State-of-the-Art in GPU-Based Large-Scale Volume Visualization
This survey gives an overview of the current state of the art in GPU techniques for interactive large‐scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga‐, tera‐ and petabytes of volume data can be enabled...
Saved in:
| Published in | Computer graphics forum Vol. 34; no. 8; pp. 13 - 37 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Blackwell Publishing Ltd
01.12.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-7055 1467-8659 1467-8659 |
| DOI | 10.1111/cgf.12605 |
Cover
| Abstract | This survey gives an overview of the current state of the art in GPU techniques for interactive large‐scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga‐, tera‐ and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out‐of‐core methods and data streaming, a major enabler for interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen, i.e. ‘output‐sensitive’ algorithms and system designs. This leads to recent output‐sensitive approaches that are ‘ray‐guided’, ‘visualization‐driven’ or ‘display‐aware’. In this survey, we focus on these characteristics and propose a new categorization of GPU‐based large‐scale volume visualization techniques based on the notions of actual output‐resolution visibility and the current working set of volume bricks—the current subset of data that is minimally required to produce an output image of the desired display resolution. Furthermore, we discuss the differences and similarities of different rendering and data traversal strategies in volume rendering by putting them into a common context—the notion of address translation. For our purposes here, we view parallel (distributed) visualization using clusters as an orthogonal set of techniques that we do not discuss in detail but that can be used in conjunction with what we present in this survey.
This survey gives an overview of the current state of the art in GPU techniques for interactive large‐scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga‐, tera‐ and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out‐of‐core methods and data streaming, a major enabler for interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen, i.e. ‘output‐sensitive’ algorithms and system designs. This leads to recent output‐sensitive approaches that are ‘ray‐guided’, ‘visualization‐driven or ‘display‐aware’. In this survey, we focus on these characteristics and propose a new categorization of GPU‐based large‐scale volume visualization techniques based on the notions of actual output‐resolution visibility and the current working set of volume bricks—the current subset of data that is minimally required to produce an output image of the desired display resolution. |
|---|---|
| AbstractList | This survey gives an overview of the current state of the art in GPU techniques for interactive large‐scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga‐, tera‐ and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out‐of‐core methods and data streaming, a major enabler for interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen, i.e. ‘output‐sensitive’ algorithms and system designs. This leads to recent output‐sensitive approaches that are ‘ray‐guided’, ‘visualization‐driven’ or ‘display‐aware’. In this survey, we focus on these characteristics and propose a new categorization of GPU‐based large‐scale volume visualization techniques based on the notions of actual output‐resolution visibility and the current working set of volume bricks—the current subset of data that is minimally required to produce an output image of the desired display resolution. Furthermore, we discuss the differences and similarities of different rendering and data traversal strategies in volume rendering by putting them into a common context—the notion of address translation. For our purposes here, we view parallel (distributed) visualization using clusters as an orthogonal set of techniques that we do not discuss in detail but that can be used in conjunction with what we present in this survey.
This survey gives an overview of the current state of the art in GPU techniques for interactive large‐scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga‐, tera‐ and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out‐of‐core methods and data streaming, a major enabler for interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen, i.e. ‘output‐sensitive’ algorithms and system designs. This leads to recent output‐sensitive approaches that are ‘ray‐guided’, ‘visualization‐driven or ‘display‐aware’. In this survey, we focus on these characteristics and propose a new categorization of GPU‐based large‐scale volume visualization techniques based on the notions of actual output‐resolution visibility and the current working set of volume bricks—the current subset of data that is minimally required to produce an output image of the desired display resolution. This survey gives an overview of the current state of the art in GPU techniques for interactive large‐scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga‐, tera‐ and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out‐of‐core methods and data streaming, a major enabler for interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen, i.e. ‘output‐sensitive’ algorithms and system designs. This leads to recent output‐sensitive approaches that are ‘ray‐guided’, ‘visualization‐driven’ or ‘display‐aware’. In this survey, we focus on these characteristics and propose a new categorization of GPU‐based large‐scale volume visualization techniques based on the notions of actual output‐resolution visibility and the current working set of volume bricks—the current subset of data that is minimally required to produce an output image of the desired display resolution. Furthermore, we discuss the differences and similarities of different rendering and data traversal strategies in volume rendering by putting them into a common context—the notion of address translation. For our purposes here, we view parallel (distributed) visualization using clusters as an orthogonal set of techniques that we do not discuss in detail but that can be used in conjunction with what we present in this survey. This survey gives an overview of the current state of the art in GPU techniques for interactive large-scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga-, tera- and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out-of-core methods and data streaming, a major enabler for interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen, i.e. 'output-sensitive' algorithms and system designs. This leads to recent output-sensitive approaches that are 'ray-guided', 'visualization-driven' or 'display-aware'. In this survey, we focus on these characteristics and propose a new categorization of GPU-based large-scale volume visualization techniques based on the notions of actual output-resolution visibility and the current working set of volume bricks--the current subset of data that is minimally required to produce an output image of the desired display resolution. Furthermore, we discuss the differences and similarities of different rendering and data traversal strategies in volume rendering by putting them into a common context--the notion of address translation. For our purposes here, we view parallel (distributed) visualization using clusters as an orthogonal set of techniques that we do not discuss in detail but that can be used in conjunction with what we present in this survey. This survey gives an overview of the current state of the art in GPU techniques for interactive large-scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga-, tera- and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out-of-core methods and data streaming, a major enabler for interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen, i.e. 'output-sensitive' algorithms and system designs. This leads to recent output-sensitive approaches that are 'ray-guided', 'visualization-driven' or 'display-aware'. In this survey, we focus on these characteristics and propose a new categorization of GPU-based large-scale volume visualization techniques based on the notions of actual output-resolution visibility and the current working set of volume bricks-the current subset of data that is minimally required to produce an output image of the desired display resolution. Furthermore, we discuss the differences and similarities of different rendering and data traversal strategies in volume rendering by putting them into a common context-the notion of address translation. For our purposes here, we view parallel (distributed) visualization using clusters as an orthogonal set of techniques that we do not discuss in detail but that can be used in conjunction with what we present in this survey. This survey gives an overview of the current state of the art in GPU techniques for interactive large-scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga-, tera- and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out-of-core methods and data streaming, a major enabler for interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen, i.e. 'output-sensitive' algorithms and system designs. This leads to recent output-sensitive approaches that are 'ray-guided', 'visualization-driven or 'display-aware'. In this survey, we focus on these characteristics and propose a new categorization of GPU-based large-scale volume visualization techniques based on the notions of actual output-resolution visibility and the current working set of volume bricks-the current subset of data that is minimally required to produce an output image of the desired display resolution. |
| Author | Beyer, Johanna Pfister, Hanspeter Hadwiger, Markus |
| Author_xml | – sequence: 1 givenname: Johanna surname: Beyer fullname: Beyer, Johanna email: jbeyer@seas.harvard.edu organization: Harvard University, MA, Cambridge, USA – sequence: 2 givenname: Markus surname: Hadwiger fullname: Hadwiger, Markus email: markus.hadwiger@kaust.edu.sa organization: King Abdullah University of Science and Technology, Thuwal, Saudi Arabia – sequence: 3 givenname: Hanspeter surname: Pfister fullname: Pfister, Hanspeter email: pfister@seas.harvard.edu organization: Harvard University, MA, Cambridge, USA |
| BookMark | eNp9j01LAzEURYMoWKsL_0HBjQqxyWQymdkIWuwoFD_wEzchExONpjM1yaD11xtbdSHq29y3OPfxzgpYrJtaAbCO0Q6O05f3egcnGaILoIPTjME8o8Ui6CAcd4YoXQYr3j8ihFKW0Q7YPQ8iKNhoGB4U3HOhZ-peeXoJ94VXd72RcPcKnkthVe-qse04hvGtsOZNBNPUq2BJC-vV2md2wcXw4GJwCEcn5dFgbwQlJQWFaUHSSqaU6kRXStJKSELSpKIFzdNCS4I0S7G-oyLHqCqornJZJTkmKtMSEdIF2_OzbT0R0xdhLZ84MxZuyjHiH-I8ivOZeIQ35_DENc-t8oGPjZfKWlGrpvUc51E-Z3mRRHTjB_rYtK6OJhwzynBCMEaR6s8p6RrvndJcmjDTD04Y--sLWz8a_737ef3FWDX9G-SDcvjVgPOG8UG9fjeEe-IZI4zy6-OSo9tieHPGSp6Qd9u1oLY |
| CitedBy_id | crossref_primary_10_1016_j_visinf_2017_09_001 crossref_primary_10_1145_3476576_3476710 crossref_primary_10_1109_TVCG_2023_3327193 crossref_primary_10_1109_TVCG_2022_3165392 crossref_primary_10_1145_3622934 crossref_primary_10_1109_TVCG_2020_2981565 crossref_primary_10_1111_cgf_14574 crossref_primary_10_1016_j_jmb_2019_01_033 crossref_primary_10_1109_TVCG_2018_2833113 crossref_primary_10_1109_TVCG_2024_3420225 crossref_primary_10_1093_comjnl_bxac179 crossref_primary_10_1109_TVCG_2019_2912752 crossref_primary_10_1111_cgf_14857 crossref_primary_10_1145_3675389 crossref_primary_10_1016_j_cag_2020_03_002 crossref_primary_10_1109_TVCG_2018_2864816 crossref_primary_10_1109_TVCG_2019_2956697 crossref_primary_10_1109_TVCG_2020_3030407 crossref_primary_10_54097_fcis_v1i2_1722 crossref_primary_10_1109_TVCG_2018_2864853 crossref_primary_10_1109_TVCG_2023_3326573 crossref_primary_10_1016_j_chembiol_2015_11_009 crossref_primary_10_1016_j_parco_2021_102809 crossref_primary_10_1111_cgf_15198 crossref_primary_10_1007_s10509_020_03831_4 crossref_primary_10_1016_j_cag_2021_10_010 crossref_primary_10_1109_TVCG_2019_2898435 crossref_primary_10_1111_cgf_13214 crossref_primary_10_1109_TVCG_2023_3322416 crossref_primary_10_1587_transinf_2016EDP7178 crossref_primary_10_1109_TVCG_2019_2920639 crossref_primary_10_1016_j_culher_2019_07_007 crossref_primary_10_1371_journal_pone_0255030 crossref_primary_10_1109_TVCG_2018_2864506 crossref_primary_10_1109_TVCG_2022_3165346 crossref_primary_10_1016_j_envsoft_2020_104908 crossref_primary_10_1109_TVCG_2017_2744238 crossref_primary_10_1111_cgf_14670 crossref_primary_10_1007_s41095_019_0155_y crossref_primary_10_1109_TVCG_2020_3030381 crossref_primary_10_1162_artl_a_00351 crossref_primary_10_1111_cgf_13700 crossref_primary_10_1111_cgf_13306 crossref_primary_10_1631_FITEE_2000214 crossref_primary_10_1109_TMM_2017_2757759 crossref_primary_10_1142_S1793545824500135 crossref_primary_10_1111_cgf_14121 crossref_primary_10_1111_cgf_13671 crossref_primary_10_3390_informatics7040037 crossref_primary_10_1109_TVCG_2020_3030470 crossref_primary_10_1111_cgf_13558 crossref_primary_10_1111_cgf_13756 crossref_primary_10_1080_17538947_2019_1701110 crossref_primary_10_1016_j_proeng_2016_10_033 crossref_primary_10_5194_gmd_17_8909_2024 crossref_primary_10_1109_TVCG_2018_2864847 crossref_primary_10_1145_2950040 crossref_primary_10_1145_3450626_3459815 |
| Cites_doi | 10.1016/j.cag.2003.10.018 10.1145/258734.258781 10.1109/TVCG.2010.168 10.1080/10867651.2000.10487517 10.1109/TVCG.2013.142 10.1145/2487228.2487235 10.1109/MCG.1986.276672 10.1109/MCG.2013.55 10.1111/cgf.12280 10.1109/38.291532 10.1145/2508363.2508374 10.1145/1654059.1654064 10.1145/1597990.1598068 10.1145/1507149.1507152 10.1109/38.291531 10.1145/263407.263545 10.1109/TVCG.2007.70560 10.1201/b22086 10.1038/nature09802 10.1145/2037826.2037901 10.1109/TVCG.2009.178 10.1111/j.1467-8659.2009.01704.x 10.1109/VISUAL.1995.485139 10.1145/1073204.1073277 10.1109/TVCG.2010.116 10.1109/ULTRAVIS.2008.5154060 10.1145/2343483.2343488 10.1145/280814.280860 10.1145/166117.166147 10.1111/j.1467-8659.2009.01466.x 10.1109/TVCG.2012.240 10.1109/38.291528 10.1201/b10648-50 10.1109/MCG.2010.55 10.1109/VISUAL.1998.745713 10.1145/102377.112141 10.1038/503147a 10.1007/3-540-44935-3_11 10.1109/TVCG.2012.133 10.1109/52.329404 10.1109/ULTRAVIS.2008.5154061 10.1145/1618452.1618498 10.1038/nmeth.2480 10.1109/MCG.2010.26 10.1038/nmeth.2476 10.1111/j.1467-8659.2005.00855.x 10.1109/MCG.2010.56 10.1109/PVGS.2003.1249035 10.1007/PL00013406 10.1109/TVCG.2012.110 10.1111/j.1467-8659.2007.01012.x 10.1109/TVCG.2009.161 10.1109/TVCG.2009.121 10.1109/TVCG.2006.135 10.1109/TVCG.2008.25 10.1109/RT.2008.4634648 10.1145/964967.801126 10.1109/TVCG.2008.104 10.1109/TVCG.2004.2 10.1201/b12985 10.1145/1944846.1944847 10.1145/2010425.2010449 10.1109/38.219451 10.1201/b10629 10.1109/MCG.2010.51 10.1145/346876.348238 10.1109/VISUAL.1999.809908 10.1145/142750.143054 10.1145/1730804.1730814 10.1109/42.938250 |
| ContentType | Journal Article |
| Copyright | 2015 The Authors Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2015 The Authors Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. – notice: Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 ADTOC UNPAY |
| DOI | 10.1111/cgf.12605 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts Technology Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 37 |
| ExternalDocumentID | 10.1111/cgf.12605 3922601211 10_1111_cgf_12605 CGF12605 ark_67375_WNG_0Z9FXQ7G_2 |
| Genre | article Feature |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE WRC AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5395-4934bc455f2fbec5bac3342b595849fc30f741fd5a810b95fb8cb2813e6fc033 |
| IEDL.DBID | UNPAY |
| ISSN | 0167-7055 1467-8659 |
| IngestDate | Wed Oct 01 15:50:33 EDT 2025 Wed Oct 01 13:29:25 EDT 2025 Fri Jul 25 06:55:32 EDT 2025 Wed Oct 01 03:05:02 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Wed Jan 22 16:58:06 EST 2025 Sun Sep 21 06:18:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5395-4934bc455f2fbec5bac3342b595849fc30f741fd5a810b95fb8cb2813e6fc033 |
| Notes | ark:/67375/WNG-0Z9FXQ7G-2 ArticleID:CGF12605 istex:9F1B5FF23583A7A4ACD1C05EF4A4DC411D2AE50F SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12605 |
| PQID | 1757123110 |
| PQPubID | 30877 |
| PageCount | 25 |
| ParticipantIDs | unpaywall_primary_10_1111_cgf_12605 proquest_miscellaneous_1800487892 proquest_journals_1757123110 crossref_citationtrail_10_1111_cgf_12605 crossref_primary_10_1111_cgf_12605 wiley_primary_10_1111_cgf_12605_CGF12605 istex_primary_ark_67375_WNG_0Z9FXQ7G_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2015 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: December 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | [CNLE09] Crassin C., Neyret F., Lefebvre S., Eisemann E.: GigaVoxels : Ray-guided streaming for efficient and detailed voxel rendering. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2009), Lecture Notes in Computer Science, pp. 15-22. [JBH*09] Jeong W.-K. W.-K., Beyer J., Hadwiger M., Vasquez A., Pfister H., Whitaker R. T., Vazquez A.: Scalable and interactive segmentation and visualization of neural processes in EM datasets. IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE Visualization '09) 15, 6 (2009), 1505-1514. [CBB*05] Childs H., Brugger E., Bonnell K., Meredith J., Miller M., Whitlock B., Max N.: A contract-based system for large data visualization. In IEEE Visualization 05 (2005), pp. 190-198. [BHAA*13] Beyer J., Hadwiger M., Al-Awami A., Jeong W.-K., Kasthuri N., Lichtman J., Pfister H.: Exploring the connectome - Petascale volume visualization of microscopy data streams. IEEE Computer Graphics and Applications 33, 4 (2013), 50-61. [LHJ99] Lamar E., Hamann B., Joy K. I.: Multiresolution techniques for interactive texture-based volume visualization. In IEEE Visualization 99 (1999), pp. 355-362. [DKR97] Derthick M., Kolojejchick J., Roth S. F.: An interactive visual query environment for exploring data. In Tenth Annual ACM Symposium on User Interface Software and Technology (UIST 97) (1997), pp. 189-198. [BHL*11] Beyer J., Hadwiger M., Lichtman J., Reid R. C., Jeong W.-K., Pfister H.: Demand-driven volume rendering of terascale EM data. In SIGGRAPH 11: Technical talk (2011). [HFK05] Hong W., Feng Q., Kaufman A.: GPU-based object-order ray-casting for large datasets. In Eurographics/IEEE VGTC Workshop on Volume Graphics '05 (2005), pp. 177-240. [MPHK94] Ma K.-L., Painter J., Hansen C., Krogh M.: Parallel volume rendering using binary-swap compositing. IEEE Computer Graphics & Applications 14, 4 (July 1994), 59-68. [ALN*08] Ahrens J., Lo L.-T. L.-t., Nouanesengsy B., Patchett J., Mcpherson A. : Petascale visualization: Approaches and initial results. In Workshop on Ultrascale Visualization, 2008. UltraVis 08. (2008), pp. 24-28. [Lju06a] Ljung P.: Adaptive sampling in single Pass, GPU-based raycasting of multiresolution volumes. In Eurographics/IEEE VGTC Workshop on Volume Graphics '06 (2006), pp. 39-46. [PF02] Pascucci V., Frank R. J.: Hierarchical indexing for out-of-core access to multi-resolution data. In Hierarchical and Geometrical Methods in Scientific Visualization (2002), pp. 225-241. [BAaK*13] Beyer J., Al-awami A., Kasthuri N., Lichtman J. W., Pfister H., Hadwiger M.: ConnectomeExplorer: Query-guided visual analysis of large volumetric neuroscience data. IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE SciVis 13) 19, 12 (2013), 2868-2877. [BvG*09] Bruckner S., Šoltészová V., Gröller M. E., Hladuvka J., Bühler K., Yu J., Dickson B.: BrainGazer - Visual queries for neurobiology research. IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE Visualization 09) 15, 6 (Nov. 2009), 1497-1504. [ESE00] Engel K., Sommer O., Ertl T.: A framework for interactive hardware accelerated remote 3D-visualization. In TCVG Symposium on Visualization (VisSym '00) (2000), pp. 167-177. [AWS92] Ahlberg C., Williamson C., Shneiderman B.: Dynamic queries for information exploration: An implementation and evaluation. In SIGCHI Conference on Human Factors in Computing Systems (1992), CHI 92, pp. 619-626. [YWG*10] Yu H., Wang C., Grout R. W., Chen J. H., Ma K.-L.: In situ visualization for large-scale combustion simulations. IEEE Computer Graphics & Applications 30, 3 (2010), 45-57. [CMC*06] Castanie L., Mion C., Cavin X., Levy B., Bruno L., Castani L.: Distributed shared memory for roaming large volumes. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 1299-1306. [KE02] Kraus M., Ertl T.: Adaptive texture maps. In Graphics Hardware (2002), pp. 7-15. [MOM*11] Moreland K., Oldfield R., Marion P., Jourdain S., Podhorszki N., Vishwanath V., Fabian N., Docan C., Parashar M., Hereld M., Papka M. E., Klasky S.: Examples of in transit visualization. In Second International Workshop on Petascale Data Analytics: Challenges and Opportunities (PDAC '11) (2011), pp. 1-6. [RGW*03] Roettger S., Guthe S., Weiskopf D., Ertl T., Strasser W.: Smart hardware-accelerated volume rendering. In Symposium on Visualization (VISSYM '03) (2003), pp. 231-238. [SO92] Sharir M., Overmars M. H.: A simple output-sensitive algorithm for hidden surface removal. ACM Transactions on Graphics 11, 1 (1992), 1-11. [HSSB05] Hadwiger M., Sigg C., Scharsach H., Bühler K.: Real-time ray-casting and advanced shading of discrete isosurfaces. Computer Graphics Forum (Proc. of Eurographics '05) 24, 3 (2005), 303-312. [MW95] Martin A. R., Ward M. O.: High dimensional brushing for interactive exploration of multivariate data. In IEEE Visualization '95 (1995), pp. 271-278. [HSHH07] Horn D. R., Sugerman J., Houston M., Hanrahan P.: Interactive k-d tree GPU raytracing. In Symposium on Interactive 3D Graphics and Games - I3D '07 (2007), p. 167. [JJY*11] Jeong W.-K., Johnson M. K., Yu I., Kautz J., Pfister H., Paris S.: Display-aware image editing. In IEEE International Conference on Computational Photography (ICCP 11) (Apr. 2011), IEEE, pp. 1-8. [SSJ*11] Summa B., Scorzelli G., Jiang M., Bremer P.-T., Pascucci V.: Interactive editing of massive imagery made simple. ACM Transactions on Graphics 30, 2 (Apr. 2011), 1-13. [Wit98] Wittenbrink C. M. Survey of Parallel Volume Rendering Algorithms. Tech. rep., Hewlett-Packard Laboratories, 1998. [RTW13] Reichl F., Treib M., Westermann R.: Visualization of big SPH simulations via compressed octree grids. In IEEE Big Data (2013), pp. 71-78. [KAL*11] Klasky S., Abbasi H., Logan J., Parashar M., Schwan K., Shoshani A., Wolf M., Sean A., Altintas I., Bethel W., Luis C., Chang C., Chen J., Childs H., Cummings J., Docan C., Eisenhauer G., Ethier S., Grout R., Lakshminarasimhan S., Lin Z., Liu Q., Ma X., Moreland K., Pascucci V., Podhorszki N., Samatova N., Schroeder W., Tchoua R., Tian Y., Vatsavai R., Wu J., Yu W., Zheng F.: In situ data processing for extreme-scale computing. In SciDAC Conference (2011). [FK05] Frank S., Kaufman A.: Distributed volume rendering on a visualization cluster. In Ninth International Conference on Computer Aided Design and Computer Graphics (2005), pp. 5-10. [PJ95] Parker S. G., Johnson C. R.: SCIRun : A scientific programming environment for computational steering. In ACM/IEEE Conference on Supercomputing '95 (1995). [CCF94] Cabral B., Cam N., Foran J.: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In IEEE Symposium on Volume Visualization (1994), pp. 91-98. [HN12] Heitz E., Neyret F.: Representing appearance and pre-filtering subpixel data in sparse voxel octrees. In ACM SIGGRAPH/Eurographics conference on High-Performance Graphics (EGGH-HPG 12) (2012), pp. 125-134. [PGS*07] Popov S., Günther J., Seidel H.-P. H.-P., Slusallek P., Günther J.: Stackless kd-tree traversal for high performance GPU ray tracing. Eurographics 26, 3 (2007), 415-424. [PHKH04] Prohaska S., Hutanu A., Kahler R., Hege H.-C.: Interactive exploration of large remote micro-CT scans. In IEEE Visualization (2004), pp. 345-352. [BG05] Bruckner S., Gröller M.: Volumeshop: An interactive system for direct volume illustration. In IEEE Visualization 05 (2005), pp. 671-678. [LB03] Lindeberg T., Bretzner L.: Real-Time Scale Selection in Hybrid Multi-Scale Representations. Tech. rep., KTH (Royal Institute of Technology), 2003. [EPMS09] Eilemann S., Pajarola R., Makhinya M., Society I. C.: Equalizer: A scalable parallel rendering framework. IEEE Transactions on Visualization and Computer Graphics 15, 3 (2009), 436-452. [MCE*94] Molnar S., Cox M., Ellsworth D., Fuchs H., D. Ellsworth M. C.: A sorting classification of parallel rendering. IEEE Computer Graphics & Applications 14, 4 (1994), 23-32. [CN09] Crassin C., Neyret F.: Beyond triangles : Gigavoxels effects in video games. In SIGGRAPH '09: Technical talk (2009). [GGM10] Guitián J. A. I., Gobbetti E., Marton F.: View-dependent exploration of massive volumetric models on large-scale light field displays. The Visual Computer 26, 6-8 (2010), 1037-1047. [Mus13] Museth K.: VDB: High-resolution sparse volumes with dynamic topology. ACM Transactions on Graphics 32, 3 (2013), 27:1-27:22. [Mor12] Moreland K.: Oh, $#*@! Exascale! The effect of emerging architectures on scientific discovery. 2012 SC Companion: High Performance Computing, Networking Storage and Analysis (2012), 224-231. [FK10] Fogal T., Krüger J.: Tuvok - An architecture for large scale volume rendering. In 15th Vision, Modeling and Visualization Workshop '10 (2010), pp. 139-146. [GKM93] Greene N., Kass M., Miller G.: Hierarchical Z-buffer visibility. In SIGGRAPH 93 (1993), pp. 231-238. [SBH*08] Samatova N. F., Breimyer P., Hendrix W., Schmidt M. C., Rhyne T.-M.: An Outlook into ultra-scale visualization of large-scale biological data. In Workshop on Ultrascale Visualization, UltraVis 2008. (2008), pp. 29-39. [Mur93] Muraki S.: Volume data and wavelet transforms. IEEE Computer Graphics and Applications 13, 4 (1993), 50-56. [Shn94] Shneiderman B.: Dynamic queries for visual information seeking. IEEE Software 11, 6 (1994), 70-77. [GMG08] Gobbetti E., Marton F., Guitián J. A. I.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. The Visual Computer 24, 7 (2008), 787-806. [HBZ98] Havran V., Bittner J., Zára J.: Ray tracing with rope trees. In 14th Spring Conference On Computer Graphics (1998), pp. 130-139. [HSB*12] Hadwiger M., Sicat R., Beyer J., Krüger J., Möller T.: Sparse PDF maps for non-linear multi-resolution image operations. In ACM Transactions on Graphics (Proc. of ACM SIGGRAPH Asia '12) (2012), pp. 198:1-198:12. [JBH*10] Jeong W.-K. W.-K. J. W.-K., Beyer J., Hadwiger M., Blue R., Law C., Vasquez A., Reid C., Lichtman J., Pfister H., Vazquez-Reina A., Reid R. C.: SSECRETT and Neur 2010; 16 2000; 5 2004; 28 2012; 18 2011; 471 2011; 17 1983; 17 1992; 11 2005; 24 2014; 20 2013; 19 1987; 87 2010; 26 1990 2001 2000 2013; 10 2010; 29 1986; 6 2008; 24 2001; 17 2010; 30 2009; 15 2007; 26 2012 2006; 12 2011 2010 2013; 503 2009 2008; 14 1998 2008 1997 2011; 30 2007 2006 1995 1994 2005 1993 2004 1992 2003 2002 2005; 05 2001; 20 2009; 28 1999 2004; 10 1993; 13 2013; 33 2013; 32 1993; 93 1994; 11 1994; 14 2014 2005; 3 2013 2014; 33 1966 Tikhonova A. (e_1_2_12_138_1) 2011 Beyer J. (e_1_2_12_14_1) 2014 Morton G. M. (e_1_2_12_95_1) 1966 Yu H. (e_1_2_12_149_1) 2008 Zhang J. (e_1_2_12_151_1) 2005; 3 e_1_2_12_17_1 e_1_2_12_111_1 Ljung P. (e_1_2_12_82_1) 2006 Gao J. (e_1_2_12_45_1) 2003 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_85_1 e_1_2_12_24_1 Römisch K. (e_1_2_12_118_1) 2009 Ahern S. (e_1_2_12_2_1) 2011 e_1_2_12_47_1 e_1_2_12_89_1 Mensmann J. (e_1_2_12_100_1) 2010 Haber R. B. (e_1_2_12_58_1) 1990 The Clipmap (e_1_2_12_135_1) 1998 Tu T. (e_1_2_12_137_1) 2006 Rost R. J. (e_1_2_12_121_1) 2006 e_1_2_12_28_1 Wang C. (e_1_2_12_143_1) 2005 e_1_2_12_104_1 e_1_2_12_31_1 Scharsach H. (e_1_2_12_129_1) 2006 e_1_2_12_54_1 Cabral B. (e_1_2_12_22_1) 1994 e_1_2_12_139_1 e_1_2_12_35_1 Ma K.‐L. (e_1_2_12_106_1) 2009 Westermann R. (e_1_2_12_142_1) 1994 e_1_2_12_12_1 Beyer J. (e_1_2_12_13_1) 2008 e_1_2_12_73_1 Gao J. (e_1_2_12_50_1) 2004 Bethel E. W. (e_1_2_12_9_1) 2012 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_18_1 Mensmann J. (e_1_2_12_99_1) 2008 Solteszova V. (e_1_2_12_126_1) 2014 e_1_2_12_110_1 Crassin C. (e_1_2_12_26_1) 2009 Childs H. (e_1_2_12_21_1) 2005; 05 Reichl F. (e_1_2_12_123_1) 2013 e_1_2_12_107_1 Guitián J. A. I. (e_1_2_12_43_1) 2010; 26 Ljung P. (e_1_2_12_81_1) 2006 e_1_2_12_67_1 Havran V. (e_1_2_12_53_1) 1998 Pascucci V. (e_1_2_12_112_1) 2002 Sicat R. (e_1_2_12_130_1) 2014; 20 Li W. (e_1_2_12_86_1) 2003 Klasky S. (e_1_2_12_70_1) 2011 e_1_2_12_141_1 e_1_2_12_122_1 e_1_2_12_29_1 Cullip T. (e_1_2_12_25_1) 1993 Akenine‐Möller T. (e_1_2_12_5_1) e_1_2_12_103_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_97_1 Fogal T. (e_1_2_12_37_1) 2010 e_1_2_12_78_1 Magallón M. (e_1_2_12_90_1) 2001 Moreland K. (e_1_2_12_96_1) 2012 Knoll A. (e_1_2_12_76_1) 2011 Younesy H. (e_1_2_12_147_1) 2006 e_1_2_12_4_1 Bartz D. (e_1_2_12_19_1) 2000 Congote J. (e_1_2_12_30_1) 2011 e_1_2_12_136_1 Engel K. (e_1_2_12_34_1) 2011 Marchesin S. S. (e_1_2_12_93_1) 2010 e_1_2_12_132_1 e_1_2_12_113_1 Crassin C. (e_1_2_12_27_1) 2009 Knoll A. (e_1_2_12_75_1) 2006 e_1_2_12_87_1 e_1_2_12_64_1 Stegmaier S. (e_1_2_12_133_1) 2005 Stockinger K. (e_1_2_12_134_1) 2005 Horn D. R. (e_1_2_12_63_1) 2007 e_1_2_12_83_1 Foley T. (e_1_2_12_40_1) 2005 e_1_2_12_140_1 Hadwiger M. (e_1_2_12_62_1) 2012 e_1_2_12_49_1 e_1_2_12_148_1 Fogal T. (e_1_2_12_41_1) 2013 Roettger S. (e_1_2_12_120_1) 2003 Heitz E. (e_1_2_12_60_1) 2012 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_144_1 Müller C. (e_1_2_12_101_1) 2006 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_79_1 Parker S. G. (e_1_2_12_116_1) 1995 e_1_2_12_8_1 Kraus M. (e_1_2_12_71_1) 2002 e_1_2_12_150_1 Jeong W.‐K. (e_1_2_12_68_1) 2011 Hastings E. J. (e_1_2_12_59_1) 2005 e_1_2_12_16_1 Prohaska S. (e_1_2_12_115_1) 2004 Bruckner S. (e_1_2_12_10_1) 2005; 05 Moloney B. (e_1_2_12_105_1) 2007 e_1_2_12_131_1 Frank S. (e_1_2_12_38_1) 2005 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 Greene N. (e_1_2_12_46_1) 1993; 93 e_1_2_12_109_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_69_1 Hong W. (e_1_2_12_56_1) 2005 e_1_2_12_80_1 Krüger J. (e_1_2_12_77_1) 2003 Guthe S. (e_1_2_12_44_1) 2002 Weiler M. (e_1_2_12_146_1) 2000 Silva C. (e_1_2_12_127_1) 2002 Wittenbrink C. M. (e_1_2_12_145_1) 1998 Entezari A. (e_1_2_12_33_1) 2006 Fogal T. (e_1_2_12_39_1) 2010 Moreland K. (e_1_2_12_94_1) 2011 Hennessy J. L. (e_1_2_12_61_1) 2011 Hadwiger M. (e_1_2_12_51_1) 2003 Ahlberg C. (e_1_2_12_7_1) 1992 e_1_2_12_124_1 Gobbetti E. (e_1_2_12_48_1) 2008; 24 e_1_2_12_117_1 e_1_2_12_57_1 Popov S. (e_1_2_12_114_1) 2007; 26 Kasik D. (e_1_2_12_74_1) 2006 e_1_2_12_15_1 e_1_2_12_91_1 Amanatides J. (e_1_2_12_6_1) 1987; 87 Laine S. (e_1_2_12_84_1) 2010 e_1_2_12_11_1 e_1_2_12_72_1 Engel K. (e_1_2_12_36_1) 2000 |
| References_xml | – reference: [OVS12] Obert J., Van Waveren J., Sellers G.: Virtual texturing in software and hardware. In SIGGRAPH '12 Courses (2012). – reference: [PF02] Pascucci V., Frank R. J.: Hierarchical indexing for out-of-core access to multi-resolution data. In Hierarchical and Geometrical Methods in Scientific Visualization (2002), pp. 225-241. – reference: [HN12] Heitz E., Neyret F.: Representing appearance and pre-filtering subpixel data in sparse voxel octrees. In ACM SIGGRAPH/Eurographics conference on High-Performance Graphics (EGGH-HPG 12) (2012), pp. 125-134. – reference: [SKMH14] Sicat R., Krüger J., Möller T., Hadwiger M.: Sparse PDF volumes for consistent multi-resolution volume rendering. IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE SciVis '14) 20, 12 (2014), in print. – reference: [AM00] Assarsson U., Moller, T.: Optimized view frustum culling algorithms for bounding boxes. Journal of Graphics Tools 5, 1 (Jan. 2000), 9-22. – reference: [HSB*12] Hadwiger M., Sicat R., Beyer J., Krüger J., Möller T.: Sparse PDF maps for non-linear multi-resolution image operations. In ACM Transactions on Graphics (Proc. of ACM SIGGRAPH Asia '12) (2012), pp. 198:1-198:12. – reference: [Ros06] Rost R. J.: OpenGL Shading Language (2nd ed.). Addison-Wesley Professional, Upper Saddle River, NJ, 2006. – reference: [LK10b] Laine S., Karras T.: Efficient Sparse Voxel Octrees - Analysis, Extensions, and Implementation. Tech. rep., NVIDIA, 2010. – reference: [LKHW04] Lefohn A. E., Kniss J. M., Hansen C. D., Whitaker R. T.: A streaming narrow-band algorithm: Interactive computation and visualization of level sets. IEEE Transactions on Visualization and Computer Graphics 10, 4 (2004), 422-433. – reference: [SHN*06] Scharsach H., Hadwiger M., Neubauer A., Wolfsberger S., Bühler K.: Perspective isosurface and direct volume rendering for virtual endoscopy applications. In Eurovis/IEEE-VGTC Symposium on Visualization (2006), pp. 315-323. – reference: [ALN*08] Ahrens J., Lo L.-T. L.-t., Nouanesengsy B., Patchett J., Mcpherson A. : Petascale visualization: Approaches and initial results. In Workshop on Ultrascale Visualization, 2008. UltraVis 08. (2008), pp. 24-28. – reference: [FK05] Frank S., Kaufman A.: Distributed volume rendering on a visualization cluster. In Ninth International Conference on Computer Aided Design and Computer Graphics (2005), pp. 5-10. – reference: [CNLE09] Crassin C., Neyret F., Lefebvre S., Eisemann E.: GigaVoxels : Ray-guided streaming for efficient and detailed voxel rendering. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2009), Lecture Notes in Computer Science, pp. 15-22. – reference: [LMK03] Li W., Mueller K., Kaufman A.: Empty space skipping and occlusion clipping for texture-based volume rendering. In IEEE Visualization 03 (2003), pp. 317-324. – reference: [GGSe*02] Guthe S., Gonser J., Straßer, W., Wand M., Straer W.: Interactive rendering of large volume data sets. In IEEE Visualization (2002), pp. 53-59. – reference: [KTW*11] Knoll A., Thelen S., Wald I., Hansen C. D., Hagen H., Papka M. E.: Full-resolution interactive CPU volume rendering with coherent BVH traversal. In IEEE Pacific Visualization Symposium '11 (Mar. 2011), pp. 3-10. – reference: [ESE00] Engel K., Sommer O., Ertl T.: A framework for interactive hardware accelerated remote 3D-visualization. In TCVG Symposium on Visualization (VisSym '00) (2000), pp. 167-177. – reference: [VOS*10] Vo H. T., Osmari D. K., Summa B., Comba J. a. L. D., Pascucci V., Silva C. T.: Streaming-enabled parallel dataflow architecture for multicore systems. Computer Graphics Forum 29, 3 (2010), 1073-1082. – reference: [Hel13] Helmstaedter M.: Cellular-resolution connectomics: Challenges of dense neural circuit reconstruction. Nature Methods 10, 6 (June 2013), 501-7. – reference: [RGG*14] Rodríguez M., Gobbetti E., Guitan J., Makhinya M., Marton F., Pajarola R., Suter S.: State-of-the-art in compressed GPU-based direct volume rendering. Computer Graphics Forum 33, 6 (2014), 77-100. – reference: [CCF94] Cabral B., Cam N., Foran J.: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In IEEE Symposium on Volume Visualization (1994), pp. 91-98. – reference: [LK10a] Laine S., Karras T.: Efficient sparse voxel octrees. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D 10) (2010), pp. 55-63. – reference: [ZMHH97] Zhang H., Manocha D., Hudson T., Hoff K. E.: Visibility culling using hierarchical occlusion maps. In ACM SIGGRAPH '97 (1997), pp. 77-88. – reference: [BG05] Bruckner S., Gröller M.: Volumeshop: An interactive system for direct volume illustration. In IEEE Visualization 05 (2005), pp. 671-678. – reference: [HP11] Hennessy J. L., Patterson D. A.: Computer Architecture: A Quantitative Approach (5th ed.). Morgan Kaufmann, San Francisco, CA, USA, 2011. – reference: [LCD09] Liu B., Clapworthy G. J., Dong F.: Accelerating volume raycasting using proxy spheres. Computer Graphics Forum (Proc. of EuroVis '09) 28, 3 (June 2009), 839-846. – reference: [MOM*11] Moreland K., Oldfield R., Marion P., Jourdain S., Podhorszki N., Vishwanath V., Fabian N., Docan C., Parashar M., Hereld M., Papka M. E., Klasky S.: Examples of in transit visualization. In Second International Workshop on Petascale Data Analytics: Challenges and Opportunities (PDAC '11) (2011), pp. 1-6. – reference: [BHP14] Beyer J., Hadwiger M., Pfister H.: A survey of GPU-based large-scale volume visualization. Proceedings EuroVis 2014 (2014). – reference: [Hec86] Heckbert P.: Survey of texture mapping. IEEE Computer Graphics and Applications 6, 11 (1986), 56-67. – reference: [ILC10] Isenburg M., Lindstrom P., Childs H.: Parallel and streaming generation of ghost data for structured grids. IEEE Computer Graphics & Applications 30, 3 (2010), 32-44. – reference: [JBH*10] Jeong W.-K. W.-K. J. W.-K., Beyer J., Hadwiger M., Blue R., Law C., Vasquez A., Reid C., Lichtman J., Pfister H., Vazquez-Reina A., Reid R. C.: SSECRETT and NeuroTrace: Interactive visualization and analysis tools for large-scale neuroscience datasets. IEEE Computer Graphics & Applications 30, 3 (2010), 58-70. – reference: [MHS08] Marsalek L., Hauber A., Slusallek P.: High-speed volume ray casting with CUDA. In IEEE Symposium on Interactive Ray Tracing (Aug. 2008), p. 185. – reference: [FCS*10] Fogal T., Childs H., Shankar S., Krüger J., Bergeron R. D., Hatcher P.: Large data visualization on distributed memory multi-GPU clusters. In High Performance Graphics (2010), pp. 57-66. – reference: [GS04] Guthe S., Strasser W.: Advanced techniques for high-quality multi-resolution volume rendering. Computers & Graphics 28, 1 (2004), 51-58. – reference: [BHMF08] Beyer J., Hadwiger M., Möller T., Fritz L.: Smooth mixed-resolution GPU volume rendering. In IEEE International Symposium on Volume and Point-Based Graphics (VG 08) (2008), pp. 163-170. – reference: [Lju06a] Ljung P.: Adaptive sampling in single Pass, GPU-based raycasting of multiresolution volumes. In Eurographics/IEEE VGTC Workshop on Volume Graphics '06 (2006), pp. 39-46. – reference: [Wes94] Westermann R.: A multiresolution framework for volume rendering. In Proceedings of Symposium on Volume Visualization (1994), pp. 51-58. – reference: [Neu94] Neumann U.: Communication costs for parallel volume-rendering algorithms. IEEE Computer Graphics & Applications 14, 4 (July 1994), 49-58. – reference: [KMS*06] Kasik D., Manocha D., Stephens A., Bruderlin B., Slusallek P., Gobbetti E., Correa W., Quilez I.: Real time interactive massive model visualization. Eurographics '06: Tutorials (2006). – reference: [R09] Römisch K.: Sparse Voxel Octree Ray Tracing on the GPU. PhD thesis, Aarhus University, 2009. – reference: [WWH*00] Weiler M., Westermann R., Hansen C., Zimmerman K., Ertl T.: Level-Of-detail volume rendering via 3D textures. In IEEE Symposium on Volume Visualization (2000), pp. 7-13. – reference: [GHSK03] Gao J., Huang J., Shen H.-W., Kohl J. A.: Visibility culling using plenoptic opacity functions for large volume visualization. In IEEE Visualization '03 (2003), pp. 341-348. – reference: [WE98] Westermann R., Ertl T.: Efficiently using graphics hardware in volume rendering applications. In SIGGRAPH '98 (1998), pp. 169-178. – reference: [RSEB*00] Rezk-Salama C., Engel K., Bauer M., Greiner G., Ertl T.: Interactive volume rendering on standard PC graphics hardware using multi-textures and multi-stage rasterization. In SIGGRAPH/Eurographics Workshop on Graphics Hardware (2000), pp. 109-118. – reference: [HBJP12] Hadwiger M., Beyer J., Jeong W.-K., Pfister H.: Interactive volume exploration of petascale microscopy data streams using a visualization-driven virtual memory approach. IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE of SciVis 12) 18, 12 (2012), 2285-2294. – reference: [EPMS09] Eilemann S., Pajarola R., Makhinya M., Society I. C.: Equalizer: A scalable parallel rendering framework. IEEE Transactions on Visualization and Computer Graphics 15, 3 (2009), 436-452. – reference: [JJY*11] Jeong W.-K., Johnson M. K., Yu I., Kautz J., Pfister H., Paris S.: Display-aware image editing. In IEEE International Conference on Computational Photography (ICCP 11) (Apr. 2011), IEEE, pp. 1-8. – reference: [FS05] Foley T., Sugerman J.: KD-tree acceleration structures for a GPU raytracer. In Graphics Hardware (2005), pp. 15-22. – reference: [CBB*05] Childs H., Brugger E., Bonnell K., Meredith J., Miller M., Whitlock B., Max N.: A contract-based system for large data visualization. In IEEE Visualization 05 (2005), pp. 190-198. – reference: [BNS01] Boada I., Navazo I., Scopigno R.: Multiresolution volume visualization with a texture-based octree. The Visual Computer 17, 3 (2001), 185-197. – reference: [THM01] Turlington J. Z., Higgins W. E., Member S.: New techniques for efficient sliding thin-slab volume visualization. IEEE Transactions on Medical Imaging 20, 8 (2001), 823-835. – reference: [WGL*05] Wang C., Gao J., Li L., Shen W.-W., Shen H.-w.: A multiresolution volume rendering framework for large-scale time-varying data visualization. In Eurographics/IEEE VGTC Workshop on Volume Graphics '05 (2005), pp. 11-223. – reference: [MAWM11] Moloney B., Ament M., Weiskopf D., Möller T.: Sort-first parallel volume rendering. IEEE Transactions on Visualization and Computer Graphics 17, 8 (2011), 1164-1177. – reference: [Mor66] Morton G. M.: A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing. Tech. rep., IBM Ltd., 1966. – reference: [LHJ99] Lamar E., Hamann B., Joy K. I.: Multiresolution techniques for interactive texture-based volume visualization. In IEEE Visualization 99 (1999), pp. 355-362. – reference: [OLG*07] Owens J. D., Luebke D., Govindaraju N., Harris M., Krügerm J., Lefohn A. E., Purcell T. J., Kr J.: A survey of general-purpose computation on graphics hardware. Computer Graphics Forum 26, 1 (2007), 80-113. – reference: [MWY*09] Ma K.-L., Wang C., Yu H., Moreland K., Huang J., Ross R.: Next-generation visualization technologies: Enabling discoveries at extreme scale. In SciDAC Review (2009), pp. 12-21. – reference: [EMBM06] Entezari A., Meng T., Bergner S., Möller T.: A granular three dimensional multiresolution transform. In Eurovis/IEEE-VGTC Symposium on Visualization 06 (2006), pp. 267-274. – reference: [KW03] Krüger J., Westermann R.: Acceleration techniques for GPU-based volume rendering. In IEEE Visualization '03 (2003), pp. 287-292. – reference: [BHWB07] Beyer J., Hadwiger M., Wolfsberger S., Bühler K.: High-quality multimodal volume rendering for preoperative planning of neurosurgical interventions. IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE Visualization 07) (2007), 1696-1703. – reference: [MM10] Marchesin S. S., Ma K.-L.: Cross-node occlusion in sort-last volume rendering. In Eurographics Symposium on Parallel Graphics and Visualization (2010), pp. 11-18. – reference: [KAL*11] Klasky S., Abbasi H., Logan J., Parashar M., Schwan K., Shoshani A., Wolf M., Sean A., Altintas I., Bethel W., Luis C., Chang C., Chen J., Childs H., Cummings J., Docan C., Eisenhauer G., Ethier S., Grout R., Lakshminarasimhan S., Lin Z., Liu Q., Ma X., Moreland K., Pascucci V., Podhorszki N., Samatova N., Schroeder W., Tchoua R., Tian Y., Vatsavai R., Wu J., Yu W., Zheng F.: In situ data processing for extreme-scale computing. In SciDAC Conference (2011). – reference: [BHL*11] Beyer J., Hadwiger M., Lichtman J., Reid R. C., Jeong W.-K., Pfister H.: Demand-driven volume rendering of terascale EM data. In SIGGRAPH 11: Technical talk (2011). – reference: [HBH03] Hadwiger M., Berger C., Hauser H.: High-quality two-level volume rendering of segmented data sets on consumer graphics hardware. In IEEE Visualization 03 (2003), pp. 301-308. – reference: [KH13] Kehrer J., Hauser H.: Visualization and visual analysis of multifaceted scientific data: A survey. IEEE Transactions on Visualization and Computer Graphics 19, 3 (Mar. 2013), 495-513. – reference: [FW08] Falk M., Weiskopf D.: Output-sensitive 3D line integral convolution. IEEE Transactions on Visualization and Computer Graphics 14, 4 (2008), 820-834. – reference: [KE02] Kraus M., Ertl T.: Adaptive texture maps. In Graphics Hardware (2002), pp. 7-15. – reference: [SSJ*11] Summa B., Scorzelli G., Jiang M., Bremer P.-T., Pascucci V.: Interactive editing of massive imagery made simple. ACM Transactions on Graphics 30, 2 (Apr. 2011), 1-13. – reference: [CKS03] Correa W., Klosowski J. T., Silva C.: Visibility-based prefetching for interactive out-of-core rendering. In IEEE Symposium on Parallel and Large-Data Visualization and Graphics (2003), pp. 1-8. – reference: [LB03] Lindeberg T., Bretzner L.: Real-Time Scale Selection in Hybrid Multi-Scale Representations. Tech. rep., KTH (Royal Institute of Technology), 2003. – reference: [AWS92] Ahlberg C., Williamson C., Shneiderman B.: Dynamic queries for information exploration: An implementation and evaluation. In SIGCHI Conference on Human Factors in Computing Systems (1992), CHI 92, pp. 619-626. – reference: [HL09] Hughes D. M., Lim I. S.: Kd-jump: A path-preserving stackless traversal for faster isosurface raytracing on GPUs. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009), 1555-1562. – reference: [Mur93] Muraki S.: Volume data and wavelet transforms. IEEE Computer Graphics and Applications 13, 4 (1993), 50-56. – reference: [NZIS13] Niessner M., Zollhöfer M., Izadi S., Stamminger M.: Real-time 3D reconstruction at scale using voxel hashing. ACM Transactions on Graphics 32, 6 (2013), 1-11. – reference: [SBH*08] Samatova N. F., Breimyer P., Hendrix W., Schmidt M. C., Rhyne T.-M.: An Outlook into ultra-scale visualization of large-scale biological data. In Workshop on Ultrascale Visualization, UltraVis 2008. (2008), pp. 29-39. – reference: [HMG05] Hastings E. J., Mesit J., Guha R. K.: Optimization of large-scale, real-time simulations by spatial hashing. In Summer Computer Simulation Conference (2005), pp. 9-17. – reference: [GM05] Gobbetti E., Marton F.: Far voxels: A multiresolution framework for interactive rendering of huge complex 3D models on commodity graphics platforms. ACM Transactions on Graphics 24, 3 (2005), 878-885. – reference: [SSWB05] Stockinger K., Shalf J., Wu K., Bethel E. W.: Query-driven visualization of large data sets. In IEEE Visualization '05 (2005), pp. 167-174. – reference: [BHAA*13] Beyer J., Hadwiger M., Al-Awami A., Jeong W.-K., Kasthuri N., Lichtman J., Pfister H.: Exploring the connectome - Petascale volume visualization of microscopy data streams. IEEE Computer Graphics and Applications 33, 4 (2013), 50-61. – reference: [CSK*11] Congote J., Segura A., Kabongo L., Moreno A., Posada J., Ruiz O.: Interactive visualization of volumetric data with WebGL in real-time. In 16th International Conference on 3D Web Technology - Web3D '11 (2011), pp. 137-146. – reference: [AMHH08] Akenine-Möller T., Haines E., Hoffman N.: Real-Time Rendering (3rd ed.). A. K. Peters Ltd., Natick, MA, USA, 2008. – reference: [CMC*06] Castanie L., Mion C., Cavin X., Levy B., Bruno L., Castani L.: Distributed shared memory for roaming large volumes. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 1299-1306. – reference: [Lju06b] Ljung P.: Efficient Methods for Direct Volume Rendering of Large Data Sets. PhD thesis, Linköping University, Sweden, 2006. – reference: [Mus13] Museth K.: VDB: High-resolution sparse volumes with dynamic topology. ACM Transactions on Graphics 32, 3 (2013), 27:1-27:22. – reference: [Wil83] Williams L.: Pyramidal parametrics. Computer Graphics (Proc. of SIGGRAPH '83) 17, 3 (1983), 1-11. – reference: [HFK05] Hong W., Feng Q., Kaufman A.: GPU-based object-order ray-casting for large datasets. In Eurographics/IEEE VGTC Workshop on Volume Graphics '05 (2005), pp. 177-240. – reference: [HSHH07] Horn D. R., Sugerman J., Houston M., Hanrahan P.: Interactive k-d tree GPU raytracing. In Symposium on Interactive 3D Graphics and Games - I3D '07 (2007), p. 167. – reference: [Mar13] Marx V.: Neurobiology: Brain mapping in high resolution. Nature 503, 7474 (Nov. 2013), 147-152. – reference: [SBVB14] Solteszova V., Birkeland A., Viola I., Bruckner S.: Visibility-driven processing of streaming volume data. In Proc. of VCBM 2014 (2014), pp. 127-136. – reference: [TYC*11] Tikhonova A., Yu H., Correa C. D., Chen J. H., Ma K.-L.: A preview and exploratory technique for large-scale scientific simulations. In Eurographics Conference on Parallel Graphics and Visualization (EGPGV'11) (2011), pp. 111-120. – reference: [HSSB05] Hadwiger M., Sigg C., Scharsach H., Bühler K.: Real-time ray-casting and advanced shading of discrete isosurfaces. Computer Graphics Forum (Proc. of Eurographics '05) 24, 3 (2005), 303-312. – reference: [KGB*09] Kainz B., Grabner M., Bornik A., Hauswiesner S., Muehl J., Schmalstieg D.: Ray casting of multiple volumetric datasets with polyhedral boundaries on manycore GPUs. ACM Transactions on Graphics 28, 5 (2009), 1-9. – reference: [PJ95] Parker S. G., Johnson C. R.: SCIRun : A scientific programming environment for computational steering. In ACM/IEEE Conference on Supercomputing '95 (1995). – reference: [MRH08] Mensmann J., Ropinski T., Hinrichs K.: Accelerating volume raycasting using occlusion frustums. In Fifth EG/IEEE Conference on Point-Based Graphics (2008), pp. 147-154. – reference: [MW95] Martin A. R., Ward M. O.: High dimensional brushing for interactive exploration of multivariate data. In IEEE Visualization '95 (1995), pp. 271-278. – reference: [GKM93] Greene N., Kass M., Miller G.: Hierarchical Z-buffer visibility. In SIGGRAPH 93 (1993), pp. 231-238. – reference: [AAM*11] Ahern S., Arie S., Ma K.-L., Choudhary A., Critchlow T., Klasky S., Pascucci V., Ahrens J., Bethel W. E., Childs H., Huang J., Joy K., Koziol Q., Lofstead G., Meredith J. S., Moreland K., Ostrouchov G., Papka M., Vishwanath V., Wolf M., Wright N., Wu K.: Report from the DOE ASCR 2011 Workshop on Exascale Data Management, Analysis, and Visualization. Tech. rep., Department of Energy, 2011. – reference: [BAaK*13] Beyer J., Al-awami A., Kasthuri N., Lichtman J. W., Pfister H., Hadwiger M.: ConnectomeExplorer: Query-guided visual analysis of large volumetric neuroscience data. IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE SciVis 13) 19, 12 (2013), 2868-2877. – reference: [BLK*11] Bock D., Lee W.-C., Kerlin A., Andermann M., Hood G., Wetzel A., Yurgenson S., Soucy E., Kim H. S., Reid R. C.: Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 7337 (2011), 177-182. – reference: [MHE01] Magallón M., Hopf M., Ertl T.: Parallel volume rendering using PC graphics hardware. In Pacific Conference on Computer Graphics and Applications (2001), pp. 384-389. – reference: [BvG*09] Bruckner S., Šoltészová V., Gröller M. E., Hladuvka J., Bühler K., Yu J., Dickson B.: BrainGazer - Visual queries for neurobiology research. IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE Visualization 09) 15, 6 (Nov. 2009), 1497-1504. – reference: [CPA*10] Childs H., Pugmire D., Ahern S., Whitlock B., Howison M., Prabhat Weber G., Bethel E.: Extreme scaling of production visualization software on diverse architectures. IEEE Computer Graphics and Applications 30, 3 (2010), 22-31. – reference: [MPHK94] Ma K.-L., Painter J., Hansen C., Krogh M.: Parallel volume rendering using binary-swap compositing. IEEE Computer Graphics & Applications 14, 4 (July 1994), 59-68. – reference: [HBZ98] Havran V., Bittner J., Zára J.: Ray tracing with rope trees. In 14th Spring Conference On Computer Graphics (1998), pp. 130-139. – reference: [PGS*07] Popov S., Günther J., Seidel H.-P. H.-P., Slusallek P., Günther J.: Stackless kd-tree traversal for high performance GPU ray tracing. Eurographics 26, 3 (2007), 415-424. – reference: [SO92] Sharir M., Overmars M. H.: A simple output-sensitive algorithm for hidden surface removal. ACM Transactions on Graphics 11, 1 (1992), 1-11. – reference: [RTW13] Reichl F., Treib M., Westermann R.: Visualization of big SPH simulations via compressed octree grids. In IEEE Big Data (2013), pp. 71-78. – reference: [YWG*10] Yu H., Wang C., Grout R. W., Chen J. H., Ma K.-L.: In situ visualization for large-scale combustion simulations. IEEE Computer Graphics & Applications 30, 3 (2010), 45-57. – reference: [DKR97] Derthick M., Kolojejchick J., Roth S. F.: An interactive visual query environment for exploring data. In Tenth Annual ACM Symposium on User Interface Software and Technology (UIST 97) (1997), pp. 189-198. – reference: [PHKH04] Prohaska S., Hutanu A., Kahler R., Hege H.-C.: Interactive exploration of large remote micro-CT scans. In IEEE Visualization (2004), pp. 345-352. – reference: [Mor13] Moreland K.: A survey of visualization pipelines. IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE SciVis '13) 19, 3 (Mar. 2013), 367-78. – reference: [MWMS07] Moloney B., Weiskopf D., Möller T., Strengert M.: Scalable sort-first parallel direct volume rendering with dynamic load balancing. In Eurographics Symposium on Parallel Graphics and Visualization (2007), pp. 45-52. – reference: [SSKE05] Stegmaier S., Strengert M., Klein T., Ertl T.: A simple and flexible volume rendering framework for graphics-hardware-based raycasting. Eurographics/IEEE VGTC Workshop on Volume Graphics '05 (2005), 187-195. – reference: [SCC*02] Silva C., Chiang Y.-J., Correa W., El-sana J., Lindstrom P.: Out-of-core algorithms for scientific visualization and computer graphics. In IEEE Visualization '02 Course Notes (2002). – reference: [EHK*06] Engel K., Hadwiger M., Kniss J. M., Rezk-salama C., Weiskopf D.: Real-time Volume Graphics. A. K. Peters, Ltd., Natick, MA, 2006. – reference: [AW87] Amanatides J., Woo A.: A fast voxel traversal algorithm for ray tracing. In Eurographics 87 (1987), pp. 3-10. – reference: [Mor12] Moreland K.: Oh, $#*@! Exascale! The effect of emerging architectures on scientific discovery. 2012 SC Companion: High Performance Computing, Networking Storage and Analysis (2012), 224-231. – reference: [CN09] Crassin C., Neyret F.: Beyond triangles : Gigavoxels effects in video games. In SIGGRAPH '09: Technical talk (2009). – reference: [tan98] The Clipmap: A Virtual Mipmap. In SIGGRAPH '98 (1998), ACM, pp. 151-158. – reference: [JBH*09] Jeong W.-K. W.-K., Beyer J., Hadwiger M., Vasquez A., Pfister H., Whitaker R. T., Vazquez A.: Scalable and interactive segmentation and visualization of neural processes in EM datasets. IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE Visualization '09) 15, 6 (2009), 1505-1514. – reference: [ZSJ*05] Zhang J., Sun J., Jin Z., Zhang Y., Zhai W., Zhai Q.: Survey of parallel and distributed volume rendering: Revisited. In International Conference on Computational Science and Its Applications (ICCSA '05) (2005), vol. 3, pp. 435-444. – reference: [Shn94] Shneiderman B.: Dynamic queries for visual information seeking. IEEE Software 11, 6 (1994), 70-77. – reference: [GSHK04] Gao J., Shen H.-W., Huang J., Kohl J. A.: Visibility culling for time-varying volume rendering using temporal occlusion coherence. In IEEE Visualization 04 (2004), pp. 147-154. – reference: [GGM10] Guitián J. A. I., Gobbetti E., Marton F.: View-dependent exploration of massive volumetric models on large-scale light field displays. The Visual Computer 26, 6-8 (2010), 1037-1047. – reference: [FSK13] Fogal T., Schiewe A., Krüger J.: An analysis of scalable GPU-based ray-guided volume rendering. In IEEE Symposium on Large Data Analysis and Visualization (LDAV '13) (2013), pp. 43-51. – reference: [MCE*94] Molnar S., Cox M., Ellsworth D., Fuchs H., D. Ellsworth M. C.: A sorting classification of parallel rendering. IEEE Computer Graphics & Applications 14, 4 (1994), 23-32. – reference: [JST*10] Jeong W.-K., Schneider J., Turney S. G., Faulkner-Jones B. E., Meyer D., Westermann R., Reid C., Lichtman J., Pfister H.: Interactive histology of large-scale biomedical image stacks. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010), 1386-1395. – reference: [ML13] Morgan J. L., Lichtman J. W.: Why not connectomics? Nature Methods 10, 6 (June 2013), 494-500. – reference: [FK10] Fogal T., Krüger J.: Tuvok - An architecture for large scale volume rendering. In 15th Vision, Modeling and Visualization Workshop '10 (2010), pp. 139-146. – reference: [PSL*98] Parker S., Shirley P., Livnat Y., Hansen C., Sloan P.: Interactive ray tracing for isosurface rendering. In IEEE Visualization '98 (1998), pp. 233-238. – reference: [BCH12] Bethel E. W., Childs H., Hansen C.: High Performance Visualization - Enabling Extreme-Scale Scientific Insight. Chapman & Hall, CRC Computational Science, CRC Press/Francis-Taylor Group, Nov. Boca Raton, FL, USA, 2012. – reference: [RGW*03] Roettger S., Guthe S., Weiskopf D., Ertl T., Strasser W.: Smart hardware-accelerated volume rendering. In Symposium on Visualization (VISSYM '03) (2003), pp. 231-238. – reference: [BSS00] Bartz D., Schneider B.-O., Silva C.: Rendering and visualization in parallel environments. SIGGRAPH 00 course notes (2000). – reference: [MSE06] Müller C., Strengert M., Ertl T.: Optimized volume raycasting for graphics-hardware-based cluster systems. In Eurographics Symposium on Parallel Graphics and Visualization (2006), pp. 59-66. – reference: [GMG08] Gobbetti E., Marton F., Guitián J. A. I.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. The Visual Computer 24, 7 (2008), 787-806. – reference: [Kno06] Knoll A.: A survey of octree volume rendering methods. In First IRTG workshop (2006). – reference: [YMC06] Younesy H., Möller T., Carr H.: Improving the quality of multi-resolution volume rendering. In Eurovis/IEEE-VGTC Symposium on Visualization '06 (2006), pp. 251-258. – reference: [Wit98] Wittenbrink C. M. Survey of Parallel Volume Rendering Algorithms. Tech. rep., Hewlett-Packard Laboratories, 1998. – year: 2011 – volume: 14 start-page: 59 issue: 4 year: 1994 end-page: 68 article-title: Parallel volume rendering using binary‐swap compositing publication-title: IEEE Computer Graphics & Applications – start-page: 3 year: 2011 end-page: 10 article-title: Full‐resolution interactive CPU volume rendering with coherent BVH traversal publication-title: IEEE Pacific Visualization Symposium '11 – volume: 87 start-page: 3 year: 1987 end-page: 10 article-title: A fast voxel traversal algorithm for ray tracing publication-title: Eurographics – volume: 33 start-page: 50 issue: 4 year: 2013 end-page: 61 article-title: Exploring the connectome ‐ Petascale volume visualization of microscopy data streams publication-title: IEEE Computer Graphics and Applications – volume: 29 start-page: 1073 issue: 3 year: 2010 end-page: 1082 article-title: Streaming‐enabled parallel dataflow architecture for multicore systems publication-title: Computer Graphics Forum – start-page: 169 year: 1998 end-page: 178 article-title: Efficiently using graphics hardware in volume rendering applications publication-title: SIGGRAPH '98 – year: 1966 – volume: 17 start-page: 1 issue: 3 year: 1983 end-page: 11 article-title: Pyramidal parametrics publication-title: Computer Graphics (Proc. of SIGGRAPH '83) – volume: 30 start-page: 45 issue: 3 year: 2010 end-page: 57 article-title: In situ visualization for large‐scale combustion simulations publication-title: IEEE Computer Graphics & Applications – volume: 17 start-page: 185 issue: 3 year: 2001 end-page: 197 article-title: Multiresolution volume visualization with a texture‐based octree publication-title: The Visual Computer – volume: 20 start-page: 823 issue: 8 year: 2001 end-page: 835 article-title: New techniques for efficient sliding thin‐slab volume visualization publication-title: IEEE Transactions on Medical Imaging – start-page: 297 year: 2006 – volume: 19 start-page: 367 issue: 3 year: 2013 end-page: 78 article-title: A survey of visualization pipelines publication-title: IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE SciVis '13) – start-page: 287 year: 2003 end-page: 292 article-title: Acceleration techniques for GPU‐based volume rendering publication-title: IEEE Visualization '03 – volume: 28 start-page: 51 issue: 1 year: 2004 end-page: 58 article-title: Advanced techniques for high‐quality multi‐resolution volume rendering publication-title: Computers & Graphics – volume: 19 start-page: 495 issue: 3 year: 2013 end-page: 513 article-title: Visualization and visual analysis of multifaceted scientific data: A survey publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 29 year: 2008 end-page: 39 article-title: An Outlook into ultra‐scale visualization of large‐scale biological data publication-title: Workshop on Ultrascale Visualization, UltraVis 2008. – start-page: 91 year: 1994 end-page: 98 article-title: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware publication-title: IEEE Symposium on Volume Visualization – volume: 10 start-page: 494 issue: 6 year: 2013 end-page: 500 article-title: Why not connectomics? publication-title: Nature Methods – start-page: 1 year: 2011 end-page: 8 article-title: Display‐aware image editing publication-title: IEEE International Conference on Computational Photography (ICCP 11) – year: 1995 article-title: SCIRun : A scientific programming environment for computational steering publication-title: ACM/IEEE Conference on Supercomputing '95 – start-page: 267 year: 2006 end-page: 274 article-title: A granular three dimensional multiresolution transform publication-title: Eurovis/IEEE‐VGTC Symposium on Visualization 06 – volume: 503 start-page: 147 issue: 7474 year: 2013 end-page: 152 article-title: Neurobiology: Brain mapping in high resolution publication-title: Nature – start-page: 9 year: 2005 end-page: 17 article-title: Optimization of large‐scale, real‐time simulations by spatial hashing publication-title: Summer Computer Simulation Conference – year: 1998 – start-page: 315 year: 2006 end-page: 323 article-title: Perspective isosurface and direct volume rendering for virtual endoscopy applications publication-title: Eurovis/IEEE‐VGTC Symposium on Visualization – volume: 6 start-page: 56 issue: 11 year: 1986 end-page: 67 article-title: Survey of texture mapping publication-title: IEEE Computer Graphics and Applications – volume: 19 start-page: 2868 issue: 12 year: 2013 end-page: 2877 article-title: ConnectomeExplorer: Query‐guided visual analysis of large volumetric neuroscience data publication-title: IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE SciVis 13) – volume: 15 start-page: 1555 issue: 6 year: 2009 end-page: 1562 article-title: Kd‐jump: A path‐preserving stackless traversal for faster isosurface raytracing on GPUs publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 24 start-page: 787 issue: 7 year: 2008 end-page: 806 article-title: A single‐pass GPU ray casting framework for interactive out‐of‐core rendering of massive volumetric datasets publication-title: The Visual Computer – volume: 471 start-page: 177 issue: 7337 year: 2011 end-page: 182 article-title: Network anatomy and in vivo physiology of visual cortical neurons publication-title: Nature – start-page: 151 year: 1998 end-page: 158 article-title: A Virtual Mipmap publication-title: SIGGRAPH '98 – volume: 05 start-page: 671 year: 2005 end-page: 678 article-title: Volumeshop: An interactive system for direct volume illustration publication-title: IEEE Visualization – year: 2008 – volume: 5 start-page: 9 issue: 1 year: 2000 end-page: 22 article-title: Optimized view frustum culling algorithms for bounding boxes publication-title: Journal of Graphics Tools – start-page: 111 year: 2011 end-page: 120 article-title: A preview and exploratory technique for large‐scale scientific simulations publication-title: Eurographics Conference on Parallel Graphics and Visualization (EGPGV'11) – start-page: 301 year: 2003 end-page: 308 article-title: High‐quality two‐level volume rendering of segmented data sets on consumer graphics hardware publication-title: IEEE Visualization 03 – start-page: 12 year: 2009 end-page: 21 article-title: Next‐generation visualization technologies: Enabling discoveries at extreme scale publication-title: SciDAC Review – volume: 3 start-page: 435 year: 2005 end-page: 444 article-title: Survey of parallel and distributed volume rendering: Revisited publication-title: International Conference on Computational Science and Its Applications (ICCSA '05) – volume: 11 start-page: 70 issue: 6 year: 1994 end-page: 77 article-title: Dynamic queries for visual information seeking publication-title: IEEE Software – year: 2012 article-title: Virtual texturing in software and hardware publication-title: SIGGRAPH '12 Courses – year: 1993 – start-page: 163 year: 2008 end-page: 170 article-title: Smooth mixed‐resolution GPU volume rendering publication-title: IEEE International Symposium on Volume and Point‐Based Graphics (VG 08) – start-page: 198:1 year: 2012 end-page: 198:12 article-title: Sparse PDF maps for non‐linear multi‐resolution image operations publication-title: ACM Transactions on Graphics (Proc. of ACM SIGGRAPH Asia '12) – start-page: 345 year: 2004 end-page: 352 article-title: Interactive exploration of large remote micro‐CT scans publication-title: IEEE Visualization – volume: 24 start-page: 878 issue: 3 year: 2005 end-page: 885 article-title: Far voxels: A multiresolution framework for interactive rendering of huge complex 3D models on commodity graphics platforms publication-title: ACM Transactions on Graphics – start-page: 139 year: 2010 end-page: 146 article-title: Tuvok ‐ An architecture for large scale volume rendering publication-title: 15th Vision, Modeling and Visualization Workshop '10 – volume: 15 start-page: 436 issue: 3 year: 2009 end-page: 452 article-title: Equalizer: A scalable parallel rendering framework publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 30 start-page: 32 issue: 3 year: 2010 end-page: 44 article-title: Parallel and streaming generation of ghost data for structured grids publication-title: IEEE Computer Graphics & Applications – start-page: 355 year: 1999 end-page: 362 article-title: Multiresolution techniques for interactive texture‐based volume visualization publication-title: IEEE Visualization 99 – start-page: 643 year: 2010 end-page: 676 – volume: 93 start-page: 231 year: 1993 end-page: 238 article-title: Hierarchical Z‐buffer visibility publication-title: SIGGRAPH – start-page: 619 year: 1992 end-page: 626 article-title: Dynamic queries for information exploration: An implementation and evaluation publication-title: SIGCHI Conference on Human Factors in Computing Systems – start-page: 167 year: 2005 end-page: 174 article-title: Query‐driven visualization of large data sets publication-title: IEEE Visualization '05 – start-page: 251 year: 2006 end-page: 258 article-title: Improving the quality of multi‐resolution volume rendering publication-title: Eurovis/IEEE‐VGTC Symposium on Visualization '06 – volume: 10 start-page: 501 issue: 6 year: 2013 end-page: 7 article-title: Cellular‐resolution connectomics: Challenges of dense neural circuit reconstruction publication-title: Nature Methods – volume: 26 start-page: 80 issue: 1 year: 2007 end-page: 113 article-title: A survey of general‐purpose computation on graphics hardware publication-title: Computer Graphics Forum – volume: 26 start-page: 415 issue: 3 year: 2007 end-page: 424 article-title: Stackless kd‐tree traversal for high performance GPU ray tracing publication-title: Eurographics – year: 2010 – start-page: 43 year: 2013 end-page: 51 article-title: An analysis of scalable GPU‐based ray‐guided volume rendering publication-title: IEEE Symposium on Large Data Analysis and Visualization (LDAV '13) – start-page: 189 year: 1997 end-page: 198 article-title: An interactive visual query environment for exploring data publication-title: Tenth Annual ACM Symposium on User Interface Software and Technology (UIST 97) – start-page: 11 year: 2005 end-page: 223 article-title: A multiresolution volume rendering framework for large‐scale time‐varying data visualization publication-title: Eurographics/IEEE VGTC Workshop on Volume Graphics '05 – year: 2009 article-title: Beyond triangles : Gigavoxels effects in video games publication-title: SIGGRAPH '09: Technical talk – start-page: 77 year: 1997 end-page: 88 article-title: Visibility culling using hierarchical occlusion maps publication-title: ACM SIGGRAPH '97 – start-page: 167 year: 2007 article-title: Interactive k‐d tree GPU raytracing publication-title: Symposium on Interactive 3D Graphics and Games ‐ I3D '07 – start-page: 384 year: 2001 end-page: 389 article-title: Parallel volume rendering using PC graphics hardware publication-title: Pacific Conference on Computer Graphics and Applications – volume: 33 start-page: 77 issue: 6 year: 2014 end-page: 100 article-title: State‐of‐the‐art in compressed GPU‐based direct volume rendering publication-title: Computer Graphics Forum – start-page: 109 year: 2000 end-page: 118 article-title: Interactive volume rendering on standard PC graphics hardware using multi‐textures and multi‐stage rasterization publication-title: SIGGRAPH/Eurographics Workshop on Graphics Hardware – start-page: 53 year: 2002 end-page: 59 article-title: Interactive rendering of large volume data sets publication-title: IEEE Visualization – volume: 11 start-page: 1 issue: 1 year: 1992 end-page: 11 article-title: A simple output‐sensitive algorithm for hidden surface removal publication-title: ACM Transactions on Graphics – volume: 30 start-page: 22 issue: 3 year: 2010 end-page: 31 article-title: Extreme scaling of production visualization software on diverse architectures publication-title: IEEE Computer Graphics and Applications – volume: 28 start-page: 839 issue: 3 year: 2009 end-page: 846 article-title: Accelerating volume raycasting using proxy spheres publication-title: Computer Graphics Forum (Proc. of EuroVis '09) – start-page: 7 year: 2000 end-page: 13 article-title: Level‐Of‐detail volume rendering via 3D textures publication-title: IEEE Symposium on Volume Visualization – volume: 14 start-page: 49 issue: 4 year: 1994 end-page: 58 article-title: Communication costs for parallel volume‐rendering algorithms publication-title: IEEE Computer Graphics & Applications – year: 2006 article-title: Real time interactive massive model visualization publication-title: Eurographics '06: Tutorials – start-page: 271 year: 1995 end-page: 278 article-title: High dimensional brushing for interactive exploration of multivariate data publication-title: IEEE Visualization '95 – start-page: 45 year: 2007 end-page: 52 article-title: Scalable sort‐first parallel direct volume rendering with dynamic load balancing publication-title: Eurographics Symposium on Parallel Graphics and Visualization – volume: 30 start-page: 1 issue: 2 year: 2011 end-page: 13 article-title: Interactive editing of massive imagery made simple publication-title: ACM Transactions on Graphics – year: 2013 – start-page: 71 year: 2013 end-page: 78 article-title: Visualization of big SPH simulations via compressed octree grids publication-title: IEEE Big Data – start-page: 177 year: 2005 end-page: 240 article-title: GPU‐based object‐order ray‐casting for large datasets publication-title: Eurographics/IEEE VGTC Workshop on Volume Graphics '05 – start-page: 137 year: 2011 end-page: 146 article-title: Interactive visualization of volumetric data with WebGL in real‐time publication-title: 16th International Conference on 3D Web Technology ‐ Web3D '11 – start-page: 5 year: 2005 end-page: 10 article-title: Distributed volume rendering on a visualization cluster publication-title: Ninth International Conference on Computer Aided Design and Computer Graphics – start-page: 51 year: 1994 end-page: 58 article-title: A multiresolution framework for volume rendering publication-title: Proceedings of Symposium on Volume Visualization – year: 2009 – year: 2002 article-title: Out‐of‐core algorithms for scientific visualization and computer graphics publication-title: IEEE Visualization '02 Course Notes – start-page: 57 year: 2010 end-page: 66 article-title: Large data visualization on distributed memory multi‐GPU clusters publication-title: High Performance Graphics – start-page: 185 year: 2008 article-title: High‐speed volume ray casting with CUDA publication-title: IEEE Symposium on Interactive Ray Tracing – volume: 32 start-page: 1 issue: 6 year: 2013 end-page: 11 article-title: Real‐time 3D reconstruction at scale using voxel hashing publication-title: ACM Transactions on Graphics – start-page: 1696 year: 2007 end-page: 1703 article-title: High‐quality multimodal volume rendering for preoperative planning of neurosurgical interventions publication-title: IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE Visualization 07) – volume: 26 start-page: 1037 issue: 6–8 year: 2010 end-page: 1047 article-title: View‐dependent exploration of massive volumetric models on large‐scale light field displays publication-title: The Visual Computer – year: 2014 article-title: A survey of GPU‐based large‐scale volume visualization publication-title: Proceedings EuroVis 2014 – year: 2011 article-title: In situ data processing for extreme‐scale computing publication-title: SciDAC Conference – volume: 12 start-page: 1299 issue: 5 year: 2006 end-page: 1306 article-title: Distributed shared memory for roaming large volumes publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 39 year: 2006 end-page: 46 article-title: Adaptive sampling in single Pass, GPU‐based raycasting of multiresolution volumes publication-title: Eurographics/IEEE VGTC Workshop on Volume Graphics '06 – start-page: 317 year: 2003 end-page: 324 article-title: Empty space skipping and occlusion clipping for texture‐based volume rendering publication-title: IEEE Visualization 03 – start-page: 341 year: 2003 end-page: 348 article-title: Visibility culling using plenoptic opacity functions for large volume visualization publication-title: IEEE Visualization '03 – start-page: 7 year: 2002 end-page: 15 article-title: Adaptive texture maps publication-title: Graphics Hardware – start-page: 74 year: 1990 end-page: 93 – start-page: 1 year: 2003 end-page: 8 article-title: Visibility‐based prefetching for interactive out‐of‐core rendering publication-title: IEEE Symposium on Parallel and Large‐Data Visualization and Graphics – volume: 14 start-page: 23 issue: 4 year: 1994 end-page: 32 article-title: A sorting classification of parallel rendering publication-title: IEEE Computer Graphics & Applications – start-page: 24 year: 2008 end-page: 28 article-title: Petascale visualization: Approaches and initial results publication-title: Workshop on Ultrascale Visualization, 2008. UltraVis 08. – start-page: 127 year: 2014 end-page: 136 article-title: Visibility‐driven processing of streaming volume data publication-title: Proc. of VCBM 2014 – volume: 18 start-page: 2285 issue: 12 year: 2012 end-page: 2294 article-title: Interactive volume exploration of petascale microscopy data streams using a visualization‐driven virtual memory approach publication-title: IEEE Transactions on Visualization and Computer Graphics (Proc. IEEE of SciVis 12) – start-page: 167 year: 2000 end-page: 177 article-title: A framework for interactive hardware accelerated remote 3D‐visualization publication-title: TCVG Symposium on Visualization (VisSym '00) – volume: 32 start-page: 27:1 issue: 3 year: 2013 end-page: 27:22 article-title: VDB: High‐resolution sparse volumes with dynamic topology publication-title: ACM Transactions on Graphics – start-page: 1 year: 2009 end-page: 10 – start-page: 147 year: 2008 end-page: 154 article-title: Accelerating volume raycasting using occlusion frustums publication-title: Fifth EG/IEEE Conference on Point‐Based Graphics – volume: 10 start-page: 422 issue: 4 year: 2004 end-page: 433 article-title: A streaming narrow‐band algorithm: Interactive computation and visualization of level sets publication-title: IEEE Transactions on Visualization and Computer Graphics – year: 2011 article-title: Demand‐driven volume rendering of terascale EM data publication-title: SIGGRAPH 11: Technical talk – volume: 30 start-page: 58 issue: 3 year: 2010 end-page: 70 article-title: SSECRETT and NeuroTrace: Interactive visualization and analysis tools for large‐scale neuroscience datasets publication-title: IEEE Computer Graphics & Applications – year: 2000 article-title: Rendering and visualization in parallel environments publication-title: SIGGRAPH 00 course notes – volume: 15 start-page: 1505 issue: 6 year: 2009 end-page: 1514 article-title: Scalable and interactive segmentation and visualization of neural processes in EM datasets publication-title: IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE Visualization '09) – start-page: 190 year: 2010 end-page: 198 – volume: 05 start-page: 190 year: 2005 end-page: 198 article-title: A contract‐based system for large data visualization publication-title: IEEE Visualization – start-page: 125 year: 2012 end-page: 134 article-title: Representing appearance and pre‐filtering subpixel data in sparse voxel octrees publication-title: ACM SIGGRAPH/Eurographics conference on High‐Performance Graphics (EGGH‐HPG 12) – volume: 14 start-page: 820 issue: 4 year: 2008 end-page: 834 article-title: Output‐sensitive 3D line integral convolution publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 16 start-page: 1386 issue: 6 year: 2010 end-page: 1395 article-title: Interactive histology of large‐scale biomedical image stacks publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 59 year: 2006 end-page: 66 article-title: Optimized volume raycasting for graphics‐hardware‐based cluster systems publication-title: Eurographics Symposium on Parallel Graphics and Visualization – start-page: 147 year: 2004 end-page: 154 article-title: Visibility culling for time‐varying volume rendering using temporal occlusion coherence publication-title: IEEE Visualization 04 – year: 2003 – start-page: 224 year: 2012 end-page: 231 article-title: Oh, $#*@! Exascale! The effect of emerging architectures on scientific discovery publication-title: 2012 SC Companion: High Performance Computing, Networking Storage and Analysis – start-page: 233 year: 1998 end-page: 238 article-title: Interactive ray tracing for isosurface rendering publication-title: IEEE Visualization '98 – year: 2006 article-title: A survey of octree volume rendering methods publication-title: First IRTG workshop – volume: 20 issue: 12 year: 2014 article-title: Sparse PDF volumes for consistent multi‐resolution volume rendering publication-title: IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE SciVis '14) – volume: 17 start-page: 1164 issue: 8 year: 2011 end-page: 1177 article-title: Sort‐first parallel volume rendering publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 231 year: 2003 end-page: 238 article-title: Smart hardware‐accelerated volume rendering publication-title: Symposium on Visualization (VISSYM '03) – start-page: 11 year: 2010 end-page: 18 article-title: Cross‐node occlusion in sort‐last volume rendering publication-title: Eurographics Symposium on Parallel Graphics and Visualization – year: 2012 – start-page: 55 year: 2010 end-page: 63 article-title: Efficient sparse voxel octrees publication-title: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D 10) – volume: 13 start-page: 50 issue: 4 year: 1993 end-page: 56 article-title: Volume data and wavelet transforms publication-title: IEEE Computer Graphics and Applications – start-page: 15 year: 2005 end-page: 22 article-title: KD‐tree acceleration structures for a GPU raytracer publication-title: Graphics Hardware – volume: 24 start-page: 303 issue: 3 year: 2005 end-page: 312 article-title: Real‐time ray‐casting and advanced shading of discrete isosurfaces publication-title: Computer Graphics Forum (Proc. of Eurographics '05) – start-page: 187 year: 2005 end-page: 195 article-title: A simple and flexible volume rendering framework for graphics‐hardware‐based raycasting publication-title: Eurographics/IEEE VGTC Workshop on Volume Graphics '05 – year: 2006 – volume: 28 start-page: 1 issue: 5 year: 2009 end-page: 9 article-title: Ray casting of multiple volumetric datasets with polyhedral boundaries on manycore GPUs publication-title: ACM Transactions on Graphics – start-page: 130 year: 1998 end-page: 139 article-title: Ray tracing with rope trees publication-title: 14th Spring Conference On Computer Graphics – start-page: 15 year: 2009 end-page: 22 article-title: GigaVoxels : Ray‐guided streaming for efficient and detailed voxel rendering publication-title: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games – volume: 15 start-page: 1497 issue: 6 year: 2009 end-page: 1504 article-title: BrainGazer ‐ Visual queries for neurobiology research publication-title: IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE Visualization 09) – start-page: 1 year: 2011 end-page: 6 article-title: Examples of in transit visualization publication-title: Second International Workshop on Petascale Data Analytics: Challenges and Opportunities (PDAC '11) – start-page: 225 year: 2002 end-page: 241 article-title: Hierarchical indexing for out‐of‐core access to multi‐resolution data publication-title: Hierarchical and Geometrical Methods in Scientific Visualization – year: 2011 ident: e_1_2_12_70_1 article-title: In situ data processing for extreme‐scale computing publication-title: SciDAC Conference – start-page: 51 year: 1994 ident: e_1_2_12_142_1 article-title: A multiresolution framework for volume rendering publication-title: Proceedings of Symposium on Volume Visualization – year: 2002 ident: e_1_2_12_127_1 article-title: Out‐of‐core algorithms for scientific visualization and computer graphics publication-title: IEEE Visualization '02 Course Notes – ident: e_1_2_12_49_1 doi: 10.1016/j.cag.2003.10.018 – ident: e_1_2_12_150_1 doi: 10.1145/258734.258781 – ident: e_1_2_12_69_1 doi: 10.1109/TVCG.2010.168 – ident: e_1_2_12_4_1 doi: 10.1080/10867651.2000.10487517 – volume-title: A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing year: 1966 ident: e_1_2_12_95_1 – ident: e_1_2_12_8_1 doi: 10.1109/TVCG.2013.142 – ident: e_1_2_12_103_1 doi: 10.1145/2487228.2487235 – start-page: 53 year: 2002 ident: e_1_2_12_44_1 article-title: Interactive rendering of large volume data sets publication-title: IEEE Visualization – start-page: 39 year: 2006 ident: e_1_2_12_81_1 article-title: Adaptive sampling in single Pass, GPU‐based raycasting of multiresolution volumes publication-title: Eurographics/IEEE VGTC Workshop on Volume Graphics '06 – ident: e_1_2_12_18_1 – start-page: 59 year: 2006 ident: e_1_2_12_101_1 article-title: Optimized volume raycasting for graphics‐hardware‐based cluster systems publication-title: Eurographics Symposium on Parallel Graphics and Visualization – volume: 20 issue: 12 year: 2014 ident: e_1_2_12_130_1 article-title: Sparse PDF volumes for consistent multi‐resolution volume rendering publication-title: IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE SciVis '14) – start-page: 297 volume-title: ACM/IEEE conference on Supercomputing (SC '06) year: 2006 ident: e_1_2_12_137_1 – ident: e_1_2_12_54_1 doi: 10.1109/MCG.1986.276672 – start-page: 45 year: 2007 ident: e_1_2_12_105_1 article-title: Scalable sort‐first parallel direct volume rendering with dynamic load balancing publication-title: Eurographics Symposium on Parallel Graphics and Visualization – year: 2000 ident: e_1_2_12_19_1 article-title: Rendering and visualization in parallel environments publication-title: SIGGRAPH 00 course notes – volume: 05 start-page: 190 year: 2005 ident: e_1_2_12_21_1 article-title: A contract‐based system for large data visualization publication-title: IEEE Visualization – start-page: 317 year: 2003 ident: e_1_2_12_86_1 article-title: Empty space skipping and occlusion clipping for texture‐based volume rendering publication-title: IEEE Visualization 03 – ident: e_1_2_12_11_1 doi: 10.1109/MCG.2013.55 – ident: e_1_2_12_119_1 doi: 10.1111/cgf.12280 – start-page: 71 year: 2013 ident: e_1_2_12_123_1 article-title: Visualization of big SPH simulations via compressed octree grids publication-title: IEEE Big Data – start-page: 301 year: 2003 ident: e_1_2_12_51_1 article-title: High‐quality two‐level volume rendering of segmented data sets on consumer graphics hardware publication-title: IEEE Visualization 03 – year: 2006 ident: e_1_2_12_75_1 article-title: A survey of octree volume rendering methods publication-title: First IRTG workshop – ident: e_1_2_12_98_1 doi: 10.1109/38.291532 – start-page: 225 year: 2002 ident: e_1_2_12_112_1 article-title: Hierarchical indexing for out‐of‐core access to multi‐resolution data publication-title: Hierarchical and Geometrical Methods in Scientific Visualization – ident: e_1_2_12_109_1 doi: 10.1145/2508363.2508374 – ident: e_1_2_12_113_1 doi: 10.1145/1654059.1654064 – start-page: 111 year: 2011 ident: e_1_2_12_138_1 article-title: A preview and exploratory technique for large‐scale scientific simulations publication-title: Eurographics Conference on Parallel Graphics and Visualization (EGPGV'11) – year: 2009 ident: e_1_2_12_26_1 article-title: Beyond triangles : Gigavoxels effects in video games publication-title: SIGGRAPH '09: Technical talk doi: 10.1145/1597990.1598068 – start-page: 251 year: 2006 ident: e_1_2_12_147_1 article-title: Improving the quality of multi‐resolution volume rendering publication-title: Eurovis/IEEE‐VGTC Symposium on Visualization '06 – volume-title: Efficient Methods for Direct Volume Rendering of Large Data Sets year: 2006 ident: e_1_2_12_82_1 – start-page: 345 year: 2004 ident: e_1_2_12_115_1 article-title: Interactive exploration of large remote micro‐CT scans publication-title: IEEE Visualization – start-page: 12 year: 2009 ident: e_1_2_12_106_1 article-title: Next‐generation visualization technologies: Enabling discoveries at extreme scale publication-title: SciDAC Review – start-page: 15 year: 2009 ident: e_1_2_12_27_1 article-title: GigaVoxels : Ray‐guided streaming for efficient and detailed voxel rendering publication-title: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games doi: 10.1145/1507149.1507152 – start-page: 43 year: 2013 ident: e_1_2_12_41_1 article-title: An analysis of scalable GPU‐based ray‐guided volume rendering publication-title: IEEE Symposium on Large Data Analysis and Visualization (LDAV '13) – start-page: 3 year: 2011 ident: e_1_2_12_76_1 article-title: Full‐resolution interactive CPU volume rendering with coherent BVH traversal publication-title: IEEE Pacific Visualization Symposium '11 – start-page: 177 year: 2005 ident: e_1_2_12_56_1 article-title: GPU‐based object‐order ray‐casting for large datasets publication-title: Eurographics/IEEE VGTC Workshop on Volume Graphics '05 – ident: e_1_2_12_107_1 doi: 10.1109/38.291531 – ident: e_1_2_12_31_1 doi: 10.1145/263407.263545 – start-page: 7 year: 2000 ident: e_1_2_12_146_1 article-title: Level‐Of‐detail volume rendering via 3D textures publication-title: IEEE Symposium on Volume Visualization – ident: e_1_2_12_15_1 doi: 10.1109/TVCG.2007.70560 – volume-title: Real‐Time Rendering ident: e_1_2_12_5_1 doi: 10.1201/b22086 – ident: e_1_2_12_16_1 doi: 10.1038/nature09802 – ident: e_1_2_12_12_1 doi: 10.1145/2037826.2037901 – start-page: 139 year: 2010 ident: e_1_2_12_39_1 article-title: Tuvok ‐ An architecture for large scale volume rendering publication-title: 15th Vision, Modeling and Visualization Workshop '10 – start-page: 384 year: 2001 ident: e_1_2_12_90_1 article-title: Parallel volume rendering using PC graphics hardware publication-title: Pacific Conference on Computer Graphics and Applications – start-page: 147 year: 2008 ident: e_1_2_12_99_1 article-title: Accelerating volume raycasting using occlusion frustums publication-title: Fifth EG/IEEE Conference on Point‐Based Graphics – start-page: 190 volume-title: International Conference on Computer Graphics Theory and Applications (GRAPP '10) year: 2010 ident: e_1_2_12_100_1 – ident: e_1_2_12_66_1 doi: 10.1109/TVCG.2009.178 – start-page: 167 year: 2005 ident: e_1_2_12_134_1 article-title: Query‐driven visualization of large data sets publication-title: IEEE Visualization '05 – ident: e_1_2_12_139_1 doi: 10.1111/j.1467-8659.2009.01704.x – ident: e_1_2_12_104_1 doi: 10.1109/VISUAL.1995.485139 – start-page: 5 year: 2005 ident: e_1_2_12_38_1 article-title: Distributed volume rendering on a visualization cluster publication-title: Ninth International Conference on Computer Aided Design and Computer Graphics – start-page: 267 year: 2006 ident: e_1_2_12_33_1 article-title: A granular three dimensional multiresolution transform publication-title: Eurovis/IEEE‐VGTC Symposium on Visualization 06 – start-page: 198:1 year: 2012 ident: e_1_2_12_62_1 article-title: Sparse PDF maps for non‐linear multi‐resolution image operations publication-title: ACM Transactions on Graphics (Proc. of ACM SIGGRAPH Asia '12) – start-page: 127 year: 2014 ident: e_1_2_12_126_1 article-title: Visibility‐driven processing of streaming volume data publication-title: Proc. of VCBM 2014 – ident: e_1_2_12_47_1 doi: 10.1145/1073204.1073277 – volume-title: Sparse Voxel Octree Ray Tracing on the GPU year: 2009 ident: e_1_2_12_118_1 – ident: e_1_2_12_88_1 doi: 10.1109/TVCG.2010.116 – ident: e_1_2_12_3_1 doi: 10.1109/ULTRAVIS.2008.5154060 – volume: 24 start-page: 787 issue: 7 year: 2008 ident: e_1_2_12_48_1 article-title: A single‐pass GPU ray casting framework for interactive out‐of‐core rendering of massive volumetric datasets publication-title: The Visual Computer – ident: e_1_2_12_111_1 doi: 10.1145/2343483.2343488 – ident: e_1_2_12_141_1 doi: 10.1145/280814.280860 – volume: 93 start-page: 231 year: 1993 ident: e_1_2_12_46_1 article-title: Hierarchical Z‐buffer visibility publication-title: SIGGRAPH doi: 10.1145/166117.166147 – ident: e_1_2_12_79_1 doi: 10.1111/j.1467-8659.2009.01466.x – ident: e_1_2_12_52_1 doi: 10.1109/TVCG.2012.240 – volume-title: ACM SIGGRAPH ASIA 2008 courses on ‐ SIGGRAPH Asia '08 year: 2008 ident: e_1_2_12_149_1 – ident: e_1_2_12_89_1 doi: 10.1109/38.291528 – ident: e_1_2_12_28_1 doi: 10.1201/b10648-50 – start-page: 57 year: 2010 ident: e_1_2_12_37_1 article-title: Large data visualization on distributed memory multi‐GPU clusters publication-title: High Performance Graphics – ident: e_1_2_12_148_1 doi: 10.1109/MCG.2010.55 – volume: 05 start-page: 671 year: 2005 ident: e_1_2_12_10_1 article-title: Volumeshop: An interactive system for direct volume illustration publication-title: IEEE Visualization – ident: e_1_2_12_117_1 doi: 10.1109/VISUAL.1998.745713 – start-page: 287 year: 2003 ident: e_1_2_12_77_1 article-title: Acceleration techniques for GPU‐based volume rendering publication-title: IEEE Visualization '03 – ident: e_1_2_12_131_1 doi: 10.1145/102377.112141 – volume-title: Computer Architecture: A Quantitative Approach year: 2011 ident: e_1_2_12_61_1 – ident: e_1_2_12_87_1 doi: 10.1038/503147a – ident: e_1_2_12_140_1 – year: 2014 ident: e_1_2_12_14_1 article-title: A survey of GPU‐based large‐scale volume visualization publication-title: Proceedings EuroVis 2014 – start-page: 7 year: 2002 ident: e_1_2_12_71_1 article-title: Adaptive texture maps publication-title: Graphics Hardware – year: 2006 ident: e_1_2_12_74_1 article-title: Real time interactive massive model visualization publication-title: Eurographics '06: Tutorials – ident: e_1_2_12_78_1 doi: 10.1007/3-540-44935-3_11 – ident: e_1_2_12_97_1 doi: 10.1109/TVCG.2012.133 – volume-title: Technical Report TR93‐027 year: 1993 ident: e_1_2_12_25_1 – start-page: 167 year: 2000 ident: e_1_2_12_36_1 article-title: A framework for interactive hardware accelerated remote 3D‐visualization publication-title: TCVG Symposium on Visualization (VisSym '00) – ident: e_1_2_12_128_1 doi: 10.1109/52.329404 – start-page: 125 year: 2012 ident: e_1_2_12_60_1 article-title: Representing appearance and pre‐filtering subpixel data in sparse voxel octrees publication-title: ACM SIGGRAPH/Eurographics conference on High‐Performance Graphics (EGGH‐HPG 12) – start-page: 224 year: 2012 ident: e_1_2_12_96_1 article-title: Oh, $#*@! Exascale! The effect of emerging architectures on scientific discovery publication-title: 2012 SC Companion: High Performance Computing, Networking Storage and Analysis – volume: 26 start-page: 415 issue: 3 year: 2007 ident: e_1_2_12_114_1 article-title: Stackless kd‐tree traversal for high performance GPU ray tracing publication-title: Eurographics – ident: e_1_2_12_125_1 doi: 10.1109/ULTRAVIS.2008.5154061 – start-page: 147 year: 2004 ident: e_1_2_12_50_1 article-title: Visibility culling for time‐varying volume rendering using temporal occlusion coherence publication-title: IEEE Visualization 04 – ident: e_1_2_12_72_1 doi: 10.1145/1618452.1618498 – ident: e_1_2_12_92_1 doi: 10.1038/nmeth.2480 – start-page: 130 year: 1998 ident: e_1_2_12_53_1 article-title: Ray tracing with rope trees publication-title: 14th Spring Conference On Computer Graphics – ident: e_1_2_12_65_1 doi: 10.1109/MCG.2010.26 – start-page: 9 year: 2005 ident: e_1_2_12_59_1 article-title: Optimization of large‐scale, real‐time simulations by spatial hashing publication-title: Summer Computer Simulation Conference – ident: e_1_2_12_108_1 – ident: e_1_2_12_55_1 doi: 10.1038/nmeth.2476 – volume: 26 start-page: 1037 issue: 6 year: 2010 ident: e_1_2_12_43_1 article-title: View‐dependent exploration of massive volumetric models on large‐scale light field displays publication-title: The Visual Computer – ident: e_1_2_12_64_1 doi: 10.1111/j.1467-8659.2005.00855.x – volume-title: Report from the DOE ASCR 2011 Workshop on Exascale Data Management, Analysis, and Visualization year: 2011 ident: e_1_2_12_2_1 – start-page: 91 year: 1994 ident: e_1_2_12_22_1 article-title: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware publication-title: IEEE Symposium on Volume Visualization – volume-title: Large‐Data Analysis and Visualization year: 2011 ident: e_1_2_12_34_1 – start-page: 167 year: 2007 ident: e_1_2_12_63_1 article-title: Interactive k‐d tree GPU raytracing publication-title: Symposium on Interactive 3D Graphics and Games ‐ I3D '07 – ident: e_1_2_12_67_1 doi: 10.1109/MCG.2010.56 – start-page: 1 year: 2011 ident: e_1_2_12_68_1 article-title: Display‐aware image editing publication-title: IEEE International Conference on Computational Photography (ICCP 11) – year: 1995 ident: e_1_2_12_116_1 article-title: SCIRun : A scientific programming environment for computational steering publication-title: ACM/IEEE Conference on Supercomputing '95 – start-page: 231 year: 2003 ident: e_1_2_12_120_1 article-title: Smart hardware‐accelerated volume rendering publication-title: Symposium on Visualization (VISSYM '03) – ident: e_1_2_12_124_1 – start-page: 315 year: 2006 ident: e_1_2_12_129_1 article-title: Perspective isosurface and direct volume rendering for virtual endoscopy applications publication-title: Eurovis/IEEE‐VGTC Symposium on Visualization – ident: e_1_2_12_23_1 doi: 10.1109/PVGS.2003.1249035 – volume-title: OpenGL Shading Language year: 2006 ident: e_1_2_12_121_1 – start-page: 187 year: 2005 ident: e_1_2_12_133_1 article-title: A simple and flexible volume rendering framework for graphics‐hardware‐based raycasting publication-title: Eurographics/IEEE VGTC Workshop on Volume Graphics '05 – ident: e_1_2_12_17_1 doi: 10.1007/PL00013406 – ident: e_1_2_12_73_1 doi: 10.1109/TVCG.2012.110 – ident: e_1_2_12_110_1 doi: 10.1111/j.1467-8659.2007.01012.x – start-page: 74 volume-title: Visualization in Scientific Computing year: 1990 ident: e_1_2_12_58_1 – start-page: 11 year: 2010 ident: e_1_2_12_93_1 article-title: Cross‐node occlusion in sort‐last volume rendering publication-title: Eurographics Symposium on Parallel Graphics and Visualization – volume-title: Survey of Parallel Volume Rendering Algorithms year: 1998 ident: e_1_2_12_145_1 – ident: e_1_2_12_57_1 doi: 10.1109/TVCG.2009.161 – ident: e_1_2_12_20_1 doi: 10.1109/TVCG.2009.121 – start-page: 1 year: 2011 ident: e_1_2_12_94_1 article-title: Examples of in transit visualization publication-title: Second International Workshop on Petascale Data Analytics: Challenges and Opportunities (PDAC '11) – ident: e_1_2_12_24_1 doi: 10.1109/TVCG.2006.135 – ident: e_1_2_12_42_1 doi: 10.1109/TVCG.2008.25 – ident: e_1_2_12_91_1 doi: 10.1109/RT.2008.4634648 – ident: e_1_2_12_144_1 doi: 10.1145/964967.801126 – ident: e_1_2_12_35_1 doi: 10.1109/TVCG.2008.104 – start-page: 15 year: 2005 ident: e_1_2_12_40_1 article-title: KD‐tree acceleration structures for a GPU raytracer publication-title: Graphics Hardware – ident: e_1_2_12_85_1 doi: 10.1109/TVCG.2004.2 – volume-title: Efficient Sparse Voxel Octrees ‐ Analysis, Extensions, and Implementation year: 2010 ident: e_1_2_12_84_1 – volume: 3 start-page: 435 year: 2005 ident: e_1_2_12_151_1 article-title: Survey of parallel and distributed volume rendering: Revisited publication-title: International Conference on Computational Science and Its Applications (ICCSA '05) – start-page: 11 year: 2005 ident: e_1_2_12_143_1 article-title: A multiresolution volume rendering framework for large‐scale time‐varying data visualization publication-title: Eurographics/IEEE VGTC Workshop on Volume Graphics '05 – start-page: 151 year: 1998 ident: e_1_2_12_135_1 article-title: A Virtual Mipmap publication-title: SIGGRAPH '98 – volume-title: High Performance Visualization – Enabling Extreme‐Scale Scientific Insight year: 2012 ident: e_1_2_12_9_1 doi: 10.1201/b12985 – ident: e_1_2_12_132_1 doi: 10.1145/1944846.1944847 – start-page: 137 year: 2011 ident: e_1_2_12_30_1 article-title: Interactive visualization of volumetric data with WebGL in real‐time publication-title: 16th International Conference on 3D Web Technology ‐ Web3D '11 doi: 10.1145/2010425.2010449 – ident: e_1_2_12_102_1 doi: 10.1109/38.219451 – ident: e_1_2_12_32_1 doi: 10.1201/b10629 – ident: e_1_2_12_29_1 doi: 10.1109/MCG.2010.51 – ident: e_1_2_12_122_1 doi: 10.1145/346876.348238 – start-page: 341 year: 2003 ident: e_1_2_12_45_1 article-title: Visibility culling using plenoptic opacity functions for large volume visualization publication-title: IEEE Visualization '03 – ident: e_1_2_12_80_1 doi: 10.1109/VISUAL.1999.809908 – start-page: 163 year: 2008 ident: e_1_2_12_13_1 article-title: Smooth mixed‐resolution GPU volume rendering publication-title: IEEE International Symposium on Volume and Point‐Based Graphics (VG 08) – start-page: 619 year: 1992 ident: e_1_2_12_7_1 article-title: Dynamic queries for information exploration: An implementation and evaluation publication-title: SIGCHI Conference on Human Factors in Computing Systems doi: 10.1145/142750.143054 – ident: e_1_2_12_83_1 doi: 10.1145/1730804.1730814 – ident: e_1_2_12_136_1 doi: 10.1109/42.938250 – volume: 87 start-page: 3 year: 1987 ident: e_1_2_12_6_1 article-title: A fast voxel traversal algorithm for ray tracing publication-title: Eurographics |
| SSID | ssj0004765 |
| Score | 2.4663706 |
| Snippet | This survey gives an overview of the current state of the art in GPU techniques for interactive large‐scale volume visualization. Modern techniques in this... This survey gives an overview of the current state of the art in GPU techniques for interactive large-scale volume visualization. Modern techniques in this... |
| SourceID | unpaywall proquest crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13 |
| SubjectTerms | Algorithms Analysis Central processing units Computation Computer graphics CPUs GPU I.3.6 [Computer Graphics]: Methodology and Techniques-I.3.3 [Computer Graphics]: Picture/Image Generation-Display algorithms Interactive large data Parallel processing ray-guided Rendering STAR State of the art Studies Systems design Visualization volume rendering |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QE4tDzFQotCi1AvWW3sTBKLU6nYXaFS8WjLCiFZsWNXVVfZqrsroKf-BH4jv4Sx86CLAKFerESZRI7HM_NNMv4M8CxF1KgtD5kxNowJkIbCMgwJDBQaM0VO0yWKb_aT4WH8eoSjJXjRrIWp-CHaD27OMry_dgaeq-kVI9fHths5NE7-N-KJT6fe_6KOitMEG15vxxhTswq5Kp72zoVYtOKG9esC0LwxL8_yb1_y8XgRuvrY01-Dz02vq5KT0-58prr64jdCx2u-1m1YrTFpsFNNojuwZMq7cOsKU-E9GHpQ-uPy-8RSQ6CRWpIPTspg8PaQTl5SNCyCPVdXTmcfSPMmOPKeLzg6mbqVm9V6z_tw0H91sDsM600YQo1cYBgLHisdI1pmSd-ocs15zBQKgi7Cat6zBEpsgXkW9ZRAqzKtWBZxk1jd4_wBLJeT0jyEIHFUc6zgRjiQliUq8tkdYxlNpJQXHdhutCF1TVDu9skYyyZRobGRfmw6sNmKnlWsHH8Seu5V2krk56eujC1F-XF_IHufRH_0Lh1I1oH1RueytuCpJFiVUlQndNSBp-1lsj33QyUvzWROMplzgGkm6BFb7Vz5V4-2ver_LiF3B31_8Oj_RR_DTUJxWNXYrMPy7HxuNggpzdQTbxI_Adp_D04 priority: 102 providerName: Wiley-Blackwell |
| Title | State-of-the-Art in GPU-Based Large-Scale Volume Visualization |
| URI | https://api.istex.fr/ark:/67375/WNG-0Z9FXQ7G-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12605 https://www.proquest.com/docview/1757123110 https://www.proquest.com/docview/1800487892 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cgf.12605 |
| UnpaywallVersion | publishedVersion |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8659 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: ABDBF dateStart: 19980301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8659 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0167-7055 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a7QPsAcZNdGxVuAjtJVVrx0n82G5LKwTVgHV0vJjYsaVpVVptrWB74ifwG_klO3YuoggQEi9WrJxYjo_P8XcSn88ALyPGFFOG-kRr4wcISH1uCPMRDGSKxRKdpg0U347D0SR4PWXT8pxTmwtT8EPUH9ysZTh_bQ18kZnCz1emjgGk6fQsIr8FzZAhGG9AczI-6p9WjN6WK6bIL0JfjBIlt9Das2srUtMO7tc1uHl7lS_Sqy_pbLYOYN0KlNyDz1Xfi40n553VUnbU9S-0jv_xcltwt0SnXr-YTvdhQ-cPYPMnzsKHMHLw9Me373ODBcJHLFHeO8u94dEEKwNcFzPvjd1hjrUPOAe0d-J8oHdydmlzOIvMz0dwnBwe74_88jgGXzHKmR9wGkgVMGaIQc0zmSpKAyIZRxDDjaJdg_DEZCyNe13JmZGxkiTuUR0a1aX0MTTyea6fgBda0jmSUc0tXItD2XNxHiExTqmIZi3YqzQiVElVbk_MmIkqZMGxEW5sWvC8Fl0U_By_E3rl1FpLpBfndkNbxMTH8VB0P_Fk-i4aCtKCnUrvorTlS4EAK8L1HXFSC57Vt9EK7a-VNNfzFcrE1hVGMccmXtTz5W892nPq_7OE2B8m7mL7nxp8CncQyrFio80ONJYXK72LcGkp29DsDw4GSRsDhvekXRrIDRuKFkU |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a28PggXGbKAwIF6G9pGrtnCSWeIGJtkBXcelGhTRZsWOjaVU6ba0GPPET-I38Eo6dCysChHixYuUkcnx8jr_jHH8GeJQgatSWh8wYG0YESENhGYYEBnKNqSKn6QLF3VE82IteTnCyAk_qvTAlP0Sz4OYsw_trZ-BuQfqcleuPtt11cPwCrEUxxSkOEr39SR4VJTHWzN6OM6biFXJ5PM2jS7PRmuvYT0tQc31RHGefz7LpdBm8-tmntwEHdbvLpJOj9mKu2vrLL5SO__thV-ByBUuDp-U4ugorprgGl86RFV6Hgcel379-m1kqCDdSSfLBYRH0X-9R5RlNiHkwdKnlVHtHyjfBvnd-wf7hqdu8WW75vAHj3vPxziCszmEINXKBYSR4pHSEaJkllaPKNOcRUygIvQireccSLrE5Zmm3owRalWrF0i43sdUdzjdhtZgV5iYEsWObYzk3wuG0NFZdH-AxltJYSnjegu1aHVJXHOXuqIyprGMV6hvp-6YFDxrR45KY43dCj71OG4ns5MhlsiUo34_6svNB9CZvkr5kLdiqlS4rIz6VhKwSmtgJILXgfnObzM_9U8kKM1uQTOp8YJIKesXDZrD8rUXbXvd_lpA7_Z6_uPXvovdgfTDeHcrhi9Gr23CRQB2WKTdbsDo_WZg7BJzm6q63jx_L6xNv |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVuLywB2xUCBchPqS1W6cSWyJF2jJLlBWBdqyQkJW7Nio6iq7anfF5YlP4Bv5EsbOhS4ChHixYmUSOR7PzLEzPgZ4kCJq1JaFkTE2jAmQhsJGGBIYKDRyRU7TTRRfjpLhXvx8jOMVeNTshan4IdoFN2cZ3l87Azezwp6wcv3BdvsOjp-CtRgFdwl9W69_kkfFaYINs7fjjKl5hVweT_voUjRacx37aQlqnlmUs_zzx3wyWQavPvpkF-B90-4q6eSwu5irrv7yC6Xj_37YRThfw9LgcTWOLsGKKS_DuRNkhVdg6HHp96_fppYKwo1UknxwUAaDnT2qPKGAWATbLrWcam9I-SbY984v2D84dps3qy2fV2E3e7q7OQzrcxhCjUxgGAsWKx0j2siSylHlmrE4UigIvQirWc8SLrEF5rzfUwKt4lpFvM9MYnWPsWuwWk5Lcx2CxLHNRQUzwuE0nqi-n-BFEaexlLKiAxuNOqSuOcrdURkT2cxVqG-k75sO3GtFZxUxx--EHnqdthL50aHLZEtRvh0NZO-dyMav0oGMOrDeKF3WRnwsCVmlFNgJIHXgbnubzM_9U8lLM12QDHc-MOWCXnG_HSx_a9GG1_2fJeTmIPMXN_5d9A6c3tnK5Paz0YubcJYwHVYZN-uwOj9amFuEm-bqtjePH1qiEvM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a7QPwAOMyrTCmcBHaS6rWzknixzHRVgiqIdZRePFix5amVWm1tYLtiZ_Ab-SXcOxctCJASLxYsXJiOT4Xf06OPwO8SBA1astDZowNIwKkobAMQwIDucZUUdB0C8V343g0id5McVqdc-r2wpT8EM0HN-cZPl47B1_ktozztavTAtJ2-w6R34B2jATGW9CejA_3P9WM3o4rptxfRLGYJCpuobVn12akthvcr2tw8-aqWGSXX7LZbB3A-hlocBdO6r6XiSdn3dVSdfXVL7SO__Fym3CnQqfBfmlO92DDFPfh9jXOwgcw8vD0x7fvc0sFwUcqST44LYLh4YQqr2hezIO3LsOcah_IBkxw7GNgcHx64fZwljs_H8LR4PXRwSisjmMINXKBYSR4pHSEaJklzaPKNOcRUygIxAirec8SPLE5Zmm_pwRalWrF0j43sdU9zregVcwLsw1B7EjnWM6NcHAtjVXfr_MYS8mkEp53YK_WiNQVVbk7MWMm6yULjY30Y9OBZ43oouTn-J3QS6_WRiI7P3MJbQnKj-Oh7H0Wg-n7ZChZB3ZqvcvKly8kAayE5nfCSR142twmL3S_VrLCzFckk7pQmKSCmnje2MvferTn1f9nCXkwHPiLR__U4GO4RVAOy0SbHWgtz1fmCcGlpdqtXOIn-WkT6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State-of-the-Art+in+GPU-Based+Large-Scale+Volume+Visualization&rft.jtitle=Computer+graphics+forum&rft.au=Beyer%2C+Johanna&rft.au=Hadwiger%2C+Markus&rft.au=Pfister%2C+Hanspeter&rft.date=2015-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=8&rft.spage=13&rft.epage=37&rft_id=info:doi/10.1111%2Fcgf.12605&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0Z9FXQ7G_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |