Spatially and spectrally resolved quantum path interference with chirped driving pulses

We measure spectrally and spatially resolved high-order harmonics generated in argon using chirped multi-cycle laser pulses. Using a stable, high-repetition rate laser we observe detailed interference structures in the far-field. The structures are of two kinds; off-axis interference from the long t...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 18; no. 12; pp. 123032 - 123048
Main Authors Carlström, Stefanos, Preclíková, Jana, Lorek, Eleonora, Larsen, Esben Witting, Heyl, Christoph M, Pale ek, David, Zigmantas, Donatas, Schafer, Kenneth J, Gaarde, Mette B, Mauritsson, Johan
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 23.12.2016
Subjects
Online AccessGet full text
ISSN1367-2630
1367-2630
DOI10.1088/1367-2630/aa511f

Cover

More Information
Summary:We measure spectrally and spatially resolved high-order harmonics generated in argon using chirped multi-cycle laser pulses. Using a stable, high-repetition rate laser we observe detailed interference structures in the far-field. The structures are of two kinds; off-axis interference from the long trajectory only and on-axis interference including the short and long trajectories. The former is readily visible in the far-field spectrum, modulating both the spectral and spatial profile. To access the latter, we vary the chirp of the fundamental, imparting different phases on the different trajectories, thereby changing their relative phase. Using this method together with an analytical model, we are able to explain the on-axis behaviour and access the dipole phase parameters for the short ( s ) and long ( l ) trajectories. The extracted results compare very well with phase parameters calculated by solving the time-dependent Schrödinger equation. Going beyond the analytical model, we are also able to successfully reproduce the off-axis interference structure.
Bibliography:NJP-105376.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/aa511f