Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men

The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 108; no. 5; pp. 1199 - 1209
Main Authors Fry, Christopher S., Glynn, Erin L., Drummond, Micah J., Timmerman, Kyle L., Fujita, Satoshi, Abe, Takashi, Dhanani, Shaheen, Volpi, Elena, Rasmussen, Blake B.
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Physiological Society 01.05.2010
Subjects
Online AccessGet full text
ISSN8750-7587
1522-1601
1522-1601
DOI10.1152/japplphysiol.01266.2009

Cover

Abstract The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70 ± 2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise ( P < 0.05), while no change was observed in the Ctrl group ( P > 0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise ( P < 0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia.
AbstractList The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70 ± 2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise ( P < 0.05), while no change was observed in the Ctrl group ( P > 0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise ( P < 0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia.
The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70 ± 2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (P < 0.05), while no change was observed in the Ctrl group (P > 0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (P < 0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia. [PUBLICATION ABSTRACT]
The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70+/-2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (P<0.05), while no change was observed in the Ctrl group (P>0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (P<0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia.The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70+/-2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (P<0.05), while no change was observed in the Ctrl group (P>0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (P<0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia.
The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70 ± 2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise ( P < 0.05), while no change was observed in the Ctrl group ( P > 0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise ( P < 0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia.
The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70+/-2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (P<0.05), while no change was observed in the Ctrl group (P>0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (P<0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia.
Author Timmerman, Kyle L.
Glynn, Erin L.
Fujita, Satoshi
Abe, Takashi
Drummond, Micah J.
Dhanani, Shaheen
Fry, Christopher S.
Volpi, Elena
Rasmussen, Blake B.
Author_xml – sequence: 1
  givenname: Christopher S.
  surname: Fry
  fullname: Fry, Christopher S.
  organization: Division of Rehabilitation Sciences
– sequence: 2
  givenname: Erin L.
  surname: Glynn
  fullname: Glynn, Erin L.
  organization: Division of Rehabilitation Sciences
– sequence: 3
  givenname: Micah J.
  surname: Drummond
  fullname: Drummond, Micah J.
  organization: Division of Rehabilitation Sciences,, Departments of 2Physical Therapy and, Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas; and
– sequence: 4
  givenname: Kyle L.
  surname: Timmerman
  fullname: Timmerman, Kyle L.
  organization: Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas; and
– sequence: 5
  givenname: Satoshi
  surname: Fujita
  fullname: Fujita, Satoshi
  organization: Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
– sequence: 6
  givenname: Takashi
  surname: Abe
  fullname: Abe, Takashi
  organization: Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
– sequence: 7
  givenname: Shaheen
  surname: Dhanani
  fullname: Dhanani, Shaheen
  organization: Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas; and
– sequence: 8
  givenname: Elena
  surname: Volpi
  fullname: Volpi, Elena
  organization: Internal Medicine,, Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas; and
– sequence: 9
  givenname: Blake B.
  surname: Rasmussen
  fullname: Rasmussen, Blake B.
  organization: Division of Rehabilitation Sciences,, Departments of 2Physical Therapy and, Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas; and
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22763683$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20150565$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1vFCEUhompsdvqX1BiYrzalY-BmbnQxG78Spo0MfWasHBmlw0DI8yo--_L2LXW3nhF4Dzv4fDynqGTEAMg9IKSFaWCvdnrYfDD7pBd9CtCmZQrRkj7CC1KlS2pJPQELZpakGUtmvoUneW8J4RWlaBP0CkjVBAhxQLBhY_R4s7HnzhBHpMzo4sBwy9IxmXAeXT95PUIGffXV1_XFGe3Ddq7sMU6WNxP2XjAQ4ojuIDzIYw7yC7jsoneQsI9hKfocad9hmfH9Rx9-_jhev15eXn16cv6_eXSCN6Oy03TNVDBhslN1xJbga26tp0PLSlPMp1oRdsQEEJbwgGaStesYxVAZaWtJD9H7277DtOmB2sgjEl7NSTX63RQUTv1byW4ndrGH4o1shaclAavjw1S_D4VP1TvsgHvdYA4ZVVzLngj-HzVywfkPk6pGJMVp7zlxWtRoOf357kb5I__BXh1BHQ22ndJh-L6X47VksuGF66-5UyKOSfo7hBK1JwIdT8R6nci1JyIonz7QGncqOc_LgY4_1_9DdakxHk
CODEN JAPHEV
CitedBy_id crossref_primary_10_3390_jcm11247389
crossref_primary_10_3389_fphys_2021_747759
crossref_primary_10_3389_fphys_2018_01269
crossref_primary_10_3389_fphys_2016_00547
crossref_primary_10_15758_ajk_2024_26_2_65
crossref_primary_10_1152_ajpcell_00209_2019
crossref_primary_10_1152_japplphysiol_00461_2024
crossref_primary_10_1007_s00142_023_00615_0
crossref_primary_10_3390_nu15051071
crossref_primary_10_1016_j_pmr_2016_07_002
crossref_primary_10_5812_jamm_28306
crossref_primary_10_1152_japplphysiol_01055_2014
crossref_primary_10_3390_ijerph19010168
crossref_primary_10_1016_j_clnesp_2025_03_018
crossref_primary_10_1016_j_ghir_2012_05_002
crossref_primary_10_1007_s40279_014_0288_1
crossref_primary_10_1152_japplphysiol_01267_2011
crossref_primary_10_1007_s00421_024_05444_z
crossref_primary_10_3389_fphys_2024_1488305
crossref_primary_10_1152_japplphysiol_00972_2017
crossref_primary_10_3389_fmed_2022_894996
crossref_primary_10_1519_JSC_0b013e31828a1ffa
crossref_primary_10_3389_fmed_2022_961318
crossref_primary_10_7600_jpfsm_1_219
crossref_primary_10_3928_01477447_20211001_05
crossref_primary_10_1186_s11556_022_00294_0
crossref_primary_10_3390_app14146150
crossref_primary_10_1007_s00421_014_3073_9
crossref_primary_10_1002_mus_24314
crossref_primary_10_3945_an_113_005405
crossref_primary_10_1371_journal_pone_0283309
crossref_primary_10_3389_fspor_2021_671764
crossref_primary_10_1016_j_smhs_2024_10_002
crossref_primary_10_1111_j_1475_097X_2012_01158_x
crossref_primary_10_14814_phy2_15122
crossref_primary_10_1007_s40279_014_0264_9
crossref_primary_10_1152_ajpregu_00497_2014
crossref_primary_10_1007_s40279_018_0994_1
crossref_primary_10_1556_APhysiol_99_2012_4_4
crossref_primary_10_1186_s40798_017_0078_z
crossref_primary_10_1097_BTO_0000000000000275
crossref_primary_10_1519_JSC_0000000000003742
crossref_primary_10_3945_ajcn_113_068387
crossref_primary_10_1113_JP286551
crossref_primary_10_1097_BTO_0000000000000271
crossref_primary_10_1080_15438627_2024_2324262
crossref_primary_10_1016_j_jesf_2020_09_001
crossref_primary_10_1080_02701367_2018_1510170
crossref_primary_10_1093_nutrit_nuad084
crossref_primary_10_3357_AMHP_5855_2021
crossref_primary_10_1136_ard_2024_226579
crossref_primary_10_1080_02640414_2025_2474329
crossref_primary_10_1177_19417381221101006
crossref_primary_10_3390_jfmk8010003
crossref_primary_10_5005_jp_journals_10084_12105
crossref_primary_10_1007_s42978_022_00164_2
crossref_primary_10_4081_ejtm_2021_9932
crossref_primary_10_1016_j_mehy_2014_02_023
crossref_primary_10_1152_ajpendo_00144_2023
crossref_primary_10_3389_fphys_2022_837631
crossref_primary_10_3390_rheumato3010003
crossref_primary_10_1016_j_csm_2021_01_002
crossref_primary_10_1093_ptj_pzab172
crossref_primary_10_1155_2012_543218
crossref_primary_10_3389_fphys_2023_1244292
crossref_primary_10_1007_s40279_014_0177_7
crossref_primary_10_1111_sms_12036
crossref_primary_10_1007_s40520_014_0208_0
crossref_primary_10_1111_sms_12396
crossref_primary_10_1111_cpf_12228
crossref_primary_10_32749_nucleodoconhecimento_com_br_educacao_fisica_treinamento_com_restricao
crossref_primary_10_1111_cpf_12100
crossref_primary_10_1111_cpf_12343
crossref_primary_10_1111_apha_13042
crossref_primary_10_1556_APhysiol_99_2012_3_1
crossref_primary_10_1002_mus_24448
crossref_primary_10_1519_JSC_0000000000001746
crossref_primary_10_1007_s40279_023_01898_x
crossref_primary_10_1007_s00421_015_3150_8
crossref_primary_10_1097_MD_0000000000035148
crossref_primary_10_1123_ijatt_2023_0094
crossref_primary_10_1007_s00421_016_3530_8
crossref_primary_10_1186_s40814_017_0216_x
crossref_primary_10_17338_trainology_1_2_28
crossref_primary_10_5432_jjpehss_10027
crossref_primary_10_1016_j_jshs_2019_08_004
crossref_primary_10_1113_JP286065
crossref_primary_10_17338_trainology_1_2_36
crossref_primary_10_3390_nu4070740
crossref_primary_10_1097_JSA_0000000000000240
crossref_primary_10_1097_MCO_0b013e32834d19bc
crossref_primary_10_1002_mus_25560
crossref_primary_10_3389_fphys_2019_00649
crossref_primary_10_1139_apnm_2017_0102
crossref_primary_10_1152_ajpendo_00600_2013
crossref_primary_10_17338_trainology_3_1_1
crossref_primary_10_1002_biof_1138
crossref_primary_10_1089_rej_2011_1304
crossref_primary_10_1371_journal_pone_0133752
crossref_primary_10_3389_fphys_2019_00533
crossref_primary_10_1111_j_1475_097X_2011_01075_x
crossref_primary_10_3390_biomedicines12081895
crossref_primary_10_1519_JSC_0000000000000680
crossref_primary_10_1589_jpts_27_2709
crossref_primary_10_3390_jcm12247602
crossref_primary_10_1519_JSC_0000000000003148
crossref_primary_10_1249_MSS_0000000000000970
crossref_primary_10_1152_ajpregu_00243_2019
crossref_primary_10_17309_tmfv_2023_5_17
crossref_primary_10_1111_j_1475_097X_2012_01121_x
crossref_primary_10_1016_j_gene_2016_09_008
crossref_primary_10_1519_JSC_0000000000001649
crossref_primary_10_1519_SSC_0000000000000553
crossref_primary_10_14814_phy2_12449
crossref_primary_10_1007_s00421_013_2733_5
crossref_primary_10_1519_SSC_0000000000000556
crossref_primary_10_1007_s40266_023_01093_7
crossref_primary_10_1111_cpf_12439
crossref_primary_10_3390_jcm12247636
crossref_primary_10_1123_ijspp_2019_0043
crossref_primary_10_1152_ajpheart_00894_2015
crossref_primary_10_15758_ajk_2022_24_4_34
crossref_primary_10_1051_sm_2020004
crossref_primary_10_1007_s00380_016_0801_6
crossref_primary_10_5763_kjsm_2024_42_3_165
crossref_primary_10_1016_j_archger_2020_104110
crossref_primary_10_1111_1753_0407_12857
crossref_primary_10_1111_cpf_12312
crossref_primary_10_1186_s40064_015_1132_2
crossref_primary_10_15857_ksep_2018_27_1_50
crossref_primary_10_1016_j_lfs_2018_03_051
crossref_primary_10_1186_s13063_016_1214_7
crossref_primary_10_1080_02703181_2023_2220738
crossref_primary_10_1249_MSS_0000000000002824
crossref_primary_10_1016_j_smhs_2022_12_002
crossref_primary_10_7759_cureus_63074
crossref_primary_10_3390_life14030411
crossref_primary_10_3390_ijerph21101325
crossref_primary_10_1016_j_mehy_2012_01_024
crossref_primary_10_1371_journal_pone_0052843
crossref_primary_10_1152_japplphysiol_00529_2022
crossref_primary_10_3390_jcm14051514
crossref_primary_10_1186_s13102_025_01072_y
crossref_primary_10_1139_apnm_2016_0224
crossref_primary_10_1371_journal_pone_0283237
crossref_primary_10_1152_japplphysiol_00274_2023
crossref_primary_10_7600_jpfsm_1_297
crossref_primary_10_3389_fphys_2022_1015853
crossref_primary_10_1007_s00421_017_3690_1
crossref_primary_10_1097_JSM_0000000000000991
crossref_primary_10_1111_j_1532_5415_2010_02989_x
crossref_primary_10_1590_0103_5150_029_001_AO16
crossref_primary_10_1152_japplphysiol_00789_2022
crossref_primary_10_1016_j_asmr_2021_09_025
crossref_primary_10_1186_2046_7648_1_12
crossref_primary_10_1016_j_exger_2022_111827
crossref_primary_10_1016_j_tem_2020_11_010
crossref_primary_10_1177_0003319710375942
crossref_primary_10_1016_j_jshs_2024_03_005
crossref_primary_10_3390_ijms25179274
crossref_primary_10_1097_CORR_0000000000001090
crossref_primary_10_3389_fphys_2023_1155314
crossref_primary_10_1016_j_conctc_2021_100740
crossref_primary_10_12659_AJCR_900538
crossref_primary_10_1007_s00421_019_04287_3
crossref_primary_10_1556_APhysiol_100_2013_011
crossref_primary_10_1007_s00421_012_2479_5
crossref_primary_10_3390_diabetology2040016
crossref_primary_10_1080_10715762_2018_1440293
crossref_primary_10_18857_jkpt_2016_28_2_136
crossref_primary_10_1016_j_exger_2020_111220
crossref_primary_10_3920_CEP12007
crossref_primary_10_1519_SSC_0000000000000585
crossref_primary_10_1016_j_arthro_2018_06_022
crossref_primary_10_1589_jpts_33_612
crossref_primary_10_1016_j_arr_2018_07_003
crossref_primary_10_1016_j_exger_2015_02_015
crossref_primary_10_1016_j_asmr_2021_09_024
crossref_primary_10_1016_j_lfs_2022_120350
crossref_primary_10_1016_j_mehy_2011_07_029
crossref_primary_10_1017_S0029665120007879
crossref_primary_10_1007_s00421_012_2422_9
crossref_primary_10_1097_MCO_0b013e3283516850
crossref_primary_10_1111_j_1600_0838_2010_01290_x
crossref_primary_10_1589_jpts_34_657
crossref_primary_10_1111_j_1447_0594_2012_00851_x
crossref_primary_10_1007_s00113_020_00779_6
crossref_primary_10_14814_phy2_13457
crossref_primary_10_1111_j_1748_1716_2010_02172_x
crossref_primary_10_4196_kjpp_2015_19_3_191
crossref_primary_10_1016_j_pmrj_2013_11_009
crossref_primary_10_1249_JES_0000000000000234
crossref_primary_10_1249_JES_0000000000000231
crossref_primary_10_2478_hukin_2022_0095
crossref_primary_10_1016_j_mehy_2015_12_026
crossref_primary_10_1016_j_mehy_2011_10_014
crossref_primary_10_3390_ijerph18136777
crossref_primary_10_1007_s00421_011_2172_0
crossref_primary_10_1097_BTO_0000000000000265
crossref_primary_10_1016_j_ptsp_2021_10_013
crossref_primary_10_3389_fresc_2024_1318951
crossref_primary_10_1249_MSS_0000000000001899
crossref_primary_10_1016_j_jsams_2015_04_014
crossref_primary_10_23736_S0022_4707_18_09200_9
crossref_primary_10_1134_S0362119713050162
crossref_primary_10_1152_ajpcell_00266_2024
crossref_primary_10_1016_j_cger_2011_03_009
crossref_primary_10_1152_japplphysiol_00070_2019
crossref_primary_10_1097_BTO_0000000000000252
crossref_primary_10_1186_s12877_023_04592_9
crossref_primary_10_1007_s42978_019_00034_4
crossref_primary_10_1249_MSS_0000000000003149
crossref_primary_10_1113_jphysiol_2012_237008
crossref_primary_10_1186_s12891_025_08424_2
crossref_primary_10_1186_s13075_014_0473_5
crossref_primary_10_1093_gerona_glq182
crossref_primary_10_3389_fbioe_2021_557761
crossref_primary_10_1007_s00421_011_1873_8
crossref_primary_10_1111_sms_13632
crossref_primary_10_1016_j_jse_2023_02_116
crossref_primary_10_1249_MSS_0000000000001401
crossref_primary_10_1186_s40798_024_00706_8
crossref_primary_10_1152_ajpregu_00162_2019
crossref_primary_10_1519_JSC_0b013e3182874721
crossref_primary_10_1111_j_1475_097X_2012_01126_x
crossref_primary_10_1111_cpf_12099
crossref_primary_10_1007_s00421_015_3214_9
crossref_primary_10_1016_j_clnu_2023_08_010
crossref_primary_10_1016_j_tem_2016_06_010
crossref_primary_10_15857_ksep_2022_00346
crossref_primary_10_3389_fphys_2022_837697
crossref_primary_10_5114_jhk_193490
crossref_primary_10_1177_03635465211017524
crossref_primary_10_1136_bjsports_2016_097071
crossref_primary_10_1152_japplphysiol_00723_2022
crossref_primary_10_7600_jpfsm_4_43
crossref_primary_10_1111_cpf_12409
crossref_primary_10_1016_j_heliyon_2022_e11051
crossref_primary_10_1556_2060_106_2019_15
crossref_primary_10_1590_1677_5449_011017
crossref_primary_10_1152_ajpendo_00059_2016
crossref_primary_10_1007_s40279_013_0017_1
crossref_primary_10_14814_phy2_13142
crossref_primary_10_1139_apnm_2018_0384
crossref_primary_10_1080_02640414_2025_2457859
crossref_primary_10_1111_apha_12243
crossref_primary_10_1556_1646_9_2017_16
crossref_primary_10_3390_cells11091389
crossref_primary_10_1177_15563316241245700
crossref_primary_10_1093_gerona_gls141
crossref_primary_10_1007_s00421_020_04440_3
crossref_primary_10_15857_ksep_2023_00227
crossref_primary_10_3389_fphys_2020_577224
crossref_primary_10_1007_s00421_019_04134_5
crossref_primary_10_1111_sms_12087
crossref_primary_10_1556_APhysiol_100_2013_4_6
Cites_doi 10.1152/ajpendo.00593.2005
10.1038/ncb1101-1014
10.2170/jjphysiol.54.585
10.1074/jbc.C200171200
10.1152/japplphysiol.90842.2008
10.1152/japplphysiol.01474.2005
10.1074/jbc.M201142200
10.1152/japplphysiol.00811.2004
10.1093/oxfordjournals.aje.a009520
10.1093/gerona/56.5.B209
10.1016/S0891-5849(98)00317-7
10.1152/japplphysiol.00164.2004
10.1152/ajpendo.1997.273.1.E99
10.1152/jappl.2000.88.6.2097
10.1007/s004210050319
10.1096/fj.03-1259fje
10.1093/ajcn/81.5.953
10.1016/S0092-8674(04)00400-3
10.1152/ajpendo.1993.265.2.E210
10.1074/jbc.271.30.17771
10.1113/jphysiol.2009.169854
10.1083/jcb.135.6.1633
10.1152/japplphysiol.00021.2008
10.1096/fj.03-0585com
10.1152/ajpcell.1999.276.1.C120
10.1152/jappl.2000.88.4.1321
10.1093/gerona/57.12.M772
10.1002/rcm.1290060704
10.1152/japplphysiol.00870.2004
10.1006/meth.2001.1262
10.1113/jphysiol.2009.177220
10.1152/jappl.1988.65.6.2406
10.1093/ajcn/78.2.250
10.1016/S0006-291X(02)02079-X
10.1074/jbc.M212770200
10.1016/j.molcel.2006.01.010
10.1152/ajpcell.1996.271.4.C1172
10.1016/S0092-8674(03)00929-2
10.1152/ajpendo.1999.277.1.E118
10.1097/MCO.0b013e32831cef8b
10.1152/ajpendo.00358.2004
10.1249/MSS.0b013e318160ff84
10.1113/jphysiol.2008.164483
10.1152/ajpendo.1995.268.3.E422
10.1113/jphysiol.2006.113175
10.1113/jphysiol.2003.047019
10.1016/S0092-8674(00)80595-4
10.1046/j.1365-201x.2001.00795.x
10.1152/japplphysiol.00195.2007
10.1172/JCI939
10.1007/s00421-001-0561-5
10.1113/jphysiol.2009.173609
10.1096/fj.05-4607fje
10.1139/h06-031
10.1113/jphysiol.2002.036673
10.1113/jphysiol.2008.163816
10.1113/jphysiol.2005.103481
10.1152/japplphysiol.91234.2008
10.1152/ajpendo.00530.2005
10.1016/j.mad.2006.08.004
10.1007/s00421-007-0564-y
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Physiological Society May 2010
Copyright © 2010 the American Physiological Society 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Physiological Society May 2010
– notice: Copyright © 2010 the American Physiological Society 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
DOI 10.1152/japplphysiol.01266.2009
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1209
ExternalDocumentID PMC2867530
2040191091
20150565
22763683
10_1152_japplphysiol_01266_2009
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR049877
– fundername: NIAMS NIH HHS
  grantid: AR-049877
– fundername: NIA NIH HHS
  grantid: P30 AG024832
– fundername: NIA NIH HHS
  grantid: P30-AG-024832
– fundername: NICHD NIH HHS
  grantid: T32 HD007539
– fundername: NCRR NIH HHS
  grantid: 1UL1RR029876-01
– fundername: NICHD NIH HHS
  grantid: T32-HD-07539
– fundername: National Institutes of Health
  grantid: AR-049877; P30-AG-024832; T32-HD-07539
GroupedDBID ---
-~X
.55
.GJ
18M
1CY
29J
2WC
39C
3O-
4.4
53G
5VS
85S
8M5
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
ACPRK
ACYGS
ADBBV
ADFNX
ADXHL
AEILP
AENEX
AETEA
AFOSN
AFRAH
AGCDD
AGNAY
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
C2-
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
J5H
KQ8
L7B
MVM
NEJ
OHT
OK1
P-O
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7M
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c539t-b8f8e4eb26bf90d4ed4f998f8ed0160cf595980e55ad03ee84a72f24ee4d6d463
ISSN 8750-7587
1522-1601
IngestDate Thu Aug 21 13:55:00 EDT 2025
Thu Sep 04 14:39:16 EDT 2025
Mon Jun 30 08:33:47 EDT 2025
Mon Jul 21 06:09:05 EDT 2025
Mon Jul 21 09:16:16 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Tue Jul 01 01:13:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Physical exercise
Human
Occlusion
Senescence
Ageing
Striated muscle
S6 kinase 1
Blood flow
Signal transduction
Vertebrata
Mammalia
Protein synthesis
Hemodynamics
aging
resistance exercise
skeletal muscle
sarcopenia
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c539t-b8f8e4eb26bf90d4ed4f998f8ed0160cf595980e55ad03ee84a72f24ee4d6d463
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2867530
PMID 20150565
PQID 313930145
PQPubID 40905
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2867530
proquest_miscellaneous_733538536
proquest_journals_313930145
pubmed_primary_20150565
pascalfrancis_primary_22763683
crossref_primary_10_1152_japplphysiol_01266_2009
crossref_citationtrail_10_1152_japplphysiol_01266_2009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2010
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B21
B22
B24
B25
B26
B27
B28
B29
Hamada K (B23) 2004; 18
B30
B31
B32
B33
B34
B35
B36
B59a
B37
B38
B39
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
Abe T (B1) 2004; 36
B49
B50
Aniansson A (B2) 1980; 12
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B18
B19
B60
B61
B62
B63
References_xml – ident: B19
  doi: 10.1152/ajpendo.00593.2005
– ident: B7
  doi: 10.1038/ncb1101-1014
– ident: B52
  doi: 10.2170/jjphysiol.54.585
– ident: B8
  doi: 10.1074/jbc.C200171200
– ident: B16
  doi: 10.1152/japplphysiol.90842.2008
– ident: B33
  doi: 10.1152/japplphysiol.01474.2005
– ident: B46
  doi: 10.1074/jbc.M201142200
– ident: B55
  doi: 10.1152/japplphysiol.00811.2004
– ident: B6
  doi: 10.1093/oxfordjournals.aje.a009520
– ident: B27
  doi: 10.1093/gerona/56.5.B209
– ident: B38
  doi: 10.1016/S0891-5849(98)00317-7
– ident: B43
  doi: 10.1152/japplphysiol.00164.2004
– ident: B44
  doi: 10.1152/ajpendo.1997.273.1.E99
– ident: B51
  doi: 10.1152/jappl.2000.88.6.2097
– ident: B49
  doi: 10.1007/s004210050319
– ident: B25
  doi: 10.1096/fj.03-1259fje
– ident: B40
  doi: 10.1093/ajcn/81.5.953
– ident: B47
  doi: 10.1016/S0092-8674(04)00400-3
– ident: B63
  doi: 10.1152/ajpendo.1993.265.2.E210
– ident: B30
  doi: 10.1074/jbc.271.30.17771
– ident: B4
  doi: 10.1113/jphysiol.2009.169854
– ident: B39
  doi: 10.1083/jcb.135.6.1633
– ident: B13
  doi: 10.1152/japplphysiol.00021.2008
– volume: 36
  start-page: S353
  year: 2004
  ident: B1
  publication-title: Med Sci Sports Exerc
– volume: 18
  start-page: 264
  year: 2004
  ident: B23
  publication-title: FASEB J
  doi: 10.1096/fj.03-0585com
– ident: B5
  doi: 10.1152/ajpcell.1999.276.1.C120
– ident: B20
  doi: 10.1152/jappl.2000.88.4.1321
– ident: B28
  doi: 10.1093/gerona/57.12.M772
– ident: B11
  doi: 10.1002/rcm.1290060704
– ident: B26
  doi: 10.1152/japplphysiol.00870.2004
– ident: B36
  doi: 10.1006/meth.2001.1262
– ident: B59a
  doi: 10.1113/jphysiol.2009.177220
– ident: B22
  doi: 10.1152/jappl.1988.65.6.2406
– ident: B58
  doi: 10.1093/ajcn/78.2.250
– ident: B18
  doi: 10.1016/S0006-291X(02)02079-X
– ident: B3
  doi: 10.1074/jbc.M212770200
– ident: B35
  doi: 10.1016/j.molcel.2006.01.010
– ident: B31
  doi: 10.1152/ajpcell.1996.271.4.C1172
– ident: B29
  doi: 10.1016/S0092-8674(03)00929-2
– ident: B62
  doi: 10.1152/ajpendo.1999.277.1.E118
– ident: B42
  doi: 10.1097/MCO.0b013e32831cef8b
– ident: B48
  doi: 10.1152/ajpendo.00358.2004
– ident: B15
  doi: 10.1249/MSS.0b013e318160ff84
– ident: B34
  doi: 10.1113/jphysiol.2008.164483
– ident: B59
  doi: 10.1152/ajpendo.1995.268.3.E422
– ident: B12
  doi: 10.1113/jphysiol.2006.113175
– ident: B9
  doi: 10.1113/jphysiol.2003.047019
– ident: B10
  doi: 10.1016/S0092-8674(00)80595-4
– ident: B54
  doi: 10.1046/j.1365-201x.2001.00795.x
– ident: B21
  doi: 10.1152/japplphysiol.00195.2007
– ident: B57
  doi: 10.1172/JCI939
– ident: B50
  doi: 10.1007/s00421-001-0561-5
– ident: B41
  doi: 10.1113/jphysiol.2009.173609
– ident: B45
  doi: 10.1096/fj.05-4607fje
– ident: B24
  doi: 10.1139/h06-031
– ident: B60
  doi: 10.1113/jphysiol.2002.036673
– ident: B14
  doi: 10.1113/jphysiol.2008.163816
– ident: B61
  doi: 10.1113/jphysiol.2005.103481
– volume: 12
  start-page: 161
  year: 1980
  ident: B2
  publication-title: Scand J Rehabil Med
– ident: B37
  doi: 10.1152/japplphysiol.91234.2008
– ident: B32
  doi: 10.1152/ajpendo.00530.2005
– ident: B56
  doi: 10.1016/j.mad.2006.08.004
– ident: B53
  doi: 10.1007/s00421-007-0564-y
SSID ssj0014451
Score 2.4641771
Snippet The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1199
SubjectTerms Age Factors
Aged
Biological and medical sciences
Biomarkers - blood
Biopsy
Blood pressure
Blotting, Western
Exercise
Fibrin Fibrinogen Degradation Products - metabolism
Fundamental and applied biological sciences. Psychology
Hormones - blood
Humans
Insulin - metabolism
Male
Mechanistic Target of Rapamycin Complex 1
Men
Mitogen-Activated Protein Kinases - metabolism
Multiprotein Complexes
Muscle Contraction
Muscle Proteins - biosynthesis
Muscle Proteins - genetics
Older people
Organ Size
Oxygen - blood
Phosphorylation
Protein synthesis
Proteins
Quadriceps Muscle - anatomy & histology
Quadriceps Muscle - blood supply
Quadriceps Muscle - metabolism
Recovery of Function
Regional Blood Flow
Resistance Training
Ribosomal Protein S6 - metabolism
Ribosomal Protein S6 Kinases, 70-kDa - metabolism
Sex Factors
Signal Transduction
Thrombosis - blood
Time Factors
TOR Serine-Threonine Kinases
Transcription Factors - metabolism
Title Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men
URI https://www.ncbi.nlm.nih.gov/pubmed/20150565
https://www.proquest.com/docview/313930145
https://www.proquest.com/docview/733538536
https://pubmed.ncbi.nlm.nih.gov/PMC2867530
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqISEkhGADFgaTHxAvUUZix078OMbKxLoNUCv1LUoaR6vUpFMvQuUn8qs4vuRSNq4vUePUluPz5dx8fA5Cr6UI0ygNCy8X1PeUhPZEGnGPcpqTIMv9XCeev7jkZ6Pw45iNe73vnail9So7mny781zJ_1AV2oCu6pTsP1C2GRQa4DfQF65AYbj-FY3fqahzt5jNv7qqxMZiaup-12WUXPh8S1WeSy7dcnj15SRwVbhGOqsPJpbrJYzo6lwN00plLwB1UGUogZu5Kt_tlvak2G31NbXqq3aNmEROKueTiFnHudA3m_SdDAatq_XDbGN0Z2DFldv4oN8v9ALmNqY_vW43rgBXpRIkutf5BmY-6DotzH57NwCk3o36VM9RI9IGqrYsEIwp3wOLxohkaVk0mM8Bt6PVPNyPO2BlHY4cBKYA021RwYguUQCrZVfqCIQ112EropWOdUTA5VXSHw0GyfB0PNx-qpUBAswQTF9fJVK4R6IoUOGl55_bHS2VCM74ms0b2VhDmMXbX8xhS1N6eJMuYYkKU23lLnPo56jejpo0fIweWYDgYwPWJ6gnq120d1ylq3m5wW9wQ4rNLrp_YQM79pDUUMYKyrgDZVxDGbdQxgbKuIEyBihjA2VsoYwbKGO40VDGAOWnaNQ_HZ6cebYCiDdhVKy8LC5iGcqM8KwQfh7KPCyEUI25yow4KZhgIvYlY2nuUyljYDykIKGUYc7zkNNnaKeaV3IfYZKCZAKFtyCKPdEgzWLqFySbTLhPKQkcxOvVTiY2Pb6q0jJLtJnMSNIlU6LJpGq4Cgf5TccbkyHmz10Ot8jZ9CMExD2PqYMOavomlt8sEwrGmnKAMAfh5ikIA7XDl1Zyvl4mEaWgwDDKHfTcgKEdWrk2wXpzULQFk-YPKs_89pNqeq3zzZOYR4z6L347qQP0oP3QX6Kd1WItX4G-vsoO9YfwA10d81c
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+flow+restriction+exercise+stimulates+mTORC1+signaling+and+muscle+protein+synthesis+in+older+men&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Fry%2C+Christopher+S&rft.au=Glynn%2C+Erin+L&rft.au=Drummond%2C+Micah+J&rft.au=Timmerman%2C+Kyle+L&rft.date=2010-05-01&rft.pub=American+Physiological+Society&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=108&rft.issue=5&rft.spage=1199&rft_id=info:doi/10.1152%2Fjapplphysiol.01266.2009&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2040191091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon