The Cytidine Deaminase APOBEC3 Family Is Subject to Transcriptional Regulation by p53

The APOBEC3 (A3) family of proteins are DNA cytidine deaminases that act as sentinels in the innate immune response against retroviral infections and are responsive to IFN. Recently, a few A3 genes were identified as potent enzymatic sources of mutations in several human cancers. Using human cancer...

Full description

Saved in:
Bibliographic Details
Published inMolecular cancer research Vol. 15; no. 6; pp. 735 - 743
Main Authors Menendez, Daniel, Nguyen, Thuy-Ai, Snipe, Joyce, Resnick, Michael A.
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research Inc 01.06.2017
Subjects
Online AccessGet full text
ISSN1541-7786
1557-3125
1557-3125
DOI10.1158/1541-7786.MCR-17-0019

Cover

Abstract The APOBEC3 (A3) family of proteins are DNA cytidine deaminases that act as sentinels in the innate immune response against retroviral infections and are responsive to IFN. Recently, a few A3 genes were identified as potent enzymatic sources of mutations in several human cancers. Using human cancer cells and lymphocytes, we show that under stress conditions and immune challenges, all A3 genes are direct transcriptional targets of the tumor suppressor p53. Although the expression of most A3 genes (including A3C and A3H) was stimulated by the activation of p53, treatment with the DNA-damaging agent doxorubicin or the p53 stabilizer Nutlin led to repression of the A3B gene. Furthermore, p53 could enhance IFN type-I induction of A3 genes. Interestingly, overexpression of a group of tumor-associated p53 mutants in TP53-null cancer cells promoted A3B expression. These findings establish that the "guardian of the genome" role ascribed to p53 also extends to a unique component of the immune system, the A3 genes, thereby integrating human immune and chromosomal stress responses into an A3/p53 immune axis. Implications: Activated p53 can integrate chromosomal stresses and immune responses through its influence on expression of APOBEC3 genes, which are key components of the innate immune system that also influence genomic stability. Mol Cancer Res; 15(6); 735–44. ©2017 AACR.
AbstractList The APOBEC3 (A3) family of proteins are DNA cytidine deaminases that act as sentinels in the innate immune response against retroviral infections and are responsive to IFN. Recently, a few genes were identified as potent enzymatic sources of mutations in several human cancers. Using human cancer cells and lymphocytes, we show that under stress conditions and immune challenges, all genes are direct transcriptional targets of the tumor suppressor p53. Although the expression of most genes (including and ) was stimulated by the activation of p53, treatment with the DNA-damaging agent doxorubicin or the p53 stabilizer Nutlin led to repression of the gene. Furthermore, p53 could enhance IFN type-I induction of genes. Interestingly, overexpression of a group of tumor-associated p53 mutants in -null cancer cells promoted expression. These findings establish that the "guardian of the genome" role ascribed to p53 also extends to a unique component of the immune system, the genes, thereby integrating human immune and chromosomal stress responses into an A3/p53 immune axis. Activated p53 can integrate chromosomal stresses and immune responses through its influence on expression of genes, which are key components of the innate immune system that also influence genomic stability. .
The APOBEC3 (A3) family of proteins are DNA cytidine deaminases that act as sentinels in the innate immune response against retroviral infections and are responsive to IFN. Recently, a few A3 genes were identified as potent enzymatic sources of mutations in several human cancers. Using human cancer cells and lymphocytes, we show that under stress conditions and immune challenges, all A3 genes are direct transcriptional targets of the tumor suppressor p53. Although the expression of most A3 genes (including A3C and A3H) was stimulated by the activation of p53, treatment with the DNA-damaging agent doxorubicin or the p53 stabilizer Nutlin led to repression of the A3B gene. Furthermore, p53 could enhance IFN type-I induction of A3 genes. Interestingly, overexpression of a group of tumor-associated p53 mutants in TP53-null cancer cells promoted A3B expression. These findings establish that the "guardian of the genome" role ascribed to p53 also extends to a unique component of the immune system, the A3 genes, thereby integrating human immune and chromosomal stress responses into an A3/p53 immune axis.Implications: Activated p53 can integrate chromosomal stresses and immune responses through its influence on expression of APOBEC3 genes, which are key components of the innate immune system that also influence genomic stability. Mol Cancer Res; 15(6); 735–44. ©2017 AACR.
The APOBEC3 (A3) family of proteins are DNA cytidine deaminases that act as sentinels in the innate immune response against retroviral infections and are responsive to IFN. Recently, a few A3 genes were identified as potent enzymatic sources of mutations in several human cancers. Using human cancer cells and lymphocytes, we show that under stress conditions and immune challenges, all A3 genes are direct transcriptional targets of the tumor suppressor p53. Although the expression of most A3 genes (including A3C and A3H) was stimulated by the activation of p53, treatment with the DNA-damaging agent doxorubicin or the p53 stabilizer Nutlin led to repression of the A3B gene. Furthermore, p53 could enhance IFN type-I induction of A3 genes. Interestingly, overexpression of a group of tumor-associated p53 mutants in TP53-null cancer cells promoted A3B expression. These findings establish that the "guardian of the genome" role ascribed to p53 also extends to a unique component of the immune system, the A3 genes, thereby integrating human immune and chromosomal stress responses into an A3/p53 immune axis.Implications: Activated p53 can integrate chromosomal stresses and immune responses through its influence on expression of APOBEC3 genes, which are key components of the innate immune system that also influence genomic stability. Mol Cancer Res; 15(6); 735-44. [copy2017 AACR.
The APOBEC3 (A3) family of proteins are DNA cytidine deaminases that act as sentinels in the innate immune response against retroviral infections and are responsive to IFN. Recently, a few A3 genes were identified as potent enzymatic sources of mutations in several human cancers. Using human cancer cells and lymphocytes, we show that under stress conditions and immune challenges, all A3 genes are direct transcriptional targets of the tumor suppressor p53. Although the expression of most A3 genes (including A3C and A3H) was stimulated by the activation of p53, treatment with the DNA-damaging agent doxorubicin or the p53 stabilizer Nutlin led to repression of the A3B gene. Furthermore, p53 could enhance IFN type-I induction of A3 genes. Interestingly, overexpression of a group of tumor-associated p53 mutants in TP53-null cancer cells promoted A3B expression. These findings establish that the "guardian of the genome" role ascribed to p53 also extends to a unique component of the immune system, the A3 genes, thereby integrating human immune and chromosomal stress responses into an A3/p53 immune axis. Implications: Activated p53 can integrate chromosomal stresses and immune responses through its influence on expression of APOBEC3 genes, which are key components of the innate immune system that also influence genomic stability. Mol Cancer Res; 15(6); 735–44. ©2017 AACR.
The APOBEC3 (A3) family of proteins are DNA cytidine deaminases that act as sentinels in the innate immune response against retroviral infections and are responsive to interferon. Recently, a few A3 genes were identified as potent enzymatic sources of mutations in several human cancers. Using human cancer cells and lymphocytes we show that under stress conditions and immune challenges all A3 genes are direct transcriptional targets of the tumor suppressor p53. While the expression of most A3 genes (including A3C and A3H) was stimulated by activation of p53, treatment with the DNA damaging agent doxorubicin or the p53 stabilizer Nutlin, led to repression of the A3B gene. Furthermore, p53 could enhance interferon type-I induction of A3 genes. Interestingly, overexpression of a group of tumor-associated p53 mutants in TP53-null cancer cells promoted A3B expression. These findings establish that the “guardian of the genome” role ascribed to p53 also extends to a unique component of the immune system–the A3 genes–thereby integrating human immune and chromosomal stress responses into an A3/p53 immune axis.
The APOBEC3 (A3) family of proteins are DNA cytidine deaminases that act as sentinels in the innate immune response against retroviral infections and are responsive to IFN. Recently, a few A3 genes were identified as potent enzymatic sources of mutations in several human cancers. Using human cancer cells and lymphocytes, we show that under stress conditions and immune challenges, all A3 genes are direct transcriptional targets of the tumor suppressor p53. Although the expression of most A3 genes (including A3C and A3H) was stimulated by the activation of p53, treatment with the DNA-damaging agent doxorubicin or the p53 stabilizer Nutlin led to repression of the A3B gene. Furthermore, p53 could enhance IFN type-I induction of A3 genes. Interestingly, overexpression of a group of tumor-associated p53 mutants in TP53-null cancer cells promoted A3B expression. These findings establish that the "guardian of the genome" role ascribed to p53 also extends to a unique component of the immune system, the A3 genes, thereby integrating human immune and chromosomal stress responses into an A3/p53 immune axis.Implications: Activated p53 can integrate chromosomal stresses and immune responses through its influence on expression of APOBEC3 genes, which are key components of the innate immune system that also influence genomic stability. Mol Cancer Res; 15(6); 735-44. ©2017 AACR.The APOBEC3 (A3) family of proteins are DNA cytidine deaminases that act as sentinels in the innate immune response against retroviral infections and are responsive to IFN. Recently, a few A3 genes were identified as potent enzymatic sources of mutations in several human cancers. Using human cancer cells and lymphocytes, we show that under stress conditions and immune challenges, all A3 genes are direct transcriptional targets of the tumor suppressor p53. Although the expression of most A3 genes (including A3C and A3H) was stimulated by the activation of p53, treatment with the DNA-damaging agent doxorubicin or the p53 stabilizer Nutlin led to repression of the A3B gene. Furthermore, p53 could enhance IFN type-I induction of A3 genes. Interestingly, overexpression of a group of tumor-associated p53 mutants in TP53-null cancer cells promoted A3B expression. These findings establish that the "guardian of the genome" role ascribed to p53 also extends to a unique component of the immune system, the A3 genes, thereby integrating human immune and chromosomal stress responses into an A3/p53 immune axis.Implications: Activated p53 can integrate chromosomal stresses and immune responses through its influence on expression of APOBEC3 genes, which are key components of the innate immune system that also influence genomic stability. Mol Cancer Res; 15(6); 735-44. ©2017 AACR.
Author Menendez, Daniel
Resnick, Michael A.
Nguyen, Thuy-Ai
Snipe, Joyce
AuthorAffiliation 1 Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
AuthorAffiliation_xml – name: 1 Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
Author_xml – sequence: 1
  givenname: Daniel
  surname: Menendez
  fullname: Menendez, Daniel
– sequence: 2
  givenname: Thuy-Ai
  surname: Nguyen
  fullname: Nguyen, Thuy-Ai
– sequence: 3
  givenname: Joyce
  surname: Snipe
  fullname: Snipe, Joyce
– sequence: 4
  givenname: Michael A.
  surname: Resnick
  fullname: Resnick, Michael A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28232385$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7If-BCXgjTdTc5LNF4JQp60WKpW6vQ5JJtNmmZ2skxlh_30zdi3aG71KcvKcl5fznkO016c-IPQayDEAV--BL6CSUonjr_V1BbIiBPQzdACcy4oB5Xvzfcfso8OcV4RQAlK8QPtUUUaZ4gfoZnkXcL0dYxP7gE-DXcfe5oBPvl19OqsZPi-FbosvMv4-uVXwIx4TXg62z36ImzGm3nb4OtxOnZ0f2G3xhrOX6Hlruxxe7c4jdHN-tqy_VJdXny_qk8vKc6bGKngHrWRB0aCkWDRCB9eCFbqRLTjvSMs1U4QIrRtPNeOcOqopgLd-4YrGEfr4oLuZ3Do0PvTjYDuzGeLaDluTbDR___Txztymn4YvuJQgi8C7ncCQfkwhj2Ydsw9dZ_uQpmxAAwjQhP0HqiTlUgtBCvr2CbpK01AmNQuqMncQcjb_5k_zj65_h1MA_gD4IeU8hPYRAWLmJTBzwGYO2JQlMCDNvASl78OTPh_HX_GUGcTuH9336aO10Q
CitedBy_id crossref_primary_10_1038_s41587_020_0551_y
crossref_primary_10_1002_JLB_2MR0717_310R
crossref_primary_10_1111_sji_12760
crossref_primary_10_1016_j_mrrev_2022_108411
crossref_primary_10_3390_ijms21186865
crossref_primary_10_1093_nar_gky720
crossref_primary_10_18632_oncotarget_28195
crossref_primary_10_1093_carcin_bgaa002
crossref_primary_10_1038_s41388_020_01583_7
crossref_primary_10_1038_s41467_020_14730_1
crossref_primary_10_1038_s41588_022_01196_8
crossref_primary_10_1080_14796694_2024_2442300
crossref_primary_10_1093_jmcb_mjz075
crossref_primary_10_1038_s41598_024_64986_6
crossref_primary_10_3389_fmicb_2018_02088
crossref_primary_10_3390_ijms26030989
crossref_primary_10_1371_journal_pgen_1011293
crossref_primary_10_1016_j_celrep_2019_02_028
crossref_primary_10_1038_s41388_020_1225_4
crossref_primary_10_1021_acs_chemrestox_9b00358
crossref_primary_10_1371_journal_pone_0241482
crossref_primary_10_1098_rsob_200188
crossref_primary_10_1093_nar_gky1316
crossref_primary_10_1016_j_cell_2017_08_028
crossref_primary_10_1111_cas_13658
crossref_primary_10_1111_febs_16202
crossref_primary_10_1172_JCI128626
crossref_primary_10_7554_eLife_61287
crossref_primary_10_1093_nar_gkab551
crossref_primary_10_3390_ijms242316793
crossref_primary_10_3390_v9080233
crossref_primary_10_1146_annurev_genet_072920_035840
Cites_doi 10.1158/0008-5472.CAN-11-4134
10.1016/j.ccr.2014.01.021
10.1101/gad.266098.115
10.1073/pnas.0909129107
10.1038/ng.2701
10.1038/nature01850
10.1016/j.coviro.2011.10.008
10.1038/embor.2011.46
10.1099/jgv.0.000320
10.1158/0008-5472.CAN-13-1753
10.1002/rmv.1738
10.1371/journal.pgen.1001360
10.1093/nar/gkn232
10.1016/S0092-8674(02)00839-5
10.1093/nar/gkt504
10.1126/science.285.5434.1733
10.1084/jem.20080521
10.1016/j.molcel.2010.09.019
10.1186/s13059-016-1042-9
10.1038/ng.2702
10.1093/molbev/msi026
10.1016/j.cell.2005.10.043
10.1006/geno.2002.6718
10.1038/ng.3670
10.1128/JVI.01089-09
10.1200/JCO.2014.59.5728
10.4161/mge.1.3.17430
10.7554/eLife.02200
10.1002/bies.201600031
10.1016/j.cell.2006.12.007
10.1038/nrc2730
10.1101/cshperspect.a026062
10.1128/mBio.02234-14
10.1016/j.cell.2010.05.021
10.1016/j.virol.2015.03.012
10.1093/nar/gkm340
10.1016/j.bbrc.2016.08.148
10.1038/nature05541
10.18632/oncotarget.11210
10.1084/jem.20080383
10.1186/s40246-015-0056-9
10.1038/ncomms12918
10.1038/nrc3711
10.1038/ng.2955
10.18632/oncotarget.4435
10.1038/ng.3378
10.1093/nar/gkq174
10.1126/science.1068999
10.4049/jimmunol.1501504
10.1093/nar/gkm181
ContentType Journal Article
Copyright 2017 American Association for Cancer Research.
Copyright American Association for Cancer Research Inc Jun 2017
Copyright_xml – notice: 2017 American Association for Cancer Research.
– notice: Copyright American Association for Cancer Research Inc Jun 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U7
C1K
H94
7X8
5PM
DOI 10.1158/1541-7786.MCR-17-0019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
AIDS and Cancer Research Abstracts
Oncogenes and Growth Factors Abstracts
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1557-3125
EndPage 743
ExternalDocumentID PMC5457717
28232385
10_1158_1541_7786_MCR_17_0019
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 ES065079
– fundername: Intramural NIH HHS
  grantid: ZIA ES065079
GroupedDBID ---
123
18M
2FS
2WC
34G
39C
53G
5RE
5VS
AAJMC
AAYXX
ACGFO
ACPRK
ADBBV
ADCOW
AENEX
AFHIN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
IH2
KQ8
L7B
OK1
QTD
RCR
RHI
TR2
W8F
WOQ
YKV
.55
.GJ
3O-
ABEFU
AFFNX
C1A
CGR
CUY
CVF
ECM
EIF
H~9
MVM
NPM
WHG
X7M
ZGI
7TO
7U7
C1K
H94
7X8
5PM
ID FETCH-LOGICAL-c538t-ecb1f73e82e8764d69ebf1a69d7f1bcb0f593800699dc293552b29211cac4bc53
ISSN 1541-7786
1557-3125
IngestDate Thu Aug 21 14:11:47 EDT 2025
Thu Sep 04 23:05:28 EDT 2025
Fri Sep 05 10:56:35 EDT 2025
Mon Jun 30 16:42:08 EDT 2025
Sat May 31 02:13:53 EDT 2025
Tue Jul 01 04:31:25 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2017 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c538t-ecb1f73e82e8764d69ebf1a69d7f1bcb0f593800699dc293552b29211cac4bc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5457717
PMID 28232385
PQID 1983851675
PQPubID 2046228
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5457717
proquest_miscellaneous_1911619037
proquest_miscellaneous_1872579660
proquest_journals_1983851675
pubmed_primary_28232385
crossref_primary_10_1158_1541_7786_MCR_17_0019
crossref_citationtrail_10_1158_1541_7786_MCR_17_0019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Philadelphia
PublicationTitle Molecular cancer research
PublicationTitleAlternate Mol Cancer Res
PublicationYear 2017
Publisher American Association for Cancer Research Inc
Publisher_xml – name: American Association for Cancer Research Inc
References Muller (2022060706540422400_bib40) 2014; 25
Maruyama (2022060706540422400_bib41) 2016; 478
Koito (2022060706540422400_bib29) 2011; 1
Martins (2022060706540422400_bib5) 2006; 127
Shatz (2022060706540422400_bib11) 2015; 6
Kanu (2022060706540422400_bib31) 2016; 17
Ventura (2022060706540422400_bib6) 2007; 445
Menendez (2022060706540422400_bib26) 2010; 107
Harris (2022060706540422400_bib13) 2015; 479–80
Takaoka (2022060706540422400_bib27) 2003; 424
Sato (2022060706540422400_bib32) 2013; 23
Menendez (2022060706540422400_bib8) 2011; 7
Refsland (2022060706540422400_bib19) 2010; 38
Brummelkamp (2022060706540422400_bib22) 2002; 296
Landry (2022060706540422400_bib43) 2011; 12
Nik-Zainal (2022060706540422400_bib46) 2014; 46
Munoz-Fontela (2022060706540422400_bib7) 2008; 205
Symer (2022060706540422400_bib36) 2002; 110
Allen (2022060706540422400_bib2) 2014; 3
Bieging (2022060706540422400_bib4) 2014; 14
Schoggins (2022060706540422400_bib33) 2011; 1
Conticello (2022060706540422400_bib20) 2005; 22
Levine (2022060706540422400_bib35) 2016; 38
Aubrey (2022060706540422400_bib1) 2016; 6
Roberts (2022060706540422400_bib17) 2013; 45
Menendez (2022060706540422400_bib3) 2013; 41
Burns (2022060706540422400_bib15) 2013; 45
Middlebrooks (2022060706540422400_bib47) 2016; 48
Komarov (2022060706540422400_bib21) 1999; 285
Stavrou (2022060706540422400_bib14) 2015; 195
Muckenfuss (2022060706540422400_bib38) 2007; 35
Pauklin (2022060706540422400_bib30) 2009; 206
Wylie (2022060706540422400_bib37) 2016; 30
Wei (2022060706540422400_bib25) 2006; 124
Ciccia (2022060706540422400_bib45) 2010; 40
Vieira (2022060706540422400_bib42) 2014; 5
Shatz (2022060706540422400_bib9) 2012; 72
Starrett (2022060706540422400_bib49) 2016; 7
Menendez (2022060706540422400_bib10) 2016; 7
Bougeard (2022060706540422400_bib50) 2015; 33
Zhang (2022060706540422400_bib48) 2015; 9
Leonard (2022060706540422400_bib39) 2013; 73
Kinomoto (2022060706540422400_bib28) 2007; 35
Menendez (2022060706540422400_bib23) 2009; 9
Wang (2022060706540422400_bib44) 2016; 97
Jarmuz (2022060706540422400_bib12) 2002; 79
Beck (2022060706540422400_bib34) 2010; 141
Chan (2022060706540422400_bib16) 2015; 47
Smeenk (2022060706540422400_bib24) 2008; 36
Koning (2022060706540422400_bib18) 2009; 83
References_xml – volume: 72
  start-page: 3948
  year: 2012
  ident: 2022060706540422400_bib9
  article-title: The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-4134
– volume: 25
  start-page: 304
  year: 2014
  ident: 2022060706540422400_bib40
  article-title: Mutant p53 in cancer: new functions and therapeutic opportunities
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.01.021
– volume: 30
  start-page: 64
  year: 2016
  ident: 2022060706540422400_bib37
  article-title: p53 genes function to restrain mobile elements
  publication-title: Genes Dev
  doi: 10.1101/gad.266098.115
– volume: 107
  start-page: 1500
  year: 2010
  ident: 2022060706540422400_bib26
  article-title: Estrogen receptor acting in cis enhances WT and mutant p53 transactivation at canonical and noncanonical p53 target sequences
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0909129107
– volume: 45
  start-page: 977
  year: 2013
  ident: 2022060706540422400_bib15
  article-title: Evidence for APOBEC3B mutagenesis in multiple human cancers
  publication-title: Nat Genet
  doi: 10.1038/ng.2701
– volume: 424
  start-page: 516
  year: 2003
  ident: 2022060706540422400_bib27
  article-title: Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence
  publication-title: Nature
  doi: 10.1038/nature01850
– volume: 1
  start-page: 519
  year: 2011
  ident: 2022060706540422400_bib33
  article-title: Interferon-stimulated genes and their antiviral effector functions
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2011.10.008
– volume: 12
  start-page: 444
  year: 2011
  ident: 2022060706540422400_bib43
  article-title: APOBEC3A can activate the DNA damage response and cause cell-cycle arrest
  publication-title: EMBO Rep
  doi: 10.1038/embor.2011.46
– volume: 97
  start-page: 1
  year: 2016
  ident: 2022060706540422400_bib44
  article-title: Role of the single deaminase domain APOBEC3A in virus restriction, retrotransposition, DNA damage and cancer
  publication-title: J Gen Virol
  doi: 10.1099/jgv.0.000320
– volume: 73
  start-page: 7222
  year: 2013
  ident: 2022060706540422400_bib39
  article-title: APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-13-1753
– volume: 23
  start-page: 213
  year: 2013
  ident: 2022060706540422400_bib32
  article-title: Genome guardian p53 and viral infections
  publication-title: Rev Med Virol
  doi: 10.1002/rmv.1738
– volume: 7
  start-page: e1001360
  year: 2011
  ident: 2022060706540422400_bib8
  article-title: The Toll-like receptor gene family is integrated into human DNA damage and p53 networks
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001360
– volume: 36
  start-page: 3639
  year: 2008
  ident: 2022060706540422400_bib24
  article-title: Characterization of genome-wide p53-binding sites upon stress response
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn232
– volume: 110
  start-page: 327
  year: 2002
  ident: 2022060706540422400_bib36
  article-title: Human l1 retrotransposition is associated with genetic instability in vivo
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00839-5
– volume: 41
  start-page: 7286
  year: 2013
  ident: 2022060706540422400_bib3
  article-title: Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt504
– volume: 285
  start-page: 1733
  year: 1999
  ident: 2022060706540422400_bib21
  article-title: A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy
  publication-title: Science
  doi: 10.1126/science.285.5434.1733
– volume: 206
  start-page: 99
  year: 2009
  ident: 2022060706540422400_bib30
  article-title: Estrogen directly activates AID transcription and function
  publication-title: J Exp Med
  doi: 10.1084/jem.20080521
– volume: 40
  start-page: 179
  year: 2010
  ident: 2022060706540422400_bib45
  article-title: The DNA damage response: making it safe to play with knives
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.09.019
– volume: 17
  start-page: 185
  year: 2016
  ident: 2022060706540422400_bib31
  article-title: DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1042-9
– volume: 45
  start-page: 970
  year: 2013
  ident: 2022060706540422400_bib17
  article-title: An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers
  publication-title: Nat Genet
  doi: 10.1038/ng.2702
– volume: 22
  start-page: 367
  year: 2005
  ident: 2022060706540422400_bib20
  article-title: Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msi026
– volume: 124
  start-page: 207
  year: 2006
  ident: 2022060706540422400_bib25
  article-title: A global map of p53 transcription-factor binding sites in the human genome
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.043
– volume: 79
  start-page: 285
  year: 2002
  ident: 2022060706540422400_bib12
  article-title: An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22
  publication-title: Genomics
  doi: 10.1006/geno.2002.6718
– volume: 48
  start-page: 1330
  year: 2016
  ident: 2022060706540422400_bib47
  article-title: Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors
  publication-title: Nat Genet
  doi: 10.1038/ng.3670
– volume: 83
  start-page: 9474
  year: 2009
  ident: 2022060706540422400_bib18
  article-title: Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets
  publication-title: J Virol
  doi: 10.1128/JVI.01089-09
– volume: 33
  start-page: 2345
  year: 2015
  ident: 2022060706540422400_bib50
  article-title: Revisiting Li-Fraumeni syndrome from TP53 mutation carriers
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.59.5728
– volume: 1
  start-page: 197
  year: 2011
  ident: 2022060706540422400_bib29
  article-title: Intrinsic restriction activity by AID/APOBEC family of enzymes against the mobility of retroelements
  publication-title: Mob Genet Elements
  doi: 10.4161/mge.1.3.17430
– volume: 3
  start-page: e02200
  year: 2014
  ident: 2022060706540422400_bib2
  article-title: Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms
  publication-title: Elife
  doi: 10.7554/eLife.02200
– volume: 38
  start-page: 508
  year: 2016
  ident: 2022060706540422400_bib35
  article-title: P53 and the defenses against genome instability caused by transposons and repetitive elements
  publication-title: Bioessays
  doi: 10.1002/bies.201600031
– volume: 127
  start-page: 1323
  year: 2006
  ident: 2022060706540422400_bib5
  article-title: Modeling the therapeutic efficacy of p53 restoration in tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.12.007
– volume: 9
  start-page: 724
  year: 2009
  ident: 2022060706540422400_bib23
  article-title: The expanding universe of p53 targets
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2730
– volume: 6
  start-page: pii:a026062
  year: 2016
  ident: 2022060706540422400_bib1
  article-title: Tumor-suppressor functions of the TP53 pathway
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a026062
– volume: 5
  start-page: pii:e02234–14
  year: 2014
  ident: 2022060706540422400_bib42
  article-title: Human papillomavirus E6 triggers upregulation of the antiviral and cancer genomic DNA deaminase APOBEC3B
  publication-title: MBio
  doi: 10.1128/mBio.02234-14
– volume: 141
  start-page: 1159
  year: 2010
  ident: 2022060706540422400_bib34
  article-title: LINE-1 retrotransposition activity in human genomes
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.021
– volume: 479–80
  start-page: 131
  year: 2015
  ident: 2022060706540422400_bib13
  article-title: APOBECs and virus restriction
  publication-title: Virology
  doi: 10.1016/j.virol.2015.03.012
– volume: 35
  start-page: 3784
  year: 2007
  ident: 2022060706540422400_bib38
  article-title: Sp1 and Sp3 regulate basal transcription of the human APOBEC3G gene
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm340
– volume: 478
  start-page: 1466
  year: 2016
  ident: 2022060706540422400_bib41
  article-title: Classical NF-κB pathway is responsible for APOBEC3B expression in cancer cells
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2016.08.148
– volume: 445
  start-page: 661
  year: 2007
  ident: 2022060706540422400_bib6
  article-title: Restoration of p53 function leads to tumour regression in vivo
  publication-title: Nature
  doi: 10.1038/nature05541
– volume: 7
  start-page: 61630
  year: 2016
  ident: 2022060706540422400_bib10
  article-title: Ligand dependent restoration of human TLR3 signaling and death in p53 mutant cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11210
– volume: 205
  start-page: 1929
  year: 2008
  ident: 2022060706540422400_bib7
  article-title: Transcriptional role of p53 in interferon-mediated antiviral immunity
  publication-title: J Exp Med
  doi: 10.1084/jem.20080383
– volume: 9
  start-page: 34
  year: 2015
  ident: 2022060706540422400_bib48
  article-title: Integrative genomic analysis reveals functional diversification of APOBEC gene family in breast cancer
  publication-title: Hum Genomics
  doi: 10.1186/s40246-015-0056-9
– volume: 7
  start-page: 12918
  year: 2016
  ident: 2022060706540422400_bib49
  article-title: The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis
  publication-title: Nat Commun
  doi: 10.1038/ncomms12918
– volume: 14
  start-page: 359
  year: 2014
  ident: 2022060706540422400_bib4
  article-title: Unravelling mechanisms of p53-mediated tumour suppression
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3711
– volume: 46
  start-page: 487
  year: 2014
  ident: 2022060706540422400_bib46
  article-title: Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer
  publication-title: Nat Genet
  doi: 10.1038/ng.2955
– volume: 6
  start-page: 16963
  year: 2015
  ident: 2022060706540422400_bib11
  article-title: p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4435
– volume: 47
  start-page: 1067
  year: 2015
  ident: 2022060706540422400_bib16
  article-title: An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers
  publication-title: Nat Genet
  doi: 10.1038/ng.3378
– volume: 38
  start-page: 4274
  year: 2010
  ident: 2022060706540422400_bib19
  article-title: Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq174
– volume: 296
  start-page: 550
  year: 2002
  ident: 2022060706540422400_bib22
  article-title: A system for stable expression of short interfering RNAs in mammalian cells
  publication-title: Science
  doi: 10.1126/science.1068999
– volume: 195
  start-page: 4565
  year: 2015
  ident: 2022060706540422400_bib14
  article-title: APOBEC3 proteins in viral immunity
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1501504
– volume: 35
  start-page: 2955
  year: 2007
  ident: 2022060706540422400_bib28
  article-title: All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm181
SSID ssj0020176
Score 2.3899066
Snippet The APOBEC3 (A3) family of proteins are DNA cytidine deaminases that act as sentinels in the innate immune response against retroviral infections and are...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 735
SubjectTerms APOBEC Deaminases
Cancer
Cell Line, Tumor
Cytidine Deaminase
Cytosine Deaminase - genetics
Cytosine Deaminase - metabolism
Deoxyribonucleic acid
DNA
DNA damage
Doxorubicin
Gene expression
Gene Expression Regulation - drug effects
Gene regulation
Genes
Genomes
Humans
Immune response
Immune system
Innate immunity
Interferon
Interferon Type I - pharmacology
Lymphocytes
Mutants
Mutation
Neoplasms - genetics
p53 Protein
Proteins
Transcription
Tumor suppressor genes
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Title The Cytidine Deaminase APOBEC3 Family Is Subject to Transcriptional Regulation by p53
URI https://www.ncbi.nlm.nih.gov/pubmed/28232385
https://www.proquest.com/docview/1983851675
https://www.proquest.com/docview/1872579660
https://www.proquest.com/docview/1911619037
https://pubmed.ncbi.nlm.nih.gov/PMC5457717
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1557-3125
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0020176
  issn: 1541-7786
  databaseCode: HH5
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1557-3125
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020176
  issn: 1541-7786
  databaseCode: KQ8
  dateStart: 20021101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1557-3125
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0020176
  issn: 1541-7786
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1557-3125
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0020176
  issn: 1541-7786
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqIRAvCMZXYSAj8TalxE4cJ4-lDG1IBTR10t6i2k62SlNarelD-Ef4d7mLHfdj02C8RFU-7KT3y935cvc7Qj5iH0peRmGgUpEGMYtZoJLEBCYVksUq1GXbbGL8PTk-i7-di_Ne7_dG1tKqVgP969a6kv-RKuwDuWKV7D0k6weFHfAb5AtbkDBs_1nGo6aeGXQVvxRTTGtBopGfPz4fjaKuqcXJEtUDxlvQ0WyNU6cqWmb9C9fBCz3RheXU7dzVcdc8F5PDdHF96LiBfAx5DKqyi0LbanUfXb5YNValTS5XTTCc-VhONVu4wH2zhtVpsaxcU3eXyX84HGyGJJhcp051WhREjsR01si4fQIDorbK2atesQGxTT0qLYeJM8nSMjnd1PYCKxj8bIPx6DTAuwmdFt5i196xej4XsV0FiTTHYXIcJodhcoaf5ZFO9gGXScJbjb8mcYRnbsvWupldaRgM8-nWu9l2em6sZHYTcjc8nMlT8sQtTejQ4uwZ6RXVPnlom5U2--TR2KVhPCdnADzaAY964FEHPGqBR0-W1AGP1nO6Azy6Bh5VDQXgvSBnX48mo-PA9ecINJjJOii0YqWMipQXYFNjk2SFKtk0yYwsmdIqLEUWpciFnRnNkcifK55xxvRUxwrGeEn2qnlVvCaUG6zcE2ADwD6UWZhpY1RmQhGaUgme9Enc_YG5duT12EPlKr9TfH0y8JctLHvL3y446KSTuxd9mbMsjWBhAkvrPvngD4Maxm9r06qYr-CcVHIs607CO84BxyIBBzySffLKCtzfFU9haQOz9IncgoI_AWngt49Us8uWDh7WQFIy-ea-z_qWPF6_vAdkr75eFe_Aw67V-xbtfwBEiccu
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Cytidine+Deaminase+APOBEC3+Family+Is+Subject+to+Transcriptional+Regulation+by+p53&rft.jtitle=Molecular+cancer+research&rft.au=Menendez%2C+Daniel&rft.au=Nguyen%2C+Thuy-Ai&rft.au=Snipe%2C+Joyce&rft.au=Resnick%2C+Michael+A.&rft.date=2017-06-01&rft.issn=1541-7786&rft.eissn=1557-3125&rft.volume=15&rft.issue=6&rft.spage=735&rft.epage=743&rft_id=info:doi/10.1158%2F1541-7786.MCR-17-0019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1541_7786_MCR_17_0019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7786&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7786&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7786&client=summon