Mining association rules with multiple minimum supports: a new mining algorithm and a support tuning mechanism

Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to refle...

Full description

Saved in:
Bibliographic Details
Published inDecision Support Systems Vol. 42; no. 1; pp. 1 - 24
Main Authors Hu, Ya-Han, Chen, Yen-Liang
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2006
Elsevier Science
Elsevier Sequoia S.A
Subjects
Online AccessGet full text
ISSN0167-9236
1873-5797
1873-5797
DOI10.1016/j.dss.2004.09.007

Cover

Abstract Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items' supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm.
AbstractList Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items'supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm.
Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items' supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm. [PUBLICATION ABSTRACT]
Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items' supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm.Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by Liu et al. Instead of setting a single minimum support threshold for all items, they allow users to specify multiple minimum supports to reflect the natures of the items, and an Apriori-based algorithm, named MSapriori, is developed to mine all frequent itemsets. In this paper, we study the same problem but with two additional improvements. First, we propose a FP-tree-like structure, MIS-tree, to store the crucial information about frequent patterns. Accordingly, an efficient MIS-tree-based algorithm, called the CFP-growth algorithm, is developed for mining all frequent itemsets. Second, since each item can have its own minimum support, it is very difficult for users to set the appropriate thresholds for all items at a time. In practice, users need to tune items' supports and run the mining algorithm repeatedly until a satisfactory end is reached. To speed up this time-consuming tuning process, an efficient algorithm which can maintain the MIS-tree structure without rescanning database is proposed. Experiments on both synthetic and real-life datasets show that our algorithms are much more efficient and scalable than the previous algorithm.
Author Hu, Ya-Han
Chen, Yen-Liang
AuthorAffiliation b Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC
a Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC
AuthorAffiliation_xml – name: a Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC
– name: b Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC
Author_xml – sequence: 1
  givenname: Ya-Han
  surname: Hu
  fullname: Hu, Ya-Han
  organization: Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC
– sequence: 2
  givenname: Yen-Liang
  surname: Chen
  fullname: Chen, Yen-Liang
  email: ylchen@mgt.ncu.edu.tw
  organization: Department of Information Management, National Central University, Chung-Li 320, Taiwan, ROC
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18397261$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/32287563$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuPFCEUhYkZ4_S0_gA3pmLixE23F6iCQhMTMxkfyRg3uiYURXXToaCEqunMv5d-6OgsOm4g4X7ncjiXC3TmgzcIPcewxIDZm82yTWlJAMoliCUAf4RmuOZ0UXHBz9AsM3whCGXn6CKlDQCjvGZP0DklpOYVozPkv1pv_apQKQVt1WiDL-LkTCq2dlwX_eRGOzhT9Bnrp75I0zCEOKa3hSq82e7Pd3K3CjEL-kL5NpeOWDFO-3Jv9Fp5m_qn6HGnXDLPjvsc_fh4_f3q8-Lm26cvVx9uFrqiYlxwWpm6A9ForGsABUAoMaas8oo5ViXh0LCyYaBw17WYi5Y3WtWkFXXNS0LniBz6Tn5Qd1vlnByi7VW8kxjkLjy5kTk8uQtPgpA5vCx6fxANU9ObVhs_RnUvDMrKfyveruUq3EqOCWcccoPLY4MYfk4mjbK3SRvnlDdhypcJKhjOU5ij16dBKrJFYLXI6MsH6CZM0efwsnfGgEK5c_7ib-d_LP-ecwZeHQGVtHJdVF7bdJ9JTQUnDGeOHzgdQ0rRdFLbcf8r8oOtOxkefqD8n8DfHTQmf4Vba6JM2hqvTWuj0aNsgz2h_gVc-vC6
CODEN DSSYDK
CitedBy_id crossref_primary_10_1155_2018_2456010
crossref_primary_10_1016_j_conengprac_2024_106164
crossref_primary_10_3390_sym7031151
crossref_primary_10_1016_j_knosys_2014_02_009
crossref_primary_10_1109_ACCESS_2017_2699172
crossref_primary_10_32628_CSEIT1833244
crossref_primary_10_1007_s10489_023_05145_8
crossref_primary_10_1016_j_ress_2017_08_013
crossref_primary_10_26782_jmcms_2020_07_00015
crossref_primary_10_3390_app9102075
crossref_primary_10_1155_2022_4251458
crossref_primary_10_1002_widm_1207
crossref_primary_10_1016_j_ins_2012_07_047
crossref_primary_10_3390_s17102413
crossref_primary_10_1016_j_eswa_2007_08_048
crossref_primary_10_1186_s40064_016_2153_1
crossref_primary_10_1007_s12065_019_00234_5
crossref_primary_10_1109_TKDE_2010_49
crossref_primary_10_1016_j_engappai_2017_12_012
crossref_primary_10_1111_bjet_12997
crossref_primary_10_1016_j_icte_2020_06_001
crossref_primary_10_1016_j_engappai_2017_01_009
crossref_primary_10_1016_j_dss_2010_11_001
crossref_primary_10_1016_j_patrec_2020_05_006
crossref_primary_10_7472_jksii_2013_14_6_01
crossref_primary_10_1016_j_eswa_2012_08_039
crossref_primary_10_32628_CSEIT206537
crossref_primary_10_1016_j_ijmst_2016_09_017
crossref_primary_10_1016_j_ins_2020_10_020
crossref_primary_10_1186_s40537_020_00307_8
crossref_primary_10_1080_03772063_2020_1838343
crossref_primary_10_22144_ctu_jvn_2017_021
crossref_primary_10_1016_j_procs_2015_07_391
crossref_primary_10_1177_1063293X19832949
crossref_primary_10_1145_3472289
crossref_primary_10_1016_j_asoc_2014_10_047
crossref_primary_10_1016_j_knosys_2016_09_013
crossref_primary_10_1145_3425498
crossref_primary_10_1016_j_eswa_2013_06_041
crossref_primary_10_1016_j_ijpe_2019_107541
crossref_primary_10_3390_ijgi7040146
crossref_primary_10_1016_j_im_2022_103681
crossref_primary_10_1109_ACCESS_2018_2801261
crossref_primary_10_1080_13683500_2021_1951182
crossref_primary_10_1016_j_jss_2012_12_020
crossref_primary_10_1177_00220426221140010
crossref_primary_10_1007_s10489_015_0750_2
crossref_primary_10_1109_TKDE_2012_28
crossref_primary_10_1016_j_dss_2015_06_002
crossref_primary_10_3390_sym8050032
crossref_primary_10_1145_2852082
crossref_primary_10_1016_j_enbuild_2013_02_049
crossref_primary_10_1016_j_procs_2017_08_051
crossref_primary_10_1142_S0218488518500265
crossref_primary_10_4018_IJHISI_302652
crossref_primary_10_1016_j_apenergy_2016_10_091
crossref_primary_10_1111_jvs_13265
crossref_primary_10_1016_j_dss_2011_08_005
crossref_primary_10_1186_s12874_024_02154_0
crossref_primary_10_1371_journal_pone_0179703
crossref_primary_10_1016_j_dss_2009_04_006
crossref_primary_10_1109_TNNLS_2014_2303137
Cites_doi 10.1109/69.553155
10.1145/342009.335372
10.1145/312129.312274
10.1016/S0306-4379(00)00021-1
ContentType Journal Article
Copyright 2004 Elsevier B.V.
2007 INIST-CNRS
Copyright © 2004 Elsevier B.V. All rights reserved.
Copyright Elsevier Sequoia S.A. Oct 2006
Copyright © 2004 Elsevier B.V. All rights reserved. 2004 Elsevier B.V.
Copyright_xml – notice: 2004 Elsevier B.V.
– notice: 2007 INIST-CNRS
– notice: Copyright © 2004 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier Sequoia S.A. Oct 2006
– notice: Copyright © 2004 Elsevier B.V. All rights reserved. 2004 Elsevier B.V.
DBID AAYXX
CITATION
IQODW
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.dss.2004.09.007
DatabaseName CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Business
Applied Sciences
EISSN 1873-5797
EndPage 24
ExternalDocumentID oai:pubmedcentral.nih.gov:7127670
PMC7127670
1148796451
32287563
18397261
10_1016_j_dss_2004_09_007
S0167923604002052
Genre Journal Article
Feature
GroupedDBID --K
--M
-~X
.~1
1B1
457
8P~
ABXDB
ACNCT
ADEZE
AEKER
ALMA_UNASSIGNED_HOLDINGS
BLXMC
FDB
FNPLU
J1W
KOM
OAUVE
PC.
Q38
SDF
SDG
SDP
SEW
SPC
SSD
SSL
SSV
T5K
TN5
AAYXX
CITATION
IQODW
NPM
.DC
0R~
13V
1RT
1~.
1~5
4.4
4G.
5GY
5VS
7-5
71M
7SC
8FD
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMVD
ABUCO
ABWVN
ACDAQ
ACGFO
ACGFS
ACGOD
ACHRH
ACIWK
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AENEX
AEUPX
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BKOJK
BKOMP
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FIRID
FYGXN
G-Q
GBOLZ
HAMUX
HZ~
IHE
JQ2
L7M
LG9
LY1
L~C
L~D
M41
MO0
MS~
N9A
O-L
O9-
OZT
P-9
P2P
PQQKQ
RIG
ROL
SBC
SDS
SES
SPCBC
SSB
SSZ
TAE
U5U
UNMZH
XPP
ZMT
~G-
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c539t-735e8f09bc1c800a00232ee4532e171a4270b64b60a1ffd179d7bca82d9887423
IEDL.DBID AIKHN
ISSN 0167-9236
1873-5797
IngestDate Sun Oct 26 03:13:47 EDT 2025
Thu Aug 21 17:56:46 EDT 2025
Thu Jul 10 22:54:00 EDT 2025
Thu Jul 10 22:12:28 EDT 2025
Wed Aug 13 05:02:22 EDT 2025
Thu Jan 02 22:58:58 EST 2025
Wed Apr 02 07:22:08 EDT 2025
Thu Oct 02 04:29:03 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Fri Feb 23 02:13:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords FP-tree
Minimum supports
Data mining
Association rules
Data analysis
Tree(graph)
Tree structured method
Data processing
Multiple support
Statistical association
Information extraction
Tree structure
Tuning
Database
Language English
License CC BY 4.0
Copyright © 2004 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-735e8f09bc1c800a00232ee4532e171a4270b64b60a1ffd179d7bca82d9887423
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7127670
PMID 32287563
PQID 206603047
PQPubID 46291
PageCount 24
ParticipantIDs unpaywall_primary_10_1016_j_dss_2004_09_007
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7127670
proquest_miscellaneous_29396106
proquest_miscellaneous_2390160689
proquest_journals_206603047
pubmed_primary_32287563
pascalfrancis_primary_18397261
crossref_citationtrail_10_1016_j_dss_2004_09_007
crossref_primary_10_1016_j_dss_2004_09_007
elsevier_sciencedirect_doi_10_1016_j_dss_2004_09_007
PublicationCentury 2000
PublicationDate 2006-10-01
PublicationDateYYYYMMDD 2006-10-01
PublicationDate_xml – month: 10
  year: 2006
  text: 2006-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Decision Support Systems
PublicationTitleAlternate Decis Support Syst
PublicationYear 2006
Publisher Elsevier B.V
Elsevier Science
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
– name: Elsevier Sequoia S.A
References Lee, Stolfo, Mok (bib9) 1998
Feldman, Aumann, Amir, Mannila (bib5) 1997
Pudi, Haritsa (bib12) 2000; 25
Han, Kamber (bib7) 2001
Agrawal, Srikant (bib1) 1994
Chen, Han, Yu (bib2) 1996; 8
Han, Pei, Yin (bib8) 2000
Thomas, Bodagala, Alsabti, Ranka (bib13) 1997
Liu, Hsu, Ma (bib10) 1999
Tseng, Lin (bib14) 2001
Cheung, Zaiane (bib3) 2003
Mannila (bib11) 1998
Zheng, Kohavi, Mason (bib15) 2001
Cheung, Han, Ng, Wong (bib4) 1996
Han, Fu (bib6) 1995
Liu (10.1016/j.dss.2004.09.007_bib10) 1999
Agrawal (10.1016/j.dss.2004.09.007_bib1) 1994
Feldman (10.1016/j.dss.2004.09.007_bib5) 1997
Han (10.1016/j.dss.2004.09.007_bib8) 2000
Cheung (10.1016/j.dss.2004.09.007_bib3) 2003
Zheng (10.1016/j.dss.2004.09.007_bib15) 2001
Lee (10.1016/j.dss.2004.09.007_bib9) 1998
Pudi (10.1016/j.dss.2004.09.007_bib12) 2000; 25
Cheung (10.1016/j.dss.2004.09.007_bib4) 1996
Han (10.1016/j.dss.2004.09.007_bib7) 2001
Thomas (10.1016/j.dss.2004.09.007_bib13) 1997
Chen (10.1016/j.dss.2004.09.007_bib2) 1996; 8
Han (10.1016/j.dss.2004.09.007_bib6) 1995
Mannila (10.1016/j.dss.2004.09.007_bib11) 1998
Tseng (10.1016/j.dss.2004.09.007_bib14) 2001
References_xml – start-page: 487
  year: 1994
  end-page: 499
  ident: bib1
  article-title: Fast algorithms for mining association rules
  publication-title: Proceedings of the 20th Very Large DataBases Conference (VLDB'94), Santiago de Chile, Chile
– year: 1999
  ident: bib10
  article-title: Mining association rules with multiple minimum supports
– volume: 25
  start-page: 323
  year: 2000
  end-page: 343
  ident: bib12
  article-title: Quantifying the utility of the past in mining large databases
  publication-title: Information Systems
– start-page: 401
  year: 2001
  end-page: 406
  ident: bib15
  article-title: Real world performance of association rule algorithms
– volume: 8
  start-page: 866
  year: 1996
  end-page: 883
  ident: bib2
  article-title: Data mining: an overview from a database perspective
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2000
  ident: bib8
  article-title: Mining frequent patterns without candidate generation
– year: 1998
  ident: bib9
  article-title: Mining audit data to build intrusion detection models
– year: 1998
  ident: bib11
  article-title: Database methods for data mining
– year: 2001
  ident: bib7
  article-title: Data Mining: Concepts and Techniques
– start-page: 11
  year: 2001
  end-page: 20
  ident: bib14
  article-title: Mining generalized association rules with multiple minimum supports
  publication-title: International Conference on Data Warehousing and Knowledge Discovery (DaWaK'01), Munich, Germany
– start-page: 420
  year: 1995
  end-page: 431
  ident: bib6
  article-title: Discovery of multiple-level association rules from large databases
  publication-title: Proceedings of the 21th Very Large DataBases Conference (VLDB'95), Zurich, Switzerland
– year: 1997
  ident: bib13
  article-title: An efficient algorithm for the incremental update of association rules in large database
– start-page: 111
  year: 2003
  end-page: 116
  ident: bib3
  article-title: Incremental mining of frequent patterns without candidate generation or support constraint
  publication-title: Proceedings of the 7th International Database Engineering and Applications Symposium (IDEAS'03), Hong Kong
– start-page: 59
  year: 1997
  end-page: 66
  ident: bib5
  article-title: Efficient algorithm for discovering frequent sets in incremental databases
  publication-title: Proceedings of SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD'97), Tucson, AZ, USA
– start-page: 106
  year: 1996
  end-page: 114
  ident: bib4
  article-title: Maintenance of discovered association rules in large databases: an incremental updating technique
  publication-title: Proceedings of International Conference on Data Engineering (ICDE'96), New Orleans, LA, USA
– start-page: 401
  year: 2001
  ident: 10.1016/j.dss.2004.09.007_bib15
  article-title: Real world performance of association rule algorithms
– volume: 8
  start-page: 866
  year: 1996
  ident: 10.1016/j.dss.2004.09.007_bib2
  article-title: Data mining: an overview from a database perspective
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/69.553155
– start-page: 106
  year: 1996
  ident: 10.1016/j.dss.2004.09.007_bib4
  article-title: Maintenance of discovered association rules in large databases: an incremental updating technique
– year: 1998
  ident: 10.1016/j.dss.2004.09.007_bib11
  article-title: Database methods for data mining
– year: 1998
  ident: 10.1016/j.dss.2004.09.007_bib9
  article-title: Mining audit data to build intrusion detection models
– start-page: 11
  year: 2001
  ident: 10.1016/j.dss.2004.09.007_bib14
  article-title: Mining generalized association rules with multiple minimum supports
– start-page: 59
  year: 1997
  ident: 10.1016/j.dss.2004.09.007_bib5
  article-title: Efficient algorithm for discovering frequent sets in incremental databases
– start-page: 420
  year: 1995
  ident: 10.1016/j.dss.2004.09.007_bib6
  article-title: Discovery of multiple-level association rules from large databases
– year: 2000
  ident: 10.1016/j.dss.2004.09.007_bib8
  article-title: Mining frequent patterns without candidate generation
  doi: 10.1145/342009.335372
– year: 2001
  ident: 10.1016/j.dss.2004.09.007_bib7
– year: 1997
  ident: 10.1016/j.dss.2004.09.007_bib13
  article-title: An efficient algorithm for the incremental update of association rules in large database
– year: 1999
  ident: 10.1016/j.dss.2004.09.007_bib10
  article-title: Mining association rules with multiple minimum supports
  doi: 10.1145/312129.312274
– volume: 25
  start-page: 323
  issue: 5
  year: 2000
  ident: 10.1016/j.dss.2004.09.007_bib12
  article-title: Quantifying the utility of the past in mining large databases
  publication-title: Information Systems
  doi: 10.1016/S0306-4379(00)00021-1
– start-page: 111
  year: 2003
  ident: 10.1016/j.dss.2004.09.007_bib3
  article-title: Incremental mining of frequent patterns without candidate generation or support constraint
– start-page: 487
  year: 1994
  ident: 10.1016/j.dss.2004.09.007_bib1
  article-title: Fast algorithms for mining association rules
SSID ssj0063786
ssj0006130
Score 2.232693
Snippet Mining association rules with multiple minimum supports is an important generalization of the association-rule-mining problem, which was recently proposed by...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Applied sciences
Association rules
Computer science; control theory; systems
Data base management systems
Data mining
Data processing. List processing. Character string processing
Decision support systems
Exact sciences and technology
FP-tree
Memory organisation. Data processing
Minimum supports
Software
Studies
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFVQofltjta7gk5JrPvfDtyKWIrSIeFCfwn4k9TTJHXcXRP96ZzfZq6e10pc8ZGYSkpnd_e3u7G8AXqKLE5XILNTc8DDLtcEmJaswilTCKy6FcVRKJ6f0eJK9P8vPtiD2Z2Fc0r5W03FbN-N2-sXlVs4bfeDzxA5YnDDKcJa-TXOE3yPYnpx-OPzsObwRsLgTRZylYc4E8zuZLqfLLB1Dd09taivIXj4W7czlEv9Q1Ze2uAx7_p1CebNr5_LHd1nXv41PR3fgo_-yPi3l27hbqbH--Qfp47U-_S7cHtAqOexF92CrbO_DDZ8s_wDaE1dfgsgLJ5NFhw8hdn2X-GxFYglMmq4hy27utijeEEkQz7v71rw-ny3QoCGyNSga1Miqc-KmtMeTp8vmIUyO3n16exwOFRxCnadiFbI0L3kVCaVjjchUWoSQlGWW4zVmscwSFimaKRrJuKoMdg6GKS15YgR2foj0HsGonbXlYyApV4rqRMZa5RmViosqSyvDjSW4T4QJIPK-LPRAb26rbNSFz2P7WqD7bdnNrIhEge4P4NXaZN5ze1ylnPkAKQZw0oOOAseeq8z2N4Lp4kWITBlOXwPY89FVDN2HfQClds8azV-spdju7WaObMtZhyp2sQpnn1wE8PxfOiIVCI9pALt9tK7fjt04TlRpGgDbiOO1gmUd35RgRDr28SEIA3i9jvj__70n19Leg1tupcvlTD6F0WrRlc8Q-63U_tDafwHLolpO
  priority: 102
  providerName: Unpaywall
Title Mining association rules with multiple minimum supports: a new mining algorithm and a support tuning mechanism
URI https://dx.doi.org/10.1016/j.dss.2004.09.007
https://www.ncbi.nlm.nih.gov/pubmed/32287563
https://www.proquest.com/docview/206603047
https://www.proquest.com/docview/2390160689
https://www.proquest.com/docview/29396106
https://pubmed.ncbi.nlm.nih.gov/PMC7127670
https://www.ncbi.nlm.nih.gov/pmc/articles/7127670
UnpaywallVersion submittedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-5797
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006130
  issn: 0167-9236
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-5797
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063786
  issn: 0167-9236
  databaseCode: .~1
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-5797
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006130
  issn: 0167-9236
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5797
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006130
  issn: 0167-9236
  databaseCode: AKRWK
  dateStart: 19850101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToJJCPFNGBQj8QTKmjiJ4_BWTUyFahUCKsZTZMcJdErSqGmEeOFv5-x8jIoxJF4aNb5r1Lvz3c_25Q7gBaqYSip8O-GK236QKJxSIrMdR1KecREpU0rpdMFmS__dWXC2B8f9uzA6rbLz_a1PN966uzPppDmpVqvJR51Aj_CEaTOkToB-eB_jD-cj2J--nc8Wg0NuIXL7hXmh6f5o6n1r7v6k0-R8qdpU8G5Ln-oOs5fHqpuVqFGCWdv64jJs-meK5Y2mrMSP7yLPf4tfJ7fhVgc8ybT9b3dgLy3vwvU-7_0elKemVQQRF_oimyZPa6K3akmfeEh0LZKiKUjdVOa04TURBKG5ua_Z86_rDTIURJQKhzoysm3McJHqN41XdXEflidvPh3P7K4Zg50EXrS1Qy9IeeZEMnETBJlCB3uapn6An27oCp-GjmS-ZI5ws0zhPFehTASnKkI_hqDtAYzKdZk-AuJxKVlChZvIwGdC8ijzvUxxpWvV00hZ4PRij5OuUrlumJHHfUraeYya0h00_diJYtSUBS8Hlqot03EVsd_rMt6xtRjDyFVs4x29XzwIQWaIK1ELDntDiDtPoH-AMX38jOzPh1GcwvpcRpTpukESve-EC0keWfDsbzSRFyHSZRY8bA1reDp6ZFxzMs-CcMfkBgJdQHx3pFx9M4XEQ5eGLHQseDUY57-l9_j_pHcIB2b3yuRBPoHRdtOkTxHPbeUYrh39dMfdrNXX-YfPc7wuF--nX34B7zhNbQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NQ2JICPFNNtiMxBMoNHEcO-YNTUwF1r2wSXuL7DiBoiaNmkYTL_ztnJ2PUjGGxEukxr5EvTuff7YvvwN4hSammirmZ4lJfBZnBoeUKvwg0DQpEiWNo1KanfHpBft0GV_uwPHwLYxNq-xjfxfTXbTu70x6bU7q-XzyxSbQIzzh1g1pEGMcvsViKuwK7O3PTZ5HB5C7HzwSrvajY_u2ssM5p8v4Mo3j7-6IT2192etnqru1alB_RVf44jpk-meC5V5b1erHlVosfpu9Tu7DvR52kvfdP3sAO3n1EG4PWe-PoJq5QhFEbaxFVu0ib4jdqCVD2iGxTCRlW5Kmrd1ZwzuiCAJzd9-KL74uVyhQElUZbOq7kXXrmsvcfmc8b8rHcHHy4fx46velGPwsjuTaF1GcJ0UgdRZmCDGVneppnrMYr6EIFaMi0JxpHqiwKAyOciN0phJqJEYxhGxPYLdaVvkzIFGiNc-oCjMdM650IgsWFSYxlqmeSuNBMKg9zXqeclsuY5EOCWnfU7SUrZ_J0kCmaCkPXo8idUfScVNnNtgy3fK0FCeRm8QOt-y-eRFCTIHrUA8OBkdI-zhgH8C5PXxG8ZdjKw5geyqjqnzZYhe764TLyER6cPS3PjKSiHO5B087xxrfjvEYV5w88kBsudzYwdKHb7dU82-ORlyEVHARePBmdM5_a2___7R3BHvT89lpevrx7PMB3HH7WC4j8jnsrldt_gKR3VofupH7CwCBSuI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFVQofltjta7gk5JrPvfDtyKWIrSIeFCfwn4k9TTJHXcXRP96ZzfZq6e10pc8ZGYSkpnd_e3u7G8AXqKLE5XILNTc8DDLtcEmJaswilTCKy6FcVRKJ6f0eJK9P8vPtiD2Z2Fc0r5W03FbN-N2-sXlVs4bfeDzxA5YnDDKcJa-TXOE3yPYnpx-OPzsObwRsLgTRZylYc4E8zuZLqfLLB1Dd09taivIXj4W7czlEv9Q1Ze2uAx7_p1CebNr5_LHd1nXv41PR3fgo_-yPi3l27hbqbH--Qfp47U-_S7cHtAqOexF92CrbO_DDZ8s_wDaE1dfgsgLJ5NFhw8hdn2X-GxFYglMmq4hy27utijeEEkQz7v71rw-ny3QoCGyNSga1Miqc-KmtMeTp8vmIUyO3n16exwOFRxCnadiFbI0L3kVCaVjjchUWoSQlGWW4zVmscwSFimaKRrJuKoMdg6GKS15YgR2foj0HsGonbXlYyApV4rqRMZa5RmViosqSyvDjSW4T4QJIPK-LPRAb26rbNSFz2P7WqD7bdnNrIhEge4P4NXaZN5ze1ylnPkAKQZw0oOOAseeq8z2N4Lp4kWITBlOXwPY89FVDN2HfQClds8azV-spdju7WaObMtZhyp2sQpnn1wE8PxfOiIVCI9pALt9tK7fjt04TlRpGgDbiOO1gmUd35RgRDr28SEIA3i9jvj__70n19Leg1tupcvlTD6F0WrRlc8Q-63U_tDafwHLolpO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+association+rules+with+multiple+minimum+supports%3A+a+new+mining+algorithm+and+a+support+tuning+mechanism&rft.jtitle=Decision+support+systems&rft.au=Hu%2C+Ya-Han&rft.au=Chen%2C+Yen-Liang&rft.date=2006-10-01&rft.issn=0167-9236&rft.volume=42&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1016%2Fj.dss.2004.09.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9236&client=summon