The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism
Abstract The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim...
Saved in:
Published in | G3 : genes - genomes - genetics Vol. 8; no. 7; pp. 2445 - 2463 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.07.2018
Genetics Society of America |
Subjects | |
Online Access | Get full text |
ISSN | 2160-1836 2160-1836 |
DOI | 10.1534/g3.118.200411 |
Cover
Abstract | Abstract
The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans, in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. |
---|---|
AbstractList | The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans, in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications.
We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant numbers 2016/07870-9 for GHG and 2014/00789-6 for LJA), the Science Foundation Ireland (SCI, grant number 13/CDA/2142 for OB) for providing financial support. The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans, in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. Abstract The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans, in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans, in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications.The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans, in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans , in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus , in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of and resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. |
Author | Bayram, Özgür Rocha, Marina Campos Goldman, Gustavo H Malavazi, Iran José de Assis, Leandro Ries, Laure Nicolas Annick Rodrigues, Fernando José Santos Caldana, Camila |
Author_xml | – sequence: 1 givenname: Laure Nicolas Annick surname: Ries fullname: Ries, Laure Nicolas Annick organization: Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil – sequence: 2 givenname: Leandro surname: José de Assis fullname: José de Assis, Leandro organization: Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil – sequence: 3 givenname: Fernando José Santos surname: Rodrigues fullname: Rodrigues, Fernando José Santos organization: Instituto de Investigação em Ciências da Vida e Saúde, Campus de Gualtar, Universidade do Minho, 4710-057, Braga, Portugal – sequence: 4 givenname: Camila surname: Caldana fullname: Caldana, Camila organization: Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brazil – sequence: 5 givenname: Marina Campos surname: Rocha fullname: Rocha, Marina Campos organization: Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil – sequence: 6 givenname: Iran surname: Malavazi fullname: Malavazi, Iran organization: Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil – sequence: 7 givenname: Özgür surname: Bayram fullname: Bayram, Özgür email: ozgur.bayram@nuim.ie organization: Maynooth University, Biology Department, Maynooth, Co. Kildare, Ireland – sequence: 8 givenname: Gustavo H surname: Goldman fullname: Goldman, Gustavo H email: ggoldman@usp.br organization: Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29794164$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEUXKEi-kGPXJElLlwS_O3dC1IUSokoAolwtrze543DZp3au5Hy73FIKW0lhC_PsueNZ8bvvDjpQw9F8YrgKRGMv2vZlJBySjHmhDwrziiReEJKJk8e7E-Ly5TWOC8hpOTyRXFKK1VxIvlZ8XO5AjRLW4it77oxod43Y2f6hL7t47gzA6APsNo3MbTQmwTosz-UhGYR0FVK0A_edGgZ0KIfoI2HhrmJdejR9zBGC-gLDKYOnU-bl8VzZ7oEl3f1ovjx8Wo5_zS5-Xq9mM9uJlawaphkN8BYJZwAVwqramNqapU0JScVFoRbThpcO3BVNsE4SGedqkjJBTAhgV0UiyNvE8xab6PfmLjXwXj9-yDEVps4eNuBprhhhtf5XV5zolztuCktb6AuqVOOZq73R67tWG-gsdlvNN0j0sc3vV_pNuy0xFSVUmSCt3cEMdyOkAa98clClzOGMKasgAuquFIsQ988ga5zhH2OSjMiKyWVogdFrx8qupfy508zYHIE2BhSiuDuIQTrw9joluk8Nvo4NhnPnuCtH8zgw8GQ7_7ZhY5d0Rqz1RF2Pg0maVJSqkWJpfprPYzb_2j4BUZw2-o |
CitedBy_id | crossref_primary_10_3389_ffunb_2022_998361 crossref_primary_10_1186_s43014_020_00025_x crossref_primary_10_1128_mBio_03146_20 crossref_primary_10_1016_j_pmpp_2021_101675 crossref_primary_10_1016_j_apgeochem_2021_105163 crossref_primary_10_3389_fmicb_2019_00854 crossref_primary_10_1016_j_fochx_2022_100286 crossref_primary_10_1128_mBio_01682_21 crossref_primary_10_1128_mSphere_00153_20 |
Cites_doi | 10.1172/JCI110647 10.1038/msb.2010.122 10.1002/pmic.200200500 10.1021/bi0494875 10.1164/rccm.201505-0943OC 10.1523/JNEUROSCI.1842-04.2004 10.1128/JB.129.3.1222-1226.1977 10.1111/j.1365-313X.2011.04682.x 10.1016/j.riam.2010.10.003 10.1042/bj3580069 10.1128/AEM.01078-14 10.1111/j.1574-6968.1997.tb12557.x 10.1534/g3.115.016667 10.1128/AEM.02135-09 10.1021/bi049488x 10.1016/j.mib.2008.02.013 10.1371/journal.pone.0025654 10.1128/IAI.00813-09 10.1099/00221287-137-3-629 10.1006/bbrc.2001.5608 10.1371/journal.pone.0058008 10.1105/tpc.13.1.11 10.1128/EC.00290-12 10.1006/jmbi.2000.3903 10.1074/jbc.M708779200 10.1074/jbc.M410315200 10.1371/journal.ppat.1002145 10.1186/1471-2105-10-428 10.3390/metabo2010100 10.1128/EC.00362-09 10.1093/nar/gkn180 10.1002/pmic.200800394 10.1042/BST0340217 10.1128/EC.5.5.794-805.2006 10.1128/MR.48.1.42-59.1984 10.1080/10635150600755453 10.1038/nrc.2016.87 10.1073/pnas.95.11.5857 10.1186/s13068-015-0401-1 10.1016/0009-8981(95)06145-6 10.1002/yea.1543 10.1371/journal.pone.0158077 10.1093/nar/gkj123 10.1128/EC.2.1.34-48.2003 10.1016/0014-5793(72)80630-6 10.1007/s00216-011-4678-z 10.1186/1754-6834-6-91 10.7150/ijbs.5.578 10.1186/1471-2148-10-8 10.1016/j.febslet.2006.04.002 10.1128/JB.148.2.594-599.1981 10.1002/yea.320070307 10.1371/journal.ppat.1004923 10.1111/j.1432-1033.1996.00779.x 10.1042/bj2250449 10.1534/genetics.105.052563 10.1016/j.fgb.2015.06.006 10.1038/nrmicro2916 10.2174/1389202917666151116212901 10.1093/bioinformatics/btm069 10.1371/journal.pgen.1004500 10.1016/j.fgb.2014.02.008 10.1002/elps.1150080203 10.1093/bfgp/elu029 10.1128/EC.00224-10 10.1128/EC.00080-10 10.1186/1471-2180-13-91 10.1371/journal.pgen.1002673 10.1534/genetics.116.187872 10.1093/nar/gku949 |
ContentType | Journal Article |
Copyright | 2018 Ries et al. 2018 Copyright © 2018 Ries et al. 2018 Ries et al.. Copyright © 2018 Ries 2018 |
Copyright_xml | – notice: 2018 Ries et al. 2018 – notice: Copyright © 2018 Ries et al. – notice: 2018 Ries et al.. – notice: Copyright © 2018 Ries 2018 |
DBID | RCLKO AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1534/g3.118.200411 |
DatabaseName | RCAAP open access repository CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X7 name: ProQuest Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DissertationSchool | Universidade do Minho |
EISSN | 2160-1836 |
EndPage | 2463 |
ExternalDocumentID | oai_doaj_org_article_20d3a4b5394b417fbf4a8c4deb82f7f2 PMC6027865 29794164 10_1534_g3_118_200411 1822_58067 10.1534/g3.118.200411 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 53G 5VS 6~0 6~1 AAPXW AAVAP ABDBF ABEJV ABPTD ABXVV ACGFO ACUHS ADBBV ADRAZ AFULF AIPOO ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW DIK EBS EE- EJD FRP GROUPED_DOAJ GX1 H13 HYE IAO IHR INH INIJC IPNFZ ITC KQ8 KSI M48 M~E OK1 R0Z RHF RHI RIG RNS ROX RPM TGS TOX W8F ABGNP AMNDL RCLKO AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA K9. PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c539t-200e3395f5ef85c7baab2c76a84190514c41d0bfef994134e6fcf791845e356e3 |
IEDL.DBID | M48 |
ISSN | 2160-1836 |
IngestDate | Wed Aug 27 01:22:26 EDT 2025 Thu Aug 21 14:08:28 EDT 2025 Fri Sep 05 12:35:47 EDT 2025 Fri Sep 19 20:55:12 EDT 2025 Mon Jul 21 06:00:22 EDT 2025 Thu Apr 24 23:16:01 EDT 2025 Tue Jul 01 03:31:23 EDT 2025 Sun Sep 21 12:21:37 EDT 2025 Mon Dec 16 07:45:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | pyruvate dehydrogenase kinases carbon catabolite repression carbon source utilization and regulation Aspergillus nidulans |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model Copyright © 2018 Ries et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c539t-200e3395f5ef85c7baab2c76a84190514c41d0bfef994134e6fcf791845e356e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9653-3159 0000-0001-9782-437X 0000-0002-4526-4961 |
OpenAccessLink | https://www.proquest.com/docview/3169767722?pq-origsite=%requestingapplication% |
PMID | 29794164 |
PQID | 3169767722 |
PQPubID | 7098412 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_20d3a4b5394b417fbf4a8c4deb82f7f2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6027865 proquest_miscellaneous_2045274773 proquest_journals_3169767722 pubmed_primary_29794164 crossref_primary_10_1534_g3_118_200411 crossref_citationtrail_10_1534_g3_118_200411 rcaap_revistas_1822_58067 oup_primary_10_1534_g3_118_200411 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | G3 : genes - genomes - genetics |
PublicationTitleAlternate | G3 (Bethesda) |
PublicationYear | 2018 |
Publisher | Oxford University Press Genetics Society of America |
Publisher_xml | – sequence: 0 name: Oxford University Press – name: Genetics Society of America – name: Oxford University Press |
References | Antoniêto (2021042013304283400_bib6) 2016; 17 Payton (2021042013304283400_bib55) 1977; 129 Al-Bader (2021042013304283400_bib2) 2010; 78 Emanuelsson (2021042013304283400_bib28) 2000; 300 Sambrook (2021042013304283400_bib60) 2001 Ries (2021042013304283400_bib56) 2016; 203 Sun (2021042013304283400_bib66) 2016; 6 Thevelein (2021042013304283400_bib67) 1984; 48 Inglis (2021042013304283400_bib43) 2013; 13 Letunic (2021042013304283400_bib48) 2015; 43 Blum (2021042013304283400_bib9) 1987; 8 Giavalisco (2021042013304283400_bib33) 2011; 68 Shimizu (2021042013304283400_bib63) 2010; 76 Brown (2021042013304283400_bib13) 2013; 6 Dereeper (2021042013304283400_bib26) 2008; 36 Hynes (2021042013304283400_bib41) 2010; 9 Dashtban (2021042013304283400_bib20) 2009; 5 Fernandez (2021042013304283400_bib29) 2012; 8 Habelhah (2021042013304283400_bib37) 2004; 279 Schug (2021042013304283400_bib61) 2016; 16 Bao (2021042013304283400_bib7) 2004; 43 de Assis (2021042013304283400_bib22) 2015; 8 Klejnstrup (2021042013304283400_bib45) 2012; 2 Kolobova (2021042013304283400_bib46) 2001; 358 Steensma (2021042013304283400_bib65) 2008; 25 Brakhage (2021042013304283400_bib12) 2013; 11 Vödisch (2021042013304283400_bib69) 2009; 9 Roessner (2021042013304283400_bib57) 2001; 13 Ruijter (2021042013304283400_bib59) 1997; 151 Dereeper (2021042013304283400_bib25) 2010 Hynes (2021042013304283400_bib42) 2006; 5 Huege (2021042013304283400_bib40) 2011; 399 Grahl (2021042013304283400_bib36) 2011; 7 Weckwerth (2021042013304283400_bib70) 2004; 4 Gey (2021042013304283400_bib32) 2008; 283 Cuadros-Inostroza (2021042013304283400_bib19) 2009; 10 Goldman (2021042013304283400_bib35) 2003; 2 Mirković (2021042013304283400_bib51) 2015; 192 Niu (2021042013304283400_bib53) 2015; 82 Bao (2021042013304283400_bib8) 2004; 43 Patel (2021042013304283400_bib54) 2006; 34 Krause-Buchholz (2021042013304283400_bib47) 2006; 580 Mathew (2021042013304283400_bib50) 2008; 67 Amare (2021042013304283400_bib3) 2014; 66 Anisimova (2021042013304283400_bib5) 2006; 55 Bos (2021042013304283400_bib11) 1981; 148 Chen (2021042013304283400_bib14) 2006; 34 Dickson (2021042013304283400_bib27) 2015; 11 de Assis (2021042013304283400_bib21) 2015; 5 Gietz (2021042013304283400_bib34) 1991; 7 Hayer (2021042013304283400_bib38) 2013; 79 Rohde (2021042013304283400_bib58) 2008; 11 Andersen (2021042013304283400_bib4) 2014; 13 Schultz (2021042013304283400_bib62) 1998; 95 Jiménez-López (2021042013304283400_bib44) 2013; 12 Gao (2021042013304283400_bib31) 2016 Chretien (2021042013304283400_bib15) 1995; 240 Xiong (2021042013304283400_bib73) 2014; 10 Borregaard (2021042013304283400_bib10) 1982; 70 Wieland (2021042013304283400_bib71) 1972; 27 Claros (2021042013304283400_bib16) 1996; 241 Costenoble (2021042013304283400_bib17) 2011; 7 de Castro Pimentel Figueiredo (2021042013304283400_bib23) 2011; 10 Stacklies (2021042013304283400_bib64) 2007; 23 Abad (2021042013304283400_bib1) 2010; 27 Nayak (2021042013304283400_bib52) 2006; 172 De Souza (2021042013304283400_bib24) 2013; 8 Tretter (2021042013304283400_bib68) 2004; 24 Wu (2021042013304283400_bib72) 2001; 287 Fleck (2021042013304283400_bib30) 2010; 9 Creaser (2021042013304283400_bib18) 1985; 225 Hondmann (2021042013304283400_bib39) 1991; 137 8548923 - Clin Chim Acta. 1995 Sep 15;240(2):129-36 18180296 - J Biol Chem. 2008 Apr 11;283(15):9759-67 15491151 - Biochemistry. 2004 Oct 26;43(42):13442-51 16785212 - Syst Biol. 2006 Aug;55(4):539-52 26266556 - Am J Respir Crit Care Med. 2015 Dec 1;192(11):1314-24 20495057 - Eukaryot Cell. 2010 Jul;9(7):1039-48 27226768 - Curr Genomics. 2016 Apr;17(2):119-31 25762568 - G3 (Bethesda). 2015 Mar 11;5(5):857-72 20081005 - Appl Environ Microbiol. 2010 Mar;76(5):1507-15 16545080 - Biochem Soc Trans. 2006 Apr;34(Pt 2):217-22 9228741 - FEMS Microbiol Lett. 1997 Jun 15;151(2):103-14 15491150 - Biochemistry. 2004 Oct 26;43(42):13432-41 24613992 - Fungal Genet Biol. 2014 May;66:11-8 26127014 - Fungal Genet Biol. 2015 Sep;82:32-42 4352021 - FEBS Lett. 1972 Nov 1;27(2):240-4 12582121 - Eukaryot Cell. 2003 Feb;2(1):34-48 16381887 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D363-8 3156582 - Biochem J. 1985 Jan 15;225(2):449-54 16682457 - Eukaryot Cell. 2006 May;5(5):794-805 17344241 - Bioinformatics. 2007 May 1;23(9):1164-7 7028719 - J Bacteriol. 1981 Nov;148(2):594-9 16387870 - Genetics. 2006 Mar;172(3):1557-66 23178386 - Nat Rev Microbiol. 2013 Jan;11(1):21-32 11554740 - Biochem Biophys Res Commun. 2001 Sep 21;287(2):391-6 23800192 - Biotechnol Biofuels. 2013 Jun 25;6(1):91 25114096 - Brief Funct Genomics. 2014 Nov;13(6):451-5 25144221 - PLoS Genet. 2014 Aug 21;10(8):e1004500 27341107 - PLoS One. 2016 Jun 24;11(6):e0158077 23143683 - Eukaryot Cell. 2013 Jan;12(1):91-100 14730673 - Proteomics. 2004 Jan;4(1):78-83 15356188 - J Neurosci. 2004 Sep 8;24(36):7771-8 9600884 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857-64 1882550 - Yeast. 1991 Apr;7(3):253-63 20067610 - BMC Evol Biol. 2010 Jan 12;10:8 20015393 - BMC Bioinformatics. 2009 Dec 16;10:428 26690721 - Biotechnol Biofuels. 2015 Dec 18;8:213 21980519 - PLoS One. 2011;6(9):e25654 25300481 - Nucleic Acids Res. 2015 Jan;43(Database issue):D257-60 21811407 - PLoS Pathog. 2011 Jul;7(7):e1002145 6325857 - Microbiol Rev. 1984 Mar;48(1):42-59 23995938 - Appl Environ Microbiol. 2013 Nov;79(22):6924-31 19774110 - Int J Biol Sci. 2009 Sep 04;5(6):578-95 24957370 - Metabolites. 2012 Jan 30;2(1):100-33 21131437 - Eukaryot Cell. 2011 Feb;10(2):276-83 11485553 - Biochem J. 2001 Aug 15;358(Pt 1):69-77 21340691 - Anal Bioanal Chem. 2011 Apr;399(10):3503-17 20453072 - Eukaryot Cell. 2010 Jul;9(7):1120-35 27017621 - Genetics. 2016 May;203(1):335-52 15466852 - J Biol Chem. 2004 Dec 17;279(51):53782-8 22570632 - PLoS Genet. 2012;8(5):e1002673 8944766 - Eur J Biochem. 1996 Nov 1;241(3):779-86 10891285 - J Mol Biol. 2000 Jul 21;300(4):1005-16 26158874 - PLoS Pathog. 2015 Jul 09;11(7):e1004923 27562461 - Nat Rev Cancer. 2016 Nov;16(11):708-717 21283140 - Mol Syst Biol. 2011 Feb 1;7:464 18396450 - Curr Opin Microbiol. 2008 Apr;11(2):153-60 7107894 - J Clin Invest. 1982 Sep;70(3):550-7 20974273 - Rev Iberoam Micol. 2010 Oct-Dec;27(4):155-82 23505451 - PLoS One. 2013;8(3):e58008 21699588 - Plant J. 2011 Oct;68(2):364-76 16643908 - FEBS Lett. 2006 May 15;580(11):2553-60 11158526 - Plant Cell. 2001 Jan;13(1):11-29 17918780 - Yeast. 2008 Jan;25(1):9-19 18424797 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9 321417 - J Bacteriol. 1977 Mar;129(3):1222-6 19253289 - Proteomics. 2009 Mar;9(5):1407-15 2033381 - J Gen Microbiol. 1991 Mar;137(3):629-36 20439478 - Infect Immun. 2010 Jul;78(7):3007-18 23617571 - BMC Microbiol. 2013 Apr 26;13:91 |
References_xml | – volume: 70 start-page: 550 year: 1982 ident: 2021042013304283400_bib10 article-title: Energy metabolism of human neutrophils during phagocytosis. publication-title: J. Clin. Invest. doi: 10.1172/JCI110647 – volume: 7 start-page: 464 year: 2011 ident: 2021042013304283400_bib17 article-title: Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics. publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.122 – volume: 4 start-page: 78 year: 2004 ident: 2021042013304283400_bib70 article-title: Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. publication-title: Proteomics doi: 10.1002/pmic.200200500 – volume: 43 start-page: 13442 year: 2004 ident: 2021042013304283400_bib7 article-title: Pyruvate dehydrogenase kinase isoform 2 activity stimulated by speeding up the rate of dissociation of ADP. publication-title: Biochemistry doi: 10.1021/bi0494875 – volume: 192 start-page: 1314 year: 2015 ident: 2021042013304283400_bib51 article-title: The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway. publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201505-0943OC – volume: 24 start-page: 7771 year: 2004 ident: 2021042013304283400_bib68 article-title: Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1842-04.2004 – volume: 129 start-page: 1222 year: 1977 ident: 2021042013304283400_bib55 article-title: Two unlinked genes for the pyruvate dehydrogenase complex in Aspergillus nidulans. publication-title: J. Bacteriol. doi: 10.1128/JB.129.3.1222-1226.1977 – volume: 68 start-page: 364 year: 2011 ident: 2021042013304283400_bib33 article-title: Elemental formula annotation of polar and lipophilic metabolites using (13)C, (15)N and (34)S isotope labelling, in combination with high- resolution mass spectrometry. publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04682.x – volume: 27 start-page: 155 year: 2010 ident: 2021042013304283400_bib1 article-title: What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. publication-title: Ver. Iberoam. Micol. doi: 10.1016/j.riam.2010.10.003 – volume: 358 start-page: 69 year: 2001 ident: 2021042013304283400_bib46 article-title: Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. publication-title: J. Biochem. doi: 10.1042/bj3580069 – volume: 79 start-page: 6924 year: 2013 ident: 2021042013304283400_bib38 article-title: Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01078-14 – volume: 151 start-page: 103 year: 1997 ident: 2021042013304283400_bib59 article-title: Carbon repression in Aspergilli. publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1997.tb12557.x – volume: 5 start-page: 857 year: 2015 ident: 2021042013304283400_bib21 article-title: Multiple phosphatases regulate carbon source-dependent germination and primary metabolism in Aspergillus nidulans. publication-title: G3 (Bethesda) doi: 10.1534/g3.115.016667 – volume: 76 start-page: 1507 year: 2010 ident: 2021042013304283400_bib63 article-title: Mechanism of de novo branched-chain amino acid synthesis as an alternative electron sink in hypoxic Aspergillus nidulans cells. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02135-09 – volume: 43 start-page: 13432 year: 2004 ident: 2021042013304283400_bib8 article-title: Pyruvate dehydrogenase kinase isoform 2 activity limited and further inhibited by slowing down the rate of dissociation of ADP. publication-title: Biochemistry doi: 10.1021/bi049488x – volume: 11 start-page: 153 year: 2008 ident: 2021042013304283400_bib58 article-title: Nutritional control via Tor signalling in Saccharomyces cerevisiae. publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2008.02.013 – volume: 6 year: 2016 ident: 2021042013304283400_bib66 article-title: Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. publication-title: PLoS One doi: 10.1371/journal.pone.0025654 – volume: 78 start-page: 3007 year: 2010 ident: 2021042013304283400_bib2 article-title: Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response and virulence. publication-title: Infect. Immun. doi: 10.1128/IAI.00813-09 – volume: 137 start-page: 629 year: 1991 ident: 2021042013304283400_bib39 article-title: Glycerol catabolism in Aspergillus nidulans. publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-137-3-629 – volume: 287 start-page: 391 year: 2001 ident: 2021042013304283400_bib72 article-title: Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor alpha. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2001.5608 – volume: 8 start-page: e58008 year: 2013 ident: 2021042013304283400_bib24 article-title: Functional analysis of the Aspergillus nidulans kinome. publication-title: PLoS One doi: 10.1371/journal.pone.0058008 – volume: 13 start-page: 11 year: 2001 ident: 2021042013304283400_bib57 article-title: Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. publication-title: Plant Cell doi: 10.1105/tpc.13.1.11 – volume: 12 start-page: 91 year: 2013 ident: 2021042013304283400_bib44 article-title: Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species. publication-title: Eukaryot. Cell doi: 10.1128/EC.00290-12 – volume: 300 start-page: 1005 year: 2000 ident: 2021042013304283400_bib28 article-title: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3903 – volume: 283 start-page: 9759 year: 2008 ident: 2021042013304283400_bib32 article-title: Yeast pyruvate dehydrogenase complex is regulated by a concerted activity of two kinases and two phosphatases. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M708779200 – volume: 67 start-page: 898 year: 2008 ident: 2021042013304283400_bib50 article-title: Progress in research on fungal cellulases for lignocelluloses degradation. publication-title: J. Sci. Ind. Res. (India) – volume: 279 start-page: 53782 year: 2004 ident: 2021042013304283400_bib37 article-title: Regulation of 2-oxoglutarate (alpha-ketoglutarate) dehydrogenase stability by the RING finger ubiquitin ligase Siah. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M410315200 – volume: 7 start-page: e1002145 year: 2011 ident: 2021042013304283400_bib36 article-title: In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002145 – volume: 10 start-page: 428 year: 2009 ident: 2021042013304283400_bib19 article-title: TargetSearch - a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-428 – volume: 2 start-page: 100 year: 2012 ident: 2021042013304283400_bib45 article-title: Genetics of polyketide metabolism in Aspergillus nidulans. publication-title: Metabolites doi: 10.3390/metabo2010100 – volume: 9 start-page: 1120 year: 2010 ident: 2021042013304283400_bib30 article-title: Aspergillus fumigatus catalytic glucokinase and hexokinase: expression analysis and importance for germination, growth, and conidiation. publication-title: Eukaryot. Cell doi: 10.1128/EC.00362-09 – volume: 36 start-page: W465 year: 2008 ident: 2021042013304283400_bib26 article-title: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn180 – volume: 9 start-page: 1407 year: 2009 ident: 2021042013304283400_bib69 article-title: Two-dimensional proteome reference maps for the human pathogenic filamentous fungus Aspergillus fumigatus. publication-title: Proteomics doi: 10.1002/pmic.200800394 – volume: 34 start-page: 217 year: 2006 ident: 2021042013304283400_bib54 article-title: Regulation of the pyruvate dehydrogenase complex. publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0340217 – volume: 5 start-page: 794 year: 2006 ident: 2021042013304283400_bib42 article-title: Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans. publication-title: Eukaryot. Cell doi: 10.1128/EC.5.5.794-805.2006 – volume: 48 start-page: 42 year: 1984 ident: 2021042013304283400_bib67 article-title: Regulation of trehalose mobilisation in fungi. publication-title: Microbiol. Rev. doi: 10.1128/MR.48.1.42-59.1984 – volume: 55 start-page: 539 year: 2006 ident: 2021042013304283400_bib5 article-title: Approximate likelihood-ratio test for branches: a fast, accurate and powerful alternative. publication-title: Syst. Biol. doi: 10.1080/10635150600755453 – volume: 16 start-page: 708 year: 2016 ident: 2021042013304283400_bib61 article-title: The metabolic fate of acetate in cancer. publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.87 – volume: 95 start-page: 5857 year: 1998 ident: 2021042013304283400_bib62 article-title: SMART, a simple modular architecture research tool: identification of signaling domains. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.11.5857 – volume: 8 start-page: 213 year: 2015 ident: 2021042013304283400_bib22 article-title: Aspergillus nidulans protein kinase A plays an important role in cellulase production. publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-015-0401-1 – volume: 240 start-page: 129 year: 1995 ident: 2021042013304283400_bib15 article-title: An improved spectrophotometric assay of pyruvate dehydrogenase in lactate dehydrogenase contaminated mitochondrial preparations from human skeletal muscle. publication-title: Clin. Chim. Acta doi: 10.1016/0009-8981(95)06145-6 – volume: 25 start-page: 9 year: 2008 ident: 2021042013304283400_bib65 article-title: Disruption of genes encoding pyruvate dehydrogenase kinases leads to retarded growth on acetate and ethanol in Saccharomyces cerevisiae. publication-title: Yeast doi: 10.1002/yea.1543 – year: 2016 ident: 2021042013304283400_bib31 article-title: Fusarium graminearum pyruvate dehydrogenase kinase 1 is critical for conidiation, mycelium growth and pathogenicity. publication-title: PLoS One doi: 10.1371/journal.pone.0158077 – volume: 34 start-page: D363 year: 2006 ident: 2021042013304283400_bib14 article-title: OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj123 – volume: 2 start-page: 34 year: 2003 ident: 2021042013304283400_bib35 article-title: Expressed sequence tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: identification of putative homologues of Candida albicans virulence and pathogenicity genes. publication-title: Eukaryot. Cell doi: 10.1128/EC.2.1.34-48.2003 – volume: 27 start-page: 240 year: 1972 ident: 2021042013304283400_bib71 article-title: Neurospora crassa pyruvate dehydrogenase: interconversion by phosphorylation and dephosphorylation. publication-title: FEBS Lett. doi: 10.1016/0014-5793(72)80630-6 – volume: 399 start-page: 3503 year: 2011 ident: 2021042013304283400_bib40 article-title: Sample amount alternatives for data adjustment in comparative cyanobacterial metabolomics. publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-011-4678-z – volume: 6 start-page: 91 year: 2013 ident: 2021042013304283400_bib13 article-title: Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production. publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-6-91 – volume: 5 start-page: 578 year: 2009 ident: 2021042013304283400_bib20 article-title: Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.5.578 – year: 2010 ident: 2021042013304283400_bib25 doi: 10.1186/1471-2148-10-8 – volume: 580 start-page: 2553 year: 2006 ident: 2021042013304283400_bib47 article-title: YIL042c and YOR090c encode the kinase and phosphatase of the Saccharomyces cervisiae pyruvate dehydrogenase complex. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.04.002 – volume: 148 start-page: 594 year: 1981 ident: 2021042013304283400_bib11 article-title: A third unlinked gene controlling the pyruvate dehydrogenase complex in Aspergillus nidulans. publication-title: J. Bacteriol. doi: 10.1128/JB.148.2.594-599.1981 – volume: 7 start-page: 253 year: 1991 ident: 2021042013304283400_bib34 article-title: Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. publication-title: Yeast doi: 10.1002/yea.320070307 – volume: 11 start-page: e1004923 year: 2015 ident: 2021042013304283400_bib27 article-title: The lung microbiome: new principles for respiratory bacteriology in health and disease. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004923 – volume: 241 start-page: 779 year: 1996 ident: 2021042013304283400_bib16 article-title: Computational method to predict mitochondrially imported proteins and their targeting sequences. publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1996.00779.x – volume: 225 start-page: 449 year: 1985 ident: 2021042013304283400_bib18 article-title: Purification and preliminary characterization of alcohol dehydrogenase from Aspergillus nidulans. publication-title: Biochem. J. doi: 10.1042/bj2250449 – volume: 172 start-page: 1557 year: 2006 ident: 2021042013304283400_bib52 article-title: A versatile and efficient gene-targeting system for Aspergillus nidulans. publication-title: Genetics doi: 10.1534/genetics.105.052563 – volume: 82 start-page: 32 year: 2015 ident: 2021042013304283400_bib53 article-title: The interaction of induction and repression mechanisms in the regulation of galacturonic acid-induced genes in Aspergillus niger. publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2015.06.006 – volume: 11 start-page: 21 year: 2013 ident: 2021042013304283400_bib12 article-title: Regulation of fungal secondary metabolism. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2916 – volume: 17 start-page: 119 year: 2016 ident: 2021042013304283400_bib6 article-title: Trichoderma reesei CRE1-mediated carbon catabolite repression in re-sponse to sophorose through RNA sequencing analysis. publication-title: Curr. Genomics doi: 10.2174/1389202917666151116212901 – volume: 23 start-page: 1164 year: 2007 ident: 2021042013304283400_bib64 article-title: pcaMethods–a bioconductor package providing PCA methods for incomplete data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm069 – volume: 10 start-page: e1004500 year: 2014 ident: 2021042013304283400_bib73 article-title: VIB1, a link between glucose signalling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004500 – volume: 66 start-page: 11 year: 2014 ident: 2021042013304283400_bib3 article-title: Molecular mechanisms of Aspergillus flavus secondary metabolism and development. publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2014.02.008 – volume: 8 start-page: 93 year: 1987 ident: 2021042013304283400_bib9 article-title: Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. publication-title: Electrophoresis doi: 10.1002/elps.1150080203 – volume: 13 start-page: 451 year: 2014 ident: 2021042013304283400_bib4 article-title: Elucidation of primary metabolic pathways in Aspergillus species: orphaned research in characterizing orphan genes. publication-title: Brief. Funct. Genomics doi: 10.1093/bfgp/elu029 – volume: 10 start-page: 276 year: 2011 ident: 2021042013304283400_bib23 article-title: The Aspergillus nidulans nucA(EndoG) homologue is not involved in cell death. publication-title: Eukaryot. Cell doi: 10.1128/EC.00224-10 – volume: 9 start-page: 1039 year: 2010 ident: 2021042013304283400_bib41 article-title: ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. publication-title: Eukaryot. Cell doi: 10.1128/EC.00080-10 – volume-title: Molecular Cloning: A Laboratory Manual year: 2001 ident: 2021042013304283400_bib60 – volume: 13 start-page: 91 year: 2013 ident: 2021042013304283400_bib43 article-title: Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. publication-title: BMC Microbiol. doi: 10.1186/1471-2180-13-91 – volume: 8 start-page: e1002673 year: 2012 ident: 2021042013304283400_bib29 article-title: Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1–3, and a MATE-family pump regulate glucose metabolism during infection. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002673 – volume: 203 start-page: 335 year: 2016 ident: 2021042013304283400_bib56 article-title: Diverse regulation of the CreA carbon catabolite repressor in Aspergillus nidulans. publication-title: Genetics doi: 10.1534/genetics.116.187872 – volume: 43 start-page: D257 year: 2015 ident: 2021042013304283400_bib48 article-title: SMART: recent updates, new developments and status in 2015. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku949 – reference: 27562461 - Nat Rev Cancer. 2016 Nov;16(11):708-717 – reference: 9600884 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857-64 – reference: 2033381 - J Gen Microbiol. 1991 Mar;137(3):629-36 – reference: 16785212 - Syst Biol. 2006 Aug;55(4):539-52 – reference: 12582121 - Eukaryot Cell. 2003 Feb;2(1):34-48 – reference: 8548923 - Clin Chim Acta. 1995 Sep 15;240(2):129-36 – reference: 7028719 - J Bacteriol. 1981 Nov;148(2):594-9 – reference: 11554740 - Biochem Biophys Res Commun. 2001 Sep 21;287(2):391-6 – reference: 15356188 - J Neurosci. 2004 Sep 8;24(36):7771-8 – reference: 19253289 - Proteomics. 2009 Mar;9(5):1407-15 – reference: 21699588 - Plant J. 2011 Oct;68(2):364-76 – reference: 25300481 - Nucleic Acids Res. 2015 Jan;43(Database issue):D257-60 – reference: 23800192 - Biotechnol Biofuels. 2013 Jun 25;6(1):91 – reference: 16643908 - FEBS Lett. 2006 May 15;580(11):2553-60 – reference: 20439478 - Infect Immun. 2010 Jul;78(7):3007-18 – reference: 20081005 - Appl Environ Microbiol. 2010 Mar;76(5):1507-15 – reference: 7107894 - J Clin Invest. 1982 Sep;70(3):550-7 – reference: 21811407 - PLoS Pathog. 2011 Jul;7(7):e1002145 – reference: 26690721 - Biotechnol Biofuels. 2015 Dec 18;8:213 – reference: 25114096 - Brief Funct Genomics. 2014 Nov;13(6):451-5 – reference: 321417 - J Bacteriol. 1977 Mar;129(3):1222-6 – reference: 20067610 - BMC Evol Biol. 2010 Jan 12;10:8 – reference: 23617571 - BMC Microbiol. 2013 Apr 26;13:91 – reference: 17918780 - Yeast. 2008 Jan;25(1):9-19 – reference: 14730673 - Proteomics. 2004 Jan;4(1):78-83 – reference: 23505451 - PLoS One. 2013;8(3):e58008 – reference: 22570632 - PLoS Genet. 2012;8(5):e1002673 – reference: 27341107 - PLoS One. 2016 Jun 24;11(6):e0158077 – reference: 10891285 - J Mol Biol. 2000 Jul 21;300(4):1005-16 – reference: 23178386 - Nat Rev Microbiol. 2013 Jan;11(1):21-32 – reference: 17344241 - Bioinformatics. 2007 May 1;23(9):1164-7 – reference: 18396450 - Curr Opin Microbiol. 2008 Apr;11(2):153-60 – reference: 27017621 - Genetics. 2016 May;203(1):335-52 – reference: 26266556 - Am J Respir Crit Care Med. 2015 Dec 1;192(11):1314-24 – reference: 11485553 - Biochem J. 2001 Aug 15;358(Pt 1):69-77 – reference: 20015393 - BMC Bioinformatics. 2009 Dec 16;10:428 – reference: 21131437 - Eukaryot Cell. 2011 Feb;10(2):276-83 – reference: 16387870 - Genetics. 2006 Mar;172(3):1557-66 – reference: 16545080 - Biochem Soc Trans. 2006 Apr;34(Pt 2):217-22 – reference: 3156582 - Biochem J. 1985 Jan 15;225(2):449-54 – reference: 26127014 - Fungal Genet Biol. 2015 Sep;82:32-42 – reference: 6325857 - Microbiol Rev. 1984 Mar;48(1):42-59 – reference: 18424797 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9 – reference: 25144221 - PLoS Genet. 2014 Aug 21;10(8):e1004500 – reference: 18180296 - J Biol Chem. 2008 Apr 11;283(15):9759-67 – reference: 20974273 - Rev Iberoam Micol. 2010 Oct-Dec;27(4):155-82 – reference: 1882550 - Yeast. 1991 Apr;7(3):253-63 – reference: 9228741 - FEMS Microbiol Lett. 1997 Jun 15;151(2):103-14 – reference: 21283140 - Mol Syst Biol. 2011 Feb 1;7:464 – reference: 15491150 - Biochemistry. 2004 Oct 26;43(42):13432-41 – reference: 23995938 - Appl Environ Microbiol. 2013 Nov;79(22):6924-31 – reference: 23143683 - Eukaryot Cell. 2013 Jan;12(1):91-100 – reference: 11158526 - Plant Cell. 2001 Jan;13(1):11-29 – reference: 21980519 - PLoS One. 2011;6(9):e25654 – reference: 15491151 - Biochemistry. 2004 Oct 26;43(42):13442-51 – reference: 4352021 - FEBS Lett. 1972 Nov 1;27(2):240-4 – reference: 16381887 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D363-8 – reference: 8944766 - Eur J Biochem. 1996 Nov 1;241(3):779-86 – reference: 25762568 - G3 (Bethesda). 2015 Mar 11;5(5):857-72 – reference: 19774110 - Int J Biol Sci. 2009 Sep 04;5(6):578-95 – reference: 20495057 - Eukaryot Cell. 2010 Jul;9(7):1039-48 – reference: 24613992 - Fungal Genet Biol. 2014 May;66:11-8 – reference: 26158874 - PLoS Pathog. 2015 Jul 09;11(7):e1004923 – reference: 16682457 - Eukaryot Cell. 2006 May;5(5):794-805 – reference: 27226768 - Curr Genomics. 2016 Apr;17(2):119-31 – reference: 20453072 - Eukaryot Cell. 2010 Jul;9(7):1120-35 – reference: 21340691 - Anal Bioanal Chem. 2011 Apr;399(10):3503-17 – reference: 24957370 - Metabolites. 2012 Jan 30;2(1):100-33 – reference: 15466852 - J Biol Chem. 2004 Dec 17;279(51):53782-8 |
SSID | ssj0000556646 |
Score | 2.2217245 |
Snippet | Abstract
The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases... The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP)... |
SourceID | doaj pubmedcentral proquest pubmed crossref rcaap oup |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2445 |
SubjectTerms | Aspergillus nidulans Carbon Carbon catabolite repression Carbon source utilization and regulation Dehydrogenases Enzymes Investigations Kinases Metabolism Pyruvate dehydrogenase kinases Science & Technology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9UwGA4yEbwRv62bEkG8stg2H00v59yYykRwg92FJH1zVqztaE8H59_7pu05nKPIbrwqtOlX3id5n6dNnhDyFlQJoCCJObL9mJfexUYmLubeusyBK3wSJjiffZOnF_zLpbjcWuorjAmb7IGnikNxXjLDrWAFtzzNvfXcKMdLsCrzuR9736RItsTU5OqNNIXL2VRTMP5hwbB3UKMgTNOdJDR69f8xv22LZv49WvJu54y53kpDJw_Jg5k_0sPpuR-RO9A8JvemFSVXT8hPDDs9DO7fi6quh542VTnUmI7o91U33CCxpJ_galV2LQIHExj9WoVNjxcEetyHmUgISHre0s9rHwl6ZDrbNvTH-JmfnsEScVNX_a-n5OLk-PzoNJ7XU4gdVt8yNAhgrBBegFfC5dYYm7lcGsXTYNPFHU_LxHrwRYG5jYP0zucFakABTEhgz8he0zbwglBrCyNLPNdiemeZKRID3lsDXDlg3Ebk_bqCtZvNxsOaF7UOogPjoRcMxYfSUzwi8m5T_Hpy2fhXwY8hWptCwRx73IGQ0TNk9G2QicgbjPVtNzpYI0HPrbrXLJXI3lCPhEtsDmN7DD9ZTAPt0Otg7x-Ufs4i8nwCzuZOWYG9H-rTiOQ7kNp5nd0jTXU1en7L8IdYiohEI_h0GAOO8qHXqA8zLRSSjpf_o272yX2khGoakHxA9pbdAK-Qdi3t67GF_QZXLCq- priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagFRKXincDBRkJcSLqJnYc54RKaVVARUi00t4s2xlvI0KyTTZI--8ZJ9nQBQGnSIljx5kZzzd-fEPIK5A5gIRZyBHthzx3NtRiZkPujI0t2MzN_AHn88_i7JJ_nCfzccKtHbdVbsbEfqDOa-vnyA9ZJNBzIhaM3y6vQ581yq-ujik0bpPdCJGIT92QztNpjsUTxQguRmrNhPHDBcMxQvZhYRRtuaKesf-3U243wOafeyZ3G6v18oYzOr1H9kYUSY8Gsd8nt6B6QO4MeSXXD8k3FD498hzgi6Isu5ZWRd6V6JTol3XT_UB4Sd_D1TpvalQfdGP0U-EvLVYI9KT155FQLelFTT9s2CTosW5MXdGv_WQ_PYcVak9ZtN8fkcvTk4vjs3DMqhDahGUrbxbAWJa4BJxMbGq0NrFNhZY88mRd3PIonxkHLsvQw3EQzro0w0gwAZYIYI_JTlVXsE-oMZkWOb5r0MmzWGczDc4ZDVxaYNwE5M3mBys7Uo77zBel8qEHykMtGIYgUg3yCMjrqfhy4Nr4W8F3XlpTIU-R3d-om4UaLQ6L5kxzg33mhkepM45raXkORsYudXFAXqKs_9fQwUYT1GjbrfqliVjF9Bit0i-16ArqrlWe5N_H-ykLyJNBcaaW4gzHQIxSA5JuqdRWd7afVMVVz_wt_DqxSAIS9Mqn_E5wDCJahVFirBKJ0OPpvz_5GbmLkE8OG44PyM6q6eA5wqqVedHbzk-zIiF2 priority: 102 providerName: ProQuest |
Title | The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism |
URI | http://hdl.handle.net/1822/58067 https://www.ncbi.nlm.nih.gov/pubmed/29794164 https://www.proquest.com/docview/3169767722 https://www.proquest.com/docview/2045274773 https://pubmed.ncbi.nlm.nih.gov/PMC6027865 https://doaj.org/article/20d3a4b5394b417fbf4a8c4deb82f7f2 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLVgFRIviO9ljMpIiCcCaewkzgNC2-gYoE0TrFLfLNu57iqyZCQNov-e6yQtKwPBSyM1TiLb58bnxPa5hDwHkQEICHyObN_nmTW-igPjc6tNaMCkNnAbnI9P4qMJ_ziNpr8shfoGrP8o7Vw-qUmVv_rxbfkWA_5Nm72H8dczhoEvWq3ndvkO2qkit4qvZ_qdzTfyFh73LpvXrtoYlVrz_t82vF3hndeXTw4qo9TllXHp8C650xNKutch4B65AcV9cqtLMbl8QL4iDuieswOfzfO8qWkxz5ocxyd6uqya78g06Ts4X2ZViUjCEY1-mrtDjTcEOq7d1iREKD0r6YeVsQQ9UJUuC_ql_e5Pj2GBQMrn9cVDMjkcnx0c-X2CBd9ELF24CAHG0shGYEVkEq2UDk0SK8FHzreLGz7KAm3Bpim2KYfYGpukKAojYFEM7BHZKsoCtgnVOlVxhtdqHO9ZqNJAgbVaARcGGNceeblqYGl693GXBCOXToVgf8gZQzUiZNcfHnmxLn7Z2W78reC-6611IeeW3f5RVjPZBx8WzZjiGuvMNR8lVluuhOEZaBHaxIYeeYZ9_a8H7a6QIFcolWwUI51DgeJusT6NAepmXVQBZVNL5_fvpH_CPPK4A876SWGKr0MUrB5JNiC1UZ3NM8X8vDUBj92UcRx5xGvBJ92icNQTtUTBGMpIIAvZ-Y9qPSG3kQKKbgHyLtlaVA08RZq10ENyM5kmQzLYH5-cfh62Hyvw9_10NGxD6yfWXihK |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWXSG4IN4EFjAScCLaJHZeB4SWfail2xUSXak3r-2MuxUlKUkL6p_iNzLOo2xBwGlPlRrXaTLfzHzjsWcIeQlJBpCA53Jk-y7PjHZl5GmXG6UDDTo1nj3gPDyNemf8wzgcb5Ef3VkYu62ys4m1oc4KbdfI95gfoedELhi8m391bdcom13tWmg0sBjA6juGbNXb_iHK91UQHB-NDnpu21XA1SFLFxYWwFgamhBMEupYSakCHUcy4b4tVsU19zNPGTBpihaeQ2S0iVOMhEJgYQQM571GdrhNMaL-xON4vaZjC9NEPGpLeYaM700Y2qSkDkN9f8P11R0CfjtVd4nc_rlHc6fUUs4vOb_j2-RWy1rpfgOzO2QL8rvketPHcnWPfEaw0X1bc3wync2WFc2n2XKGTpB-XJXLb0hn6SFcrLKyQLii26SDqf2ocEKgR5U9_4RqQEcF7XfVK-iBLFWR0091coEOYYFonU2rL_fJ2ZW87wdkOy9yeESoUqmMMvytQlLBApl6EoxREniigXHlkDfdCxa6LXFuO23MhA11UB5iwjDkSUQjD4e8Xg-fN7U9_jbwvZXWepAtyV1_UZQT0Wo4Ds2Y5AqfmSvux0YZLhPNM1BJYGITOOQFyvp_N9rtkCBaW1KJX8jHKdaX0QrY1I7MoVhWwjYVsOsLMXPIwwY46zsFKdpcjIodEm9AauNxNq_k04u60nhk89JR6BCnBp-wO88xaKkERqWBCBOkOo___Zefkxu90fBEnPRPB0_ITaSbSbPZeZdsL8olPEVKt1DPaj2i5PyqFfcnSS1d5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Aspergillus+nidulans+Pyruvate+Dehydrogenase+Kinases+Are+Essential+To+Integrate+Carbon+Source+Metabolism&rft.jtitle=G3+%3A+genes+-+genomes+-+genetics&rft.au=Ries%2C+Laure+Nicolas+Annick&rft.au=Jos%C3%A9+de+Assis%2C+Leandro&rft.au=Rodrigues%2C+Fernando+Jos%C3%A9+Santos&rft.au=Caldana%2C+Camila&rft.date=2018-07-01&rft.pub=Oxford+University+Press&rft.eissn=2160-1836&rft.volume=8&rft.issue=7&rft.spage=2445&rft.epage=2463&rft_id=info:doi/10.1534%2Fg3.118.200411&rft.externalDocID=10.1534%2Fg3.118.200411 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-1836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-1836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-1836&client=summon |