Strain-induced specific orbital control in a Heusler alloy-based interfacial multiferroics

For the development of spintronic devices, the control of magnetization by a low electric field is necessary. The microscopic origin of manipulating spins relies on the control of orbital magnetic moments ( m orb ) by strain; this is essential for the high performance magnetoelectric (ME) effect. He...

Full description

Saved in:
Bibliographic Details
Published inNPG Asia materials Vol. 16; no. 1; pp. 3 - 10
Main Authors Okabayashi, Jun, Usami, Takamasa, Mahfudh Yatmeidhy, Amran, Murakami, Yuichi, Shiratsuchi, Yu, Nakatani, Ryoichi, Gohda, Yoshihiro, Hamaya, Kohei
Format Journal Article
LanguageEnglish
Published Tokyo Springer Japan 10.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN1884-4057
1884-4049
1884-4057
DOI10.1038/s41427-023-00524-6

Cover

Abstract For the development of spintronic devices, the control of magnetization by a low electric field is necessary. The microscopic origin of manipulating spins relies on the control of orbital magnetic moments ( m orb ) by strain; this is essential for the high performance magnetoelectric (ME) effect. Herein, electric-field induced X-ray magnetic circular dichroism (XMCD) is used to determine the changes in m orb by piezoelectric strain and clarify the relationship between the strain and m orb in an interfacial multiferroics system with a significant ME effect; the system consists of the Heusler alloy Co 2 FeSi on a ferroelectric Pb(Mg 1 / 3 Nb 2 / 3 )O 3 -PbTiO 3 substrate. Element-specific investigations of the orbital states by operando XMCD and the local environment via extended X-ray absorption fine structure (EXAFS) analysis show that the modulation of only the Fe sites in Co 2 FeSi primarily contributes to the giant ME effect. The density functional theory calculations corroborate this finding, and the growth of the high index (422) plane in Co 2 FeSi results in a giant ME effect. These findings elucidate the element-specific orbital control using reversible strain, called the ‘orbital elastic effect,’ and can provide guidelines for material designs with a giant ME effect. Schematic illustrations of the changes in the magnetic anisotropy by an applied electric field ( E ) in the strain directions are displayed. Under an applied E , the piezoelectric stress in the ferroelectric PMN-PT could be introduced in the tensile and compressive directions using positive and negative bias voltages, respectively, resulting in the changes in the magnetic anisotropy in the Co 2 FeSi layer. The XMCD spectra of Fe and Co L -edges in Co 2 FeSi under applying E showed the line shape changes only in the Fe site, which corresponds to the changes of orbital magnetic moment in Fe, while that in Co remains unchanged.
AbstractList For the development of spintronic devices, the control of magnetization by a low electric field is necessary. The microscopic origin of manipulating spins relies on the control of orbital magnetic moments ( m orb ) by strain; this is essential for the high performance magnetoelectric (ME) effect. Herein, electric-field induced X-ray magnetic circular dichroism (XMCD) is used to determine the changes in m orb by piezoelectric strain and clarify the relationship between the strain and m orb in an interfacial multiferroics system with a significant ME effect; the system consists of the Heusler alloy Co 2 FeSi on a ferroelectric Pb(Mg 1 / 3 Nb 2 / 3 )O 3 -PbTiO 3 substrate. Element-specific investigations of the orbital states by operando XMCD and the local environment via extended X-ray absorption fine structure (EXAFS) analysis show that the modulation of only the Fe sites in Co 2 FeSi primarily contributes to the giant ME effect. The density functional theory calculations corroborate this finding, and the growth of the high index (422) plane in Co 2 FeSi results in a giant ME effect. These findings elucidate the element-specific orbital control using reversible strain, called the ‘orbital elastic effect,’ and can provide guidelines for material designs with a giant ME effect.
For the development of spintronic devices, the control of magnetization by a low electric field is necessary. The microscopic origin of manipulating spins relies on the control of orbital magnetic moments ( m orb ) by strain; this is essential for the high performance magnetoelectric (ME) effect. Herein, electric-field induced X-ray magnetic circular dichroism (XMCD) is used to determine the changes in m orb by piezoelectric strain and clarify the relationship between the strain and m orb in an interfacial multiferroics system with a significant ME effect; the system consists of the Heusler alloy Co 2 FeSi on a ferroelectric Pb(Mg 1 / 3 Nb 2 / 3 )O 3 -PbTiO 3 substrate. Element-specific investigations of the orbital states by operando XMCD and the local environment via extended X-ray absorption fine structure (EXAFS) analysis show that the modulation of only the Fe sites in Co 2 FeSi primarily contributes to the giant ME effect. The density functional theory calculations corroborate this finding, and the growth of the high index (422) plane in Co 2 FeSi results in a giant ME effect. These findings elucidate the element-specific orbital control using reversible strain, called the ‘orbital elastic effect,’ and can provide guidelines for material designs with a giant ME effect. Schematic illustrations of the changes in the magnetic anisotropy by an applied electric field ( E ) in the strain directions are displayed. Under an applied E , the piezoelectric stress in the ferroelectric PMN-PT could be introduced in the tensile and compressive directions using positive and negative bias voltages, respectively, resulting in the changes in the magnetic anisotropy in the Co 2 FeSi layer. The XMCD spectra of Fe and Co L -edges in Co 2 FeSi under applying E showed the line shape changes only in the Fe site, which corresponds to the changes of orbital magnetic moment in Fe, while that in Co remains unchanged.
For the development of spintronic devices, the control of magnetization by a low electric field is necessary. The microscopic origin of manipulating spins relies on the control of orbital magnetic moments (morb) by strain; this is essential for the high performance magnetoelectric (ME) effect. Herein, electric-field induced X-ray magnetic circular dichroism (XMCD) is used to determine the changes in morb by piezoelectric strain and clarify the relationship between the strain and morb in an interfacial multiferroics system with a significant ME effect; the system consists of the Heusler alloy Co2FeSi on a ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 substrate. Element-specific investigations of the orbital states by operando XMCD and the local environment via extended X-ray absorption fine structure (EXAFS) analysis show that the modulation of only the Fe sites in Co2FeSi primarily contributes to the giant ME effect. The density functional theory calculations corroborate this finding, and the growth of the high index (422) plane in Co2FeSi results in a giant ME effect. These findings elucidate the element-specific orbital control using reversible strain, called the ‘orbital elastic effect,’ and can provide guidelines for material designs with a giant ME effect.Schematic illustrations of the changes in the magnetic anisotropy by an applied electric field (E) in the strain directions are displayed. Under an applied E, the piezoelectric stress in the ferroelectric PMN-PT could be introduced in the tensile and compressive directions using positive and negative bias voltages, respectively, resulting in the changes in the magnetic anisotropy in the Co2FeSi layer. The XMCD spectra of Fe and Co L-edges in Co2FeSi under applying E showed the line shape changes only in the Fe site, which corresponds to the changes of orbital magnetic moment in Fe, while that in Co remains unchanged.
Abstract For the development of spintronic devices, the control of magnetization by a low electric field is necessary. The microscopic origin of manipulating spins relies on the control of orbital magnetic moments (m orb) by strain; this is essential for the high performance magnetoelectric (ME) effect. Herein, electric-field induced X-ray magnetic circular dichroism (XMCD) is used to determine the changes in m orb by piezoelectric strain and clarify the relationship between the strain and m orb in an interfacial multiferroics system with a significant ME effect; the system consists of the Heusler alloy Co2FeSi on a ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 substrate. Element-specific investigations of the orbital states by operando XMCD and the local environment via extended X-ray absorption fine structure (EXAFS) analysis show that the modulation of only the Fe sites in Co2FeSi primarily contributes to the giant ME effect. The density functional theory calculations corroborate this finding, and the growth of the high index (422) plane in Co2FeSi results in a giant ME effect. These findings elucidate the element-specific orbital control using reversible strain, called the ‘orbital elastic effect,’ and can provide guidelines for material designs with a giant ME effect.
ArticleNumber 3
Author Okabayashi, Jun
Hamaya, Kohei
Usami, Takamasa
Nakatani, Ryoichi
Mahfudh Yatmeidhy, Amran
Shiratsuchi, Yu
Gohda, Yoshihiro
Murakami, Yuichi
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-9025-2783
  surname: Okabayashi
  fullname: Okabayashi, Jun
  email: jun@chem.s.u-tokyo.ac.jp
  organization: Research Center for Spectrochemistry, The University of Tokyo, Bunkyo-ku
– sequence: 2
  givenname: Takamasa
  surname: Usami
  fullname: Usami, Takamasa
  organization: Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University
– sequence: 3
  givenname: Amran
  surname: Mahfudh Yatmeidhy
  fullname: Mahfudh Yatmeidhy, Amran
  organization: Department of Materials Science and Engineering, Tokyo Institute of Technology
– sequence: 4
  givenname: Yuichi
  surname: Murakami
  fullname: Murakami, Yuichi
  organization: Department of Systems Innovation, Graduate School of Engineering Science, Osaka University
– sequence: 5
  givenname: Yu
  orcidid: 0000-0002-8938-4869
  surname: Shiratsuchi
  fullname: Shiratsuchi, Yu
  organization: Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University
– sequence: 6
  givenname: Ryoichi
  surname: Nakatani
  fullname: Nakatani, Ryoichi
  organization: Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University
– sequence: 7
  givenname: Yoshihiro
  orcidid: 0000-0002-6047-027X
  surname: Gohda
  fullname: Gohda, Yoshihiro
  organization: Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Department of Materials Science and Engineering, Tokyo Institute of Technology
– sequence: 8
  givenname: Kohei
  surname: Hamaya
  fullname: Hamaya, Kohei
  organization: Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University
BookMark eNp9kU9rFTEUxYNUsNZ-AVcDrqP5P5mlFLWFggt14ybcydyUPNLkmWQW_fbO61gUF13dy-X8Dod7XpOzXDIS8paz95xJ-6EprsRImZCUMS0UNS_IObdWUcX0ePbP_opctnZgjHFjlNXqnPz81ivETGNeVo_L0I7oY4h-KHWOHdLgS-61pCHmAYZrXFvCOkBK5YHO0DYi5o41gI-b-H5NPQastUTf3pCXAVLDyz_zgvz4_On71TW9_frl5urjLfVaTp1KaRYt9RImrbSHMNvRe4EwoTHL7Kdx5BpBaa6N0FMAgQxn5Uetg5YsCHlBbnbfpcDBHWu8h_rgCkT3eCj1zkHt0Sd00ksMVoZxEVbJALBYRCsts8gMqJPXu93rWMuvFVt3h7LWvMV3YuKCKz7pcVPZXeVraa1icH77VY-nV0FMjjN3KsbtxbitGPdYjDMbKv5DnwI_C8kdaps432H9m-oZ6jfI36K-
CitedBy_id crossref_primary_10_1002_advs_202413566
crossref_primary_10_1016_j_matlet_2024_137389
crossref_primary_10_26599_NR_2025_94907066
crossref_primary_10_1007_s10751_024_02195_3
crossref_primary_10_1016_j_ssc_2024_115727
crossref_primary_10_1080_14686996_2024_2412970
crossref_primary_10_1016_j_vacuum_2024_113675
Cites_doi 10.1038/s41535-019-0159-y
10.1103/PhysRevB.91.174431
10.1038/s41467-021-22793-x
10.1063/1.5078787
10.1063/5.0044094
10.1103/PhysRevB.80.020406
10.1103/PhysRevMaterials.5.014412
10.1038/nnano.2015.22
10.1063/1.5008591
10.1380/ejssnt.2015.465
10.1038/s41524-017-0020-4
10.1063/1.2731314
10.1038/s41427-022-00389-1
10.1038/s41427-020-00279-4
10.1016/j.ccr.2014.03.018
10.1021/acsaelm.9b00546
10.1103/PhysRevB.67.155108
10.1126/science.1207186
10.1103/PhysRevB.61.8647
10.7567/APEX.10.013003
10.1038/s41563-019-0374-8
10.1038/nature07318
10.1038/ncomms4404
10.1002/adfm.202007211
10.1103/PhysRevB.85.100404
10.1038/s41563-018-0275-2
10.1103/PhysRevB.86.054420
10.1103/PhysRevB.66.054104
10.1557/s43577-022-00351-0
10.1063/1.3628464
10.1103/PhysRevB.76.092108
10.1016/j.isci.2021.102734
10.1103/PhysRevB.58.7565
10.1080/00150199408245120
10.1063/1.5112089
10.1038/nnano.2008.406
10.1063/1.4861777
10.1021/acsami.0c18777
10.1103/PhysRevLett.77.3865
10.1039/C9RA05212G
10.1103/PhysRevLett.108.137203
10.7567/1882-0786/ab5d72
10.1063/1.4819915
10.1103/PhysRevB.103.104435
10.1038/am.2015.72
10.1007/978-3-030-77646-6_10
10.1103/PhysRevLett.75.152
10.1039/C7TC01241A
10.1103/PhysRevLett.113.267202
10.1103/PhysRevB.72.184434
10.1063/1.365983
10.1038/s41586-018-0770-2
10.1063/1.4934568
ContentType Journal Article
Copyright The Author(s) 2023
Copyright Nature Publishing Group 2024
Copyright_xml – notice: The Author(s) 2023
– notice: Copyright Nature Publishing Group 2024
DBID C6C
AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1038/s41427-023-00524-6
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1884-4057
EndPage 10
ExternalDocumentID oai_doaj_org_article_3c3ef83f7d2843faad8ee83808e06a42
10_1038_s41427_023_00524_6
GrantInformation_xml – fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: JP22H04966
  funderid: https://doi.org/10.13039/501100001691
GroupedDBID 0R~
4.4
5VS
8FE
8FG
AAJSJ
AAKKN
AASML
ABEEZ
ABJCF
ACACY
ACGFO
ACGFS
ACIWK
ACMJI
ACULB
ADBBV
ADMLS
AENEX
AFGXO
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARCSS
B.R
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CZ9
D1I
EBLON
EBS
GROUPED_DOAJ
HCIFZ
HH5
HZ~
KB.
KC.
KQ8
LGEZI
LOTEE
NADUK
NXXTH
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
RNT
RNTTT
SNYQT
AAYXX
CITATION
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
NAO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c539t-336d535df9545cafb87cc2ea9e66dbc97715ea45156259fa2e0eb4c755f530f23
IEDL.DBID 8FG
ISSN 1884-4057
1884-4049
IngestDate Wed Aug 27 01:22:50 EDT 2025
Wed Aug 13 09:29:03 EDT 2025
Tue Jul 01 02:34:57 EDT 2025
Thu Apr 24 22:58:05 EDT 2025
Thu May 22 04:30:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c539t-336d535df9545cafb87cc2ea9e66dbc97715ea45156259fa2e0eb4c755f530f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9025-2783
0000-0002-8938-4869
0000-0002-6047-027X
OpenAccessLink https://www.proquest.com/docview/2912141957?pq-origsite=%requestingapplication%
PQID 2912141957
PQPubID 546296
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_3c3ef83f7d2843faad8ee83808e06a42
proquest_journals_2912141957
crossref_citationtrail_10_1038_s41427_023_00524_6
crossref_primary_10_1038_s41427_023_00524_6
springer_journals_10_1038_s41427_023_00524_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-10
PublicationDateYYYYMMDD 2024-01-10
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-10
  day: 10
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle NPG Asia materials
PublicationTitleAbbrev NPG Asia Mater
PublicationYear 2024
Publisher Springer Japan
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Springer Japan
– name: Nature Publishing Group
– name: Nature Portfolio
References T Maruyama (524_CR9) 2009; 4
S Zhang (524_CR13) 2014; 4
M Welke (524_CR41) 2015; 27
CT Chen (524_CR52) 1995; 75
S Miwa (524_CR38) 2015; 107
G Venkataiah (524_CR21) 2011; 99
H Schmid (524_CR1) 1994; 162
M Zheng (524_CR46) 2021; 13
K Hamaya (524_CR32) 2022; 47
H Pandey (524_CR63) 2014; 104
524_CR47
J Okabayashi (524_CR24) 2019; 4
Z Zhao (524_CR45) 2020; 13
M Meinert (524_CR48) 2012; 86
Y Ba (524_CR19) 2021; 12
Y Shirahata (524_CR23) 2015; 7
PB Meisenheimer (524_CR15) 2021; 12
SH Baek (524_CR28) 2011; 334
Z Wen (524_CR51) 2017; 10
J Wang (524_CR14) 2019; 114
B Zhang (524_CR40) 2015; 91
Y Yang (524_CR30) 2021; 24
B Noheda (524_CR27) 2002; 66
A Begue (524_CR16) 2021; 13
S Fujii (524_CR20) 2022; 14
K Amemiya (524_CR43) 2015; 13
JM Hu (524_CR4) 2011; 2
G van der Laan (524_CR53) 2014; 277-278
K Hamaya (524_CR31) 2012; 85
NA Spaldin (524_CR2) 2019; 18
T Kimura (524_CR34) 2012; 4
524_CR35
K Nawa (524_CR62) 2019; 9
F Matsukura (524_CR7) 2015; 10
S Wurmehl (524_CR33) 2005; 72
S Manipatruni (524_CR5) 2019; 565
Y Yang (524_CR29) 2018; 112
CA Vaz (524_CR11) 2012; 24
G Radaelli (524_CR22) 2014; 5
S Zhang (524_CR17) 2012; 108
JP Perdew (524_CR65) 1996; 77
J Karel (524_CR57) 2017; 5
J Okabayashi (524_CR59) 2021; 103
AL Ankudinov (524_CR56) 1998; 58
T Taniyama (524_CR10) 2015; 27
Y Shiratsuchi (524_CR12) 2021; 33
S Sahoo (524_CR25) 2007; 76
M Ghidini (524_CR18) 2019; 18
M Hoffmann (524_CR42) 2015; 27
M Kallmayer (524_CR49) 2009; 80
J Okabayashi (524_CR50) 2013; 103
B Balke (524_CR58) 2007; 90
F Wilhelm (524_CR60) 2000; 61
C Bi (524_CR39) 2014; 113
S-E Park (524_CR26) 1997; 82
J-M Hu (524_CR6) 2019; 7
D Chiba (524_CR8) 2008; 455
T Usami (524_CR36) 2021; 118
J-M Hu (524_CR3) 2017; 3
S Yamada (524_CR37) 2021; 5
Y Miura (524_CR55) 2022; 34
524_CR54
T Ozaki (524_CR64) 2003; 67
K Kudo (524_CR61) 2019; 1
Z Zhang (524_CR44) 2021; 31
References_xml – volume: 4
  start-page: 21
  year: 2019
  ident: 524_CR24
  publication-title: npj Quantum Mater
  doi: 10.1038/s41535-019-0159-y
– volume: 91
  start-page: 174431
  year: 2015
  ident: 524_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.174431
– volume: 12
  year: 2021
  ident: 524_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22793-x
– volume: 114
  start-page: 092401
  year: 2019
  ident: 524_CR14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5078787
– volume: 118
  start-page: 142402
  year: 2021
  ident: 524_CR36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0044094
– volume: 4
  year: 2014
  ident: 524_CR13
  publication-title: Sci. Rep.
– volume: 80
  start-page: 020406
  year: 2009
  ident: 524_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.020406
– volume: 5
  start-page: 014412
  year: 2021
  ident: 524_CR37
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.014412
– volume: 10
  start-page: 209220
  year: 2015
  ident: 524_CR7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.22
– volume: 4
  year: 2012
  ident: 524_CR34
  publication-title: NPG Asia Mater.
– volume: 112
  start-page: 033506
  year: 2018
  ident: 524_CR29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5008591
– volume: 13
  start-page: 465
  year: 2015
  ident: 524_CR43
  publication-title: e-J. Surf. Sci. Nanotechnol.
  doi: 10.1380/ejssnt.2015.465
– volume: 3
  start-page: 18
  year: 2017
  ident: 524_CR3
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0020-4
– volume: 27
  start-page: 426003
  year: 2015
  ident: 524_CR42
  publication-title: J. Phys: Condens. Matter
– volume: 34
  start-page: 473001
  year: 2022
  ident: 524_CR55
  publication-title: J. Phys: Condens. Matter
– volume: 27
  start-page: 326001
  year: 2015
  ident: 524_CR41
  publication-title: J. Phys: Condens. Matter
– volume: 90
  start-page: 172501
  year: 2007
  ident: 524_CR58
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2731314
– volume: 14
  year: 2022
  ident: 524_CR20
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-022-00389-1
– volume: 13
  year: 2021
  ident: 524_CR46
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-020-00279-4
– volume: 277-278
  start-page: 95
  year: 2014
  ident: 524_CR53
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2014.03.018
– volume: 1
  start-page: 2371
  year: 2019
  ident: 524_CR61
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.9b00546
– volume: 67
  start-page: 155108
  year: 2003
  ident: 524_CR64
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.155108
– volume: 334
  start-page: 958
  year: 2011
  ident: 524_CR28
  publication-title: Science
  doi: 10.1126/science.1207186
– ident: 524_CR47
– volume: 61
  start-page: 8647
  year: 2000
  ident: 524_CR60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.8647
– volume: 10
  start-page: 013003
  year: 2017
  ident: 524_CR51
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.10.013003
– volume: 18
  start-page: 840
  year: 2019
  ident: 524_CR18
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0374-8
– volume: 455
  start-page: 515
  year: 2008
  ident: 524_CR8
  publication-title: Nature
  doi: 10.1038/nature07318
– volume: 5
  year: 2014
  ident: 524_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4404
– volume: 31
  start-page: 2007211
  year: 2021
  ident: 524_CR44
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007211
– ident: 524_CR54
– volume: 85
  start-page: 100404(R)
  year: 2012
  ident: 524_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.100404
– volume: 27
  start-page: 504001
  year: 2015
  ident: 524_CR10
  publication-title: J. Phys: Condens. Matter
– volume: 18
  start-page: 203
  year: 2019
  ident: 524_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0275-2
– volume: 86
  start-page: 054420
  year: 2012
  ident: 524_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.054420
– volume: 66
  start-page: 054104
  year: 2002
  ident: 524_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.054104
– volume: 47
  start-page: 584
  year: 2022
  ident: 524_CR32
  publication-title: MRS Bull.
  doi: 10.1557/s43577-022-00351-0
– volume: 99
  start-page: 102506
  year: 2011
  ident: 524_CR21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3628464
– volume: 76
  start-page: 092108
  year: 2007
  ident: 524_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.092108
– volume: 24
  start-page: 102734
  year: 2021
  ident: 524_CR30
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102734
– volume: 2
  year: 2011
  ident: 524_CR4
  publication-title: Nat. Commun.
– volume: 58
  start-page: 7565
  year: 1998
  ident: 524_CR56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.7565
– volume: 162
  start-page: 317
  year: 1994
  ident: 524_CR1
  publication-title: Ferroelectrics
  doi: 10.1080/00150199408245120
– volume: 7
  start-page: 080905
  year: 2019
  ident: 524_CR6
  publication-title: APL Mater.
  doi: 10.1063/1.5112089
– volume: 33
  start-page: 243001
  year: 2021
  ident: 524_CR12
  publication-title: J. Phys: Condens. Matter
– volume: 4
  start-page: 158
  year: 2009
  ident: 524_CR9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.406
– volume: 104
  start-page: 022402
  year: 2014
  ident: 524_CR63
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4861777
– volume: 13
  start-page: 6778
  year: 2021
  ident: 524_CR16
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c18777
– volume: 77
  start-page: 3865
  year: 1996
  ident: 524_CR65
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 9
  start-page: 30462
  year: 2019
  ident: 524_CR62
  publication-title: RSC Adv.
  doi: 10.1039/C9RA05212G
– volume: 108
  start-page: 137203
  year: 2012
  ident: 524_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.137203
– volume: 13
  start-page: 013002
  year: 2020
  ident: 524_CR45
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab5d72
– volume: 103
  start-page: 102402
  year: 2013
  ident: 524_CR50
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4819915
– volume: 103
  start-page: 104435
  year: 2021
  ident: 524_CR59
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.104435
– volume: 24
  start-page: 333201
  year: 2012
  ident: 524_CR11
  publication-title: J. Phys: Condens. Matter
– volume: 7
  start-page: e198
  year: 2015
  ident: 524_CR23
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2015.72
– ident: 524_CR35
  doi: 10.1007/978-3-030-77646-6_10
– volume: 75
  start-page: 152
  year: 1995
  ident: 524_CR52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.152
– volume: 5
  start-page: 4388
  year: 2017
  ident: 524_CR57
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01241A
– volume: 113
  start-page: 267202
  year: 2014
  ident: 524_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.267202
– volume: 12
  year: 2021
  ident: 524_CR19
  publication-title: Nat. Commun.
– volume: 72
  start-page: 184434
  year: 2005
  ident: 524_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.184434
– volume: 82
  start-page: 1804
  year: 1997
  ident: 524_CR26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.365983
– volume: 565
  start-page: 35
  year: 2019
  ident: 524_CR5
  publication-title: Nature
  doi: 10.1038/s41586-018-0770-2
– volume: 107
  start-page: 162402
  year: 2015
  ident: 524_CR38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4934568
SSID ssj0001664854
ssib050736229
Score 2.3895383
Snippet For the development of spintronic devices, the control of magnetization by a low electric field is necessary. The microscopic origin of manipulating spins...
Abstract For the development of spintronic devices, the control of magnetization by a low electric field is necessary. The microscopic origin of manipulating...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms 639/301/119/996
639/766/119/996
Biomaterials
Chemistry and Materials Science
Cobalt
Density functional theory
Dichroism
Electric fields
Energy Systems
Ferroelectric materials
Ferroelectricity
Fine structure
Heusler alloys
Iron
Line shape
Magnetic anisotropy
Magnetic moments
Materials Science
Multiferroic materials
Optical and Electronic Materials
Piezoelectricity
Strain
Structural Materials
Substrates
Surface and Interface Science
Thin Films
X ray absorption
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQJzigPqhISSsfuBWLXY_t9R5bBIoq0UtBQlwsP6VIUYI2yYF_z9i7gYBUuPS665W88_B88_AMISdSCNtqrRiPyTLhUKV0wxNLXrWNr1ISJdF-9UdNbsTvW3m7Neor14T17YF7wp2Bh5g0pCbgQQrJ2qBj1KArHStlRTl90YxtOVMluqKU0FIMt2Qq0GdLUQveMDRRLIdCBVMvLFFp2P8CZb5KjBZ7c_mBHAxAkf7sN_iR7MT5J7K_1T7wM7n7WwY8MHSrkUGB5luTufKHLjqXZ4HQoQ6dTufU0klcL2exoznT_sCy9Qo0N4voks1hc1pKC1PsusXULw_JzeXF9fmEDbMSmJfQrhiAChJkSC1CIm-T0433PNo2KhWcR5RXy2gFopfs8CTLYxWd8I2USUKVOHwhu_PFPB4R6gISFDzqPgfhrLYugUK3JogKALV0ROoN3YwfGonn352ZktAGbXpaG6S1KbQ2akR-PH1z37fReHP1r8yOp5W5BXZ5gIJhBsEw7wnGiIw3zDSDXi4Nb2tei7qVzYicbhj8_PrfW_r6P7Z0TPY4YqIcwamrMdlddev4DTHNyn0v4vsI9kfw6g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals (Selected full-text)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BvZQDog_EAq184FasJh7bcY6wKlpVai8UCXGx_ERIaBdldw_8e2xvwkuA1GtiS86MJ_N5Hp8BDgXnplVKUhaiodwmk1INizQ62TauipGXRPufv3Jyzn9fiIs1YEMvTCnaL5SW5Tc9VIf9nPOas4YmD0NzJJNTuQ4fVIN1LuMby_FjXEVKrgTv-2MqVK9MfeaDClX_M3z5IiVaPM3pNmz1EJEcrxb1CdbC9DNsPiEO_AKXZ-VqB5oO1Ek1nuR-yVzzQ2adzbeAkL4CnVxPiSGTsJzfhI7kHPsdzX7Lk0wT0UWTA-akFBXG0HWzazf_Cuenv_6NJ7S_JYE6ge2CIkovUPjYJjDkTLSqcY4F0wYpvXUJ39UiGJ5wSz7qRMNCFSx3jRBRYBUZ7sDGdDYNu0CsZwmRuWT1DLk1ytiIMh1oPK8Qk32OoB7kpl1PIZ4_90aXVDYqvZK1TrLWRdZajuDHw5zbFYHGu6NPsjoeRmby6_Jg1l3pfjNodBiiwtj45FsxGuNVCApVpUIlDWcjOBiUqXuLnGvW1qzmdSuaERwNCn58_faS9v5v-D58ZAn35ChNXR3AxqJbhm8Jtyzs97JR7wEiIOWM
  priority: 102
  providerName: Springer Nature
Title Strain-induced specific orbital control in a Heusler alloy-based interfacial multiferroics
URI https://link.springer.com/article/10.1038/s41427-023-00524-6
https://www.proquest.com/docview/2912141957
https://doaj.org/article/3c3ef83f7d2843faad8ee83808e06a42
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1884-4057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001664854
  issn: 1884-4057
  databaseCode: HH5
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1884-4057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001664854
  issn: 1884-4057
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1884-4057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001664854
  issn: 1884-4057
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1884-4057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001664854
  issn: 1884-4057
  databaseCode: ADMLS
  dateStart: 20180601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1884-4057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050736229
  issn: 1884-4057
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQT
  databaseName: Nature Journals Online Open Access
  customDbUrl:
  eissn: 1884-4057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001664854
  issn: 1884-4057
  databaseCode: NAO
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1884-4057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001664854
  issn: 1884-4057
  databaseCode: 8FG
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1884-4057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001664854
  issn: 1884-4057
  databaseCode: AAJSJ
  dateStart: 20090110
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1884-4057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001664854
  issn: 1884-4057
  databaseCode: C6C
  dateStart: 20090110
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1884-4057
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001664854
  issn: 1884-4057
  databaseCode: C24
  dateStart: 20090110
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmkPIX3RbdNFh95aEVsvy6ewWbJdFhpK00DoRehZAmGd2ptD_n1HWjlpCs3FBls29jw038xIMwh9FJybVilJaIiGcAsqpRoaSXSybVwVI8-J9q-ncnnOVxfiogTchrKscpwT80TtO5di5Ie0rWnN61Y0R9e_SeoalbKrpYXGU7RbU5CktFN88WWUJ4A6MD0X859jLlJylRuj1UpxcJ14W_bRVEwdDrzmtCFgxEgKlnIiH9iqXNL_AQ79J3WaLdJiH-0VKIlnW96_QE_C-iV6_leBwVfo51luAUHA8QYWepz2Vaa1QbjrbeoWgstKdXy5xgYvw81wFXqccvG3JNk3j1M5iT6aFFjHefFhDH3fXbrhNTpfnPyYL0nppkCcYO2GMCa9YMLHFkCTM9GqxjkaTBuk9NYBDqxFMBzwTXKJoqGhCpa7RogoWBUpe4N21t06vEXYegrIzQF5KePWKGMjk-D4eF4xBno8QfVIN-1KqfH0u1c6p7yZ0ltaa6C1zrTWcoI-3T1zvS208ejo48SOu5GpSHa-0PW_dNE5zRwLUbHYeLDBLBrjVQiKqUqFShpOJ-hgZKYumjvoezmboM8jg-9v__-T3j3-tvfoGQU8lKI3dXWAdjb9TfgAeGZjp1lop2h3NludreB8fHL67TtcnVOejnI-zZGCP_Oh8xI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELaq9gAcUNnEgwI-wAmsJt7iHBBie7zS5UIrVVyM46WqVL2U5FWof4rfyIxf0lIkeus1caJkZjzzzeIZQl4qKV1tjGY8JsdkA1vKVDyx5HVd-SIlmRPtu3t6diC_HqrDFfJ7PAuDZZWjTsyKOrQeY-SbvC55KctaVe9OfzKcGoXZ1XGExlIstuP5L3DZ-rdbn4C_rzifft7_OGPDVAHmlagXTAgdlFAh1QAevEuNqbzn0dVR69B4wEOlik6CnUfXIDkei9hIXymVlCgSNjoAlb8mhRDYq99Mv4zyC9AKzMEAN3KMR2tp8iC20hgJrpqsh3M7hTCbvSwlrxgYTYbBWcn0FduYRwhcwb3_pGqzBZyuk7sDdKXvl7J2j6zE-X1y56-Ghg_I92955AQDRx9EJlA8x4m1SLTtGpxOQofKeHo8p47O4ll_EjuKuf9zhvY0UGxf0SWHgXyaix1T7Lr22PcPycGN0PkRWZ238_iY0CZwQIoeyMuFbJxxTRIaHK0gCyFAb0xIOdLN-qG1Of7uic0pdmHsktYWaG0zra2ekNcXz5wuG3tcu_oDsuNiJTblzhfa7sgOe9wKL2IyIlUBbL5IzgUToxGmMLHQTvIJ2RiZaQdN0dtLuZ6QNyODL2___5OeXP-2F-TWbH93x-5s7W0_Jbc5YDGMHJXFBllddGfxGWCpRfM8CzAlP256x_wBCUkqjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggCgPsVCoD3ACq4ntOM6hQvSx2lJYVUCliotx_KhWqpKSbIX6F_lVjL1OH0j01mviRMl4PPPNG6E3Bee6klIQ6rwmvIYjJUvqiTeiKk3mPY-B9i8zMT3in46L4xX0Z6iFCWmVg0yMgtq2JvjIN2mV05znFRjwPqVFHO5OPpz9ImGCVIi0DuM0dBqzYLdiu7FU5HHgLn6DOddv7e_C3r-ldLL3fWdK0sQBYgpWLQhjwhassL4CYGG0r2VpDHW6ckLY2gBWygunOWCAYDZ4TV3mam7KovAFy3xoggDqYLUM9aIjtLq9Nzv8OnA3AC9QFgmMRA-QEFzGMW25lBwMOV6lqp6Myc2e55yWBFQqCa5bTsQNzRkHDNxAxf8EcqN-nDxCDxOwxR-XnLiGVlzzGD241u7wCfrxLQ6kIPPGAkNZHKo8Q6YSbrs6zC7BKW8ezxus8dSd96euwyEz4IIEbWtxaG7ReR3c_DimQnrXde3c9E_R0Z1Q-hkaNW3jniNcWwo40gB5KeO1lrr2TIAZZnnGGEiVMcoHuimTGp-H3z1VMQDPpFrSWgGtVaS1EmP07vKZs2Xbj1tXb4ftuFwZWnbHC213opIEUMww5yXzpQVEwLzWVjonmcyky4TmdIzWh81USY706orrx-j9sMFXt___SS9uf9sGugenR33enx28RPcpALXgVsqzdTRadOfuFQCtRf06cTBGP-_60PwFJU01aQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain-induced+specific+orbital+control+in+a+Heusler+alloy-based+interfacial+multiferroics&rft.jtitle=NPG+Asia+materials&rft.au=Okabayashi%2C+Jun&rft.au=Usami%2C+Takamasa&rft.au=Mahfudh+Yatmeidhy%2C+Amran&rft.au=Murakami%2C+Yuichi&rft.date=2024-01-10&rft.issn=1884-4057&rft.eissn=1884-4057&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41427-023-00524-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41427_023_00524_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1884-4057&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1884-4057&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1884-4057&client=summon