Deep Learning in Drug Discovery

Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of “deep learning”. Com...

Full description

Saved in:
Bibliographic Details
Published inMolecular informatics Vol. 35; no. 1; pp. 3 - 14
Main Authors Gawehn, Erik, Hiss, Jan A., Schneider, Gisbert
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.01.2016
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1868-1743
1868-1751
1868-1751
DOI10.1002/minf.201501008

Cover

Abstract Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of “deep learning”. Compared with some of the other life sciences, their application in drug discovery is still limited. Here, we provide an overview of this emerging field of molecular informatics, present the basic concepts of prominent deep learning methods and offer motivation to explore these techniques for their usefulness in computer‐assisted drug discovery and design. We specifically emphasize deep neural networks, restricted Boltzmann machine networks and convolutional networks.
AbstractList Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of "deep learning". Compared with some of the other life sciences, their application in drug discovery is still limited. Here, we provide an overview of this emerging field of molecular informatics, present the basic concepts of prominent deep learning methods and offer motivation to explore these techniques for their usefulness in computer-assisted drug discovery and design. We specifically emphasize deep neural networks, restricted Boltzmann machine networks and convolutional networks.Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of "deep learning". Compared with some of the other life sciences, their application in drug discovery is still limited. Here, we provide an overview of this emerging field of molecular informatics, present the basic concepts of prominent deep learning methods and offer motivation to explore these techniques for their usefulness in computer-assisted drug discovery and design. We specifically emphasize deep neural networks, restricted Boltzmann machine networks and convolutional networks.
Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of "deep learning". Compared with some of the other life sciences, their application in drug discovery is still limited. Here, we provide an overview of this emerging field of molecular informatics, present the basic concepts of prominent deep learning methods and offer motivation to explore these techniques for their usefulness in computer-assisted drug discovery and design. We specifically emphasize deep neural networks, restricted Boltzmann machine networks and convolutional networks.
Author Schneider, Gisbert
Gawehn, Erik
Hiss, Jan A.
Author_xml – sequence: 1
  givenname: Erik
  surname: Gawehn
  fullname: Gawehn, Erik
  organization: Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland, Fax: +41 44 633 13 79, Tel: +41 44 633 74 38
– sequence: 2
  givenname: Jan A.
  surname: Hiss
  fullname: Hiss, Jan A.
  organization: Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland, Fax: +41 44 633 13 79, Tel: +41 44 633 74 38
– sequence: 3
  givenname: Gisbert
  surname: Schneider
  fullname: Schneider, Gisbert
  email: gisbert.schneider@pharma.ethz.ch
  organization: Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland, Fax: +41 44 633 13 79, Tel: +41 44 633 74 38
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27491648$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtLAzEQh4MoPqpXj1rw4mVrHrt5HMXaVmgVQfEY0u2sRLfZmuyq_e9N2VpEEHOZBL5vJr85QNuucoDQMcE9gjG9mFtX9CgmGY5PuYX2ieQyISIj25t7yvbQUQgvOB5GuZBqF-1RkSrCU7mPTvsAi-4YjHfWPXet6_Z989zt25BX7-CXh2inMGWAo3XtoMfB9cPVKBnfDW-uLsdJnjElkxlWkmSMYSNpjjmjMyanvBAziQ01ghipuOGgZCYNJZALYNMcCk5IkTKpGOugi7Zv4xZm-WHKUi-8nRu_1ATrVVq9Sqs3aaNx3hoLX701EOoIhBzK0jiomqCJxIpjkVEc0bNf6EvVeBfz6LgsjilXgkTqZE010znMNvO_lxWBtAVyX4XgodC5rU1tK1d7Y8u_P9r7pf2bTLXChy1h-Q-tJze3g59u0ro21PC5cY1_1Vwwkemn26G-54MJ7w9GmrMvBOOo3A
CitedBy_id crossref_primary_10_1002_jssc_201600773
crossref_primary_10_1016_j_cplett_2023_140744
crossref_primary_10_1371_journal_pone_0269461
crossref_primary_10_1021_acs_jcim_7b00690
crossref_primary_10_4155_fmc_2016_0163
crossref_primary_10_1038_s41598_021_90259_7
crossref_primary_10_1128_AAC_00872_20
crossref_primary_10_1145_3594264_3594267
crossref_primary_10_1016_j_ejmech_2021_113705
crossref_primary_10_1166_jctn_2020_9113
crossref_primary_10_1021_acs_chemrestox_3c00310
crossref_primary_10_1371_journal_pone_0266088
crossref_primary_10_1021_acs_jcim_9b00626
crossref_primary_10_1109_ACCESS_2019_2915271
crossref_primary_10_1111_joim_12822
crossref_primary_10_1016_j_procs_2022_09_178
crossref_primary_10_1021_acsomega_9b00298
crossref_primary_10_1080_17460441_2021_1909567
crossref_primary_10_1093_bib_bbab239
crossref_primary_10_1039_C9RA01007F
crossref_primary_10_1038_nrd_2017_146
crossref_primary_10_3389_fgene_2020_00175
crossref_primary_10_1016_j_neuint_2024_105903
crossref_primary_10_1016_j_ensm_2019_06_011
crossref_primary_10_1002_cmdc_201700677
crossref_primary_10_1021_acs_jcim_9b00415
crossref_primary_10_2139_ssrn_4171610
crossref_primary_10_4155_fmc_2019_0118
crossref_primary_10_1016_j_matpr_2020_07_464
crossref_primary_10_1002_minf_201700111
crossref_primary_10_1186_s13321_023_00799_5
crossref_primary_10_1038_s41568_024_00694_7
crossref_primary_10_1093_bioinformatics_btaa544
crossref_primary_10_1016_j_ailsci_2022_100055
crossref_primary_10_1186_s13321_020_00479_8
crossref_primary_10_3389_fchem_2021_753002
crossref_primary_10_1002_cmdc_202100418
crossref_primary_10_3390_polym16162320
crossref_primary_10_1002_cmdc_201700306
crossref_primary_10_1007_s11095_016_2029_7
crossref_primary_10_1016_j_physa_2020_124708
crossref_primary_10_1007_s11432_019_3018_6
crossref_primary_10_52711_2231_5713_2024_00039
crossref_primary_10_1021_acsomega_1c06805
crossref_primary_10_1371_journal_pone_0183838
crossref_primary_10_1002_minf_201800050
crossref_primary_10_1080_17460441_2017_1280024
crossref_primary_10_1002_cbic_202400095
crossref_primary_10_1155_2021_6696012
crossref_primary_10_1186_s12967_017_1285_6
crossref_primary_10_1016_j_compchemeng_2024_108926
crossref_primary_10_1186_s12859_019_2910_6
crossref_primary_10_1115_1_4052893
crossref_primary_10_1016_j_slast_2022_08_002
crossref_primary_10_1248_yakushi_21_00178_4
crossref_primary_10_1002_jccs_202350068
crossref_primary_10_1093_bib_bbaa237
crossref_primary_10_1038_s41597_022_01390_7
crossref_primary_10_1038_nrd_2017_232
crossref_primary_10_1021_acscentsci_7b00512
crossref_primary_10_1115_1_4050105
crossref_primary_10_1186_s13321_022_00583_x
crossref_primary_10_1364_PRJ_484662
crossref_primary_10_1021_acsomega_8b00462
crossref_primary_10_1109_TDSC_2019_2952332
crossref_primary_10_1186_s13321_017_0230_2
crossref_primary_10_21886_2308_6424_2024_12_1_117_130
crossref_primary_10_3389_frai_2023_1069353
crossref_primary_10_1103_PhysRevA_105_062431
crossref_primary_10_1109_TCBB_2024_3427381
crossref_primary_10_1007_s00530_024_01325_9
crossref_primary_10_4155_fmc_2016_0070
crossref_primary_10_1016_j_autcon_2019_102849
crossref_primary_10_1021_acs_jcim_4c01644
crossref_primary_10_1093_bfgp_ely030
crossref_primary_10_4155_fmc_2016_0197
crossref_primary_10_1142_S021972001850021X
crossref_primary_10_1080_17460441_2017_1274727
crossref_primary_10_1063_1_5088393
crossref_primary_10_1016_j_jacbts_2016_11_010
crossref_primary_10_1093_bib_bbab317
crossref_primary_10_3389_fams_2022_826269
crossref_primary_10_1021_acs_jcim_7b00414
crossref_primary_10_1080_17460441_2018_1547278
crossref_primary_10_1039_D0SC01637C
crossref_primary_10_1146_annurev_pharmtox_010919_023324
crossref_primary_10_1080_10590501_2018_1537563
crossref_primary_10_1038_s41598_025_92218_y
crossref_primary_10_1021_acsomega_8b01682
crossref_primary_10_1021_acsphotonics_8b01526
crossref_primary_10_1371_journal_pone_0176690
crossref_primary_10_1103_PhysRevE_100_033308
crossref_primary_10_1111_mice_12376
crossref_primary_10_1093_bib_bbz042
crossref_primary_10_53879_id_58_12_12316
crossref_primary_10_1016_j_compbiolchem_2024_108117
crossref_primary_10_1186_s13321_020_00454_3
crossref_primary_10_1021_acscentsci_8b00176
crossref_primary_10_1038_s42256_020_00236_4
crossref_primary_10_1021_acs_molpharmaceut_7b00346
crossref_primary_10_1109_TVT_2019_2955221
crossref_primary_10_3390_molecules25143250
crossref_primary_10_1016_j_compbiomed_2023_106904
crossref_primary_10_1038_s41467_021_22756_2
crossref_primary_10_3390_molecules23102520
crossref_primary_10_4155_fmc_2021_0063
crossref_primary_10_1093_bib_bby061
crossref_primary_10_3390_antib8010023
crossref_primary_10_3390_ijms21165847
crossref_primary_10_1021_acs_jcim_4c01616
crossref_primary_10_1007_s10916_019_1519_7
crossref_primary_10_1007_s00521_023_08403_5
crossref_primary_10_1016_j_xphs_2020_11_034
crossref_primary_10_1109_ACCESS_2019_2963375
crossref_primary_10_1016_j_csbj_2021_06_017
crossref_primary_10_1093_bib_bbz157
crossref_primary_10_1021_acs_molpharmaceut_7b00578
crossref_primary_10_1109_ACCESS_2020_2980938
crossref_primary_10_1016_j_aichem_2024_100075
crossref_primary_10_53879_id_60_09_13937
crossref_primary_10_1515_jib_2018_0065
crossref_primary_10_1002_kin_21158
crossref_primary_10_3390_ijms17081313
crossref_primary_10_1016_j_ejphar_2024_177103
crossref_primary_10_1021_acsomega_2c00424
crossref_primary_10_1007_s10462_020_09951_1
crossref_primary_10_1093_bib_bbac614
crossref_primary_10_1016_j_arr_2018_11_003
crossref_primary_10_1093_bib_bbz147
crossref_primary_10_1109_TSC_2020_2985684
crossref_primary_10_1007_s13369_024_09342_6
crossref_primary_10_2217_pgs_2018_0008
crossref_primary_10_1186_s12859_018_2517_3
crossref_primary_10_1155_2021_6126247
crossref_primary_10_1109_TCBB_2018_2841396
crossref_primary_10_1186_s13321_017_0226_y
crossref_primary_10_2147_JMDH_S502351
crossref_primary_10_1016_j_drudis_2018_01_039
crossref_primary_10_1021_acs_molpharmaceut_8b00546
crossref_primary_10_1016_j_matdes_2022_111560
crossref_primary_10_1021_acs_chemrestox_0c00316
crossref_primary_10_1016_S2665_9913_20_30168_5
crossref_primary_10_1080_07391102_2023_2194997
crossref_primary_10_1186_s12859_018_2507_5
crossref_primary_10_1007_s11042_021_11061_1
crossref_primary_10_1007_s00894_018_3789_2
crossref_primary_10_1109_ACCESS_2020_3022405
crossref_primary_10_1080_10590501_2018_1537118
crossref_primary_10_1016_j_molliq_2022_118616
crossref_primary_10_1109_TETCI_2021_3100641
crossref_primary_10_1186_s12911_021_01403_2
crossref_primary_10_1016_j_asoc_2019_105777
crossref_primary_10_1002_mef2_18
crossref_primary_10_1186_s13075_022_02800_2
crossref_primary_10_61186_ijbc_15_3_42
crossref_primary_10_1109_TCC_2018_2799219
crossref_primary_10_1021_acsphotonics_1c02016
crossref_primary_10_1109_TBIOM_2023_3319837
crossref_primary_10_1002_minf_201880131
crossref_primary_10_1021_acs_jcim_6b00601
crossref_primary_10_1021_acs_molpharmaceut_9b00634
crossref_primary_10_1080_00268976_2019_1652367
crossref_primary_10_1186_s12859_018_2034_4
crossref_primary_10_1016_j_jbi_2020_103627
crossref_primary_10_1021_acs_jcim_8b00825
crossref_primary_10_2174_0929867329666220819122205
crossref_primary_10_3389_fphar_2018_00787
crossref_primary_10_1038_s42256_021_00418_8
crossref_primary_10_1109_TCBB_2023_3248797
crossref_primary_10_3390_ijms22157911
crossref_primary_10_1021_acs_jcim_1c01361
crossref_primary_10_1016_j_artmed_2025_103090
crossref_primary_10_3389_fpls_2019_01422
crossref_primary_10_3389_fphar_2018_00218
crossref_primary_10_3390_s20185399
crossref_primary_10_1088_1742_6596_1804_1_012135
crossref_primary_10_3390_ijtm1030016
crossref_primary_10_1021_acs_jcim_0c01496
crossref_primary_10_1016_j_compbiomed_2022_105214
crossref_primary_10_3389_fmolb_2022_963912
crossref_primary_10_1002_ps_6656
crossref_primary_10_1016_j_aichem_2024_100049
crossref_primary_10_1016_j_heliyon_2024_e34410
crossref_primary_10_1016_j_bios_2025_117399
crossref_primary_10_1093_bib_bby002
crossref_primary_10_1038_s41746_019_0148_3
crossref_primary_10_1016_j_compchemeng_2019_03_034
crossref_primary_10_1111_cbdd_14062
crossref_primary_10_1109_TPDS_2020_3043449
crossref_primary_10_1002_wcms_1408
crossref_primary_10_1016_j_lwt_2021_110856
crossref_primary_10_1093_jmcb_mjz009
crossref_primary_10_1109_JBHI_2016_2636665
crossref_primary_10_1016_j_eswa_2023_120005
crossref_primary_10_1109_TCBB_2020_2964203
crossref_primary_10_1208_s12248_018_0210_0
crossref_primary_10_3389_fphar_2019_01303
crossref_primary_10_3390_ai5040116
crossref_primary_10_1039_D0CS00098A
crossref_primary_10_3390_electronics11030305
crossref_primary_10_1016_j_compag_2025_110117
crossref_primary_10_1016_j_biopha_2024_117688
crossref_primary_10_3390_ph16060891
crossref_primary_10_2174_1381612829666230412084137
crossref_primary_10_3389_frobt_2019_00108
crossref_primary_10_1021_acs_jcim_2c01126
crossref_primary_10_1103_PhysRevApplied_14_024054
crossref_primary_10_2174_1389200219666180820112457
crossref_primary_10_3389_fphar_2020_00269
crossref_primary_10_3390_molecules23092384
crossref_primary_10_1039_D1SC04471K
crossref_primary_10_1007_s13042_022_01544_4
crossref_primary_10_1021_acs_jcim_8b00542
crossref_primary_10_1021_acs_jcim_8b00663
crossref_primary_10_56294_mw2024516
crossref_primary_10_1016_j_scib_2020_03_042
crossref_primary_10_1038_s41598_020_65157_z
crossref_primary_10_1007_s10916_018_0972_z
crossref_primary_10_1371_journal_pcbi_1007129
crossref_primary_10_1371_journal_pcbi_1007249
crossref_primary_10_1016_j_compbiomed_2019_01_008
crossref_primary_10_1111_cbdd_13674
crossref_primary_10_1021_acs_jctc_9b00884
crossref_primary_10_1161_JAHA_119_013924
crossref_primary_10_1080_17460441_2019_1615435
crossref_primary_10_1038_s41598_020_73681_1
crossref_primary_10_1021_acs_biochem_3c00253
crossref_primary_10_1002_minf_201600045
crossref_primary_10_4155_fmc_2018_0188
crossref_primary_10_2174_1874467214666210906125959
crossref_primary_10_1080_17460441_2023_2174522
crossref_primary_10_1016_j_molstruc_2024_139850
crossref_primary_10_1039_D0AY00072H
crossref_primary_10_1007_s40199_024_00548_5
crossref_primary_10_1016_j_csbj_2020_08_003
crossref_primary_10_1002_ange_202410550
crossref_primary_10_1021_acs_jcim_6b00591
crossref_primary_10_1186_s13321_019_0343_x
crossref_primary_10_1016_j_bmcl_2018_06_046
crossref_primary_10_1016_j_drudis_2018_06_016
crossref_primary_10_1021_acs_chemrev_8b00728
crossref_primary_10_1016_j_eswa_2018_03_056
crossref_primary_10_1016_j_asoc_2019_105926
crossref_primary_10_33483_jfpau_1327078
crossref_primary_10_1016_j_aca_2018_01_026
crossref_primary_10_1109_TMC_2024_3350654
crossref_primary_10_1002_minf_201900134
crossref_primary_10_1515_nanoph_2018_0183
crossref_primary_10_1002_wcms_1568
crossref_primary_10_1016_j_eml_2022_101925
crossref_primary_10_1016_j_csbj_2022_05_057
crossref_primary_10_1002_minf_201681031
crossref_primary_10_3390_electronics11091360
crossref_primary_10_1021_acs_jcim_8b00672
crossref_primary_10_1007_s40484_019_0172_y
crossref_primary_10_1038_s41598_019_43708_3
crossref_primary_10_1002_jcc_24764
crossref_primary_10_1109_TAI_2023_3251977
crossref_primary_10_1016_j_ecoenv_2018_06_061
crossref_primary_10_1002_wcms_1318
crossref_primary_10_1002_minf_201600029
crossref_primary_10_1016_j_jneumeth_2024_110141
crossref_primary_10_1016_j_neucom_2020_04_148
crossref_primary_10_1021_acs_jcim_8b00785
crossref_primary_10_1021_acs_jcim_9b01067
crossref_primary_10_1007_s11227_018_2375_9
crossref_primary_10_1016_j_ailsci_2023_100079
crossref_primary_10_1016_j_drudis_2019_07_006
crossref_primary_10_1080_08940886_2022_2112501
crossref_primary_10_1039_D4MD00522H
crossref_primary_10_3390_biom10040626
crossref_primary_10_1038_s41598_024_63762_w
crossref_primary_10_3390_ph14121249
crossref_primary_10_1007_s40495_024_00367_x
crossref_primary_10_1002_wcms_1581
crossref_primary_10_1186_s13321_019_0397_9
crossref_primary_10_1109_TMC_2020_3044397
crossref_primary_10_1016_j_mlwa_2022_100290
crossref_primary_10_3390_molecules27144568
crossref_primary_10_1016_j_jaci_2017_05_015
crossref_primary_10_1016_j_jbi_2019_103337
crossref_primary_10_1371_journal_pone_0274569
crossref_primary_10_1016_j_asoc_2023_110242
crossref_primary_10_1002_cbic_201900346
crossref_primary_10_1038_s41467_023_38192_3
crossref_primary_10_1063_5_0040782
crossref_primary_10_3390_ijerph17030740
crossref_primary_10_1155_2020_7526825
crossref_primary_10_1007_s43939_021_00012_0
crossref_primary_10_1038_nbt_4233
crossref_primary_10_1109_TCBB_2022_3172340
crossref_primary_10_48175_IJARSCT_12456
crossref_primary_10_1126_sciadv_aap7885
crossref_primary_10_1042_BCJ20200781
crossref_primary_10_1007_s11051_022_05499_z
crossref_primary_10_1021_acs_jctc_2c00396
crossref_primary_10_1002_minf_201600073
crossref_primary_10_1016_j_patter_2023_100856
crossref_primary_10_1109_TCSVT_2021_3061719
crossref_primary_10_1002_adma_202302530
crossref_primary_10_1002_med_21668
crossref_primary_10_1021_acs_jcim_8b00751
crossref_primary_10_1021_acs_jcim_0c00104
crossref_primary_10_1016_j_ejso_2024_108304
crossref_primary_10_3390_molecules26154475
crossref_primary_10_1098_rsif_2017_0387
crossref_primary_10_1073_pnas_1816640116
crossref_primary_10_1155_2017_2917536
crossref_primary_10_38124_ijisrt_IJISRT24APR505
crossref_primary_10_1016_j_cplett_2024_141830
crossref_primary_10_1016_j_inffus_2020_09_006
crossref_primary_10_1016_j_ins_2016_07_007
crossref_primary_10_3390_molecules26072065
crossref_primary_10_3390_bios13030389
crossref_primary_10_1016_j_conbuildmat_2020_120923
crossref_primary_10_1021_acs_jcim_9b00587
crossref_primary_10_1038_s41398_020_0780_3
crossref_primary_10_1142_S0129065718500351
crossref_primary_10_3390_ijms232113568
crossref_primary_10_1080_17460441_2020_1745183
crossref_primary_10_2478_jaiscr_2021_0008
crossref_primary_10_1007_s11030_021_10237_z
crossref_primary_10_1007_s10916_018_1038_y
crossref_primary_10_1021_acs_est_0c01437
crossref_primary_10_1016_j_ejmech_2020_112982
crossref_primary_10_1109_ACCESS_2024_3389497
crossref_primary_10_1016_j_apsb_2018_09_010
crossref_primary_10_3390_molecules26113237
crossref_primary_10_1021_acs_jcim_7b00028
crossref_primary_10_1177_1042258720934581
crossref_primary_10_52679_tabcj_2021_0007
crossref_primary_10_53982_aijnas_2021_0101_05_j
crossref_primary_10_1002_minf_201700075
crossref_primary_10_4155_fmc_2018_0478
crossref_primary_10_1021_acs_jcim_9b00266
crossref_primary_10_1002_minf_202000086
crossref_primary_10_1016_j_ijpharm_2017_07_048
crossref_primary_10_1016_j_jep_2023_117244
crossref_primary_10_3390_molecules28135000
crossref_primary_10_1021_acs_chemrev_3c00056
crossref_primary_10_1038_s42004_024_01393_y
crossref_primary_10_1080_17460441_2019_1593368
crossref_primary_10_15252_msb_20156651
crossref_primary_10_1109_ACCESS_2021_3096830
crossref_primary_10_1021_acs_molpharmaceut_8b00083
crossref_primary_10_1007_s41666_024_00163_8
crossref_primary_10_1016_j_ijbiomac_2022_09_151
crossref_primary_10_1002_wcms_1395
crossref_primary_10_1021_acs_jmedchem_5b01849
crossref_primary_10_1016_j_ailsci_2024_100098
crossref_primary_10_1016_j_asieco_2025_101890
crossref_primary_10_1021_acs_jcim_6b00290
crossref_primary_10_4155_fmc_2018_0129
crossref_primary_10_1021_acsomega_9b01997
crossref_primary_10_1002_minf_201600011
crossref_primary_10_1002_minf_201900154
crossref_primary_10_1021_acs_jcim_8b00584
crossref_primary_10_4155_fdd_2020_0028
crossref_primary_10_34133_2022_9869518
crossref_primary_10_1186_s13020_018_0169_x
crossref_primary_10_1016_j_ipha_2024_09_001
crossref_primary_10_3390_molecules28041663
crossref_primary_10_1016_j_neucom_2018_10_097
crossref_primary_10_1021_acsomega_3c05207
crossref_primary_10_1002_admt_202300427
crossref_primary_10_1016_j_measen_2022_100441
crossref_primary_10_1002_advs_201800909
crossref_primary_10_1007_s42452_019_1579_9
crossref_primary_10_2478_ebtj_2018_0012
crossref_primary_10_1016_j_trc_2019_09_019
crossref_primary_10_1038_s41598_019_44773_4
crossref_primary_10_3390_jox14040101
crossref_primary_10_1002_minf_201600110
crossref_primary_10_1109_RBME_2018_2864254
crossref_primary_10_1016_j_bspc_2023_105263
crossref_primary_10_3389_fddsv_2022_1013285
crossref_primary_10_3390_s19081917
crossref_primary_10_1002_ddr_22115
crossref_primary_10_1016_j_chemolab_2022_104637
crossref_primary_10_1080_21681163_2024_2415716
crossref_primary_10_1016_j_cjche_2022_04_004
crossref_primary_10_1088_1361_6633_aa8a02
crossref_primary_10_1016_j_asoc_2024_111268
crossref_primary_10_1186_s12859_023_05153_y
crossref_primary_10_1111_cbdd_13648
crossref_primary_10_3390_ijms21103585
crossref_primary_10_2174_1381612827666210129123231
crossref_primary_10_1016_j_optcom_2022_129043
crossref_primary_10_3389_fmolb_2021_768106
crossref_primary_10_1002_minf_201600118
crossref_primary_10_1021_acs_jcim_8b00478
crossref_primary_10_1016_j_compbiolchem_2023_107927
crossref_primary_10_1186_s13321_020_00435_6
crossref_primary_10_1080_17460441_2018_1465407
crossref_primary_10_1021_acs_jcim_7b00244
crossref_primary_10_1021_acsami_9b01226
crossref_primary_10_3389_fchem_2019_00385
crossref_primary_10_5194_acp_20_2303_2020
crossref_primary_10_1080_17460441_2023_2171984
crossref_primary_10_1039_D1DD00052G
crossref_primary_10_1016_j_compbiomed_2017_09_007
crossref_primary_10_1002_cmdc_201800204
crossref_primary_10_1016_j_drudis_2020_07_005
Cites_doi 10.1561/2200000006
10.1039/c1an15369b
10.1093/bioinformatics/btu277
10.1371/journal.pcbi.1003088
10.1109/TCBB.2014.2343960
10.1016/S0731-7085(99)00272-1
10.1109/72.279181
10.1021/ci0341161
10.1016/j.neunet.2012.02.023
10.1162/neco.1997.9.8.1735
10.1109/72.554195
10.1007/s11030-005-6293-4
10.1162/neco.1992.4.1.131
10.1016/j.neunet.2015.01.009
10.1517/17460441.2.12.1567
10.1016/j.ddtec.2015.06.001
10.1002/anie.201310864
10.1016/j.drudis.2013.10.012
10.1016/j.neunet.2013.01.015
10.1021/ci500747n
10.1007/978-3-642-35289-8
10.1021/cb400252t
10.1002/minf.201000061
10.1002/minf.201400024
10.1021/ci400187y
10.1371/journal.pcbi.1003963
10.1109/TPAMI.2013.50
10.1038/nbt.3313
10.1016/j.tics.2007.09.004
10.1021/ci00027a006
10.1016/j.neunet.2012.09.016
10.2174/138620709788167962
10.1162/089976602760128018
10.1504/IJCBDD.2010.035238
10.1093/protein/gzl054
10.1007/s10822-014-9748-9
10.1016/S0893-6080(99)00094-5
10.1038/nature14236
10.1021/ci0202741
10.1111/cogs.12049
10.1186/1758-2946-1-4
10.1186/1471-2105-7-125
10.1002/minf.201400122
10.1207/s15516709cog0901_7
10.1021/acs.jcim.5b00198
10.1002/minf.201400067
10.1038/323533a0
10.1016/S0079-6107(98)00026-1
10.1162/neco.2006.18.7.1527
10.1021/ci050367t
10.1186/1471-2105-14-S14-S12
10.1586/17512433.2014.905201
10.2174/1386207013331129
10.1002/jcc.23718
10.1021/ci050079x
10.1162/neco.1989.1.1.1
10.1038/nature14539
10.1021/acs.jcim.5b00238
10.1002/9783527628766
10.2174/1389557033487656
10.1016/j.neuron.2012.01.010
10.1093/bioinformatics/bts598
10.1002/minf.201400066
10.1021/acscentsci.5b00131
10.1016/j.conb.2015.07.006
10.1007/978-3-319-10590-1_53
10.1021/ci100253r
10.1109/TSMCB.2008.2008724
10.1517/17425250902753261
10.1021/ci800344p
10.1038/srep11476
10.7551/mitpress/5236.001.0001
10.1007/s10822-006-9063-1
10.1007/s00422-008-0257-6
10.1016/0022-2836(88)90564-5
10.1016/j.artmed.2015.02.002
10.1093/bioinformatics/btr500
10.1023/A:1010933404324
10.1385/MB:27:2:139
10.1126/science.1127647
10.1016/j.drudis.2014.10.012
10.1017/atsip.2013.9
10.1007/s10822-011-9499-9
10.1016/j.jmgm.2011.12.006
10.1109/72.279187
10.1177/026119290503300209
10.1002/(SICI)1097-0282(199601)38:1<13::AID-BIP2>3.0.CO;2-Z
10.1155/2015/863874
10.1016/j.neunet.2004.06.009
10.1016/S1093-3263(01)00144-9
10.1002/3527601643
10.1002/9783527677016
10.1093/bioinformatics/15.11.937
10.1167/15.12.1091
10.1038/nbt1338
10.1016/j.neuron.2009.08.003
10.1038/nbt.3300
10.1002/cem.1296
10.1016/j.drudis.2013.12.004
10.2533/chimia.2014.648
10.1016/j.neunet.2014.09.003
10.1093/bioinformatics/btt234
10.1093/bioinformatics/bts475
10.1007/978-0-387-45528-0
10.1016/0031-3203(82)90024-3
10.1385/1592598021
10.1162/NECO_a_00311
10.1371/journal.pone.0137036
10.1002/1521-3773(20001117)39:22<4130::AID-ANIE4130>3.0.CO;2-E
10.1016/j.addr.2013.04.008
10.1109/ICCV.2009.5459469
10.1007/s00894-010-0854-x
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
7U7
8FD
C1K
FR3
JQ2
K9.
P64
7X8
ADTOC
UNPAY
DOI 10.1002/minf.201501008
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biotechnology Research Abstracts
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1868-1751
EndPage 14
ExternalDocumentID 10.1002/minf.201501008
3919165191
27491648
10_1002_minf_201501008
MINF201501008
ark_67375_WNG_Q6FM6DFH_6
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: 200021_157190; CR32I2_159737
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
1OB
1OC
31~
33P
3SF
50Y
50Z
52S
52U
52W
53G
5VS
702
8-0
8-1
8-3
8-4
8-5
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HGLYW
HVGLF
HZ~
J0M
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
PQQKQ
Q.N
QB0
R.K
ROL
RX1
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XG1
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
7U7
8FD
C1K
FR3
JQ2
K9.
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c5398-d09815330a82c0632d38b6f7d80a2a71a896a6e9858a21ec7e3bcef611f438933
IEDL.DBID UNPAY
ISSN 1868-1743
1868-1751
IngestDate Tue Aug 19 20:13:32 EDT 2025
Wed Oct 01 14:06:28 EDT 2025
Tue Oct 07 06:32:53 EDT 2025
Thu Apr 03 07:08:08 EDT 2025
Wed Oct 01 06:04:04 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
Wed Jan 22 16:19:38 EST 2025
Tue Sep 09 05:29:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords machine-learning
virtual screening
drug design
neural network
bioinformatics
cheminformatics
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5398-d09815330a82c0632d38b6f7d80a2a71a896a6e9858a21ec7e3bcef611f438933
Notes ArticleID:MINF201501008
ark:/67375/WNG-Q6FM6DFH-6
istex:0CA051DB5E0838B4BE130406265DB8641DA25928
Swiss National Science Foundation - No. 200021_157190; No. CR32I2_159737
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/minf.201501008
PMID 27491648
PQID 1756026971
PQPubID 2034649
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_minf_201501008
proquest_miscellaneous_1809607520
proquest_journals_1756026971
pubmed_primary_27491648
crossref_citationtrail_10_1002_minf_201501008
crossref_primary_10_1002_minf_201501008
wiley_primary_10_1002_minf_201501008_MINF201501008
istex_primary_ark_67375_WNG_Q6FM6DFH_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Molecular informatics
PublicationTitleAlternate Mol. Inf
PublicationYear 2016
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References W. Van Geit, E. De Schutter, P. Achard, Biol. Cybern. 2008, 99, 241-251.
G. E. Hinton, R. R. Salakhutdinov, Science 2006, 313, 504-507
G. Schneider, G. Downs (eds.), Machine Learning Methods in QSAR Modelling, QSAR Comb. Sci. 2003, 22(5)
G. E. Hinton, Cogn. Sci. 2014, 38, 1078-1101.
A. C. Tsoi, A. D. Back, IEEE Trans. Neural Netw. 1994, 5, 229-239
S. Hochreiter, Diploma Thesis, Tech. Univ. München, Title: "Untersuchungen zu dynamischen neuronalen Netzen," 1991.
Y. Bengio, Foundations and Trends in Machine Learning 2009, 2, 1-127.
S. Agatonovic-Kustrin, R. Beresford, J. Pharm. Biomed. Anal. 2000, 22, 717-727.
J. A. Hiss, A. Bredenbeck, F. O. Losch, P. Wrede, P. Walden, G. Schneider, Protein Eng. Des. Sel. 2007, 20, 99-108
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov, Cornell University Library 2012, arXiv:1207.0580.
G. Schneider, S.-S. So, Adaptive Systems in Drug Design, Landes Bioscience, Georgetown, 2001
R. Pascanu, T. Mikolov, Y. Bengio, Proceedings of the 30th International Conference on Machine Learning 2012, 1310-1318.
M. Dehmer, K. Varmuza, D. Bonchev (eds.) Statistical Modelling of Molecular Descriptors in QSAR/QSPR, Wiley-Blackwell, New York, 2011.
B. Sprague, Q. Shi, M. T. Kim, L. Zhang, A. Sedykh, E. Ichiishi, H. Tokuda, K. H. Lee, H. Zh, J. Comput. Aided Mol. Des. 2014, 28, 631-646
A. Lusci, G. Pollastri, P. Baldi, J. Chem. Inf. Model. 2013, 7, 1563-1575.
E. J. Gardiner, V. J. Gillet, J. Chem. Inf. Model. 2015, 55, 1781-1803.
M. M. Islam, M. A. Sattar, M. F. Amin, X. Yao, K. Murase, IEEE Trans. Syst. Man Cybern. B Cybern. 2009, 39, 705-722
Y. Bengio, A. Courville, P. Vincent, IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798-1828.
D. Ciresan, U. Meier, J. Schmidhuber, Comput. IEEE Conference on Visual Pattern Recognition (CVPR), 2012, 3642-3649, doi:10.1109/CVPR.2012.6248110
J. Bajorath (ed.) Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery, Humana Press, Totowa, 2004
R. Heffernan, K. Paliwal, J. Lyons, A. Dehzangi, A. Sharma, J. Wang, A. Sattar, Y. Yang, Y. Zhou, Sci. Rep. 2015, 11476.
R. Salakhutdinov, G. Hinton, Neural Comput. 2012, 8, 1967-2006.
Y. Taigman, M. Yang, M. Ranzato, L. Wolf, IEEE Conference on Computer Vision and Pattern Recognition 2014, 1701-1708.
M. J. Skwark, D. Raimondi, M. Michel, A. Elofsson, PLoS Comput. Biol. 2014, 11, e1003889.
J. Gasteiger, T. Engel (eds.), Chemoinformatics: A Textbook, Wiley-VCH, 2003
Y. LeCun, Y. Bengio, G. Hinton, Nature 2015, 521, 436-444.
J. Zupan, J. Gasteiger, Neural Networks in Chemistry and Drug Design, Wiley-VCH, Weinheim, 1999
F. F. Costa FF, Drug Discovery Today 2014, 19, 433-440
A. Tropsha, Mol. Inf. 2010, 29, 476-488.
D. V. Buonomano, Neuron 2009, 63, 423-425
S. J. Lusher, R. McGuire, R. C. van Schaik, C. D. Nicholson, J. de Vlieg, Drug Discovery Today 2014, 19, 859-868
L. Richter, G. F. Ecker, Drug Discovery Today Technol. 2015, 14, 37-41.
N. Qian, T. J. Sejnowski, J. Mol. Biol. 1988, 202, 865-884.
N. Meinshausen, J. Mach. Learn. Res. 2006, 7, 983-999.
M. Spencer, J. Eickholt, J. Cheng, IEEE/ACM Trans. Comput. Biol. Bioinform. 2015, 12, 103-112.
G. E. Hinton, Trends Cogn. Sci. 2007, 11, 428-434
Y. Roudi, G. Taylor, Curr. Opin. Neurobiol. 2015, 35, 110-118.
D. P. Visco Jr, R. S. Pophale, M. D. Rintoul, J. L. Faulon, J. Mol. Graph. Model. 2002, 20, 429-438
B. Alipanahi, A. Delong, M. T. Weirauch, B. J. Frey, Nat. Biotechnol. 2015, 8, 831-838.
D. A. Winkler, Mol. Biotechnol. 2004, 27, 139-168.
K. Li, J. Deng, H. B. He, Y. Li, D. J. Du, Int. J. Comput. Biol. Drug Des. 2010, 3, 112-132.
L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, R. Fergus, Proceedings of the 30th International Conference on Machine Learning (ICML-13) 2013, 1058-1066.
D. Cireşan, U. Meier, J. Masci, J. Schmidhuber, Neural Networks 2012, 32, 333-338.
G. Montavon, G. B. Orr, K.-R. Müller (eds.), Neural Networks: Tricks of the Trade. Springer, Berlin, 2012.
I. I. Baskin, V. A. Palyulin, N. S. Zefirov, Methods Mol. Biol. 2008, 458, 137-158.
I. Tetko, Methods Mol. Biol. 2008, 458, 185-202
M. Reutlinger, G. Schneider, J. Mol. Graph. Model. 2012, 34, 108-117.
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Proc. IEEE 1998, 11, 2278-2323.
M. A. Yildirim, K.-I. Goh, M. E. Cusick, A.-L. Barabási, M. Vidal, Nat. Biotechnol. 2007, 25, 1119-1126
G. Schneider (ed.), De Novo Molecular Design. Wiley-VCH, Weinheim, 2013.
K. Fukushima, S. Miyake, Pattern Recognit. 1982, 15, 455-469
K. Fukushima, Neural Netw. 2013, 37, 103-119.
D. Plewczynski, J. Mol. Model. 2011, 17, 2133-2141.
F. Burden, D. Winkler, Bayesian regularization of neural networks. Methods Mol. Biol. 2008, 458, 25-44
Y. Park, M. Kellis, Nat. Biotechnol. 2015, 33, 825-826.
R. P. Lippmann, Neural Comput. 1989, 1, 1-38
Y. Sun, Y. Chen, X. Wang, X. Tang, Advances in Neural Information Processing Systems 2014, 1988-1996.
C. F. Cadieu, H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A. Solomon, N. J. Majaj, J. J. DiCarlo, PLoS Comput. Biol. 2014, 10, e1003963.
G. Schneider, P. Wrede, Prog. Biophys, Mol. Biol. 1998, 70, 175-222
D. E. Rumelhart, G. E. Hinton, R. J. Williams, Nature 1986, 323, 533-536.
J. Scheiber, B. Chen, M. Milik, S. C. Sukuru, A. Bender, D. Mikhailov, S. Whitebread, J. Hamon, K. Azzaoui, L. Urban, M. Glick, J. W. Davies, J. L. Jenkins, J. Chem. Inf. Model. 2009, 49, 308-317
T. Van Laarhoven, S. B. Nabuurs, E. Marchiori, Bioinformatics 2011, 27, 3036-3043
A. Givehchi, G. Schneider, Mol. Divers. 2005, 9, 371-383.
P. Baldi, G. Pollastri, J. Mach. Learn. Res. 2004, 4, 575-602.
D. Plewczynski, S. A. Spieser, U. Koch, Comb. Chem. High Throughput Screen. 2009, 12, 358-368
R. Raina, A. Madhavan, A. Y. Ng, Proc. 26th Annual Int. Conf. Mach. Learn. ICML 2009, 40, 1-8.
E. Byvatov, U. Fechner, J. Sadowski, G. Schneider, J. Chem. Inf. Comput. Sci. 2003, 43, 1882-1889
I. I. Baskin, V. A. Palyulin, N. S. Zefirov, Neural networks in building QSAR models. Methods Mol. Biol. 2008, 458, 137-158
D. H. Ackley, G. E. Hinton, T. J. Sejnowski, Cogn. Sci. 1985, 9, 147-169.
M. Punta, B. Rost, Methods Mol. Biol. 2008, 458, 203-230.
W. Kew, J. B. O. Mitchell, Mol. Inf. 2015, 9, 634-647.
J. Fan, H. Liu, Adv. Drug Deliv. Rev. 2013, 65, 987-1000
G. E. Hinton, Neural Comput. 2002, 8, 1771-1800.
S. Hochreiter, J. Schmidhuber, Neural Comput. 1997, 9, 1735-1780.
T. Unterthiner, A. Mayr, G. Klambauer, M. Steijaert, J. K. Wegner, H. Ceulemans, S. Hochreiter, Deep Learning and Representation Learning Workshop, NIPS 2014.
N. T. Issa, S. W. Byers, S. Dakshanamurthy, Expert Rev. Clin. Pharmacol. 2014, 7, 293-298
J. Eickholt, J. Cheng, BMC Bioinformatics 2013, 14, S12.
J. B. Brown, M. Nakatsui, Y. Okuno, Mol. Inf. 2014, 33, 732-741
P. Di Lena, K. Nagata, P. F. Baldi, Advances in Neural Information Processing Systems, 2012, 512-520.
L. Breiman, Machine Learning 2001, 45, 5-32
S. Lawrence, C. L. Giles, A. C. Tsoi, A. D. Back, IEEE Trans. Neural Netw. 1997, 8, 98-113.
S. P. Nguyen, Y. Shang, D. Xu, Proc. Int. Jt. Conf. Neural Netw. 2014, 2071-2078.
Y. Qi, M. Oja, J. Weston, W. S. Noble, PLoS One 2012, 3, e32235.
D. Erhan, P.-J. L'heureux, S. Y. Yue, Y. Bengio, J. Chem. Inf. Model. 2006, 46, 626-635.
G. E. Hinton, S. Osindero, Y. W. The, Neural Comput. 2006, 7, 1527-1554.
M. Meissner, M. Schmuker, G. Schneider, BMC Bioinformatics 2006, 7, 125
G. Schneider, D. Reker, T. Rodrigues, P. Schneider, Chimia 2014, 68, 648-653.
B. Hammer, A. Micheli, A. Sperduti, M. Strickert, Neural Netw. 2004, 17, 1061-1085
R. Todeschini, V. Consonni, Molecular Descriptors for Cheminformatics, Wiley-VCH, Weinheim, 2009
A. Lavecchia, Drug Discovery Today 2015, 20, 318-331
J. Markoff, Scientists See Promise in Deep-Learning Programs. The New York Times, November 23, 2012.
A. Krizhevsky, I. Sutskever, G. E. Hinton, in: Advances in Neural Information Processing Systems 2012, 1097-1105.
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Nature 2015, 518, 529-533.
M. Zeiler, R. Fergus, Comput. VisionECCV 2014 2014, 818-833.
R. Sawada, M. Kotera, Y. Yamanishi, Mol. Inf. 2014, 33, 719-731.
J. Gasteiger, Mini Rev. Med. Chem. 2003, 3, 789-796.
P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974
L. Deng, APSIPA Trans. Signal Inf. Process. 2014, 3, e2.
Y. Xu, Z. Dai, F. Chen, S. Gao, J. Pei, L. Lai, J. Chem. Inf. Model. 2015, 55, 2085-2093.
F. Agostinelli, M. Hoffman, P. Sadowski, P. Baldi, Cornell University Library 2014, arXiv:1412.6830.
P. Baldi, S. Brunak, P. Frasconi, G. Soda, G. Pollastri, Bioinformatics 1999, 11, 937-946.
J. Schmidhuber, Neural Networks 2015, 61, 85-117.
Y. Park, M. Kellis, Nat. Biotechnol. 2015, 8, 825-826.
C. P. Koch, A. M. Perna, S. Weissmüller, S. Bauer, M. Pillong, R. B. Baleeiro, M. Reutlinger, G. Folkers, P. Walden, P. Wrede, J. A. Hiss, Z. Waibler, G. Schneider, ACS Chem. Biol. 2013, 8, 1876-1881.
Q. V. Le, IEEE International Conference on Acoustics, Speech and Signal Processing 2013, 8595-8598.
K. Roy, Expert Opin. Drug Discov. 2007, 2, 1567-1577
D. C. Cireşan, A. Giusti, L. M. Gambardella, J. Schmidhuber, Med. Image Comput. Comput. Assist. Interv. 2013, 16, 411-418
P. Di Lena, K. Nagata, P. Baldi, Bioinformatics 2012, 19, 2449-2457.
G. Schneider, J. Schuchhardt, P. Wrede, Comput. Appl. Biosci. 1994, 10, 635-645
H. G. Han, L. D. Wang, J. F. Qiao, Neural Networks 2013, 43, 22-32.
G. Hanrahan, Analyst 2011, 136, 3587-3594
N. Fjodorova, M. Novič, A. Roncaglioni, E. Benfenati, J. Comput. Aided Mol Des. 2011, 25, 1147-1158.
M. A. Khamis, W. Gomaa, W. F. Ahmed, Artif. Intell. Med. 2015, 63, 135-152
G. E. Dahl, N. Jaitly, R. Salakhutdinov, Cornell University Library 2014, arXiv:1406.1231.
J. Eickholt, J. Cheng, Bioinformatics 2012, 23, 3066-3072.
A. Mendyk, S. Güres, R. Jachowicz, J. Szlęk, S. Polak, B. Wiśniowska, P. Kleinebudde, Comput. Math. Methods Med. 2015, 2015, 863874.
J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, V. Svetnik, J. Chem. Inf. Model. 2015, 55, 263-274
C. P. Ko
2013; 65
2004; 27
1995; 35
2004; 4
1974
2012; 19
2014; 28
2013; 7
2001; 45
2013; 8
1997; 9
2013; 9
1997; 8
2009; 12
2006; 20
2010; 24
2010; 29
2000; 13
2014; 19
2007; 2
2010; 3
2012; 23
2014; 12
2003; 43
1992; 4
2014; 10
2011; 136
2009; 63
1989; 1
2015; 521
2015; 55
2002; 8
1988; 202
1998
1991
2012; 34
2007; 11
2012; 32
1999
2006; 46
2015; 61
2005; 9
2015; 63
2014; 38
2015; 2015
2015; 518
1998; 70
2003; 103
2014; 33
1994; 10
2010; 50
2015; 35
2013; 29
1982; 15
2015; 33
2014; 68
2011; 17
1996; 38
2009; 49
2013; 14
2014; 3
2013; 16
2001
2000
2003; 2
2003; 3
1999; 11
2011; 25
2007; 20
2011; 27
2014; 7
2005; 33
2007; 25
2014; 53
2015; 12
2015; 15
2015; 14
2015; 4
2012
2011
2013; 43
1985; 9
2000; 22
2015; 10
2009
2006; 7
2008
2006
2003; 22(5)
2004
2008; 99
2003
2006; 313
2015; 9
2015; 8
2005; 45
2012; 73
2013; 37
1986; 323
2000; 39
2002; 20
2013; 35
2004; 17
2001; 4
2015; 20
2008; 458
2015
2009; 5
2014
2013
2009; 2
2009; 1
1994; 5
2012; 8
2009; 39
e_1_2_9_71_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_107_2
Hinton G. E. (e_1_2_9_87_2) 2012
Raina R. (e_1_2_9_89_2)
e_1_2_9_122_2
e_1_2_9_145_2
e_1_2_9_168_2
Dahl G. E. (e_1_2_9_173_2) 2014
e_1_2_9_183_2
e_1_2_9_18_2
e_1_2_9_79_2
e_1_2_9_160_2
Schneider G. (e_1_2_9_16_2) 2001
e_1_2_9_60_2
e_1_2_9_45_2
e_1_2_9_83_2
Zeiler M. (e_1_2_9_155_2) 2014
e_1_2_9_6_2
e_1_2_9_119_2
Dehmer M. (e_1_2_9_23_2) 2011
Sun Y. (e_1_2_9_94_2) 2014
e_1_2_9_134_2
e_1_2_9_157_2
e_1_2_9_172_2
e_1_2_9_195_2
e_1_2_9_68_2
e_1_2_9_72_2
e_1_2_9_34_2
Agostinelli F. (e_1_2_9_88_2) 2014
e_1_2_9_95_2
e_1_2_9_129_2
e_1_2_9_106_2
e_1_2_9_121_2
Pascanu R. (e_1_2_9_101_2) 2012
e_1_2_9_167_2
e_1_2_9_57_2
e_1_2_9_182_2
e_1_2_9_19_2
e_1_2_9_61_2
e_1_2_9_84_2
e_1_2_9_5_2
e_1_2_9_118_2
Meinshausen N. (e_1_2_9_64_2) 2006; 7
e_1_2_9_133_2
e_1_2_9_179_2
e_1_2_9_156_2
e_1_2_9_69_2
e_1_2_9_194_2
e_1_2_9_171_2
e_1_2_9_77_2
e_1_2_9_31_2
e_1_2_9_109_2
e_1_2_9_147_2
e_1_2_9_124_2
e_1_2_9_162_2
e_1_2_9_185_2
e_1_2_9_39_2
Nguyen S. P. (e_1_2_9_181_2) 2014
e_1_2_9_20_2
e_1_2_9_66_2
e_1_2_9_43_2
e_1_2_9_81_2
e_1_2_9_113_2
e_1_2_9_136_2
e_1_2_9_159_2
Schneider G. (e_1_2_9_21_2) 2003; 22
Skwark M. J. (e_1_2_9_198_2) 2014
e_1_2_9_8_2
Qi Y. (e_1_2_9_174_2) 2012
e_1_2_9_151_2
e_1_2_9_28_2
e_1_2_9_78_2
e_1_2_9_93_2
e_1_2_9_55_2
e_1_2_9_32_2
e_1_2_9_108_2
Schneider G. (e_1_2_9_59_2) 1994; 10
Schneider G. (e_1_2_9_25_2) 2008
Ciresan D. (e_1_2_9_96_2) 2012
Burden F. (e_1_2_9_111_2) 2008; 458
e_1_2_9_169_2
e_1_2_9_123_2
e_1_2_9_146_2
LeCun Y. (e_1_2_9_154_2) 1998
e_1_2_9_161_2
e_1_2_9_184_2
e_1_2_9_17_2
Taigman Y. (e_1_2_9_92_2) 2014
e_1_2_9_44_2
e_1_2_9_67_2
e_1_2_9_82_2
e_1_2_9_7_2
e_1_2_9_112_2
e_1_2_9_158_2
e_1_2_9_135_2
e_1_2_9_150_2
e_1_2_9_196_2
e_1_2_9_29_2
e_1_2_9_52_2
e_1_2_9_98_2
Hochreiter S. (e_1_2_9_54_2) 2001
e_1_2_9_75_2
e_1_2_9_90_2
Hochreiter S. (e_1_2_9_100_2) 1991
e_1_2_9_126_2
e_1_2_9_149_2
e_1_2_9_187_2
e_1_2_9_103_2
e_1_2_9_37_2
e_1_2_9_141_2
e_1_2_9_164_2
e_1_2_9_41_2
Le Q. V. (e_1_2_9_91_2) 2013
e_1_2_9_2_2
e_1_2_9_138_2
e_1_2_9_115_2
e_1_2_9_199_2
e_1_2_9_130_2
e_1_2_9_153_2
e_1_2_9_26_2
e_1_2_9_191_2
e_1_2_9_30_2
e_1_2_9_53_2
e_1_2_9_102_2
e_1_2_9_125_2
e_1_2_9_148_2
Baskin I. I. (e_1_2_9_110_2) 2008; 458
e_1_2_9_38_2
e_1_2_9_140_2
Krizhevsky A. (e_1_2_9_152_2) 2012
e_1_2_9_186_2
e_1_2_9_15_2
e_1_2_9_163_2
Wan L. (e_1_2_9_97_2)
Tetko I. (e_1_2_9_165_2) 2008
Cireşan D. C. (e_1_2_9_35_2) 2013; 16
e_1_2_9_42_2
e_1_2_9_65_2
e_1_2_9_80_2
Rodrigues T. (e_1_2_9_70_2) 2015
e_1_2_9_1_2
e_1_2_9_137_2
Di Lena P. (e_1_2_9_197_2) 2012
e_1_2_9_114_2
e_1_2_9_175_2
e_1_2_9_27_2
e_1_2_9_190_2
e_1_2_9_50_2
e_1_2_9_12_2
e_1_2_9_128_2
e_1_2_9_143_2
e_1_2_9_166_2
e_1_2_9_105_2
Unterthiner T. (e_1_2_9_176_2) 2014
e_1_2_9_58_2
e_1_2_9_120_2
Baldi P. (e_1_2_9_189_2) 2004; 4
e_1_2_9_62_2
Zupan J. (e_1_2_9_11_2) 1999
e_1_2_9_85_2
e_1_2_9_4_2
Fasel B. (e_1_2_9_144_2) 2003; 103
Duda R. O. (e_1_2_9_99_2) 2000
e_1_2_9_117_2
e_1_2_9_132_2
e_1_2_9_178_2
e_1_2_9_24_2
e_1_2_9_47_2
e_1_2_9_170_2
e_1_2_9_193_2
e_1_2_9_51_2
e_1_2_9_74_2
Markoff J. (e_1_2_9_14_2) 2012
Werbos P. J. (e_1_2_9_46_2) 1974
Byvatov E. (e_1_2_9_73_2) 2003; 2
Baskin I. I. (e_1_2_9_76_2) 2008; 458
e_1_2_9_127_2
e_1_2_9_104_2
e_1_2_9_188_2
e_1_2_9_13_2
e_1_2_9_36_2
e_1_2_9_142_2
Devillers (ed.) J. (e_1_2_9_9_2)
e_1_2_9_180_2
e_1_2_9_40_2
e_1_2_9_63_2
e_1_2_9_86_2
e_1_2_9_3_2
e_1_2_9_139_2
e_1_2_9_116_2
(ed.) J. Bajorath (e_1_2_9_22_2) 2004
e_1_2_9_177_2
e_1_2_9_48_2
e_1_2_9_131_2
e_1_2_9_192_2
Punta M. (e_1_2_9_49_2) 2008; 458
References_xml – reference: S. Hochreiter, Diploma Thesis, Tech. Univ. München, Title: "Untersuchungen zu dynamischen neuronalen Netzen," 1991.
– reference: S. P. Nguyen, Y. Shang, D. Xu, Proc. Int. Jt. Conf. Neural Netw. 2014, 2071-2078.
– reference: J. B. Brown, M. Nakatsui, Y. Okuno, Mol. Inf. 2014, 33, 732-741;
– reference: G. E. Hinton, R. R. Salakhutdinov, Science 2006, 313, 504-507;
– reference: M. Zeiler, R. Fergus, Comput. VisionECCV 2014 2014, 818-833.
– reference: I. Sushko, S. Novotarskyi, R. Körner, A. K. Pandey, V. V. Kovalishyn, V. V. Prokopenko, I. V. Tetko, J. Chemometr. 2010, 24, 202-208;
– reference: J. Eickholt, J. Cheng, Bioinformatics 2012, 23, 3066-3072.
– reference: Y. Sakiyama, Expert Opin. Drug Metab. Toxicol. 2009, 5, 149-169;
– reference: A. Lavecchia, Drug Discovery Today 2015, 20, 318-331;
– reference: Y. Park, M. Kellis, Nat. Biotechnol. 2015, 8, 825-826.
– reference: N. Brown, B. McKay, J. Gasteiger, J. Comput. Aided Mol. Des. 2006, 20, 333-341;
– reference: J. Lyons, A. Dehzangi, R. Heffernan, A. Sharma, K. Paliwal, A. Sattar, Y. Zhou, Y. Yang, J. Comput. Chem. 2014, 28, 2040-2046.
– reference: I. I. Baskin, V. A. Palyulin, N. S. Zefirov, Methods Mol. Biol. 2008, 458, 137-158.
– reference: G. Schneider, G. Downs (eds.), Machine Learning Methods in QSAR Modelling, QSAR Comb. Sci. 2003, 22(5);
– reference: D. P. Visco Jr, R. S. Pophale, M. D. Rintoul, J. L. Faulon, J. Mol. Graph. Model. 2002, 20, 429-438;
– reference: D. C. Cireşan, A. Giusti, L. M. Gambardella, J. Schmidhuber, Med. Image Comput. Comput. Assist. Interv. 2013, 16, 411-418;
– reference: L. Richter, G. F. Ecker, Drug Discovery Today Technol. 2015, 14, 37-41.
– reference: A. Givehchi, G. Schneider, Mol. Divers. 2005, 9, 371-383.
– reference: G. E. Hinton, Trends Cogn. Sci. 2007, 11, 428-434;
– reference: R. Sawada, M. Kotera, Y. Yamanishi, Mol. Inf. 2014, 33, 719-731.
– reference: T. Van Laarhoven, S. B. Nabuurs, E. Marchiori, Bioinformatics 2011, 27, 3036-3043;
– reference: J. Devillers (ed.), Neural Networks in QSAR and Drug Design, Elsevier, Amsterdam;
– reference: C. P. Koch, A. M. Perna, M. Pillong, N. K. Todoroff, P. Wrede, G. Folkers, J. A. Hiss, G. Schneider PLoS Comput. Biol. 2013, 9, e1003088;
– reference: G. Schneider, Neural Netw. 2000, 13, 15-16;
– reference: M. M. Islam, M. A. Sattar, M. F. Amin, X. Yao, K. Murase, IEEE Trans. Syst. Man Cybern. B Cybern. 2009, 39, 705-722;
– reference: D. H. Ackley, G. E. Hinton, T. J. Sejnowski, Cogn. Sci. 1985, 9, 147-169.
– reference: I. Tetko, Methods Mol. Biol. 2008, 458, 185-202;
– reference: D. V. Buonomano, Neuron 2009, 63, 423-425;
– reference: N. Meinshausen, J. Mach. Learn. Res. 2006, 7, 983-999.
– reference: D. Plewczynski, J. Mol. Model. 2011, 17, 2133-2141.
– reference: D. T. Manallack, B. G. Tehan, E. Gancia, B. D. Hudson, M. G. Ford, D. J. Livingstone, D. C. Whitley, W. R. Pitt, J. Chem. Inf. Comput. Sci. 2003, 43, 674-679;
– reference: G. Schneider, J. Schuchhardt, P. Wrede, Comput. Appl. Biosci. 1994, 10, 635-645;
– reference: M. Dehmer, K. Varmuza, D. Bonchev (eds.) Statistical Modelling of Molecular Descriptors in QSAR/QSPR, Wiley-Blackwell, New York, 2011.
– reference: C. F. Cadieu, H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A. Solomon, N. J. Majaj, J. J. DiCarlo, PLoS Comput. Biol. 2014, 10, e1003963.
– reference: G. E. Dahl, N. Jaitly, R. Salakhutdinov, Cornell University Library 2014, arXiv:1406.1231.
– reference: T. Unterthiner, A. Mayr, G. Klambauer, M. Steijaert, J. K. Wegner, H. Ceulemans, S. Hochreiter, Deep Learning and Representation Learning Workshop, NIPS 2014.
– reference: G. Schneider, P. Wrede, Prog. Biophys, Mol. Biol. 1998, 70, 175-222;
– reference: M. Punta, B. Rost, Methods Mol. Biol. 2008, 458, 203-230.
– reference: R. Heffernan, K. Paliwal, J. Lyons, A. Dehzangi, A. Sharma, J. Wang, A. Sattar, Y. Yang, Y. Zhou, Sci. Rep. 2015, 11476.
– reference: G. Hanrahan, Analyst 2011, 136, 3587-3594;
– reference: Y. Roudi, G. Taylor, Curr. Opin. Neurobiol. 2015, 35, 110-118.
– reference: G. E. Hinton, Cogn. Sci. 2014, 38, 1078-1101.
– reference: R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, 2nd ed., Wiley, New York, 2000.
– reference: K. Li, J. Deng, H. B. He, Y. Li, D. J. Du, Int. J. Comput. Biol. Drug Des. 2010, 3, 112-132.
– reference: L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, R. Fergus, Proceedings of the 30th International Conference on Machine Learning (ICML-13) 2013, 1058-1066.
– reference: A. Tropsha, Mol. Inf. 2010, 29, 476-488.
– reference: A. Krizhevsky, I. Sutskever, G. E. Hinton, in: Advances in Neural Information Processing Systems 2012, 1097-1105.
– reference: V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Nature 2015, 518, 529-533.
– reference: E. Byvatov, U. Fechner, J. Sadowski, G. Schneider, J. Chem. Inf. Comput. Sci. 2003, 43, 1882-1889;
– reference: P. Willett, Mol. Inf. 2014, 33, 403-413.
– reference: T. Rodrigues, D. Reker, M. Welin, M. Caldera, C. Brunner, G. Gabernet, P. Schneider, B. Walse, G. Schneider, Angew. Chem. Int. Ed. 2015, in press.
– reference: I. I. Baskin, V. A. Palyulin, N. S. Zefirov, Neural networks in building QSAR models. Methods Mol. Biol. 2008, 458, 137-158;
– reference: P. P. Ypsilantis, M. Siddique, H. M. Sohn, A. Davies, G. Cook, V. Goh, G. Montana, PLoS One 2015, 10, e0137036.
– reference: G. Schneider, S.-S. So, Adaptive Systems in Drug Design, Landes Bioscience, Georgetown, 2001;
– reference: J. V. de Julian-Ortiz, Comb. Chem. High Throughput Screen. 2001, 4, 295-310;
– reference: D. Ciresan, U. Meier, J. Schmidhuber, Comput. IEEE Conference on Visual Pattern Recognition (CVPR), 2012, 3642-3649, doi:10.1109/CVPR.2012.6248110;
– reference: R. Todeschini, V. Consonni, Molecular Descriptors for Cheminformatics, Wiley-VCH, Weinheim, 2009;
– reference: Y. Sun, Y. Chen, X. Wang, X. Tang, Advances in Neural Information Processing Systems 2014, 1988-1996.
– reference: K. Roy, Expert Opin. Drug Discov. 2007, 2, 1567-1577;
– reference: Y. Taigman, M. Yang, M. Ranzato, L. Wolf, IEEE Conference on Computer Vision and Pattern Recognition 2014, 1701-1708.
– reference: H. G. Han, L. D. Wang, J. F. Qiao, Neural Networks 2013, 43, 22-32.
– reference: M. A. Yildirim, K.-I. Goh, M. E. Cusick, A.-L. Barabási, M. Vidal, Nat. Biotechnol. 2007, 25, 1119-1126;
– reference: J. Fan, H. Liu, Adv. Drug Deliv. Rev. 2013, 65, 987-1000;
– reference: G. E. Hinton, Neural Comput. 2002, 8, 1771-1800.
– reference: D. Plewczynski, S. A. Spieser, U. Koch, Comb. Chem. High Throughput Screen. 2009, 12, 358-368;
– reference: L. Deng, APSIPA Trans. Signal Inf. Process. 2014, 3, e2.
– reference: E. Byvatov, G. Schneider, Appl. Bioinformatics 2003, 2, 67-77.
– reference: M. Spencer, J. Eickholt, J. Cheng, IEEE/ACM Trans. Comput. Biol. Bioinform. 2015, 12, 103-112.
– reference: J. Zupan, J. Gasteiger, Neural Networks in Chemistry and Drug Design, Wiley-VCH, Weinheim, 1999;
– reference: L. Breiman, Machine Learning 2001, 45, 5-32;
– reference: D. Cireşan, U. Meier, J. Masci, J. Schmidhuber, Neural Networks 2012, 32, 333-338.
– reference: A. C. Tsoi, A. D. Back, IEEE Trans. Neural Netw. 1994, 5, 229-239;
– reference: S. Lawrence, C. L. Giles, A. C. Tsoi, A. D. Back, IEEE Trans. Neural Netw. 1997, 8, 98-113.
– reference: S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, in: A Field Guide to Dynamical Recurrent Neural Networks (S. C. Kremer, J. F. Kolen, eds.), IEEE Press, New York, 2001.
– reference: J. Schmidhuber, Neural Networks 2015, 61, 85-117.
– reference: B. Alipanahi, A. Delong, M. T. Weirauch, B. J. Frey, Nat. Biotechnol. 2015, 8, 831-838.
– reference: K. Fukushima, S. Miyake, Pattern Recognit. 1982, 15, 455-469;
– reference: Q. V. Le, IEEE International Conference on Acoustics, Speech and Signal Processing 2013, 8595-8598.
– reference: G. Schneider, O. Clément-Chomienne, L. Hilfiger, P. Schneider, S. Kirsch, H.-J. Böhm, W. Neidhart, Angew. Chem. Int. Ed. 2000, 39, 4130-4133.
– reference: R. Raina, A. Madhavan, A. Y. Ng, Proc. 26th Annual Int. Conf. Mach. Learn. ICML 2009, 40, 1-8.
– reference: F. Agostinelli, M. Hoffman, P. Sadowski, P. Baldi, Cornell University Library 2014, arXiv:1412.6830.
– reference: J. Gasteiger, Mini Rev. Med. Chem. 2003, 3, 789-796.
– reference: A. Mendyk, S. Güres, R. Jachowicz, J. Szlęk, S. Polak, B. Wiśniowska, P. Kleinebudde, Comput. Math. Methods Med. 2015, 2015, 863874.
– reference: P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974;
– reference: A. Tropsha, Mol. Inf. 2010, 29, 476-488;
– reference: P. Baldi, G. Pollastri, J. Mach. Learn. Res. 2004, 4, 575-602.
– reference: E. J. Gardiner, V. J. Gillet, J. Chem. Inf. Model. 2015, 55, 1781-1803.
– reference: M. Meissner, M. Schmuker, G. Schneider, BMC Bioinformatics 2006, 7, 125;
– reference: J. J. DiCarlo, D. Zoccolan, N. C. Rust, Neuron 2012, 73, 415-434;
– reference: Y. Qi, M. Oja, J. Weston, W. S. Noble, PLoS One 2012, 3, e32235.
– reference: G. E. Hinton, S. Osindero, Y. W. The, Neural Comput. 2006, 7, 1527-1554.
– reference: G. Montavon, G. B. Orr, K.-R. Müller (eds.), Neural Networks: Tricks of the Trade. Springer, Berlin, 2012.
– reference: D. Erhan, P.-J. L'heureux, S. Y. Yue, Y. Bengio, J. Chem. Inf. Model. 2006, 46, 626-635.
– reference: W. W. Wong, F. J. Burkowski, J. Cheminform. 2009, 1, 4.
– reference: S. J. Lusher, R. McGuire, R. C. van Schaik, C. D. Nicholson, J. de Vlieg, Drug Discovery Today 2014, 19, 859-868;
– reference: S. Agatonovic-Kustrin, R. Beresford, J. Pharm. Biomed. Anal. 2000, 22, 717-727.
– reference: Y. Bengio, Foundations and Trends in Machine Learning 2009, 2, 1-127.
– reference: B. Sprague, Q. Shi, M. T. Kim, L. Zhang, A. Sedykh, E. Ichiishi, H. Tokuda, K. H. Lee, H. Zh, J. Comput. Aided Mol. Des. 2014, 28, 631-646;
– reference: M. A. Khamis, W. Gomaa, W. F. Ahmed, Artif. Intell. Med. 2015, 63, 135-152;
– reference: F. F. Costa FF, Drug Discovery Today 2014, 19, 433-440;
– reference: M. K. K. Leung, H. Y. Xiong, L. J. Lee, B. J. Frey, Bioinformatics 2014, 12, i121-i129.
– reference: R. Lohmann, G. Schneider, P. Wrede, Biopolymers 1996, 38, 13-29.
– reference: P. Di Lena, K. Nagata, P. Baldi, Bioinformatics 2012, 19, 2449-2457.
– reference: F. Burden, D. Winkler, Bayesian regularization of neural networks. Methods Mol. Biol. 2008, 458, 25-44;
– reference: P. Baldi, S. Brunak, P. Frasconi, G. Soda, G. Pollastri, Bioinformatics 1999, 11, 937-946.
– reference: S. Hochreiter, J. Schmidhuber, Neural Comput. 1997, 9, 1735-1780.
– reference: N. T. Issa, S. W. Byers, S. Dakshanamurthy, Expert Rev. Clin. Pharmacol. 2014, 7, 293-298;
– reference: B. Fasel, Acta Neurol. Belg. 2003, 103, 6-12;
– reference: I. V. Tetko, D. J. Livingstone, A. I. Luik, J. Chem. Inf. Comput. Sci. 1995, 35, 826-833;
– reference: J. Gasteiger, T. Engel (eds.), Chemoinformatics: A Textbook, Wiley-VCH, 2003;
– reference: Y. LeCun, Y. Bengio, G. Hinton, Nature 2015, 521, 436-444.
– reference: D. A. Winkler, Mol. Biotechnol. 2004, 27, 139-168.
– reference: P. Wang, G. Cottrell, J. Vis. 2015, 15, 1091.
– reference: N. Qian, T. J. Sejnowski, J. Mol. Biol. 1988, 202, 865-884.
– reference: T. I. Netzeva, A. Worth, T. Aldenberg, R. Benigni, M. T. D. Cronin, P. Gramatica, J. S. Jaworska, S. Kahn, G. Klopman, C. A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G. Y. Patlewicz, R. Perkins, D. Roberts, T. Schultz, D. W. Stanton, J. J. van de Sandt, W. Tong, G. Veith, C. Yang, Altern. Lab. Anim. 2005, 33, 155-173.
– reference: J. Bajorath (ed.) Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery, Humana Press, Totowa, 2004;
– reference: J. Schmidhuber, Neural Comput. 1992, 4, 131-139.
– reference: G. Schneider, D. Reker, T. Rodrigues, P. Schneider, Chimia 2014, 68, 648-653.
– reference: R. Salakhutdinov, G. Hinton, Neural Comput. 2012, 8, 1967-2006.
– reference: Y. Park, M. Kellis, Nat. Biotechnol. 2015, 33, 825-826.
– reference: W. Kew, J. B. O. Mitchell, Mol. Inf. 2015, 9, 634-647.
– reference: J. Markoff, Scientists See Promise in Deep-Learning Programs. The New York Times, November 23, 2012.
– reference: K. Fukushima, Neural Netw. 2013, 37, 103-119.
– reference: J. Scheiber, B. Chen, M. Milik, S. C. Sukuru, A. Bender, D. Mikhailov, S. Whitebread, J. Hamon, K. Azzaoui, L. Urban, M. Glick, J. W. Davies, J. L. Jenkins, J. Chem. Inf. Model. 2009, 49, 308-317;
– reference: T. B. Hughes, G. P. Miller, S. J. Swamidass, ACS Cent. Sci. 2015, 4, 168-180.
– reference: W. Van Geit, E. De Schutter, P. Achard, Biol. Cybern. 2008, 99, 241-251.
– reference: Y. Bengio, P. Simard, P. Frasconi, IEEE Trans. Neural Networks 1994, 5, 157-166;
– reference: R. P. Lippmann, Neural Comput. 1989, 1, 1-38;
– reference: N. Fjodorova, M. Novič, A. Roncaglioni, E. Benfenati, J. Comput. Aided Mol Des. 2011, 25, 1147-1158.
– reference: L. Yang, P. Wang, Y. Jiang, J. Chen, J. Chem. Inf. Model. 2005, 45, 1804-1811;
– reference: Y. Wang, J. Zeng, Bioinformatics 2013, 29, i126-i134.
– reference: Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Proc. IEEE 1998, 11, 2278-2323.
– reference: G. Schneider (ed.), De Novo Molecular Design. Wiley-VCH, Weinheim, 2013.
– reference: Y. Bengio, A. Courville, P. Vincent, IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798-1828.
– reference: P. Di Lena, K. Nagata, P. F. Baldi, Advances in Neural Information Processing Systems, 2012, 512-520.
– reference: D. E. Rumelhart, G. E. Hinton, R. J. Williams, Nature 1986, 323, 533-536.
– reference: Y. Xu, Z. Dai, F. Chen, S. Gao, J. Pei, L. Lai, J. Chem. Inf. Model. 2015, 55, 2085-2093.
– reference: M. Reutlinger, G. Schneider, J. Mol. Graph. Model. 2012, 34, 108-117.
– reference: B. Hammer, A. Micheli, A. Sperduti, M. Strickert, Neural Netw. 2004, 17, 1061-1085;
– reference: C. M. Bishop, Pattern Recognition and Machine Learning, Springer, Heidelberg, 2006.
– reference: I. Sushko, S. Novotarskyi, R. Körner, A. K. Pandey, A. Cherkasov, J. Li, P. Gramatica, K. Hansen, T. Schroeter, K.-R. Müller, L. Xi, H. Liu, X. Yao, T. Öberg, F. Hormozdiari, P. Dao, C. Sahinalp, R. Todeschini, P. Polishchuk, A. Artemenko, V. Kuz′min, T. M. Martin, D. M. Young, D. Fourches, E. Muratov, A. Tropsha, I. Baskin, D. Horvath, G. Marcou, C. Müller, A. Varnek, V. V. Prokopenko, I. V. Tetko, J. Chem. Inf. Model. 2010, 50, 2094-2111.
– reference: A. Lusci, G. Pollastri, P. Baldi, J. Chem. Inf. Model. 2013, 7, 1563-1575.
– reference: J. A. Hiss, A. Bredenbeck, F. O. Losch, P. Wrede, P. Walden, G. Schneider, Protein Eng. Des. Sel. 2007, 20, 99-108;
– reference: M. Reutlinger, T. Rodrigues, P. Schneider, G. Schneider, Angew. Chem. Int. Ed. 2014, 53, 4244-4248.
– reference: C. P. Koch, A. M. Perna, S. Weissmüller, S. Bauer, M. Pillong, R. B. Baleeiro, M. Reutlinger, G. Folkers, P. Walden, P. Wrede, J. A. Hiss, Z. Waibler, G. Schneider, ACS Chem. Biol. 2013, 8, 1876-1881.
– reference: G. Schneider, K.-H. Baringhaus, Molecular Design - Concepts and Applications. Wiley-VCH, Weinheim, 2008;
– reference: J. Eickholt, J. Cheng, BMC Bioinformatics 2013, 14, S12.
– reference: G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov, Cornell University Library 2012, arXiv:1207.0580.
– reference: J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, V. Svetnik, J. Chem. Inf. Model. 2015, 55, 263-274;
– reference: M. J. Skwark, D. Raimondi, M. Michel, A. Elofsson, PLoS Comput. Biol. 2014, 11, e1003889.
– reference: R. Pascanu, T. Mikolov, Y. Bengio, Proceedings of the 30th International Conference on Machine Learning 2012, 1310-1318.
– year: 2011
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  publication-title: Foundations and Trends in Machine Learning
– volume: 39
  start-page: 705
  year: 2009
  end-page: 722
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
– volume: 38
  start-page: 1078
  year: 2014
  end-page: 1101
  publication-title: Cogn. Sci.
– start-page: 40
  end-page: 8
  publication-title: Proc. 26
– start-page: 1988
  year: 2014
  end-page: 1996
  publication-title: Advances in Neural Information Processing Systems
– volume: 99
  start-page: 241
  year: 2008
  end-page: 251
  publication-title: Biol. Cybern.
– volume: 4
  start-page: 168
  year: 2015
  end-page: 180
  publication-title: ACS Cent. Sci.
– volume: 33
  start-page: 719
  year: 2014
  end-page: 731
  publication-title: Mol. Inf.
– volume: 10
  start-page: 1003963
  year: 2014
  publication-title: PLoS Comput. Biol.
– volume: 50
  start-page: 2094
  year: 2010
  end-page: 2111
  publication-title: J. Chem. Inf. Model.
– volume: 11
  start-page: 937
  year: 1999
  end-page: 946
  publication-title: Bioinformatics
– volume: 12
  start-page: 121
  year: 2014
  end-page: 129
  publication-title: Bioinformatics
– volume: 136
  start-page: 3587
  year: 2011
  end-page: 3594
  publication-title: Analyst
– volume: 33
  start-page: 403
  year: 2014
  end-page: 413
  publication-title: Mol. Inf.
– volume: 25
  start-page: 1147
  year: 2011
  end-page: 1158
  publication-title: J. Comput. Aided Mol Des.
– year: 2014
– publication-title: Neural Networks in QSAR and Drug Design
– volume: 19
  start-page: 859
  year: 2014
  end-page: 868
  publication-title: Drug Discovery Today
– volume: 43
  start-page: 22
  year: 2013
  end-page: 32
  publication-title: Neural Networks
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  publication-title: Nature
– volume: 17
  start-page: 2133
  year: 2011
  end-page: 2141
  publication-title: J. Mol. Model.
– volume: 45
  start-page: 1804
  year: 2005
  end-page: 1811
  publication-title: J. Chem. Inf. Model.
– volume: 20
  start-page: 318
  year: 2015
  end-page: 331
  publication-title: Drug Discovery Today
– volume: 34
  start-page: 108
  year: 2012
  end-page: 117
  publication-title: J. Mol. Graph. Model.
– year: 2008
– volume: 55
  start-page: 263
  year: 2015
  end-page: 274
  publication-title: J. Chem. Inf. Model.
– volume: 35
  start-page: 110
  year: 2015
  end-page: 118
  publication-title: Curr. Opin. Neurobiol.
– year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 20
  start-page: 99
  year: 2007
  end-page: 108
  publication-title: Protein Eng. Des. Sel.
– volume: 49
  start-page: 308
  year: 2009
  end-page: 317
  publication-title: J. Chem. Inf. Model.
– volume: 8
  start-page: 98
  year: 1997
  end-page: 113
  publication-title: IEEE Trans. Neural Netw.
– volume: 28
  start-page: 2040
  year: 2014
  end-page: 2046
  publication-title: J. Comput. Chem.
– volume: 7
  start-page: 1563
  year: 2013
  end-page: 1575
  publication-title: J. Chem. Inf. Model.
– volume: 4
  start-page: 295
  year: 2001
  end-page: 310
  publication-title: Comb. Chem. High Throughput Screen.
– start-page: 3
  year: 2012
  publication-title: PLoS One
– volume: 14
  start-page: 37
  year: 2015
  end-page: 41
  publication-title: Drug Discovery Today Technol.
– volume: 2
  start-page: 67
  year: 2003
  end-page: 77
  publication-title: Appl. Bioinformatics
– volume: 63
  start-page: 423
  year: 2009
  end-page: 425
  publication-title: Neuron
– volume: 43
  start-page: 674
  year: 2003
  end-page: 679
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 7
  start-page: 293
  year: 2014
  end-page: 298
  publication-title: Expert Rev. Clin. Pharmacol.
– volume: 103
  start-page: 6
  year: 2003
  end-page: 12
  publication-title: Acta Neurol. Belg.
– start-page: 2071
  year: 2014
  end-page: 2078
  publication-title: Proc. Int. Jt. Conf. Neural Netw.
– volume: 38
  start-page: 13
  year: 1996
  end-page: 29
  publication-title: Biopolymers
– volume: 19
  start-page: 2449
  year: 2012
  end-page: 2457
  publication-title: Bioinformatics
– volume: 10
  start-page: 0137036
  year: 2015
  publication-title: PLoS One
– volume: 19
  start-page: 433
  year: 2014
  end-page: 440
  publication-title: Drug Discovery Today
– volume: 33
  start-page: 732
  year: 2014
  end-page: 741
  publication-title: Mol. Inf.
– volume: 3
  start-page: 2
  year: 2014
  publication-title: APSIPA Trans. Signal Inf. Process.
– volume: 73
  start-page: 415
  year: 2012
  end-page: 434
  publication-title: Neuron
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  publication-title: Neural Networks
– volume: 39
  start-page: 4130
  year: 2000
  end-page: 4133
  publication-title: Angew. Chem. Int. Ed.
– start-page: 11
  year: 2014
  publication-title: PLoS Comput. Biol.
– volume: 9
  start-page: 371
  year: 2005
  end-page: 383
  publication-title: Mol. Divers.
– volume: 15
  start-page: 1091
  year: 2015
  publication-title: J. Vis.
– volume: 33
  start-page: 155
  year: 2005
  end-page: 173
  publication-title: Altern. Lab. Anim.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  publication-title: Machine Learning
– volume: 8
  start-page: 1771
  year: 2002
  end-page: 1800
  publication-title: Neural Comput.
– start-page: 818
  year: 2014
  end-page: 833
  publication-title: Comput. VisionECCV 2014
– volume: 29
  start-page: 126
  year: 2013
  end-page: 134
  publication-title: Bioinformatics
– volume: 22(5)
  year: 2003
  publication-title: Machine Learning Methods in QSAR Modelling, QSAR Comb. Sci.
– volume: 5
  start-page: 149
  year: 2009
  end-page: 169
  publication-title: Expert Opin. Drug Metab. Toxicol.
– volume: 9
  start-page: 1003088
  year: 2013
  publication-title: PLoS Comput. Biol.
– volume: 11
  start-page: 428
  year: 2007
  end-page: 434
  publication-title: Trends Cogn. Sci.
– start-page: 11476
  year: 2015
  publication-title: Sci. Rep.
– volume: 13
  start-page: 15
  year: 2000
  end-page: 16
  publication-title: Neural Netw.
– volume: 65
  start-page: 987
  year: 2013
  end-page: 1000
  publication-title: Adv. Drug Deliv. Rev.
– volume: 15
  start-page: 455
  year: 1982
  end-page: 469
  publication-title: Pattern Recognit.
– volume: 3
  start-page: 112
  year: 2010
  end-page: 132
  publication-title: Int. J. Comput. Biol. Drug Des.
– start-page: 11
  year: 1998
  end-page: 2323
  publication-title: Proc. IEEE
– volume: 24
  start-page: 202
  year: 2010
  end-page: 208
  publication-title: J. Chemometr.
– volume: 17
  start-page: 1061
  year: 2004
  end-page: 1085
  publication-title: Neural Netw.
– year: 2013
– start-page: 1406
  year: 2014
  publication-title: Cornell University Library
– volume: 9
  start-page: 634
  year: 2015
  end-page: 647
  publication-title: Mol. Inf.
– year: 2009
– volume: 10
  start-page: 635
  year: 1994
  end-page: 645
  publication-title: Comput. Appl. Biosci.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 825
  year: 2015
  end-page: 826
  publication-title: Nat. Biotechnol.
– volume: 27
  start-page: 139
  year: 2004
  end-page: 168
  publication-title: Mol. Biotechnol.
– volume: 458
  start-page: 203
  year: 2008
  end-page: 230
  publication-title: Methods Mol. Biol.
– volume: 7
  start-page: 1527
  year: 2006
  end-page: 1554
  publication-title: Neural Comput.
– year: 2001
– volume: 12
  start-page: 358
  year: 2009
  end-page: 368
  publication-title: Comb. Chem. High Throughput Screen.
– volume: 16
  start-page: 411
  year: 2013
  end-page: 418
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 43
  start-page: 1882
  year: 2003
  end-page: 1889
  publication-title: J. Chem. Inf. Comput. Sci.
– start-page: 13
  end-page: 1066
  publication-title: Proceedings of the 30
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  publication-title: Neural Comput.
– volume: 28
  start-page: 631
  year: 2014
  end-page: 646
  publication-title: J. Comput. Aided Mol. Des.
– volume: 22
  start-page: 717
  year: 2000
  end-page: 727
  publication-title: J. Pharm. Biomed. Anal.
– start-page: 512
  year: 2012
  end-page: 520
  publication-title: Advances in Neural Information Processing Systems
– year: 2004
– volume: 35
  start-page: 826
  year: 1995
  end-page: 833
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 8
  start-page: 825
  year: 2015
  end-page: 826
  publication-title: Nat. Biotechnol.
– volume: 5
  start-page: 229
  year: 1994
  end-page: 239
  publication-title: IEEE Trans. Neural Netw.
– volume: 37
  start-page: 103
  year: 2013
  end-page: 119
  publication-title: Neural Netw.
– start-page: 1310
  year: 2012
  end-page: 1318
  publication-title: Proceedings of the 30th International Conference on Machine Learning
– volume: 2
  start-page: 1567
  year: 2007
  end-page: 1577
  publication-title: Expert Opin. Drug Discov.
– volume: 29
  start-page: 476
  year: 2010
  end-page: 488
  publication-title: Mol. Inf.
– start-page: 1412
  year: 2014
  publication-title: Cornell University Library
– volume: 68
  start-page: 648
  year: 2014
  end-page: 653
  publication-title: Chimia
– start-page: 1207
  year: 2012
  publication-title: Cornell University Library
– volume: 8
  start-page: 1876
  year: 2013
  end-page: 1881
  publication-title: ACS Chem. Biol.
– volume: 27
  start-page: 3036
  year: 2011
  end-page: 3043
  publication-title: Bioinformatics
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  publication-title: Nature
– volume: 9
  start-page: 147
  year: 1985
  end-page: 169
  publication-title: Cogn. Sci.
– volume: 8
  start-page: 831
  year: 2015
  end-page: 838
  publication-title: Nat. Biotechnol.
– volume: 3
  start-page: 789
  year: 2003
  end-page: 796
  publication-title: Mini Rev. Med. Chem.
– start-page: 3642
  year: 2012
  end-page: 3649
  publication-title: Comput. IEEE Conference on Visual Pattern Recognition (CVPR),
– volume: 458
  start-page: 25
  year: 2008
  end-page: 44
  publication-title: Methods Mol. Biol.
– volume: 53
  start-page: 4244
  year: 2014
  end-page: 4248
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 983
  year: 2006
  end-page: 999
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 429
  year: 2002
  end-page: 438
  publication-title: J. Mol. Graph. Model.
– year: 2003
– start-page: 8595
  year: 2013
  end-page: 8598
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  publication-title: Nature
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  publication-title: IEEE Trans. Neural Networks
– year: 2000
– volume: 7
  start-page: 125
  year: 2006
  publication-title: BMC Bioinformatics
– volume: 1
  start-page: 4
  year: 2009
  publication-title: J. Cheminform.
– start-page: 1701
  year: 2014
  end-page: 1708
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 14
  start-page: 12
  year: 2013
  publication-title: BMC Bioinformatics
– volume: 4
  start-page: 131
  year: 1992
  end-page: 139
  publication-title: Neural Comput.
– volume: 4,
  start-page: 575
  year: 2004
  end-page: 602
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 103
  year: 2015
  end-page: 112
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 20
  start-page: 333
  year: 2006
  end-page: 341
  publication-title: J. Comput. Aided Mol. Des.
– volume: 2015
  start-page: 863874
  year: 2015
  publication-title: Comput. Math. Methods Med.
– start-page: 458
  year: 2008
  end-page: 202
  publication-title: Methods Mol. Biol.
– volume: 32
  start-page: 333
  year: 2012
  end-page: 338
  publication-title: Neural Networks
– year: 2012
– volume: 55
  start-page: 2085
  year: 2015
  end-page: 2093
  publication-title: J. Chem. Inf. Model.
– volume: 25
  start-page: 1119
  year: 2007
  end-page: 1126
  publication-title: Nat. Biotechnol.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  publication-title: Science
– volume: 202
  start-page: 865
  year: 1988
  end-page: 884
  publication-title: J. Mol. Biol.
– start-page: 1097
  year: 2012
  end-page: 1105
– volume: 458
  start-page: 137
  year: 2008
  end-page: 158
  publication-title: Methods Mol. Biol.
– year: 2006
– volume: 46
  start-page: 626
  year: 2006
  end-page: 635
  publication-title: J. Chem. Inf. Model.
– volume: 70
  start-page: 175
  year: 1998
  end-page: 222
  publication-title: Prog. Biophys, Mol. Biol.
– year: 1974
– volume: 55
  start-page: 1781
  year: 2015
  end-page: 1803
  publication-title: J. Chem. Inf. Model.
– year: 1991
– volume: 63
  start-page: 135
  year: 2015
  end-page: 152
  publication-title: Artif. Intell. Med.
– volume: 8
  start-page: 1967
  year: 2012
  end-page: 2006
  publication-title: Neural Comput.
– volume: 1
  start-page: 1
  year: 1989
  end-page: 38
  publication-title: Neural Comput.
– volume: 23
  start-page: 3066
  year: 2012
  end-page: 3072
  publication-title: Bioinformatics
– year: 1999
– volume-title: Adaptive Systems in Drug Design
  year: 2001
  ident: e_1_2_9_16_2
– ident: e_1_2_9_71_2
– ident: e_1_2_9_28_2
  doi: 10.1561/2200000006
– ident: e_1_2_9_107_2
  doi: 10.1039/c1an15369b
– ident: e_1_2_9_182_2
  doi: 10.1093/bioinformatics/btu277
– ident: e_1_2_9_85_2
  doi: 10.1371/journal.pcbi.1003088
– ident: e_1_2_9_50_2
  doi: 10.1109/TCBB.2014.2343960
– volume: 458
  start-page: 137
  year: 2008
  ident: e_1_2_9_76_2
  publication-title: Methods Mol. Biol.
– volume-title: Neural Networks in Chemistry and Drug Design
  year: 1999
  ident: e_1_2_9_11_2
– ident: e_1_2_9_12_2
  doi: 10.1016/S0731-7085(99)00272-1
– ident: e_1_2_9_53_2
  doi: 10.1109/72.279181
– ident: e_1_2_9_72_2
  doi: 10.1021/ci0341161
– ident: e_1_2_9_93_2
  doi: 10.1016/j.neunet.2012.02.023
– ident: e_1_2_9_103_2
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 512
  year: 2012
  ident: e_1_2_9_197_2
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_151_2
  doi: 10.1109/72.554195
– volume-title: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences
  year: 1974
  ident: e_1_2_9_46_2
– ident: e_1_2_9_52_2
– start-page: 2071
  year: 2014
  ident: e_1_2_9_181_2
  publication-title: Proc. Int. Jt. Conf. Neural Netw.
– ident: e_1_2_9_77_2
  doi: 10.1007/s11030-005-6293-4
– ident: e_1_2_9_102_2
  doi: 10.1162/neco.1992.4.1.131
– ident: e_1_2_9_112_2
  doi: 10.1016/j.neunet.2015.01.009
– ident: e_1_2_9_83_2
– ident: e_1_2_9_164_2
  doi: 10.1517/17460441.2.12.1567
– year: 2015
  ident: e_1_2_9_70_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_9_40_2
  doi: 10.1016/j.ddtec.2015.06.001
– ident: e_1_2_9_61_2
  doi: 10.1016/S0731-7085(99)00272-1
– ident: e_1_2_9_127_2
  doi: 10.1002/anie.201310864
– ident: e_1_2_9_37_2
  doi: 10.1016/j.drudis.2013.10.012
– ident: e_1_2_9_149_2
– ident: e_1_2_9_42_2
– volume-title: Diploma Thesis, Tech. Univ. München
  year: 1991
  ident: e_1_2_9_100_2
– ident: e_1_2_9_143_2
– start-page: 1412
  year: 2014
  ident: e_1_2_9_88_2
  publication-title: Cornell University Library
– ident: e_1_2_9_191_2
– volume: 458
  start-page: 203
  year: 2008
  ident: e_1_2_9_49_2
  publication-title: Methods Mol. Biol.
– ident: e_1_2_9_33_2
– ident: e_1_2_9_117_2
  doi: 10.1016/j.neunet.2013.01.015
– ident: e_1_2_9_13_2
  doi: 10.1021/ci500747n
– ident: e_1_2_9_104_2
  doi: 10.1007/978-3-642-35289-8
– ident: e_1_2_9_86_2
  doi: 10.1021/cb400252t
– ident: e_1_2_9_124_2
– ident: e_1_2_9_58_2
– volume: 2
  start-page: 67
  year: 2003
  ident: e_1_2_9_73_2
  publication-title: Appl. Bioinformatics
– ident: e_1_2_9_114_2
  doi: 10.1002/minf.201000061
– volume: 10
  start-page: 635
  year: 1994
  ident: e_1_2_9_59_2
  publication-title: Comput. Appl. Biosci.
– ident: e_1_2_9_121_2
– ident: e_1_2_9_4_2
  doi: 10.1002/minf.201400024
– ident: e_1_2_9_186_2
  doi: 10.1021/ci400187y
– volume: 4
  start-page: 575
  year: 2004
  ident: e_1_2_9_189_2
  publication-title: J. Mach. Learn. Res.
– volume-title: Deep Learning and Representation Learning Workshop, NIPS
  year: 2014
  ident: e_1_2_9_176_2
– start-page: 3
  year: 2012
  ident: e_1_2_9_174_2
  publication-title: PLoS One
– ident: e_1_2_9_148_2
  doi: 10.1371/journal.pcbi.1003963
– ident: e_1_2_9_119_2
  doi: 10.1109/TPAMI.2013.50
– ident: e_1_2_9_192_2
  doi: 10.1038/nbt.3313
– ident: e_1_2_9_8_2
– ident: e_1_2_9_56_2
  doi: 10.1016/j.tics.2007.09.004
– ident: e_1_2_9_170_2
  doi: 10.1021/ci00027a006
– ident: e_1_2_9_29_2
– ident: e_1_2_9_44_2
  doi: 10.1016/j.neunet.2012.09.016
– start-page: 1988
  year: 2014
  ident: e_1_2_9_94_2
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_67_2
  doi: 10.2174/138620709788167962
– ident: e_1_2_9_139_2
  doi: 10.1162/089976602760128018
– ident: e_1_2_9_113_2
  doi: 10.1504/IJCBDD.2010.035238
– ident: e_1_2_9_84_2
  doi: 10.1093/protein/gzl054
– start-page: 1097
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: e_1_2_9_152_2
– ident: e_1_2_9_95_2
– ident: e_1_2_9_199_2
– ident: e_1_2_9_68_2
  doi: 10.1007/s10822-014-9748-9
– ident: e_1_2_9_60_2
  doi: 10.1016/S0893-6080(99)00094-5
– ident: e_1_2_9_65_2
– ident: e_1_2_9_153_2
  doi: 10.1038/nature14236
– start-page: 13
  ident: e_1_2_9_97_2
  publication-title: Proceedings of the 30
– ident: e_1_2_9_51_2
– ident: e_1_2_9_169_2
  doi: 10.1021/ci0202741
– ident: e_1_2_9_18_2
  doi: 10.1111/cogs.12049
– ident: e_1_2_9_134_2
  doi: 10.1186/1758-2946-1-4
– ident: e_1_2_9_106_2
  doi: 10.1186/1471-2105-7-125
– volume: 103
  start-page: 6
  year: 2003
  ident: e_1_2_9_144_2
  publication-title: Acta Neurol. Belg.
– start-page: 3642
  year: 2012
  ident: e_1_2_9_96_2
  publication-title: Comput. IEEE Conference on Visual Pattern Recognition (CVPR),
– ident: e_1_2_9_196_2
  doi: 10.1002/minf.201400122
– ident: e_1_2_9_120_2
– ident: e_1_2_9_136_2
  doi: 10.1207/s15516709cog0901_7
– ident: e_1_2_9_7_2
  doi: 10.1021/acs.jcim.5b00198
– ident: e_1_2_9_39_2
  doi: 10.1002/minf.201400067
– ident: e_1_2_9_47_2
  doi: 10.1038/323533a0
– ident: e_1_2_9_10_2
  doi: 10.1016/S0079-6107(98)00026-1
– ident: e_1_2_9_57_2
  doi: 10.1162/neco.2006.18.7.1527
– volume-title: Pattern Classification
  year: 2000
  ident: e_1_2_9_99_2
– ident: e_1_2_9_128_2
  doi: 10.1021/ci050367t
– ident: e_1_2_9_184_2
  doi: 10.1186/1471-2105-14-S14-S12
– ident: e_1_2_9_36_2
  doi: 10.1586/17512433.2014.905201
– ident: e_1_2_9_135_2
– ident: e_1_2_9_131_2
  doi: 10.2174/1386207013331129
– start-page: 11
  year: 1998
  ident: e_1_2_9_154_2
  publication-title: Proc. IEEE
– ident: e_1_2_9_179_2
  doi: 10.1002/jcc.23718
– ident: e_1_2_9_75_2
  doi: 10.1021/ci050079x
– ident: e_1_2_9_150_2
  doi: 10.1162/neco.1989.1.1.1
– start-page: 1207
  year: 2012
  ident: e_1_2_9_87_2
  publication-title: Cornell University Library
– ident: e_1_2_9_31_2
  doi: 10.1038/nature14539
– ident: e_1_2_9_187_2
  doi: 10.1021/acs.jcim.5b00238
– volume: 458
  start-page: 25
  year: 2008
  ident: e_1_2_9_111_2
  publication-title: Methods Mol. Biol.
– ident: e_1_2_9_2_2
  doi: 10.1002/9783527628766
– ident: e_1_2_9_24_2
– volume: 16
  start-page: 411
  year: 2013
  ident: e_1_2_9_35_2
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– ident: e_1_2_9_175_2
– ident: e_1_2_9_130_2
– ident: e_1_2_9_27_2
  doi: 10.2174/1389557033487656
– ident: e_1_2_9_147_2
  doi: 10.1016/j.neuron.2012.01.010
– ident: e_1_2_9_41_2
  doi: 10.1038/nbt.3313
– ident: e_1_2_9_183_2
  doi: 10.1093/bioinformatics/bts598
– ident: e_1_2_9_3_2
  doi: 10.1002/minf.201400066
– ident: e_1_2_9_177_2
– ident: e_1_2_9_194_2
  doi: 10.1021/acscentsci.5b00131
– ident: e_1_2_9_115_2
– start-page: 8595
  year: 2013
  ident: e_1_2_9_91_2
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 7
  start-page: 983
  year: 2006
  ident: e_1_2_9_64_2
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_9_32_2
  doi: 10.1016/j.conb.2015.07.006
– start-page: 818
  year: 2014
  ident: e_1_2_9_155_2
  publication-title: Comput. VisionECCV 2014
  doi: 10.1007/978-3-319-10590-1_53
– ident: e_1_2_9_1_2
– ident: e_1_2_9_19_2
– ident: e_1_2_9_163_2
– ident: e_1_2_9_172_2
  doi: 10.1021/ci100253r
– ident: e_1_2_9_190_2
– ident: e_1_2_9_116_2
  doi: 10.1109/TSMCB.2008.2008724
– ident: e_1_2_9_66_2
  doi: 10.1517/17425250902753261
– ident: e_1_2_9_125_2
  doi: 10.1021/ci800344p
– ident: e_1_2_9_180_2
  doi: 10.1038/srep11476
– ident: e_1_2_9_159_2
  doi: 10.7551/mitpress/5236.001.0001
– ident: e_1_2_9_133_2
  doi: 10.1007/s10822-006-9063-1
– ident: e_1_2_9_108_2
  doi: 10.1007/s00422-008-0257-6
– volume-title: A Field Guide to Dynamical Recurrent Neural Networks
  year: 2001
  ident: e_1_2_9_54_2
– ident: e_1_2_9_146_2
– start-page: 458
  year: 2008
  ident: e_1_2_9_165_2
  publication-title: Methods Mol. Biol.
– ident: e_1_2_9_48_2
  doi: 10.1016/0022-2836(88)90564-5
– ident: e_1_2_9_69_2
  doi: 10.1016/j.artmed.2015.02.002
– ident: e_1_2_9_126_2
  doi: 10.1093/bioinformatics/btr500
– ident: e_1_2_9_63_2
  doi: 10.1023/A:1010933404324
– ident: e_1_2_9_161_2
  doi: 10.1385/MB:27:2:139
– ident: e_1_2_9_30_2
  doi: 10.1126/science.1127647
– ident: e_1_2_9_55_2
– volume-title: Molecular Design ‐ Concepts and Applications
  year: 2008
  ident: e_1_2_9_25_2
– volume-title: Scientists See Promise in Deep‐Learning Programs. The New York Times
  year: 2012
  ident: e_1_2_9_14_2
– ident: e_1_2_9_74_2
– ident: e_1_2_9_105_2
– ident: e_1_2_9_6_2
  doi: 10.1016/j.drudis.2014.10.012
– ident: e_1_2_9_141_2
  doi: 10.1017/atsip.2013.9
– ident: e_1_2_9_9_2
  publication-title: Neural Networks in QSAR and Drug Design
– ident: e_1_2_9_167_2
  doi: 10.1007/s10822-011-9499-9
– ident: e_1_2_9_168_2
– ident: e_1_2_9_15_2
– volume: 458
  start-page: 137
  year: 2008
  ident: e_1_2_9_110_2
  publication-title: Methods Mol. Biol.
– ident: e_1_2_9_137_2
– ident: e_1_2_9_45_2
– start-page: 1310
  year: 2012
  ident: e_1_2_9_101_2
  publication-title: Proceedings of the 30th International Conference on Machine Learning
– volume-title: Statistical Modelling of Molecular Descriptors in QSAR/QSPR
  year: 2011
  ident: e_1_2_9_23_2
– ident: e_1_2_9_185_2
– ident: e_1_2_9_17_2
  doi: 10.1016/j.jmgm.2011.12.006
– ident: e_1_2_9_79_2
  doi: 10.1109/72.279187
– ident: e_1_2_9_62_2
– ident: e_1_2_9_78_2
– ident: e_1_2_9_162_2
  doi: 10.1177/026119290503300209
– start-page: 1701
  year: 2014
  ident: e_1_2_9_92_2
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– ident: e_1_2_9_118_2
  doi: 10.1002/(SICI)1097-0282(199601)38:1<13::AID-BIP2>3.0.CO;2-Z
– ident: e_1_2_9_160_2
  doi: 10.1155/2015/863874
– ident: e_1_2_9_80_2
  doi: 10.1016/j.neunet.2004.06.009
– start-page: 40
  ident: e_1_2_9_89_2
  publication-title: Proc. 26
– ident: e_1_2_9_166_2
  doi: 10.1002/minf.201000061
– ident: e_1_2_9_132_2
  doi: 10.1016/S1093-3263(01)00144-9
– ident: e_1_2_9_20_2
  doi: 10.1002/3527601643
– ident: e_1_2_9_26_2
  doi: 10.1002/9783527677016
– ident: e_1_2_9_188_2
  doi: 10.1093/bioinformatics/15.11.937
– ident: e_1_2_9_195_2
– ident: e_1_2_9_5_2
– ident: e_1_2_9_145_2
  doi: 10.1167/15.12.1091
– ident: e_1_2_9_122_2
  doi: 10.1038/nbt1338
– ident: e_1_2_9_109_2
– ident: e_1_2_9_81_2
  doi: 10.1016/j.neuron.2009.08.003
– ident: e_1_2_9_193_2
  doi: 10.1038/nbt.3300
– volume: 22
  year: 2003
  ident: e_1_2_9_21_2
  publication-title: Machine Learning Methods in QSAR Modelling, QSAR Comb. Sci.
– ident: e_1_2_9_171_2
  doi: 10.1002/cem.1296
– ident: e_1_2_9_38_2
  doi: 10.1016/j.drudis.2013.12.004
– ident: e_1_2_9_123_2
  doi: 10.2533/chimia.2014.648
– ident: e_1_2_9_90_2
  doi: 10.1016/j.neunet.2014.09.003
– ident: e_1_2_9_142_2
  doi: 10.1093/bioinformatics/btt234
– ident: e_1_2_9_98_2
– ident: e_1_2_9_178_2
  doi: 10.1093/bioinformatics/bts475
– ident: e_1_2_9_138_2
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_9_43_2
  doi: 10.1016/0031-3203(82)90024-3
– volume-title: Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery
  year: 2004
  ident: e_1_2_9_22_2
  doi: 10.1385/1592598021
– ident: e_1_2_9_157_2
– start-page: 11
  year: 2014
  ident: e_1_2_9_198_2
  publication-title: PLoS Comput. Biol.
– ident: e_1_2_9_140_2
  doi: 10.1162/NECO_a_00311
– ident: e_1_2_9_158_2
  doi: 10.1371/journal.pone.0137036
– ident: e_1_2_9_129_2
  doi: 10.1002/1521-3773(20001117)39:22<4130::AID-ANIE4130>3.0.CO;2-E
– ident: e_1_2_9_34_2
  doi: 10.1016/j.addr.2013.04.008
– ident: e_1_2_9_156_2
  doi: 10.1109/ICCV.2009.5459469
– start-page: 1406
  year: 2014
  ident: e_1_2_9_173_2
  publication-title: Cornell University Library
– ident: e_1_2_9_82_2
  doi: 10.1007/s00894-010-0854-x
SSID ssj0000326789
Score 2.6024177
SecondaryResourceType review_article
Snippet Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3
SubjectTerms Artificial Intelligence
bioinformatics
cheminformatics
Computational Biology - methods
drug design
Drug Discovery - methods
Humans
Informatics
Machine Learning
neural network
Neural networks
Neural Networks (Computer)
Pharmaceutical industry
Proteomics - methods
virtual screening
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-h8QA88P0RGGAkVHhYtvgjtvOIKKEgtRpoE3uz7MSZppWsahtB-euxk9SlCDQJ3mzlkti-u_hnx_c7gJeaVxYzYuLMlCx2BRsbX8WGSs5ZRUXmg5PHEz46Zh9P0pNfovg7foiw4eY9o_1eewfXZnGwIQ396jTgj2alCe6ifTHl7ZrqMwmbLIkDJ6JNg-dZ4WOPvtfEjQk52H7C1sR01Y_x9z-hzhtwralnevVNT6fbgLadkfJboNd96Q6inO83S7Nf_PiN5vF_OnsbbvZwFb3p7OsOXLH1XRgcdnzXqz10tAnfWuyhATrcMGGv7sHzobUz1FO4nqKzGg3nzSkani0Kf3J0dR-O83dHb0dxn5EhLlKaybhMMukBYqIlKRy4ISWVhleilIkmWmAtM665zWQqNcG2EJaawlYc48pnWaf0AezUF7V9BCgxwnCqHR7JJEsLbTgTlNCyrKRklSERxGt1qKKnK_dZM6aqI1omyo-JCmMSwasgP-uIOv4qOWi1G8T0_NwfbxOp-jJ5rz7xfMyH-UjxCHbX6le9Zy-Ug1s-a1cmcAQvwmXnk_5Hi67tReNkpF8YipQkETzszCa8jAjmEDlzrXgd7OjSBpPWNi4RU-MPkzzUHv_LTU_guiv3W0y7sLOcN_apA11L86x1rJ_mTB2D
  priority: 102
  providerName: Wiley-Blackwell
Title Deep Learning in Drug Discovery
URI https://api.istex.fr/ark:/67375/WNG-Q6FM6DFH-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fminf.201501008
https://www.ncbi.nlm.nih.gov/pubmed/27491648
https://www.proquest.com/docview/1756026971
https://www.proquest.com/docview/1809607520
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/minf.201501008
UnpaywallVersion publishedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1868-1751
  databaseCode: DR2
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  eissn: 1868-1751
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000326789
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6a2gfggfslMIaRUOFhGYmd2M7jRAgFqVVBqxhPlp0407SSVW0jKL8eO04yjYuGxJutHDm-nGN_xz7-DPBC0lKHEVZ-oorINwntK5sNFeGURiVhib2cPJnS8Tz6cBwf70Da3YVx_BD9hpu1jGa-tga-LEo3z7en-_j1VzMKNjwrDsLmxu-QxgaRD2A4n84Ov1hfi1PjJLVx9i4dhx13428FXFqbhrabv_8JeN6Aa3W1lNtvcrG4jGmbRSm7BbprjotFOTuoN-og__EL0-P_tvc23GxRKzp0anYHdnR1F0YzR3u93UdHF7e41vtohGYXhNjbe_As1XqJWibXE3RaoXRVn6D0dJ3bANLtfZhnb4_ejP32YQY_j0nC_SJIuMWJgeQ4NxgHF4QrWrKCBxJLFkqeUEl1wmMucahzponKdUnDsLSPrRPyAAbVeaUfAQoUU5RIA0sSHsW5VDRiBJOiKDmPSoU98LshEXnLWm4fz1gIx7eMhe0T0feJBy97-aXj6_ir5KgZ4V5Mrs5slBuLxefpO_GRZhOaZmNBPdjtVEC0Br4WRo_s410JCz143n82pmnPW2Slz2sjw61_yGIcePDQqU7_M8wiA8wjU4tXvS5dWWHc6McVYmLyfpr1ucf_Xv4TuG7S7f7SLgw2q1o_NYhro_aMr_EJ77Vm9ROIEiE9
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9lA48H4ECg0SWjg0bWI7tnNELGEL3VVBW9GbZSdOVXVJV_sQLL8eT16rRaBKcIuTSWJ7ZuLPzvgbgFeaFzZixASJyVngDmxgsBgZKjlnBRUJbk4ejvjglH08i9toQtwLU_NDdAtu6BnV9xodHBekD9esod-cCjA2Kw6jarvvNuNusoK46AvplllCB09ElQgPeeEDxN8tdWNIDjcfsTE0bWMv__gT7rwFO8tyqlff9WSyCWmrMSm9A6ZtTR2KcnmwXJiD7OdvRI__1dy7cLtBrP7b2sTuwQ1b3ofeSU15vdr3x-sdXPN9v-efrMmwVw9gr2_t1G9YXM_9i9Lvz5bnfv9inmHw6OohnKbvx-8GQZOUIchimsggDxOJGDHUkmQO35CcSsMLkctQEy0iLROuuU1kLDWJbCYsNZkteBQVmGid0kewVV6V9gn4oRGGU-0gSSJZnGnDmaCE5nkhJSsM8SBo9aGyhrEcE2dMVM21TBT2ier6xIPXnfy05ur4q2SvUm8npmeXGOEmYvV19EF95umQ99OB4h7stvpXjXPPlUNcmLgrEZEHL7vLzi3xX4su7dXSyUicG4qYhB48ru2mexkRzIFy5mrxpjOkaytMKuO4RkwNj0ZpV3r6Lzftwc5gPDxWx0ejT8_gpjvfrDjtwtZitrTPHQZbmBeVl_0C2fYhpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQJvHxML4hMFiQUOFh2RLbsZ1HRAgd0KqgTfBm2YkzTeuyqm0E5a_Hlw9XRaBJ8JaPS2L77uJfnLvfIfRSsdJEFOsg0QUN7IYJNOxGmgjGaEl4AsnJozEbntAP3-I-mhByYVp-CLfgBp7RvK_Bwc2sKA_XrKEXVgUQmxWHUZPuu03jREBUX_oFu2WW0MIT3hTCA174APB3T90Y4sPNW2xMTdswyj_-hDtvoRt1NVOr72o63YS0zZyU3Ua6700binJ-UC_1Qf7zN6LH_-ruHbTTIVb_TWtid9E1U91Dg0lLeb3a94_XGVyLfX_gT9Zk2Kv7aC81ZuZ3LK6n_lnlp_P61E_PFjkEj64eoJPs3fHbYdAVZQjymCQiKMJEAEYMlcC5xTe4IEKzkhciVFjxSImEKWasJoTCkcm5ITo3JYuiEgqtE_IQbVWXlXmM_FBzzYiykCQRNM6VZpQTTIqiFIKWGnso6PUh846xHApnTGXLtYwljIl0Y-KhV05-1nJ1_FVy0KjXian5OUS48Vh-Hb-Xn1k2Ymk2lMxDu73-ZefcC2kRFxTuSnjkoRfutHVL-NeiKnNZWxkB34Y8xqGHHrV24x6GObWgnNpWvHaGdGWDcWMcV4jJ0dE4c3tP_uWiPXR9kmby09H441N00x7uFpx20dZyXptnFoIt9fPGyX4BUqchKA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6a2gfggfslY0CQUOFhGYnt2M7jRAgFqVWRVjGeLDtxpmldVrWNoPx67DjJNC4aEm-2cuT4co792T7nM8ArSUsdEaSCRBUkMAkdKJuNFOaUkhKzxAYnT6Z0PCefjuPjHUi7WBjHD9EfuFnLaOZra-DLonTzfHu7j96em1Gw7llxGDURv0MaG0Q-gOF8Ojv8avdanJpNUutn79Jx1HE3_lbAlbVpaLv5-5-A5y24UVdLuf0mF4urmLZZlLI7oLvmOF-Us4N6ow7yH78wPf5ve-_C7Ra1-odOze7Bjq7uw2jmaK-3-_7RZRTXet8f-bNLQuztA3iRar30WybXE_-08tNVfeKnp-vcOpBuH8I8e3_0bhy0DzMEeYwTHhRhwi1ODCVHucE4qMBc0ZIVPJRIskjyhEqqEx5ziSKdM41VrksaRaV9bB3jRzCoLir9BPxQMUWxNLAk4STOpaKEYYSLouSclAp5EHRDIvKWtdw-nrEQjm8ZCdsnou8TD1738kvH1_FXyVEzwr2YXJ1ZLzcWiy_TD-IzzSY0zcaCerDXqYBoDXwtjB7Zx7sSFnnwsv9sTNPet8hKX9RGhtv9IYtR6MFjpzr9zxAjBpgTU4s3vS5dW2HU6Mc1YmLycZr1ud1_L_8p3DTp9nxpDwabVa2fGcS1Uc9bg_oJxoEgVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+in+Drug+Discovery&rft.jtitle=Molecular+informatics&rft.au=Gawehn%2C+Erik&rft.au=Hiss%2C+Jan+A&rft.au=Schneider%2C+Gisbert&rft.date=2016-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1868-1743&rft.eissn=1868-1751&rft.volume=35&rft.issue=1&rft.spage=3&rft_id=info:doi/10.1002%2Fminf.201501008&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3919165191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-1743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-1743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-1743&client=summon