1016/j.freeradbiomed.2017.04.019_bib27 article-title: Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells publication-title: J. Cell Sci. doi: 10.1242/jcs.01097 – volume: 38 start-page: 62 issue: 3 year: 2016 ident: 10.1016/j.freeradbiomed.2017.04.019_bib33 article-title: Cristacarpin promotes ER stress-mediated ROS generation leading to premature senescence by activation of p21(waf-1) publication-title: Age (Dordr.) doi: 10.1007/s11357-016-9922-1 – volume: 282 start-page: 32640 issue: 45 year: 2007 ident: 10.1016/j.freeradbiomed.2017.04.019_bib41 article-title: Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702294200 – volume: 327 start-page: 48 issue: 1–2 year: 2012 ident: 10.1016/j.freeradbiomed.2017.04.019_bib43 article-title: Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury publication-title: Cancer Lett. doi: 10.1016/j.canlet.2011.12.012 – volume: 14 start-page: 183 issue: 1 year: 2000 ident: 10.1016/j.freeradbiomed.2017.04.019_bib9 article-title: Cancer, aging and cellular senescence publication-title: Vivo – volume: 285 start-page: 29662 issue: 38 year: 2010 ident: 10.1016/j.freeradbiomed.2017.04.019_bib13 article-title: Ataxia telangiectasia mutated (ATM)-mediated DNA damage response in oxidative stress-induced vascular endothelial cell senescence publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.125138 – volume: 1757 start-page: 553 issue: 5–6 year: 2006 ident: 10.1016/j.freeradbiomed.2017.04.019_bib36 article-title: Generation of superoxide by the mitochondrial complex I publication-title: Biochim Biophys. Acta doi: 10.1016/j.bbabio.2006.03.013 – volume: 27 start-page: 781 issue: 3 year: 2013 ident: 10.1016/j.freeradbiomed.2017.04.019_bib26 article-title: Effect of MN (III) tetrakis (4-benzoic acid) porphyrin by photodynamically generated free radicals on SODs keratinocytes publication-title: J. Biol. Regul. Homeost. Agents – volume: 60 start-page: 321 issue: 2 year: 2000 ident: 10.1016/j.freeradbiomed.2017.04.019_bib6 article-title: Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency publication-title: Cancer Res. – volume: 49 start-page: 405 issue: 4 year: 1984 ident: 10.1016/j.freeradbiomed.2017.04.019_bib18 article-title: Endothelial proliferation in tumours and normal tissues: continuous labelling studies publication-title: Br. J. Cancer doi: 10.1038/bjc.1984.66 – volume: 285 start-page: 1733 issue: 5434 year: 1999 ident: 10.1016/j.freeradbiomed.2017.04.019_bib25 article-title: A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy publication-title: Science doi: 10.1126/science.285.5434.1733 – volume: 280 start-page: 927 issue: 3 year: 2013 ident: 10.1016/j.freeradbiomed.2017.04.019_bib37 article-title: Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I publication-title: Febs J. doi: 10.1111/febs.12086 – volume: 20 start-page: 430 issue: 4 year: 2001 ident: 10.1016/j.freeradbiomed.2017.04.019_bib45 article-title: Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis publication-title: Oncogene doi: 10.1038/sj.onc.1204101 – volume: 70 start-page: 9905 issue: 23 year: 2010 ident: 10.1016/j.freeradbiomed.2017.04.019_bib8 article-title: Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2043 – volume: 63 start-page: 5950 issue: 18 year: 2003 ident: 10.1016/j.freeradbiomed.2017.04.019_bib5 article-title: Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation publication-title: Cancer Res – volume: 67 start-page: 1803 issue: 4 year: 2007 ident: 10.1016/j.freeradbiomed.2017.04.019_bib20 article-title: Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-2802 – volume: 278 start-page: 51577 issue: 51 year: 2003 ident: 10.1016/j.freeradbiomed.2017.04.019_bib38 article-title: Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308489200 – volume: 6 start-page: e27811 issue: 12 year: 2011 ident: 10.1016/j.freeradbiomed.2017.04.019_bib32 article-title: Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays publication-title: PLoS One doi: 10.1371/journal.pone.0027811 – volume: 106 start-page: 138 issue: 1 year: 2013 ident: 10.1016/j.freeradbiomed.2017.04.019_bib23 article-title: Radiosensitization of prostate cancer cells by the dual PI3K/mTOR inhibitor BEZ235 under normoxic and hypoxic conditions publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2012.11.014 – volume: 5 start-page: 196 issue: 2 year: 1998 ident: 10.1016/j.freeradbiomed.2017.04.019_bib46 article-title: Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy publication-title: Gene Ther. doi: 10.1038/sj.gt.3300580 – volume: 14 start-page: 2302 issue: 24 year: 2004 ident: 10.1016/j.freeradbiomed.2017.04.019_bib34 article-title: Significant role for p16INK4a in p53-independent telomere-directed senescence publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.12.025 – volume: 170 start-page: 534 issue: 4 year: 2008 ident: 10.1016/j.freeradbiomed.2017.04.019_bib14 article-title: Inhibition of a radiation-induced senescence-like phenotype: a possible mechanism for potentially lethal damage repair in vascular endothelial cells publication-title: Radiat. Res. doi: 10.1667/RR1423.1 – volume: 293 start-page: 293 issue: 5528 year: 2001 ident: 10.1016/j.freeradbiomed.2017.04.019_bib4 article-title: Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice publication-title: Science doi: 10.1126/science.1060191 – volume: 6 start-page: 1109 issue: 10 year: 2000 ident: 10.1016/j.freeradbiomed.2017.04.019_bib19 article-title: Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy publication-title: Nat. Med. doi: 10.1038/80442 – volume: 90 start-page: 71 issue: 1 year: 2014 ident: 10.1016/j.freeradbiomed.2017.04.019_bib29 article-title: Characterization of DNA damage-induced cellular senescence by ionizing radiation in endothelial cells publication-title: Int J. Radiat. Biol. doi: 10.3109/09553002.2014.859763 – volume: 68 start-page: 1443 issue: 12 year: 2013 ident: 10.1016/j.freeradbiomed.2017.04.019_bib15 publication-title: J. Gerontol. A Biol. Sci. Med Sci. doi: 10.1093/gerona/glt057 – volume: 281 start-page: 1674 issue: 5383 year: 1998 ident: 10.1016/j.freeradbiomed.2017.04.019_bib35 article-title: Enhanced phosphorylation of p53 by ATM in response to DNA damage publication-title: Science doi: 10.1126/science.281.5383.1674 – volume: 43 start-page: 1423 issue: 10 year: 2007 ident: 10.1016/j.freeradbiomed.2017.04.019_bib40 article-title: Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes publication-title: Free Radic. Biol. Med doi: 10.1016/j.freeradbiomed.2007.07.027 – volume: 156 start-page: 232 issue: 3 year: 2001 ident: 10.1016/j.freeradbiomed.2017.04.019_bib28 article-title: Induction of a senescence-like phenotype in bovine aortic endothelial cells by ionizing radiation publication-title: Radiat. Res. doi: 10.1667/0033-7587(2001)156[0232:IOASLP]2.0.CO;2 – volume: 11 start-page: 973 issue: 8 year: 2009 ident: 10.1016/j.freeradbiomed.2017.04.019_bib11 article-title: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion publication-title: Nat. Cell Biol. doi: 10.1038/ncb1909 – volume: 52 start-page: 87 issue: 1 year: 2013 ident: 10.1016/j.freeradbiomed.2017.04.019_bib16 article-title: Integrative proteomic and microRNA analysis of primary human coronary artery endothelial cells exposed to low-dose gamma radiation publication-title: Radiat. Environ. Biophys. doi: 10.1007/s00411-012-0439-4 – volume: 89 start-page: 656 issue: 8 year: 2013 ident: 10.1016/j.freeradbiomed.2017.04.019_bib30 article-title: X-irradiation induces ER stress, apoptosis, and senescence in pulmonary artery endothelial cells publication-title: Int J. Radiat. Biol. doi: 10.3109/09553002.2012.711502 – volume: 6 start-page: e1704 year: 2015 ident: 10.1016/j.freeradbiomed.2017.04.019_bib22 article-title: D-2-Hydroxyglutarate does not mimic all the IDH mutation effects, in particular the reduced etoposide-triggered apoptosis mediated by an alteration in mitochondrial NADH publication-title: Cell Death Dis. doi: 10.1038/cddis.2015.13 – volume: 78 start-page: 897 issue: 3 year: 2010 ident: 10.1016/j.freeradbiomed.2017.04.019_bib7 article-title: Effect of irradiation on microvascular endothelial cells of parotid glands in the miniature pig publication-title: Int J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2010.05.048 |
SSID | ssj0004538 |
Score | 2.547693 |
Snippet | Ionizing radiation causes oxidative stress, leading to acute and late cellular responses. We previously demonstrated that irradiation of non-proliferating... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 750 |
SubjectTerms | Apoptosis Cancer Cell Line Cellular Senescence Electron Transport Complex II - metabolism Endothelial cell Endothelial Cells - physiology Endothelial Cells - radiation effects Humans Interleukin-8 - metabolism Ionizing radiation Life Sciences Lysophospholipids - metabolism Microvessels - pathology Mitochondria - metabolism Mitochondrial oxidative stress Oxidative Stress Radiation, Ionizing Senescence Sphingosine - analogs & derivatives Sphingosine - metabolism Superoxide Dismutase - metabolism Superoxides - metabolism Tumor Suppressor Protein p53 - metabolism |
Title | Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation |
URI | https://dx.doi.org/10.1016/j.freeradbiomed.2017.04.019 https://www.ncbi.nlm.nih.gov/pubmed/28431961 https://www.proquest.com/docview/1891145997 https://inserm.hal.science/inserm-01514403 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5aO4F4QbBxKZfJiMubaZ3EacwDUjUxtYD2ApP2ZjmOsxW17tS0aOWBv8Hf5Rwn6ZgE0iQek9hJ5PP5XOzj7wC8Qh8-LWMR8VIoxZPcSK5SFXFhI5FLp0yRB7bP43R8knw8lac7cNiehaG0ykb31zo9aOvmTr8Zzf7FdNr_MsiUQPOJ8UZMUUvWgd0IrX3Whd3R5NP4-A_S8FDQmtpz6nAbXl6leZVL52jXOhx2p1SvYaA-JeadvxuqzjllTP7LHQ1m6ege3G38STaqf_k-7Di_B_sjj7H0fMPesJDhGZbO9-BWXXhysw-_JjiVf6DVYkviJiDhMAzOUcwVmy38GSeFzSrSg5aGBB8y5ws6rTVDwDJa7q9YU-OHzVEroBb1BYGZLa8271lIWHeXbDJhxaYiGxo-ZXzBqjVRlF9OC8fOAvU1PXkAJ0cfvh6OeVOigVsZqxW3ucUAyw2J1iuxJqN6m0MyeCKxg6iM0VlMM3QZc2NkiWPrsqhECEic-cR_IOOH0PUL7x4Ds8pg7yyy2DxReYqOtDEYcGUlgqkwgx68a-WhbcNfTmU0ZrpNVPumrwlTkzD1INEozB4k284XNY3Hzbq9bwWvr6FSo8G52QteI1y2nyQu7_Hos5561C9zbCBpbz3-LnrwogWUxvlNUjTeLdaVFohakUilhj14VCNt-zp0LUiDiif_-5tP4Q5d1WnIz6C7Wq7dc3S2VvkBdN7-FAfNlPoN_0Usvw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbaFHtciq3dI-seGva4GYn8irXDgKBYYa9ZLmuB3gRZlrsMiVLEydDsj_TvlpTtdAU2oMCulmQbIvWRlKiPAO_Rh4_LgPteyYXwwlxFnoiF73Ht8zwyQhW5Y_scx-lp-PUsOtuCw_YuDKVVNthfY7pD6-ZJr5nN3sVk0vveTwRH84nxRkBRS7INOyEVte7AzjA7Tsd_kIa7gtbU36MB9-HdTZpXuTCGTq3dZXdK9Ro46lNi3vm7odr-QRmT_3JHnVk6egS7jT_JhvUvP4YtY_dgf2gxlp6t2UfmMjzd1vke3KsLT6734SrDpfwbrRZbEDcBCYdhcI5irth0bs89AmxWEQ5qmhJsZMYWdFtrigrLaLu_Yk2NHzZDVEAUtQUpM1vcHN4zl7BuLlmWsWJdkQ11n1K2YNWKKMovJ4Vh5476mlqewOnRl5PD1GtKNHg6CsTS07nGAMsMiNYr1CqhepsDMng81H2_DNBZjBN0GXOlohLn1iR-iSoQ4con_oMoeAodO7fmOTAtFI5OfI3dQ5HH6EgrhQFXUqIyFarfhU-tPKRu-MupjMZUtolqP-UtYUoSpuyHEoXZhXAz-KKm8bjbsM-t4OUtrZRocO72gg-oLptPEpd3OhzJiUV8mWGHiM7Wg1-8C29bhZK4vkmKypr5qpIctZaHkRCDLjyrNW3zOnQtCEH5i__9zTfwID35NpKjbHx8AA-ppU5Jfgmd5WJlXqHjtcxfNwvrGhBPLqU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionizing+radiation+induces+long-term+senescence+in+endothelial+cells+through+mitochondrial+respiratory+complex+II+dysfunction+and+superoxide+generation&rft.jtitle=Free+radical+biology+%26+medicine&rft.au=Lafargue%2C+Audrey&rft.au=Degorre%2C+Charlotte&rft.au=Corre%2C+Isabelle&rft.au=Alves-Guerra%2C+Marie-Clotilde&rft.date=2017-07-01&rft.pub=Elsevier+Inc&rft.issn=0891-5849&rft.eissn=1873-4596&rft.volume=108&rft.spage=750&rft.epage=759&rft_id=info:doi/10.1016%2Fj.freeradbiomed.2017.04.019&rft.externalDocID=S0891584917302228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0891-5849&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0891-5849&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0891-5849&client=summon |