Mining association rules with multiple minimum supports: a new mining algorithm and a support tuning mechanism
Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to refle...
Saved in:
| Published in | Decision Support Systems Vol. 42; no. 1; pp. 1 - 24 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.10.2006
Elsevier Science Elsevier Sequoia S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-9236 1873-5797 1873-5797 |
| DOI | 10.1016/j.dss.2004.09.007 |
Cover
| Abstract | Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items' supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm. |
|---|---|
| AbstractList | Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items'supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm. Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items' supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm. [PUBLICATION ABSTRACT] Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items' supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm.Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items' supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm. |
| Author | Hu, Ya-Han Chen, Yen-Liang |
| AuthorAffiliation | b Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC a Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC |
| AuthorAffiliation_xml | – name: a Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC – name: b Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC |
| Author_xml | – sequence: 1 givenname: Ya-Han surname: Hu fullname: Hu, Ya-Han organization: Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC – sequence: 2 givenname: Yen-Liang surname: Chen fullname: Chen, Yen-Liang email: ylchen@mgt.ncu.edu.tw organization: Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18397261$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/32287563$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkkuPFCEUhYkZ4_S0_gA3pmLixE23F6iCQhMTMxkfyRg3uiYURXXToaCEqunMv5d-6OgsOm4g4X7ncjiXC3TmgzcIPcewxIDZm82yTWlJAMoliCUAf4RmuOZ0UXHBz9AsM3whCGXn6CKlDQCjvGZP0DklpOYVozPkv1pv_apQKQVt1WiDL-LkTCq2dlwX_eRGOzhT9Bnrp75I0zCEOKa3hSq82e7Pd3K3CjEL-kL5NpeOWDFO-3Jv9Fp5m_qn6HGnXDLPjvsc_fh4_f3q8-Lm26cvVx9uFrqiYlxwWpm6A9ForGsABUAoMaas8oo5ViXh0LCyYaBw17WYi5Y3WtWkFXXNS0LniBz6Tn5Qd1vlnByi7VW8kxjkLjy5kTk8uQtPgpA5vCx6fxANU9ObVhs_RnUvDMrKfyveruUq3EqOCWcccoPLY4MYfk4mjbK3SRvnlDdhypcJKhjOU5ij16dBKrJFYLXI6MsH6CZM0efwsnfGgEK5c_7ib-d_LP-ecwZeHQGVtHJdVF7bdJ9JTQUnDGeOHzgdQ0rRdFLbcf8r8oOtOxkefqD8n8DfHTQmf4Vba6JM2hqvTWuj0aNsgz2h_gVc-vC6 |
| CODEN | DSSYDK |
| CitedBy_id | crossref_primary_10_1155_2018_2456010 crossref_primary_10_1016_j_conengprac_2024_106164 crossref_primary_10_3390_sym7031151 crossref_primary_10_1016_j_knosys_2014_02_009 crossref_primary_10_1109_ACCESS_2017_2699172 crossref_primary_10_32628_CSEIT1833244 crossref_primary_10_1007_s10489_023_05145_8 crossref_primary_10_1016_j_ress_2017_08_013 crossref_primary_10_26782_jmcms_2020_07_00015 crossref_primary_10_3390_app9102075 crossref_primary_10_1155_2022_4251458 crossref_primary_10_1002_widm_1207 crossref_primary_10_1016_j_ins_2012_07_047 crossref_primary_10_3390_s17102413 crossref_primary_10_1016_j_eswa_2007_08_048 crossref_primary_10_1186_s40064_016_2153_1 crossref_primary_10_1007_s12065_019_00234_5 crossref_primary_10_1109_TKDE_2010_49 crossref_primary_10_1016_j_engappai_2017_12_012 crossref_primary_10_1111_bjet_12997 crossref_primary_10_1016_j_icte_2020_06_001 crossref_primary_10_1016_j_engappai_2017_01_009 crossref_primary_10_1016_j_dss_2010_11_001 crossref_primary_10_1016_j_patrec_2020_05_006 crossref_primary_10_7472_jksii_2013_14_6_01 crossref_primary_10_1016_j_eswa_2012_08_039 crossref_primary_10_32628_CSEIT206537 crossref_primary_10_1016_j_ijmst_2016_09_017 crossref_primary_10_1016_j_ins_2020_10_020 crossref_primary_10_1186_s40537_020_00307_8 crossref_primary_10_1080_03772063_2020_1838343 crossref_primary_10_22144_ctu_jvn_2017_021 crossref_primary_10_1016_j_procs_2015_07_391 crossref_primary_10_1177_1063293X19832949 crossref_primary_10_1145_3472289 crossref_primary_10_1016_j_asoc_2014_10_047 crossref_primary_10_1016_j_knosys_2016_09_013 crossref_primary_10_1145_3425498 crossref_primary_10_1016_j_eswa_2013_06_041 crossref_primary_10_1016_j_ijpe_2019_107541 crossref_primary_10_3390_ijgi7040146 crossref_primary_10_1016_j_im_2022_103681 crossref_primary_10_1109_ACCESS_2018_2801261 crossref_primary_10_1080_13683500_2021_1951182 crossref_primary_10_1016_j_jss_2012_12_020 crossref_primary_10_1177_00220426221140010 crossref_primary_10_1007_s10489_015_0750_2 crossref_primary_10_1109_TKDE_2012_28 crossref_primary_10_1016_j_dss_2015_06_002 crossref_primary_10_3390_sym8050032 crossref_primary_10_1145_2852082 crossref_primary_10_1016_j_enbuild_2013_02_049 crossref_primary_10_1016_j_procs_2017_08_051 crossref_primary_10_1142_S0218488518500265 crossref_primary_10_4018_IJHISI_302652 crossref_primary_10_1016_j_apenergy_2016_10_091 crossref_primary_10_1111_jvs_13265 crossref_primary_10_1016_j_dss_2011_08_005 crossref_primary_10_1186_s12874_024_02154_0 crossref_primary_10_1371_journal_pone_0179703 crossref_primary_10_1016_j_dss_2009_04_006 crossref_primary_10_1109_TNNLS_2014_2303137 |
| Cites_doi | 10.1109/69.553155 10.1145/342009.335372 10.1145/312129.312274 10.1016/S0306-4379(00)00021-1 |
| ContentType | Journal Article |
| Copyright | 2004 Elsevier B.V. 2007 INIST-CNRS Copyright © 2004 Elsevier B.V. All rights reserved. Copyright Elsevier Sequoia S.A. Oct 2006 Copyright © 2004 Elsevier B.V. All rights reserved. 2004 Elsevier B.V. |
| Copyright_xml | – notice: 2004 Elsevier B.V. – notice: 2007 INIST-CNRS – notice: Copyright © 2004 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier Sequoia S.A. Oct 2006 – notice: Copyright © 2004 Elsevier B.V. All rights reserved. 2004 Elsevier B.V. |
| DBID | AAYXX CITATION IQODW NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.dss.2004.09.007 |
| DatabaseName | CrossRef Pascal-Francis PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business Applied Sciences |
| EISSN | 1873-5797 |
| EndPage | 24 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7127670 PMC7127670 1148796451 32287563 18397261 10_1016_j_dss_2004_09_007 S0167923604002052 |
| Genre | Journal Article Feature |
| GroupedDBID | --K --M -~X .~1 1B1 457 8P~ ABXDB ACNCT ADEZE AEKER ALMA_UNASSIGNED_HOLDINGS BLXMC FDB FNPLU J1W KOM OAUVE PC. Q38 SDF SDG SDP SEW SPC SSD SSL SSV T5K TN5 AAYXX CITATION IQODW NPM .DC 0R~ 13V 1RT 1~. 1~5 4.4 4G. 5GY 5VS 7-5 71M 7SC 8FD 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABIVO ABJNI ABMAC ABMVD ABUCO ABWVN ACDAQ ACGFO ACGFS ACGOD ACHRH ACIWK ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADMUD ADNMO AEBSH AEFWE AEIPS AENEX AEUPX AFPUW AFTJW AGCQF AGHFR AGUBO AGUMN AGYEJ AHHHB AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD AMRAJ ANKPU AOUOD APLSM AXJTR BKOJK BKOMP BNSAS CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FIRID FYGXN G-Q GBOLZ HAMUX HZ~ IHE JQ2 L7M LG9 LY1 L~C L~D M41 MO0 MS~ N9A O-L O9- OZT P-9 P2P PQQKQ RIG ROL SBC SDS SES SPCBC SSB SSZ TAE U5U UNMZH XPP ZMT ~G- 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c539t-735e8f09bc1c800a00232ee4532e171a4270b64b60a1ffd179d7bca82d9887423 |
| IEDL.DBID | AIKHN |
| ISSN | 0167-9236 1873-5797 |
| IngestDate | Sun Oct 26 03:13:47 EDT 2025 Thu Aug 21 17:56:46 EDT 2025 Thu Jul 10 22:54:00 EDT 2025 Thu Jul 10 22:12:28 EDT 2025 Wed Aug 13 05:02:22 EDT 2025 Thu Jan 02 22:58:58 EST 2025 Wed Apr 02 07:22:08 EDT 2025 Thu Oct 02 04:29:03 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Fri Feb 23 02:13:11 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | FP-tree Minimum supports Data mining Association rules Data analysis Tree(graph) Tree structured method Data processing Multiple support Statistical association Information extraction Tree structure Tuning Database |
| Language | English |
| License | CC BY 4.0 Copyright © 2004 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c539t-735e8f09bc1c800a00232ee4532e171a4270b64b60a1ffd179d7bca82d9887423 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7127670 |
| PMID | 32287563 |
| PQID | 206603047 |
| PQPubID | 46291 |
| PageCount | 24 |
| ParticipantIDs | unpaywall_primary_10_1016_j_dss_2004_09_007 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7127670 proquest_miscellaneous_29396106 proquest_miscellaneous_2390160689 proquest_journals_206603047 pubmed_primary_32287563 pascalfrancis_primary_18397261 crossref_citationtrail_10_1016_j_dss_2004_09_007 crossref_primary_10_1016_j_dss_2004_09_007 elsevier_sciencedirect_doi_10_1016_j_dss_2004_09_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-10-01 |
| PublicationDateYYYYMMDD | 2006-10-01 |
| PublicationDate_xml | – month: 10 year: 2006 text: 2006-10-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
| PublicationTitle | Decision Support Systems |
| PublicationTitleAlternate | Decis Support Syst |
| PublicationYear | 2006 |
| Publisher | Elsevier B.V Elsevier Science Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science – name: Elsevier Sequoia S.A |
| References | Lee, Stolfo, Mok (bib9) 1998 Feldman, Aumann, Amir, Mannila (bib5) 1997 Pudi, Haritsa (bib12) 2000; 25 Han, Kamber (bib7) 2001 Agrawal, Srikant (bib1) 1994 Chen, Han, Yu (bib2) 1996; 8 Han, Pei, Yin (bib8) 2000 Thomas, Bodagala, Alsabti, Ranka (bib13) 1997 Liu, Hsu, Ma (bib10) 1999 Tseng, Lin (bib14) 2001 Cheung, Zaiane (bib3) 2003 Mannila (bib11) 1998 Zheng, Kohavi, Mason (bib15) 2001 Cheung, Han, Ng, Wong (bib4) 1996 Han, Fu (bib6) 1995 Liu (10.1016/j.dss.2004.09.007_bib10) 1999 Agrawal (10.1016/j.dss.2004.09.007_bib1) 1994 Feldman (10.1016/j.dss.2004.09.007_bib5) 1997 Han (10.1016/j.dss.2004.09.007_bib8) 2000 Cheung (10.1016/j.dss.2004.09.007_bib3) 2003 Zheng (10.1016/j.dss.2004.09.007_bib15) 2001 Lee (10.1016/j.dss.2004.09.007_bib9) 1998 Pudi (10.1016/j.dss.2004.09.007_bib12) 2000; 25 Cheung (10.1016/j.dss.2004.09.007_bib4) 1996 Han (10.1016/j.dss.2004.09.007_bib7) 2001 Thomas (10.1016/j.dss.2004.09.007_bib13) 1997 Chen (10.1016/j.dss.2004.09.007_bib2) 1996; 8 Han (10.1016/j.dss.2004.09.007_bib6) 1995 Mannila (10.1016/j.dss.2004.09.007_bib11) 1998 Tseng (10.1016/j.dss.2004.09.007_bib14) 2001 |
| References_xml | – start-page: 487 year: 1994 end-page: 499 ident: bib1 article-title: Fast algorithms for mining association rules publication-title: Proceedings of the 20th Very Large DataBases Conference (VLDB'94), Santiago de Chile, Chile – year: 1999 ident: bib10 article-title: Mining association rules with multiple minimum supports – volume: 25 start-page: 323 year: 2000 end-page: 343 ident: bib12 article-title: Quantifying the utility of the past in mining large databases publication-title: Information Systems – start-page: 401 year: 2001 end-page: 406 ident: bib15 article-title: Real world performance of association rule algorithms – volume: 8 start-page: 866 year: 1996 end-page: 883 ident: bib2 article-title: Data mining: an overview from a database perspective publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2000 ident: bib8 article-title: Mining frequent patterns without candidate generation – year: 1998 ident: bib9 article-title: Mining audit data to build intrusion detection models – year: 1998 ident: bib11 article-title: Database methods for data mining – year: 2001 ident: bib7 article-title: Data Mining: Concepts and Techniques – start-page: 11 year: 2001 end-page: 20 ident: bib14 article-title: Mining generalized association rules with multiple minimum supports publication-title: International Conference on Data Warehousing and Knowledge Discovery (DaWaK'01), Munich, Germany – start-page: 420 year: 1995 end-page: 431 ident: bib6 article-title: Discovery of multiple-level association rules from large databases publication-title: Proceedings of the 21th Very Large DataBases Conference (VLDB'95), Zurich, Switzerland – year: 1997 ident: bib13 article-title: An efficient algorithm for the incremental update of association rules in large database – start-page: 111 year: 2003 end-page: 116 ident: bib3 article-title: Incremental mining of frequent patterns without candidate generation or support constraint publication-title: Proceedings of the 7th International Database Engineering and Applications Symposium (IDEAS'03), Hong Kong – start-page: 59 year: 1997 end-page: 66 ident: bib5 article-title: Efficient algorithm for discovering frequent sets in incremental databases publication-title: Proceedings of SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD'97), Tucson, AZ, USA – start-page: 106 year: 1996 end-page: 114 ident: bib4 article-title: Maintenance of discovered association rules in large databases: an incremental updating technique publication-title: Proceedings of International Conference on Data Engineering (ICDE'96), New Orleans, LA, USA – start-page: 401 year: 2001 ident: 10.1016/j.dss.2004.09.007_bib15 article-title: Real world performance of association rule algorithms – volume: 8 start-page: 866 year: 1996 ident: 10.1016/j.dss.2004.09.007_bib2 article-title: Data mining: an overview from a database perspective publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/69.553155 – start-page: 106 year: 1996 ident: 10.1016/j.dss.2004.09.007_bib4 article-title: Maintenance of discovered association rules in large databases: an incremental updating technique – year: 1998 ident: 10.1016/j.dss.2004.09.007_bib11 article-title: Database methods for data mining – year: 1998 ident: 10.1016/j.dss.2004.09.007_bib9 article-title: Mining audit data to build intrusion detection models – start-page: 11 year: 2001 ident: 10.1016/j.dss.2004.09.007_bib14 article-title: Mining generalized association rules with multiple minimum supports – start-page: 59 year: 1997 ident: 10.1016/j.dss.2004.09.007_bib5 article-title: Efficient algorithm for discovering frequent sets in incremental databases – start-page: 420 year: 1995 ident: 10.1016/j.dss.2004.09.007_bib6 article-title: Discovery of multiple-level association rules from large databases – year: 2000 ident: 10.1016/j.dss.2004.09.007_bib8 article-title: Mining frequent patterns without candidate generation doi: 10.1145/342009.335372 – year: 2001 ident: 10.1016/j.dss.2004.09.007_bib7 – year: 1997 ident: 10.1016/j.dss.2004.09.007_bib13 article-title: An efficient algorithm for the incremental update of association rules in large database – year: 1999 ident: 10.1016/j.dss.2004.09.007_bib10 article-title: Mining association rules with multiple minimum supports doi: 10.1145/312129.312274 – volume: 25 start-page: 323 issue: 5 year: 2000 ident: 10.1016/j.dss.2004.09.007_bib12 article-title: Quantifying the utility of the past in mining large databases publication-title: Information Systems doi: 10.1016/S0306-4379(00)00021-1 – start-page: 111 year: 2003 ident: 10.1016/j.dss.2004.09.007_bib3 article-title: Incremental mining of frequent patterns without candidate generation or support constraint – start-page: 487 year: 1994 ident: 10.1016/j.dss.2004.09.007_bib1 article-title: Fast algorithms for mining association rules |
| SSID | ssj0063786 ssj0006130 |
| Score | 2.232693 |
| Snippet | Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by... |
| SourceID | unpaywall pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Applied sciences Association rules Computer science; control theory; systems Data base management systems Data mining Data processing. List processing. Character string processing Decision support systems Exact sciences and technology FP-tree Memory organisation. Data processing Minimum supports Software Studies |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFVQofltjta7gk5JrPvfDtyKWIrSIeFCfwn4k9TTJHXcXRP96ZzfZq6e10pc8ZGYSkpnd_e3u7G8AXqKLE5XILNTc8DDLtcEmJaswilTCKy6FcVRKJ6f0eJK9P8vPtiD2Z2Fc0r5W03FbN-N2-sXlVs4bfeDzxA5YnDDKcJa-TXOE3yPYnpx-OPzsObwRsLgTRZylYc4E8zuZLqfLLB1Dd09taivIXj4W7czlEv9Q1Ze2uAx7_p1CebNr5_LHd1nXv41PR3fgo_-yPi3l27hbqbH--Qfp47U-_S7cHtAqOexF92CrbO_DDZ8s_wDaE1dfgsgLJ5NFhw8hdn2X-GxFYglMmq4hy27utijeEEkQz7v71rw-ny3QoCGyNSga1Miqc-KmtMeTp8vmIUyO3n16exwOFRxCnadiFbI0L3kVCaVjjchUWoSQlGWW4zVmscwSFimaKRrJuKoMdg6GKS15YgR2foj0HsGonbXlYyApV4rqRMZa5RmViosqSyvDjSW4T4QJIPK-LPRAb26rbNSFz2P7WqD7bdnNrIhEge4P4NXaZN5ze1ylnPkAKQZw0oOOAseeq8z2N4Lp4kWITBlOXwPY89FVDN2HfQClds8azV-spdju7WaObMtZhyp2sQpnn1wE8PxfOiIVCI9pALt9tK7fjt04TlRpGgDbiOO1gmUd35RgRDr28SEIA3i9jvj__70n19Leg1tupcvlTD6F0WrRlc8Q-63U_tDafwHLolpO priority: 102 providerName: Unpaywall |
| Title | Mining association rules with multiple minimum supports: a new mining algorithm and a support tuning mechanism |
| URI | https://dx.doi.org/10.1016/j.dss.2004.09.007 https://www.ncbi.nlm.nih.gov/pubmed/32287563 https://www.proquest.com/docview/206603047 https://www.proquest.com/docview/2390160689 https://www.proquest.com/docview/29396106 https://pubmed.ncbi.nlm.nih.gov/PMC7127670 https://www.ncbi.nlm.nih.gov/pmc/articles/7127670 |
| UnpaywallVersion | submittedVersion |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-5797 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006130 issn: 0167-9236 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-5797 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063786 issn: 0167-9236 databaseCode: .~1 dateStart: 19990201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5797 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006130 issn: 0167-9236 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5797 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006130 issn: 0167-9236 databaseCode: AKRWK dateStart: 19850101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToJJCPFNGBQj8QTKmjiJ4_BWTUyFahUCKsZTZMcJdErSqGmEeOFv5-x8jIoxJF4aNb5r1Lvz3c_25Q7gBaqYSip8O-GK236QKJxSIrMdR1KecREpU0rpdMFmS__dWXC2B8f9uzA6rbLz_a1PN966uzPppDmpVqvJR51Aj_CEaTOkToB-eB_jD-cj2J--nc8Wg0NuIXL7hXmh6f5o6n1r7v6k0-R8qdpU8G5Ln-oOs5fHqpuVqFGCWdv64jJs-meK5Y2mrMSP7yLPf4tfJ7fhVgc8ybT9b3dgLy3vwvU-7_0elKemVQQRF_oimyZPa6K3akmfeEh0LZKiKUjdVOa04TURBKG5ua_Z86_rDTIURJQKhzoysm3McJHqN41XdXEflidvPh3P7K4Zg50EXrS1Qy9IeeZEMnETBJlCB3uapn6An27oCp-GjmS-ZI5ws0zhPFehTASnKkI_hqDtAYzKdZk-AuJxKVlChZvIwGdC8ijzvUxxpWvV00hZ4PRij5OuUrlumJHHfUraeYya0h00_diJYtSUBS8Hlqot03EVsd_rMt6xtRjDyFVs4x29XzwIQWaIK1ELDntDiDtPoH-AMX38jOzPh1GcwvpcRpTpukESve-EC0keWfDsbzSRFyHSZRY8bA1reDp6ZFxzMs-CcMfkBgJdQHx3pFx9M4XEQ5eGLHQseDUY57-l9_j_pHcIB2b3yuRBPoHRdtOkTxHPbeUYrh39dMfdrNXX-YfPc7wuF--nX34B7zhNbQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NQ2JICPFNNtiMxBMoNHEcO-YNTUwF1r2wSXuL7DiBoiaNmkYTL_ztnJ2PUjGGxEukxr5EvTuff7YvvwN4hSammirmZ4lJfBZnBoeUKvwg0DQpEiWNo1KanfHpBft0GV_uwPHwLYxNq-xjfxfTXbTu70x6bU7q-XzyxSbQIzzh1g1pEGMcvsViKuwK7O3PTZ5HB5C7HzwSrvajY_u2ssM5p8v4Mo3j7-6IT2192etnqru1alB_RVf44jpk-meC5V5b1erHlVosfpu9Tu7DvR52kvfdP3sAO3n1EG4PWe-PoJq5QhFEbaxFVu0ib4jdqCVD2iGxTCRlW5Kmrd1ZwzuiCAJzd9-KL74uVyhQElUZbOq7kXXrmsvcfmc8b8rHcHHy4fx46velGPwsjuTaF1GcJ0UgdRZmCDGVneppnrMYr6EIFaMi0JxpHqiwKAyOciN0phJqJEYxhGxPYLdaVvkzIFGiNc-oCjMdM650IgsWFSYxlqmeSuNBMKg9zXqeclsuY5EOCWnfU7SUrZ_J0kCmaCkPXo8idUfScVNnNtgy3fK0FCeRm8QOt-y-eRFCTIHrUA8OBkdI-zhgH8C5PXxG8ZdjKw5geyqjqnzZYhe764TLyER6cPS3PjKSiHO5B087xxrfjvEYV5w88kBsudzYwdKHb7dU82-ORlyEVHARePBmdM5_a2___7R3BHvT89lpevrx7PMB3HH7WC4j8jnsrldt_gKR3VofupH7CwCBSuI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFVQofltjta7gk5JrPvfDtyKWIrSIeFCfwn4k9TTJHXcXRP96ZzfZq6e10pc8ZGYSkpnd_e3u7G8AXqKLE5XILNTc8DDLtcEmJaswilTCKy6FcVRKJ6f0eJK9P8vPtiD2Z2Fc0r5W03FbN-N2-sXlVs4bfeDzxA5YnDDKcJa-TXOE3yPYnpx-OPzsObwRsLgTRZylYc4E8zuZLqfLLB1Dd09taivIXj4W7czlEv9Q1Ze2uAx7_p1CebNr5_LHd1nXv41PR3fgo_-yPi3l27hbqbH--Qfp47U-_S7cHtAqOexF92CrbO_DDZ8s_wDaE1dfgsgLJ5NFhw8hdn2X-GxFYglMmq4hy27utijeEEkQz7v71rw-ny3QoCGyNSga1Miqc-KmtMeTp8vmIUyO3n16exwOFRxCnadiFbI0L3kVCaVjjchUWoSQlGWW4zVmscwSFimaKRrJuKoMdg6GKS15YgR2foj0HsGonbXlYyApV4rqRMZa5RmViosqSyvDjSW4T4QJIPK-LPRAb26rbNSFz2P7WqD7bdnNrIhEge4P4NXaZN5ze1ylnPkAKQZw0oOOAseeq8z2N4Lp4kWITBlOXwPY89FVDN2HfQClds8azV-spdju7WaObMtZhyp2sQpnn1wE8PxfOiIVCI9pALt9tK7fjt04TlRpGgDbiOO1gmUd35RgRDr28SEIA3i9jvj__70n19Leg1tupcvlTD6F0WrRlc8Q-63U_tDafwHLolpO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+association+rules+with+multiple+minimum+supports%3A+a+new+mining+algorithm+and+a+support+tuning+mechanism&rft.jtitle=Decision+support+systems&rft.au=Hu%2C+Ya-Han&rft.au=Chen%2C+Yen-Liang&rft.date=2006-10-01&rft.issn=0167-9236&rft.volume=42&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1016%2Fj.dss.2004.09.007&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9236&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9236&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9236&client=summon |