Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men
The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 108; no. 5; pp. 1199 - 1209 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
American Physiological Society
01.05.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 8750-7587 1522-1601 1522-1601 |
DOI | 10.1152/japplphysiol.01266.2009 |
Cover
Abstract | The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70 ± 2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise ( P < 0.05), while no change was observed in the Ctrl group ( P > 0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise ( P < 0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia. |
---|---|
AbstractList | The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70 ± 2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (
P
< 0.05), while no change was observed in the Ctrl group (
P
> 0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (
P
< 0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia. The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70 ± 2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (P < 0.05), while no change was observed in the Ctrl group (P > 0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (P < 0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia. [PUBLICATION ABSTRACT] The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70+/-2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (P<0.05), while no change was observed in the Ctrl group (P>0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (P<0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia.The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70+/-2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (P<0.05), while no change was observed in the Ctrl group (P>0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (P<0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia. The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70 ± 2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise ( P < 0.05), while no change was observed in the Ctrl group ( P > 0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise ( P < 0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia. The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation technique that can improve muscle mass and strength; however, older individuals are resistant to the stimulation of muscle protein synthesis (MPS) with traditional high-intensity RE. Recently, a novel rehabilitation exercise method, low-intensity RE, combined with blood flow restriction (BFR), has been shown to stimulate mammalian target of rapamycin complex 1 (mTORC1) signaling and MPS in young men. We hypothesized that low-intensity RE with BFR would be able to activate mTORC1 signaling and stimulate MPS in older men. We measured MPS and mTORC1-associated signaling proteins in seven older men (age 70+/-2 yr) before and after exercise. Subjects were studied identically on two occasions: during BFR exercise [bilateral leg extension exercise at 20% of 1-repetition maximum (1-RM) with pressure cuff placed proximally on both thighs and inflated at 200 mmHg] and during exercise without the pressure cuff (Ctrl). MPS and phosphorylation of signaling proteins were determined on successive muscle biopsies by stable isotopic techniques and immunoblotting, respectively. MPS increased 56% from baseline after BFR exercise (P<0.05), while no change was observed in the Ctrl group (P>0.05). Downstream of mTORC1, ribosomal S6 kinase 1 (S6K1) phosphorylation and ribosomal protein S6 (rpS6) phosphorylation increased only in the BFR group after exercise (P<0.05). We conclude that low-intensity RE in combination with BFR enhances mTORC1 signaling and MPS in older men. BFR exercise is a novel intervention that may enhance muscle rehabilitation to counteract sarcopenia. |
Author | Timmerman, Kyle L. Glynn, Erin L. Fujita, Satoshi Abe, Takashi Drummond, Micah J. Dhanani, Shaheen Fry, Christopher S. Volpi, Elena Rasmussen, Blake B. |
Author_xml | – sequence: 1 givenname: Christopher S. surname: Fry fullname: Fry, Christopher S. organization: Division of Rehabilitation Sciences – sequence: 2 givenname: Erin L. surname: Glynn fullname: Glynn, Erin L. organization: Division of Rehabilitation Sciences – sequence: 3 givenname: Micah J. surname: Drummond fullname: Drummond, Micah J. organization: Division of Rehabilitation Sciences,, Departments of 2Physical Therapy and, Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas; and – sequence: 4 givenname: Kyle L. surname: Timmerman fullname: Timmerman, Kyle L. organization: Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas; and – sequence: 5 givenname: Satoshi surname: Fujita fullname: Fujita, Satoshi organization: Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan – sequence: 6 givenname: Takashi surname: Abe fullname: Abe, Takashi organization: Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan – sequence: 7 givenname: Shaheen surname: Dhanani fullname: Dhanani, Shaheen organization: Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas; and – sequence: 8 givenname: Elena surname: Volpi fullname: Volpi, Elena organization: Internal Medicine,, Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas; and – sequence: 9 givenname: Blake B. surname: Rasmussen fullname: Rasmussen, Blake B. organization: Division of Rehabilitation Sciences,, Departments of 2Physical Therapy and, Sealy Center on Aging, University of Texas Medical Branch, Galveston, Texas; and |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22763683$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20150565$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1vFCEUhompsdvqX1BiYrzalY-BmbnQxG78Spo0MfWasHBmlw0DI8yo--_L2LXW3nhF4Dzv4fDynqGTEAMg9IKSFaWCvdnrYfDD7pBd9CtCmZQrRkj7CC1KlS2pJPQELZpakGUtmvoUneW8J4RWlaBP0CkjVBAhxQLBhY_R4s7HnzhBHpMzo4sBwy9IxmXAeXT95PUIGffXV1_XFGe3Ddq7sMU6WNxP2XjAQ4ojuIDzIYw7yC7jsoneQsI9hKfocad9hmfH9Rx9-_jhev15eXn16cv6_eXSCN6Oy03TNVDBhslN1xJbga26tp0PLSlPMp1oRdsQEEJbwgGaStesYxVAZaWtJD9H7277DtOmB2sgjEl7NSTX63RQUTv1byW4ndrGH4o1shaclAavjw1S_D4VP1TvsgHvdYA4ZVVzLngj-HzVywfkPk6pGJMVp7zlxWtRoOf357kb5I__BXh1BHQ22ndJh-L6X47VksuGF66-5UyKOSfo7hBK1JwIdT8R6nci1JyIonz7QGncqOc_LgY4_1_9DdakxHk |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_3390_jcm11247389 crossref_primary_10_3389_fphys_2021_747759 crossref_primary_10_3389_fphys_2018_01269 crossref_primary_10_3389_fphys_2016_00547 crossref_primary_10_15758_ajk_2024_26_2_65 crossref_primary_10_1152_ajpcell_00209_2019 crossref_primary_10_1152_japplphysiol_00461_2024 crossref_primary_10_1007_s00142_023_00615_0 crossref_primary_10_3390_nu15051071 crossref_primary_10_1016_j_pmr_2016_07_002 crossref_primary_10_5812_jamm_28306 crossref_primary_10_1152_japplphysiol_01055_2014 crossref_primary_10_3390_ijerph19010168 crossref_primary_10_1016_j_clnesp_2025_03_018 crossref_primary_10_1016_j_ghir_2012_05_002 crossref_primary_10_1007_s40279_014_0288_1 crossref_primary_10_1152_japplphysiol_01267_2011 crossref_primary_10_1007_s00421_024_05444_z crossref_primary_10_3389_fphys_2024_1488305 crossref_primary_10_1152_japplphysiol_00972_2017 crossref_primary_10_3389_fmed_2022_894996 crossref_primary_10_1519_JSC_0b013e31828a1ffa crossref_primary_10_3389_fmed_2022_961318 crossref_primary_10_7600_jpfsm_1_219 crossref_primary_10_3928_01477447_20211001_05 crossref_primary_10_1186_s11556_022_00294_0 crossref_primary_10_3390_app14146150 crossref_primary_10_1007_s00421_014_3073_9 crossref_primary_10_1002_mus_24314 crossref_primary_10_3945_an_113_005405 crossref_primary_10_1371_journal_pone_0283309 crossref_primary_10_3389_fspor_2021_671764 crossref_primary_10_1016_j_smhs_2024_10_002 crossref_primary_10_1111_j_1475_097X_2012_01158_x crossref_primary_10_14814_phy2_15122 crossref_primary_10_1007_s40279_014_0264_9 crossref_primary_10_1152_ajpregu_00497_2014 crossref_primary_10_1007_s40279_018_0994_1 crossref_primary_10_1556_APhysiol_99_2012_4_4 crossref_primary_10_1186_s40798_017_0078_z crossref_primary_10_1097_BTO_0000000000000275 crossref_primary_10_1519_JSC_0000000000003742 crossref_primary_10_3945_ajcn_113_068387 crossref_primary_10_1113_JP286551 crossref_primary_10_1097_BTO_0000000000000271 crossref_primary_10_1080_15438627_2024_2324262 crossref_primary_10_1016_j_jesf_2020_09_001 crossref_primary_10_1080_02701367_2018_1510170 crossref_primary_10_1093_nutrit_nuad084 crossref_primary_10_3357_AMHP_5855_2021 crossref_primary_10_1136_ard_2024_226579 crossref_primary_10_1080_02640414_2025_2474329 crossref_primary_10_1177_19417381221101006 crossref_primary_10_3390_jfmk8010003 crossref_primary_10_5005_jp_journals_10084_12105 crossref_primary_10_1007_s42978_022_00164_2 crossref_primary_10_4081_ejtm_2021_9932 crossref_primary_10_1016_j_mehy_2014_02_023 crossref_primary_10_1152_ajpendo_00144_2023 crossref_primary_10_3389_fphys_2022_837631 crossref_primary_10_3390_rheumato3010003 crossref_primary_10_1016_j_csm_2021_01_002 crossref_primary_10_1093_ptj_pzab172 crossref_primary_10_1155_2012_543218 crossref_primary_10_3389_fphys_2023_1244292 crossref_primary_10_1007_s40279_014_0177_7 crossref_primary_10_1111_sms_12036 crossref_primary_10_1007_s40520_014_0208_0 crossref_primary_10_1111_sms_12396 crossref_primary_10_1111_cpf_12228 crossref_primary_10_32749_nucleodoconhecimento_com_br_educacao_fisica_treinamento_com_restricao crossref_primary_10_1111_cpf_12100 crossref_primary_10_1111_cpf_12343 crossref_primary_10_1111_apha_13042 crossref_primary_10_1556_APhysiol_99_2012_3_1 crossref_primary_10_1002_mus_24448 crossref_primary_10_1519_JSC_0000000000001746 crossref_primary_10_1007_s40279_023_01898_x crossref_primary_10_1007_s00421_015_3150_8 crossref_primary_10_1097_MD_0000000000035148 crossref_primary_10_1123_ijatt_2023_0094 crossref_primary_10_1007_s00421_016_3530_8 crossref_primary_10_1186_s40814_017_0216_x crossref_primary_10_17338_trainology_1_2_28 crossref_primary_10_5432_jjpehss_10027 crossref_primary_10_1016_j_jshs_2019_08_004 crossref_primary_10_1113_JP286065 crossref_primary_10_17338_trainology_1_2_36 crossref_primary_10_3390_nu4070740 crossref_primary_10_1097_JSA_0000000000000240 crossref_primary_10_1097_MCO_0b013e32834d19bc crossref_primary_10_1002_mus_25560 crossref_primary_10_3389_fphys_2019_00649 crossref_primary_10_1139_apnm_2017_0102 crossref_primary_10_1152_ajpendo_00600_2013 crossref_primary_10_17338_trainology_3_1_1 crossref_primary_10_1002_biof_1138 crossref_primary_10_1089_rej_2011_1304 crossref_primary_10_1371_journal_pone_0133752 crossref_primary_10_3389_fphys_2019_00533 crossref_primary_10_1111_j_1475_097X_2011_01075_x crossref_primary_10_3390_biomedicines12081895 crossref_primary_10_1519_JSC_0000000000000680 crossref_primary_10_1589_jpts_27_2709 crossref_primary_10_3390_jcm12247602 crossref_primary_10_1519_JSC_0000000000003148 crossref_primary_10_1249_MSS_0000000000000970 crossref_primary_10_1152_ajpregu_00243_2019 crossref_primary_10_17309_tmfv_2023_5_17 crossref_primary_10_1111_j_1475_097X_2012_01121_x crossref_primary_10_1016_j_gene_2016_09_008 crossref_primary_10_1519_JSC_0000000000001649 crossref_primary_10_1519_SSC_0000000000000553 crossref_primary_10_14814_phy2_12449 crossref_primary_10_1007_s00421_013_2733_5 crossref_primary_10_1519_SSC_0000000000000556 crossref_primary_10_1007_s40266_023_01093_7 crossref_primary_10_1111_cpf_12439 crossref_primary_10_3390_jcm12247636 crossref_primary_10_1123_ijspp_2019_0043 crossref_primary_10_1152_ajpheart_00894_2015 crossref_primary_10_15758_ajk_2022_24_4_34 crossref_primary_10_1051_sm_2020004 crossref_primary_10_1007_s00380_016_0801_6 crossref_primary_10_5763_kjsm_2024_42_3_165 crossref_primary_10_1016_j_archger_2020_104110 crossref_primary_10_1111_1753_0407_12857 crossref_primary_10_1111_cpf_12312 crossref_primary_10_1186_s40064_015_1132_2 crossref_primary_10_15857_ksep_2018_27_1_50 crossref_primary_10_1016_j_lfs_2018_03_051 crossref_primary_10_1186_s13063_016_1214_7 crossref_primary_10_1080_02703181_2023_2220738 crossref_primary_10_1249_MSS_0000000000002824 crossref_primary_10_1016_j_smhs_2022_12_002 crossref_primary_10_7759_cureus_63074 crossref_primary_10_3390_life14030411 crossref_primary_10_3390_ijerph21101325 crossref_primary_10_1016_j_mehy_2012_01_024 crossref_primary_10_1371_journal_pone_0052843 crossref_primary_10_1152_japplphysiol_00529_2022 crossref_primary_10_3390_jcm14051514 crossref_primary_10_1186_s13102_025_01072_y crossref_primary_10_1139_apnm_2016_0224 crossref_primary_10_1371_journal_pone_0283237 crossref_primary_10_1152_japplphysiol_00274_2023 crossref_primary_10_7600_jpfsm_1_297 crossref_primary_10_3389_fphys_2022_1015853 crossref_primary_10_1007_s00421_017_3690_1 crossref_primary_10_1097_JSM_0000000000000991 crossref_primary_10_1111_j_1532_5415_2010_02989_x crossref_primary_10_1590_0103_5150_029_001_AO16 crossref_primary_10_1152_japplphysiol_00789_2022 crossref_primary_10_1016_j_asmr_2021_09_025 crossref_primary_10_1186_2046_7648_1_12 crossref_primary_10_1016_j_exger_2022_111827 crossref_primary_10_1016_j_tem_2020_11_010 crossref_primary_10_1177_0003319710375942 crossref_primary_10_1016_j_jshs_2024_03_005 crossref_primary_10_3390_ijms25179274 crossref_primary_10_1097_CORR_0000000000001090 crossref_primary_10_3389_fphys_2023_1155314 crossref_primary_10_1016_j_conctc_2021_100740 crossref_primary_10_12659_AJCR_900538 crossref_primary_10_1007_s00421_019_04287_3 crossref_primary_10_1556_APhysiol_100_2013_011 crossref_primary_10_1007_s00421_012_2479_5 crossref_primary_10_3390_diabetology2040016 crossref_primary_10_1080_10715762_2018_1440293 crossref_primary_10_18857_jkpt_2016_28_2_136 crossref_primary_10_1016_j_exger_2020_111220 crossref_primary_10_3920_CEP12007 crossref_primary_10_1519_SSC_0000000000000585 crossref_primary_10_1016_j_arthro_2018_06_022 crossref_primary_10_1589_jpts_33_612 crossref_primary_10_1016_j_arr_2018_07_003 crossref_primary_10_1016_j_exger_2015_02_015 crossref_primary_10_1016_j_asmr_2021_09_024 crossref_primary_10_1016_j_lfs_2022_120350 crossref_primary_10_1016_j_mehy_2011_07_029 crossref_primary_10_1017_S0029665120007879 crossref_primary_10_1007_s00421_012_2422_9 crossref_primary_10_1097_MCO_0b013e3283516850 crossref_primary_10_1111_j_1600_0838_2010_01290_x crossref_primary_10_1589_jpts_34_657 crossref_primary_10_1111_j_1447_0594_2012_00851_x crossref_primary_10_1007_s00113_020_00779_6 crossref_primary_10_14814_phy2_13457 crossref_primary_10_1111_j_1748_1716_2010_02172_x crossref_primary_10_4196_kjpp_2015_19_3_191 crossref_primary_10_1016_j_pmrj_2013_11_009 crossref_primary_10_1249_JES_0000000000000234 crossref_primary_10_1249_JES_0000000000000231 crossref_primary_10_2478_hukin_2022_0095 crossref_primary_10_1016_j_mehy_2015_12_026 crossref_primary_10_1016_j_mehy_2011_10_014 crossref_primary_10_3390_ijerph18136777 crossref_primary_10_1007_s00421_011_2172_0 crossref_primary_10_1097_BTO_0000000000000265 crossref_primary_10_1016_j_ptsp_2021_10_013 crossref_primary_10_3389_fresc_2024_1318951 crossref_primary_10_1249_MSS_0000000000001899 crossref_primary_10_1016_j_jsams_2015_04_014 crossref_primary_10_23736_S0022_4707_18_09200_9 crossref_primary_10_1134_S0362119713050162 crossref_primary_10_1152_ajpcell_00266_2024 crossref_primary_10_1016_j_cger_2011_03_009 crossref_primary_10_1152_japplphysiol_00070_2019 crossref_primary_10_1097_BTO_0000000000000252 crossref_primary_10_1186_s12877_023_04592_9 crossref_primary_10_1007_s42978_019_00034_4 crossref_primary_10_1249_MSS_0000000000003149 crossref_primary_10_1113_jphysiol_2012_237008 crossref_primary_10_1186_s12891_025_08424_2 crossref_primary_10_1186_s13075_014_0473_5 crossref_primary_10_1093_gerona_glq182 crossref_primary_10_3389_fbioe_2021_557761 crossref_primary_10_1007_s00421_011_1873_8 crossref_primary_10_1111_sms_13632 crossref_primary_10_1016_j_jse_2023_02_116 crossref_primary_10_1249_MSS_0000000000001401 crossref_primary_10_1186_s40798_024_00706_8 crossref_primary_10_1152_ajpregu_00162_2019 crossref_primary_10_1519_JSC_0b013e3182874721 crossref_primary_10_1111_j_1475_097X_2012_01126_x crossref_primary_10_1111_cpf_12099 crossref_primary_10_1007_s00421_015_3214_9 crossref_primary_10_1016_j_clnu_2023_08_010 crossref_primary_10_1016_j_tem_2016_06_010 crossref_primary_10_15857_ksep_2022_00346 crossref_primary_10_3389_fphys_2022_837697 crossref_primary_10_5114_jhk_193490 crossref_primary_10_1177_03635465211017524 crossref_primary_10_1136_bjsports_2016_097071 crossref_primary_10_1152_japplphysiol_00723_2022 crossref_primary_10_7600_jpfsm_4_43 crossref_primary_10_1111_cpf_12409 crossref_primary_10_1016_j_heliyon_2022_e11051 crossref_primary_10_1556_2060_106_2019_15 crossref_primary_10_1590_1677_5449_011017 crossref_primary_10_1152_ajpendo_00059_2016 crossref_primary_10_1007_s40279_013_0017_1 crossref_primary_10_14814_phy2_13142 crossref_primary_10_1139_apnm_2018_0384 crossref_primary_10_1080_02640414_2025_2457859 crossref_primary_10_1111_apha_12243 crossref_primary_10_1556_1646_9_2017_16 crossref_primary_10_3390_cells11091389 crossref_primary_10_1177_15563316241245700 crossref_primary_10_1093_gerona_gls141 crossref_primary_10_1007_s00421_020_04440_3 crossref_primary_10_15857_ksep_2023_00227 crossref_primary_10_3389_fphys_2020_577224 crossref_primary_10_1007_s00421_019_04134_5 crossref_primary_10_1111_sms_12087 crossref_primary_10_1556_APhysiol_100_2013_4_6 |
Cites_doi | 10.1152/ajpendo.00593.2005 10.1038/ncb1101-1014 10.2170/jjphysiol.54.585 10.1074/jbc.C200171200 10.1152/japplphysiol.90842.2008 10.1152/japplphysiol.01474.2005 10.1074/jbc.M201142200 10.1152/japplphysiol.00811.2004 10.1093/oxfordjournals.aje.a009520 10.1093/gerona/56.5.B209 10.1016/S0891-5849(98)00317-7 10.1152/japplphysiol.00164.2004 10.1152/ajpendo.1997.273.1.E99 10.1152/jappl.2000.88.6.2097 10.1007/s004210050319 10.1096/fj.03-1259fje 10.1093/ajcn/81.5.953 10.1016/S0092-8674(04)00400-3 10.1152/ajpendo.1993.265.2.E210 10.1074/jbc.271.30.17771 10.1113/jphysiol.2009.169854 10.1083/jcb.135.6.1633 10.1152/japplphysiol.00021.2008 10.1096/fj.03-0585com 10.1152/ajpcell.1999.276.1.C120 10.1152/jappl.2000.88.4.1321 10.1093/gerona/57.12.M772 10.1002/rcm.1290060704 10.1152/japplphysiol.00870.2004 10.1006/meth.2001.1262 10.1113/jphysiol.2009.177220 10.1152/jappl.1988.65.6.2406 10.1093/ajcn/78.2.250 10.1016/S0006-291X(02)02079-X 10.1074/jbc.M212770200 10.1016/j.molcel.2006.01.010 10.1152/ajpcell.1996.271.4.C1172 10.1016/S0092-8674(03)00929-2 10.1152/ajpendo.1999.277.1.E118 10.1097/MCO.0b013e32831cef8b 10.1152/ajpendo.00358.2004 10.1249/MSS.0b013e318160ff84 10.1113/jphysiol.2008.164483 10.1152/ajpendo.1995.268.3.E422 10.1113/jphysiol.2006.113175 10.1113/jphysiol.2003.047019 10.1016/S0092-8674(00)80595-4 10.1046/j.1365-201x.2001.00795.x 10.1152/japplphysiol.00195.2007 10.1172/JCI939 10.1007/s00421-001-0561-5 10.1113/jphysiol.2009.173609 10.1096/fj.05-4607fje 10.1139/h06-031 10.1113/jphysiol.2002.036673 10.1113/jphysiol.2008.163816 10.1113/jphysiol.2005.103481 10.1152/japplphysiol.91234.2008 10.1152/ajpendo.00530.2005 10.1016/j.mad.2006.08.004 10.1007/s00421-007-0564-y |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Physiological Society May 2010 Copyright © 2010 the American Physiological Society 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Physiological Society May 2010 – notice: Copyright © 2010 the American Physiological Society 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
DOI | 10.1152/japplphysiol.01266.2009 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1209 |
ExternalDocumentID | PMC2867530 2040191091 20150565 22763683 10_1152_japplphysiol_01266_2009 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR049877 – fundername: NIAMS NIH HHS grantid: AR-049877 – fundername: NIA NIH HHS grantid: P30 AG024832 – fundername: NIA NIH HHS grantid: P30-AG-024832 – fundername: NICHD NIH HHS grantid: T32 HD007539 – fundername: NCRR NIH HHS grantid: 1UL1RR029876-01 – fundername: NICHD NIH HHS grantid: T32-HD-07539 – fundername: National Institutes of Health grantid: AR-049877; P30-AG-024832; T32-HD-07539 |
GroupedDBID | --- -~X .55 .GJ 18M 1CY 29J 2WC 39C 3O- 4.4 53G 5VS 85S 8M5 AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ABOCM ACBEA ACGFO ACGFS ACIWK ACKIV ACPRK ACYGS ADBBV ADFNX ADXHL AEILP AENEX AETEA AFOSN AFRAH AGCDD AGNAY AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A C2- CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX J5H KQ8 L7B MVM NEJ OHT OK1 P-O P2P P6G PQQKQ RAP RHI RPL RPRKH SJN TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7M XOL XSW YBH YQJ YQT YWH ZXP ~02 IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c539t-b8f8e4eb26bf90d4ed4f998f8ed0160cf595980e55ad03ee84a72f24ee4d6d463 |
ISSN | 8750-7587 1522-1601 |
IngestDate | Thu Aug 21 13:55:00 EDT 2025 Thu Sep 04 14:39:16 EDT 2025 Mon Jun 30 08:33:47 EDT 2025 Mon Jul 21 06:09:05 EDT 2025 Mon Jul 21 09:16:16 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Tue Jul 01 01:13:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Physical exercise Human Occlusion Senescence Ageing Striated muscle S6 kinase 1 Blood flow Signal transduction Vertebrata Mammalia Protein synthesis Hemodynamics aging resistance exercise skeletal muscle sarcopenia |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c539t-b8f8e4eb26bf90d4ed4f998f8ed0160cf595980e55ad03ee84a72f24ee4d6d463 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2867530 |
PMID | 20150565 |
PQID | 313930145 |
PQPubID | 40905 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2867530 proquest_miscellaneous_733538536 proquest_journals_313930145 pubmed_primary_20150565 pascalfrancis_primary_22763683 crossref_primary_10_1152_japplphysiol_01266_2009 crossref_citationtrail_10_1152_japplphysiol_01266_2009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-05-01 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2010 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B24 B25 B26 B27 B28 B29 Hamada K (B23) 2004; 18 B30 B31 B32 B33 B34 B35 B36 B59a B37 B38 B39 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 Abe T (B1) 2004; 36 B49 B50 Aniansson A (B2) 1980; 12 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 B18 B19 B60 B61 B62 B63 |
References_xml | – ident: B19 doi: 10.1152/ajpendo.00593.2005 – ident: B7 doi: 10.1038/ncb1101-1014 – ident: B52 doi: 10.2170/jjphysiol.54.585 – ident: B8 doi: 10.1074/jbc.C200171200 – ident: B16 doi: 10.1152/japplphysiol.90842.2008 – ident: B33 doi: 10.1152/japplphysiol.01474.2005 – ident: B46 doi: 10.1074/jbc.M201142200 – ident: B55 doi: 10.1152/japplphysiol.00811.2004 – ident: B6 doi: 10.1093/oxfordjournals.aje.a009520 – ident: B27 doi: 10.1093/gerona/56.5.B209 – ident: B38 doi: 10.1016/S0891-5849(98)00317-7 – ident: B43 doi: 10.1152/japplphysiol.00164.2004 – ident: B44 doi: 10.1152/ajpendo.1997.273.1.E99 – ident: B51 doi: 10.1152/jappl.2000.88.6.2097 – ident: B49 doi: 10.1007/s004210050319 – ident: B25 doi: 10.1096/fj.03-1259fje – ident: B40 doi: 10.1093/ajcn/81.5.953 – ident: B47 doi: 10.1016/S0092-8674(04)00400-3 – ident: B63 doi: 10.1152/ajpendo.1993.265.2.E210 – ident: B30 doi: 10.1074/jbc.271.30.17771 – ident: B4 doi: 10.1113/jphysiol.2009.169854 – ident: B39 doi: 10.1083/jcb.135.6.1633 – ident: B13 doi: 10.1152/japplphysiol.00021.2008 – volume: 36 start-page: S353 year: 2004 ident: B1 publication-title: Med Sci Sports Exerc – volume: 18 start-page: 264 year: 2004 ident: B23 publication-title: FASEB J doi: 10.1096/fj.03-0585com – ident: B5 doi: 10.1152/ajpcell.1999.276.1.C120 – ident: B20 doi: 10.1152/jappl.2000.88.4.1321 – ident: B28 doi: 10.1093/gerona/57.12.M772 – ident: B11 doi: 10.1002/rcm.1290060704 – ident: B26 doi: 10.1152/japplphysiol.00870.2004 – ident: B36 doi: 10.1006/meth.2001.1262 – ident: B59a doi: 10.1113/jphysiol.2009.177220 – ident: B22 doi: 10.1152/jappl.1988.65.6.2406 – ident: B58 doi: 10.1093/ajcn/78.2.250 – ident: B18 doi: 10.1016/S0006-291X(02)02079-X – ident: B3 doi: 10.1074/jbc.M212770200 – ident: B35 doi: 10.1016/j.molcel.2006.01.010 – ident: B31 doi: 10.1152/ajpcell.1996.271.4.C1172 – ident: B29 doi: 10.1016/S0092-8674(03)00929-2 – ident: B62 doi: 10.1152/ajpendo.1999.277.1.E118 – ident: B42 doi: 10.1097/MCO.0b013e32831cef8b – ident: B48 doi: 10.1152/ajpendo.00358.2004 – ident: B15 doi: 10.1249/MSS.0b013e318160ff84 – ident: B34 doi: 10.1113/jphysiol.2008.164483 – ident: B59 doi: 10.1152/ajpendo.1995.268.3.E422 – ident: B12 doi: 10.1113/jphysiol.2006.113175 – ident: B9 doi: 10.1113/jphysiol.2003.047019 – ident: B10 doi: 10.1016/S0092-8674(00)80595-4 – ident: B54 doi: 10.1046/j.1365-201x.2001.00795.x – ident: B21 doi: 10.1152/japplphysiol.00195.2007 – ident: B57 doi: 10.1172/JCI939 – ident: B50 doi: 10.1007/s00421-001-0561-5 – ident: B41 doi: 10.1113/jphysiol.2009.173609 – ident: B45 doi: 10.1096/fj.05-4607fje – ident: B24 doi: 10.1139/h06-031 – ident: B60 doi: 10.1113/jphysiol.2002.036673 – ident: B14 doi: 10.1113/jphysiol.2008.163816 – ident: B61 doi: 10.1113/jphysiol.2005.103481 – volume: 12 start-page: 161 year: 1980 ident: B2 publication-title: Scand J Rehabil Med – ident: B37 doi: 10.1152/japplphysiol.91234.2008 – ident: B32 doi: 10.1152/ajpendo.00530.2005 – ident: B56 doi: 10.1016/j.mad.2006.08.004 – ident: B53 doi: 10.1007/s00421-007-0564-y |
SSID | ssj0014451 |
Score | 2.4641771 |
Snippet | The loss of skeletal muscle mass during aging, sarcopenia, increases the risk for falls and dependence. Resistance exercise (RE) is an effective rehabilitation... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1199 |
SubjectTerms | Age Factors Aged Biological and medical sciences Biomarkers - blood Biopsy Blood pressure Blotting, Western Exercise Fibrin Fibrinogen Degradation Products - metabolism Fundamental and applied biological sciences. Psychology Hormones - blood Humans Insulin - metabolism Male Mechanistic Target of Rapamycin Complex 1 Men Mitogen-Activated Protein Kinases - metabolism Multiprotein Complexes Muscle Contraction Muscle Proteins - biosynthesis Muscle Proteins - genetics Older people Organ Size Oxygen - blood Phosphorylation Protein synthesis Proteins Quadriceps Muscle - anatomy & histology Quadriceps Muscle - blood supply Quadriceps Muscle - metabolism Recovery of Function Regional Blood Flow Resistance Training Ribosomal Protein S6 - metabolism Ribosomal Protein S6 Kinases, 70-kDa - metabolism Sex Factors Signal Transduction Thrombosis - blood Time Factors TOR Serine-Threonine Kinases Transcription Factors - metabolism |
Title | Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20150565 https://www.proquest.com/docview/313930145 https://www.proquest.com/docview/733538536 https://pubmed.ncbi.nlm.nih.gov/PMC2867530 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqISEkhGADFgaTHxAvUUZix078OMbKxLoNUCv1LUoaR6vUpFMvQuUn8qs4vuRSNq4vUePUluPz5dx8fA5Cr6UI0ygNCy8X1PeUhPZEGnGPcpqTIMv9XCeev7jkZ6Pw45iNe73vnail9So7mny781zJ_1AV2oCu6pTsP1C2GRQa4DfQF65AYbj-FY3fqahzt5jNv7qqxMZiaup-12WUXPh8S1WeSy7dcnj15SRwVbhGOqsPJpbrJYzo6lwN00plLwB1UGUogZu5Kt_tlvak2G31NbXqq3aNmEROKueTiFnHudA3m_SdDAatq_XDbGN0Z2DFldv4oN8v9ALmNqY_vW43rgBXpRIkutf5BmY-6DotzH57NwCk3o36VM9RI9IGqrYsEIwp3wOLxohkaVk0mM8Bt6PVPNyPO2BlHY4cBKYA021RwYguUQCrZVfqCIQ112EropWOdUTA5VXSHw0GyfB0PNx-qpUBAswQTF9fJVK4R6IoUOGl55_bHS2VCM74ms0b2VhDmMXbX8xhS1N6eJMuYYkKU23lLnPo56jejpo0fIweWYDgYwPWJ6gnq120d1ylq3m5wW9wQ4rNLrp_YQM79pDUUMYKyrgDZVxDGbdQxgbKuIEyBihjA2VsoYwbKGO40VDGAOWnaNQ_HZ6cebYCiDdhVKy8LC5iGcqM8KwQfh7KPCyEUI25yow4KZhgIvYlY2nuUyljYDykIKGUYc7zkNNnaKeaV3IfYZKCZAKFtyCKPdEgzWLqFySbTLhPKQkcxOvVTiY2Pb6q0jJLtJnMSNIlU6LJpGq4Cgf5TccbkyHmz10Ot8jZ9CMExD2PqYMOavomlt8sEwrGmnKAMAfh5ikIA7XDl1Zyvl4mEaWgwDDKHfTcgKEdWrk2wXpzULQFk-YPKs_89pNqeq3zzZOYR4z6L347qQP0oP3QX6Kd1WItX4G-vsoO9YfwA10d81c |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blood+flow+restriction+exercise+stimulates+mTORC1+signaling+and+muscle+protein+synthesis+in+older+men&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Fry%2C+Christopher+S&rft.au=Glynn%2C+Erin+L&rft.au=Drummond%2C+Micah+J&rft.au=Timmerman%2C+Kyle+L&rft.date=2010-05-01&rft.pub=American+Physiological+Society&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=108&rft.issue=5&rft.spage=1199&rft_id=info:doi/10.1152%2Fjapplphysiol.01266.2009&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2040191091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |