HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone
Activation of the EGF receptors EGFR (ErbB1) and HER2 (ErbB2) drives the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplific...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 77; no. 1; pp. 74 - 85 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for Cancer Research, Inc
01.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0008-5472 1538-7445 |
DOI | 10.1158/0008-5472.CAN-16-1656 |
Cover
Abstract | Activation of the EGF receptors EGFR (ErbB1) and HER2 (ErbB2) drives the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF-κB receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits. Inhibiting HER2 expression in bone tumor xenografts reduced proliferation and RANK expression while maintaining EGFR expression. In examining the role of EGFR in tumor-initiating cells (TIC), we found that EGFR expression was required for primary and secondary sphere formation of prostate cancer cells. EGFR expression was also observed in circulating tumor cells (CTC) during prostate cancer metastasis. Dual inhibition of HER2 and EGFR resulted in significant inhibition of tumor xenograft growth, further supporting the significance of these receptors in prostate cancer progression. Overall, our results indicate that EGFR promotes survival of prostate TIC and CTC that metastasize to bone, whereas HER2 supports the growth of prostate cancer cells once they are established at metastatic sites. Cancer Res; 77(1); 74–85. ©2016 AACR. |
---|---|
AbstractList | Activation of the EGF receptors EGFR (ErbB1) and HER2 (ErbB2) drives the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF-κB receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits. Inhibiting HER2 expression in bone tumor xenografts reduced proliferation and RANK expression while maintaining EGFR expression. In examining the role of EGFR in tumor-initiating cells (TIC), we found that EGFR expression was required for primary and secondary sphere formation of prostate cancer cells. EGFR expression was also observed in circulating tumor cells (CTC) during prostate cancer metastasis. Dual inhibition of HER2 and EGFR resulted in significant inhibition of tumor xenograft growth, further supporting the significance of these receptors in prostate cancer progression. Overall, our results indicate that EGFR promotes survival of prostate TIC and CTC that metastasize to bone, whereas HER2 supports the growth of prostate cancer cells once they are established at metastatic sites. Cancer Res; 77(1); 74-85. ©2016 AACR. Activation of the epidermal growth factor receptors EGFR (ErbB1) and HER2 (ErbB2) drive the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF-κB receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits. Inhibiting HER2 expression in bone tumor xenografts reduced proliferation and RANK expression while maintaining EGFR expression. In examining the role of EGFR in tumor-initiating cells (TIC), we found that EGFR expression was required for primary and secondary sphere formation of prostate cancer cells. EGFR expression was also observed in circulating tumor cells (CTC) during prostate cancer metastasis. Dual inhibition of HER2 and EGFR resulted in significant inhibition of tumor xenograft growth, further supporting the significance of these receptors in prostate cancer progression. Overall, our results indicate that EGFR promotes survival of prostate TIC and CTC that metastasize to bone, whereas HER2 supports the growth of prostate cancer cells once they are established at metastatic sites. Simultaneous inhibition of HER2 and EGFR exploits their distinct roles supporting metastatic progression in human prostate cancer, given preclinical evidence of the efficacy of combination treatment.Activation of the EGF receptors EGFR (ErbB1) and HER2 (ErbB2) drives the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF-κB receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits. Inhibiting HER2 expression in bone tumor xenografts reduced proliferation and RANK expression while maintaining EGFR expression. In examining the role of EGFR in tumor-initiating cells (TIC), we found that EGFR expression was required for primary and secondary sphere formation of prostate cancer cells. EGFR expression was also observed in circulating tumor cells (CTC) during prostate cancer metastasis. Dual inhibition of HER2 and EGFR resulted in significant inhibition of tumor xenograft growth, further supporting the significance of these receptors in prostate cancer progression. Overall, our results indicate that EGFR promotes survival of prostate TIC and CTC that metastasize to bone, whereas HER2 supports the growth of prostate cancer cells once they are established at metastatic sites. Cancer Res; 77(1); 74–85. ©2016 AACR. Simultaneous inhibition of HER2 and EGFR exploits their distinct roles supporting metastatic progression in human prostate cancer, given preclinical evidence of the efficacy of combination treatment. Activation of the EGF receptors EGFR (ErbB1) and HER2 (ErbB2) drives the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF- Kappa B receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits. Inhibiting HER2 expression in bone tumor xenografts reduced proliferation and RANK expression while maintaining EGFR expression. In examining the role of EGFR in tumor-initiating cells (TIC), we found that EGFR expression was required for primary and secondary sphere formation of prostate cancer cells. EGFR expression was also observed in circulating tumor cells (CTC) during prostate cancer metastasis. Dual inhibition of HER2 and EGFR resulted in significant inhibition of tumor xenograft growth, further supporting the significance of these receptors in prostate cancer progression. Overall, our results indicate that EGFR promotes survival of prostate TIC and CTC that metastasize to bone, whereas HER2 supports the growth of prostate cancer cells once they are established at metastatic sites. Cancer Res; 77(1); 74-85. [copy2016 AACR. |
Author | Nagrath, Sunitha Paul, Alyssa Chou, Andrew El-Sawy, Layla Ignatoski, Kathleen Woods Morgan, Todd Wilson, Steven James Broses, Luke J. Thomas, Dafydd Keller, Evan Day, Mark L. Day, Kathleen C. Shah, Rajal Daignault-Newton, Stephanie Hall, Christopher Kunja, Lakshmi P. Dawsey, Scott J. Hiles, Guadalupe Lorenzatti Palanisamy, Nallasivam Kozminsky, Molly |
AuthorAffiliation | 2 Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 5 Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 3 Department of Pathology, University of Michigan, Ann Arbor, Michigan 6 Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 7 European, Egyptian Pharmaceutical Industries, Alexandria, Egypt 1 Department of Urology, University of Michigan, Ann Arbor, Michigan 4 Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan |
AuthorAffiliation_xml | – name: 2 Translational Oncology Program, University of Michigan, Ann Arbor, Michigan – name: 5 Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan – name: 4 Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan – name: 1 Department of Urology, University of Michigan, Ann Arbor, Michigan – name: 3 Department of Pathology, University of Michigan, Ann Arbor, Michigan – name: 7 European, Egyptian Pharmaceutical Industries, Alexandria, Egypt – name: 6 Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan |
Author_xml | – sequence: 1 givenname: Kathleen C. surname: Day fullname: Day, Kathleen C. – sequence: 2 givenname: Guadalupe Lorenzatti surname: Hiles fullname: Hiles, Guadalupe Lorenzatti – sequence: 3 givenname: Molly surname: Kozminsky fullname: Kozminsky, Molly – sequence: 4 givenname: Scott J. surname: Dawsey fullname: Dawsey, Scott J. – sequence: 5 givenname: Alyssa surname: Paul fullname: Paul, Alyssa – sequence: 6 givenname: Luke J. surname: Broses fullname: Broses, Luke J. – sequence: 7 givenname: Rajal surname: Shah fullname: Shah, Rajal – sequence: 8 givenname: Lakshmi P. surname: Kunja fullname: Kunja, Lakshmi P. – sequence: 9 givenname: Christopher surname: Hall fullname: Hall, Christopher – sequence: 10 givenname: Nallasivam surname: Palanisamy fullname: Palanisamy, Nallasivam – sequence: 11 givenname: Stephanie surname: Daignault-Newton fullname: Daignault-Newton, Stephanie – sequence: 12 givenname: Layla surname: El-Sawy fullname: El-Sawy, Layla – sequence: 13 givenname: Steven James surname: Wilson fullname: Wilson, Steven James – sequence: 14 givenname: Andrew surname: Chou fullname: Chou, Andrew – sequence: 15 givenname: Kathleen Woods surname: Ignatoski fullname: Ignatoski, Kathleen Woods – sequence: 16 givenname: Evan surname: Keller fullname: Keller, Evan – sequence: 17 givenname: Dafydd surname: Thomas fullname: Thomas, Dafydd – sequence: 18 givenname: Sunitha surname: Nagrath fullname: Nagrath, Sunitha – sequence: 19 givenname: Todd surname: Morgan fullname: Morgan, Todd – sequence: 20 givenname: Mark L. surname: Day fullname: Day, Mark L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27793843$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFTEQhoNU7Gn1JygBb3qzNR-bj0UQ6uG0FVor9eM25GRn65Y9yZrslvrvTWhPsb0QIZAM887kSd7ZQzs-eEDoNSWHlAr9jhCiK1Erdrg8-lxRmZeQz9CCCq4rVddiBy0eNLtoL6XrHApKxAu0y5RquK75Av04XV0ybH2LVyfHl_jiBiLcjhFS6oPHX-dxDHHC5zDZNNmpd_hLDFfbdOhKWBKAl9Y7iHgK-GMGfYmed3ZI8Op-30ffj1fflqfV2cXJp-XRWeUy5lSBs62uaUsaAGbXkneyIZS0jsi2EYIzuW7tGrRgJB-cpBIyNgHhdKdUp_g--nDXd5zXG2gd-CnawYyx39j42wTbm8cZ3_80V-HGCEbrjJAbHNw3iOHXDGkymz45GAbrIczJUC01p7KR9X9IuZBKaVGw3j6RXoc5-vwThjaaM6GZbLLqzd_wD9Rbd7Lg_Z3A5V9OETrj-uJCKG_pB0OJKbNgis-m-GzyLBgqTZmFXC2eVG8v-HfdH8aotzQ |
CitedBy_id | crossref_primary_10_1080_13685538_2021_1901274 crossref_primary_10_18632_oncotarget_21085 crossref_primary_10_1016_j_biotechadv_2021_107711 crossref_primary_10_4993_acrt_29_17 crossref_primary_10_1007_s10637_025_01507_w crossref_primary_10_1080_1354750X_2024_2423270 crossref_primary_10_1002_1878_0261_13805 crossref_primary_10_1186_s13046_019_1165_4 crossref_primary_10_3390_cells9122639 crossref_primary_10_3390_ijms21239008 crossref_primary_10_1038_s41388_020_01468_9 crossref_primary_10_1073_pnas_2011269118 crossref_primary_10_1016_j_ejmcr_2025_100257 crossref_primary_10_1074_jbc_RA119_011134 crossref_primary_10_3390_s20040965 crossref_primary_10_1002_hed_25857 crossref_primary_10_1016_j_ctrv_2017_09_008 crossref_primary_10_1073_pnas_1914786117 crossref_primary_10_18632_oncotarget_19398 crossref_primary_10_3390_molecules27123844 crossref_primary_10_3390_cancers12082141 crossref_primary_10_1186_s12943_024_02150_4 crossref_primary_10_3390_cancers11040434 crossref_primary_10_1002_cnr2_1340 crossref_primary_10_2174_1381612825666190222143044 crossref_primary_10_3389_fonc_2020_619727 crossref_primary_10_1002_prca_202000025 crossref_primary_10_1042_BST20210048 crossref_primary_10_1016_j_talanta_2020_120918 crossref_primary_10_1016_j_snb_2024_137056 crossref_primary_10_1590_1678_4685_gmb_2018_0330 crossref_primary_10_1021_acs_jmedchem_3c02433 crossref_primary_10_1016_j_biomaterials_2019_119311 crossref_primary_10_3390_cancers14194626 crossref_primary_10_2174_1386207322666190103105938 crossref_primary_10_3390_cancers13071688 crossref_primary_10_1073_pnas_1803152115 crossref_primary_10_1016_j_toxicon_2020_07_007 crossref_primary_10_1038_s41598_021_01513_x crossref_primary_10_1158_1078_0432_CCR_16_3273 crossref_primary_10_1530_ERC_19_0009 crossref_primary_10_3390_cancers13236014 crossref_primary_10_3390_cancers13020173 crossref_primary_10_3389_fonc_2022_990195 crossref_primary_10_1002_anie_202208773 crossref_primary_10_1002_stem_2859 crossref_primary_10_1016_j_neo_2024_101036 crossref_primary_10_1016_j_ajpath_2022_05_009 crossref_primary_10_1080_10408363_2019_1657061 crossref_primary_10_3390_toxins12120753 crossref_primary_10_3390_diseases5010012 crossref_primary_10_3390_ijms25063291 crossref_primary_10_1016_j_biopha_2017_05_132 crossref_primary_10_1002_adma_202201558 crossref_primary_10_1016_j_humgen_2024_201312 crossref_primary_10_1186_s12916_022_02244_0 crossref_primary_10_1016_j_bioorg_2024_107695 crossref_primary_10_1038_s41419_022_05090_3 crossref_primary_10_1016_j_bbagen_2018_06_003 crossref_primary_10_3389_fmed_2022_931422 crossref_primary_10_3389_fmed_2022_815541 crossref_primary_10_1016_j_pharmthera_2021_107932 crossref_primary_10_1038_s41417_021_00349_x crossref_primary_10_1038_nrurol_2016_241 crossref_primary_10_1002_pros_24482 crossref_primary_10_1016_j_jbc_2022_102584 crossref_primary_10_1186_s12920_019_0514_7 crossref_primary_10_1186_s40364_022_00403_2 crossref_primary_10_3389_fonc_2019_00800 crossref_primary_10_1007_s10549_020_05712_4 crossref_primary_10_1038_s41596_018_0112_8 crossref_primary_10_1371_journal_pone_0191109 crossref_primary_10_1002_ijc_32554 crossref_primary_10_1007_s11030_024_10872_2 crossref_primary_10_1002_ange_202208773 crossref_primary_10_1016_j_yexmp_2020_104400 crossref_primary_10_1080_15384047_2019_1665393 crossref_primary_10_1016_j_canlet_2022_215994 crossref_primary_10_1080_15384047_2020_1727702 crossref_primary_10_1016_j_critrevonc_2023_104232 crossref_primary_10_1007_s00018_022_04320_3 crossref_primary_10_2174_1573408016666200324152018 crossref_primary_10_3892_ijo_2019_4729 crossref_primary_10_3892_mmr_2017_7577 crossref_primary_10_1186_s10020_018_0035_4 crossref_primary_10_1002_iub_2028 crossref_primary_10_1016_j_tranon_2023_101642 crossref_primary_10_3390_biochem3030009 crossref_primary_10_3390_pharmaceutics13091509 crossref_primary_10_1038_s41416_020_01052_8 crossref_primary_10_3390_cancers13071534 crossref_primary_10_3390_ijms22073663 crossref_primary_10_3389_fendo_2019_00785 crossref_primary_10_1159_000504606 crossref_primary_10_1016_j_jddst_2023_104869 crossref_primary_10_3390_cancers13112748 crossref_primary_10_1186_s13568_020_00990_z crossref_primary_10_1016_j_ebiom_2020_103059 crossref_primary_10_1016_j_celrep_2024_113687 crossref_primary_10_1155_2021_6230826 crossref_primary_10_1021_acs_analchem_8b04633 crossref_primary_10_3389_fimmu_2025_1525741 crossref_primary_10_1038_s41391_018_0060_y crossref_primary_10_3390_jcm11195637 crossref_primary_10_1016_j_ejmech_2022_114100 crossref_primary_10_1093_bib_bbae466 crossref_primary_10_3390_toxics12120891 crossref_primary_10_1186_s12885_018_4994_1 crossref_primary_10_3390_cancers13112795 crossref_primary_10_1002_jat_4506 crossref_primary_10_1371_journal_pone_0278282 crossref_primary_10_1016_j_eujim_2021_101302 crossref_primary_10_1080_14756366_2024_2311157 crossref_primary_10_3389_fonc_2019_01494 crossref_primary_10_1038_s41598_018_35284_9 crossref_primary_10_1021_acs_jmedchem_9b02008 crossref_primary_10_1038_s41391_020_0235_1 crossref_primary_10_1371_journal_pone_0233443 crossref_primary_10_1096_fj_201802558RR crossref_primary_10_1007_s00345_024_05109_8 crossref_primary_10_1016_j_ijbiomac_2019_07_085 crossref_primary_10_4103_ijpm_ijpm_361_23 crossref_primary_10_3390_molecules30020212 crossref_primary_10_1186_s12864_018_4525_0 crossref_primary_10_1080_14737159_2023_2187289 |
Cites_doi | 10.1056/NEJMoa052306 10.1158/1078-0432.CCR-13-0839 10.1158/1078-0432.CCR-09-2546 10.1593/neo.05682 10.1038/sj.bjc.6605376 10.1002/pros.20903 10.1530/ERC-13-0548 10.1158/1078-0432.CCR-06-2701 10.1667/RR1472.1 10.1186/1750-2187-5-8 10.2217/14622416.10.1.51 10.1158/1078-0432.CCR-09-2042 10.1158/1078-0432.CCR-12-2219 10.1074/jbc.M801329200 10.1097/00000478-200203000-00004 10.1038/nnano.2013.194 10.1002/pros.21083 10.1073/pnas.0706728104 10.1158/0008-5472.CAN-15-2946 10.1007/s10549-009-0461-7 10.1158/1078-0432.CCR-08-0415 10.1158/0008-5472.CAN-12-0044 10.1038/376337a0 10.1016/j.bbamcr.2011.01.018 10.1002/pros.20460 10.1371/journal.pone.0061716 10.1158/1078-0432.CCR-04-2642 10.1038/ncomms1159 10.1138/20110512 10.1007/s10555-013-9488-7 10.1093/jnci/djn216 10.1016/S0022-5347(05)64462-X 10.1016/j.urology.2009.05.016 10.1016/j.coche.2016.01.005 10.1158/1078-0432.CCR-14-3129 10.1158/0008-5472.CAN-06-1228 10.1158/0008-5472.CAN-12-3349 10.1016/j.cell.2006.11.001 10.1038/6495 10.1016/j.ccr.2008.03.015 10.1371/journal.pone.0130118 10.1038/nature09707 10.1093/jnci/djn436 10.1007/s10911-014-9329-5 10.1016/j.urolonc.2011.01.002 10.1038/sj.bjc.6605490 |
ContentType | Journal Article |
Copyright | 2016 American Association for Cancer Research. Copyright American Association for Cancer Research, Inc. Jan 1, 2017 |
Copyright_xml | – notice: 2016 American Association for Cancer Research. – notice: Copyright American Association for Cancer Research, Inc. Jan 1, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 7QP 5PM |
DOI | 10.1158/0008-5472.CAN-16-1656 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Calcium & Calcified Tissue Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic CrossRef Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 85 |
ExternalDocumentID | PMC5214538 27793843 10_1158_0008_5472_CAN_16_1656 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK056137 – fundername: NCI NIH HHS grantid: P01 CA093900 – fundername: NCI NIH HHS grantid: P50 CA186786 – fundername: NCI NIH HHS grantid: P30 CA046592 – fundername: NCATS NIH HHS grantid: UL1 TR000433 |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ CGR CUY CVF ECM EIF NPM RHF 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 7QP 5PM |
ID | FETCH-LOGICAL-c538t-ecad841d09ee2ab63f69010dc06d955326bdabe8520bdac616e3840e5c8f77f73 |
ISSN | 0008-5472 |
IngestDate | Thu Aug 21 18:08:51 EDT 2025 Fri Sep 05 08:46:24 EDT 2025 Fri Sep 05 05:24:54 EDT 2025 Fri Jul 25 19:57:50 EDT 2025 Wed Feb 19 02:34:44 EST 2025 Thu Apr 24 22:53:43 EDT 2025 Tue Jul 01 01:12:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2016 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c538t-ecad841d09ee2ab63f69010dc06d955326bdabe8520bdac616e3840e5c8f77f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Authors contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5214538 |
PMID | 27793843 |
PQID | 1983258269 |
PQPubID | 105549 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5214538 proquest_miscellaneous_1868316964 proquest_miscellaneous_1835677857 proquest_journals_1983258269 pubmed_primary_27793843 crossref_citationtrail_10_1158_0008_5472_CAN_16_1656 crossref_primary_10_1158_0008_5472_CAN_16_1656 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2017 |
Publisher | American Association for Cancer Research, Inc |
Publisher_xml | – name: American Association for Cancer Research, Inc |
References | Riethdorf (2022061706065631200_bib37) 2010; 16 Gupta (2022061706065631200_bib14) 2006; 127 Craft (2022061706065631200_bib5) 1999; 5 Barthelemy (2022061706065631200_bib7) 2014; 34 Cathomas (2022061706065631200_bib52) 2012; 18 Shah (2022061706065631200_bib4) 2006; 66 Yeo (2022061706065631200_bib51) 2016; 76 Nabhan (2022061706065631200_bib53) 2009; 74 Palafox (2022061706065631200_bib13) 2012; 72 Kuefer (2022061706065631200_bib24) 2006; 8 Gril (2022061706065631200_bib21) 2008; 100 Portillo-Lara (2022061706065631200_bib32) 2015; 10 Rajasekhar (2022061706065631200_bib33) 2011; 2 Molina (2022061706065631200_bib19) 2008; 14 Cao (2022061706065631200_bib28) 2009; 171 Cao (2022061706065631200_bib29) 2007; 104 Rubin (2022061706065631200_bib25) 2000; 6 2022061706065631200_bib1 Rubin (2022061706065631200_bib23) 2002; 26 Garraway (2022061706065631200_bib31) 2010; 70 Litvinov (2022061706065631200_bib47) 2006; 66 Payne (2022061706065631200_bib35) 2009; 10 Mueller (2022061706065631200_bib45) 2010; 5 Jorda (2022061706065631200_bib40) 2002; 168 Mehra (2022061706065631200_bib15) 2015; 21 Najy (2022061706065631200_bib27) 2008; 283 Miettinen (2022061706065631200_bib46) 1995; 376 Liu (2022061706065631200_bib54) 2013; 31 DeHaan (2022061706065631200_bib2) 2009; 69 Chu (2022061706065631200_bib30) 2014; 21 Rybak (2022061706065631200_bib48) 2013; 8 Azizi (2022061706065631200_bib49) 2016 Dittrich (2022061706065631200_bib50) 2014; 19 Rybak (2022061706065631200_bib34) 2011; 1813 Gleason (2022061706065631200_bib26) 1966; 50 Dai (2022061706065631200_bib18) 2014; 20 Scher (2022061706065631200_bib39) 1995; 1 Shaffer (2022061706065631200_bib38) 2007; 13 Pestrin (2022061706065631200_bib36) 2009; 118 Lu (2022061706065631200_bib9) 2010; 102 Yoon (2022061706065631200_bib16) 2013; 8 Minner (2022061706065631200_bib8) 2010; 16 Chow (2022061706065631200_bib41) 2001; 7 Tan (2022061706065631200_bib11) 2011; 470 Ithimakin (2022061706065631200_bib12) 2013; 73 Chu (2022061706065631200_bib43) 2014; 33 Strecker (2022061706065631200_bib20) 2009; 101 Traish (2022061706065631200_bib3) 2009; 101 Kozminsky (2022061706065631200_bib17) 2016; 11 Jimenez (2022061706065631200_bib42) 2001; 7 Weihua (2022061706065631200_bib44) 2008; 13 Schramek (2022061706065631200_bib10) 2011; 8 Piccart-Gebhart (2022061706065631200_bib6) 2005; 353 Friess (2022061706065631200_bib22) 2005; 11 27843146 - Nat Rev Urol. 2017 Jan;14(1):7 |
References_xml | – volume: 353 start-page: 1659 year: 2005 ident: 2022061706065631200_bib6 article-title: Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa052306 – volume: 20 start-page: 617 year: 2014 ident: 2022061706065631200_bib18 article-title: Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-13-0839 – volume: 16 start-page: 1553 year: 2010 ident: 2022061706065631200_bib8 article-title: Low level HER2 overexpression is associated with rapid tumor cell proliferation and poor prognosis in prostate cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-2546 – volume: 8 start-page: 319 year: 2006 ident: 2022061706065631200_bib24 article-title: ADAM15 disintegrin is associated with aggressive prostate and breast cancer disease publication-title: Neoplasia doi: 10.1593/neo.05682 – volume: 101 start-page: 1949 year: 2009 ident: 2022061706065631200_bib3 article-title: Epidermal growth factor receptor expression escapes androgen regulation in prostate cancer: a potential molecular switch for tumour growth publication-title: Br J Cancer doi: 10.1038/sj.bjc.6605376 – volume: 69 start-page: 528 year: 2009 ident: 2022061706065631200_bib2 article-title: EGFR ligand switch in late stage prostate cancer contributes to changes in cell signaling and bone remodeling publication-title: Prostate doi: 10.1002/pros.20903 – volume: 1 start-page: 545 year: 1995 ident: 2022061706065631200_bib39 article-title: Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor alpha in the progression of prostatic neoplasms publication-title: Clin Cancer Res – volume: 21 start-page: 311 year: 2014 ident: 2022061706065631200_bib30 article-title: RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization publication-title: Endocr Relat Cancer doi: 10.1530/ERC-13-0548 – volume: 7 start-page: 2440 year: 2001 ident: 2022061706065631200_bib42 article-title: Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors publication-title: Clin Cancer Res – volume: 13 start-page: 2023 year: 2007 ident: 2022061706065631200_bib38 article-title: Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-2701 – volume: 171 start-page: 9 year: 2009 ident: 2022061706065631200_bib28 article-title: NF-kappaB-mediated HER2 overexpression in radiation-adaptive resistance publication-title: Radiat Res doi: 10.1667/RR1472.1 – volume: 7 start-page: 1957 year: 2001 ident: 2022061706065631200_bib41 article-title: Expression profiles of ErbB family receptors and prognosis in primary transitional cell carcinoma of the urinary bladder publication-title: Clin Cancer Res – volume: 5 start-page: 8 year: 2010 ident: 2022061706065631200_bib45 article-title: EGFR/Met association regulates EGFR TKI resistance in breast cancer publication-title: J Mol Signal doi: 10.1186/1750-2187-5-8 – volume: 10 start-page: 51 year: 2009 ident: 2022061706065631200_bib35 article-title: Measurements of EGFR expression on circulating tumor cells are reproducible over time in metastatic breast cancer patients publication-title: Pharmacogenomics doi: 10.2217/14622416.10.1.51 – volume: 16 start-page: 2634 year: 2010 ident: 2022061706065631200_bib37 article-title: Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-2042 – start-page: 333 volume-title: Circulating tumor cells year: 2016 ident: 2022061706065631200_bib49 – volume: 18 start-page: 6049 year: 2012 ident: 2022061706065631200_bib52 article-title: Efficacy of cetuximab in metastatic castration-resistant prostate cancer might depend on EGFR and PTEN expression: results from a phase II trial (SAKK 08/07) publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-2219 – volume: 283 start-page: 18393 year: 2008 ident: 2022061706065631200_bib27 article-title: The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation publication-title: J Biol Chem doi: 10.1074/jbc.M801329200 – volume: 26 start-page: 312 year: 2002 ident: 2022061706065631200_bib23 article-title: Tissue microarray sampling strategy for prostate cancer biomarker analysis publication-title: Am J Surg Pathol doi: 10.1097/00000478-200203000-00004 – volume: 8 start-page: 735 year: 2013 ident: 2022061706065631200_bib16 article-title: Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets publication-title: Nat Nanotechnol doi: 10.1038/nnano.2013.194 – volume: 70 start-page: 491 year: 2010 ident: 2022061706065631200_bib31 article-title: Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo publication-title: Prostate doi: 10.1002/pros.21083 – volume: 104 start-page: 15852 year: 2007 ident: 2022061706065631200_bib29 article-title: IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0706728104 – volume: 76 start-page: 3397 year: 2016 ident: 2022061706065631200_bib51 article-title: Autophagy differentially regulates distinct breast cancer stem-like cells in murine models via EGFR/Stat3 and Tgfbeta/Smad signaling publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-15-2946 – volume: 50 start-page: 125 year: 1966 ident: 2022061706065631200_bib26 article-title: Classification of prostatic carcinomas publication-title: Cancer Chemother Rep Part 1 – volume: 118 start-page: 523 year: 2009 ident: 2022061706065631200_bib36 article-title: Correlation of HER2 status between primary tumors and corresponding circulating tumor cells in advanced breast cancer patients publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-009-0461-7 – volume: 14 start-page: 7900 year: 2008 ident: 2022061706065631200_bib19 article-title: Evaluation of lapatinib and topotecan combination therapy: tissue culture, murine xenograft, and phase I clinical trial data publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-0415 – volume: 72 start-page: 2879 year: 2012 ident: 2022061706065631200_bib13 article-title: RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-0044 – volume: 6 start-page: 1038 year: 2000 ident: 2022061706065631200_bib25 article-title: Rapid ("warm") autopsy study for procurement of metastatic prostate cancer publication-title: Clin Cancer Res – volume: 376 start-page: 337 year: 1995 ident: 2022061706065631200_bib46 article-title: Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor publication-title: Nature doi: 10.1038/376337a0 – volume: 1813 start-page: 683 year: 2011 ident: 2022061706065631200_bib34 article-title: Characterization of sphere-propagating cells with stem-like properties from DU145 prostate cancer cells publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2011.01.018 – volume: 66 start-page: 1437 year: 2006 ident: 2022061706065631200_bib4 article-title: Epidermal growth factor receptor (ErbB1) expression in prostate cancer progression: correlation with androgen independence publication-title: Prostate doi: 10.1002/pros.20460 – volume: 8 year: 2013 ident: 2022061706065631200_bib48 article-title: Propagation of human prostate cancer stem-like cells occurs through EGFR-mediated ERK activation publication-title: PLoS One doi: 10.1371/journal.pone.0061716 – volume: 11 start-page: 5300 year: 2005 ident: 2022061706065631200_bib22 article-title: Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-2642 – volume: 2 start-page: 162 year: 2011 ident: 2022061706065631200_bib33 article-title: Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling publication-title: Nat Commun doi: 10.1038/ncomms1159 – volume: 8 start-page: 237 year: 2011 ident: 2022061706065631200_bib10 article-title: The many roles of RANKL-RANK signaling in bone, breast and cancer publication-title: IMBS BoneKEy doi: 10.1138/20110512 – volume: 33 start-page: 497 year: 2014 ident: 2022061706065631200_bib43 article-title: RANK-mediated signaling network and cancer metastasis publication-title: Cancer Metastasis Rev doi: 10.1007/s10555-013-9488-7 – volume: 100 start-page: 1092 year: 2008 ident: 2022061706065631200_bib21 article-title: Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djn216 – volume-title: SEER Stat Fact Sheets: Prostate Cancer ident: 2022061706065631200_bib1 – volume: 168 start-page: 1412 year: 2002 ident: 2022061706065631200_bib40 article-title: Her2 expression in prostatic cancer: a comparison with mammary carcinoma publication-title: J Urol doi: 10.1016/S0022-5347(05)64462-X – volume: 74 start-page: 665 year: 2009 ident: 2022061706065631200_bib53 article-title: Erlotinib has moderate single-agent activity in chemotherapy-naive castration-resistant prostate cancer: final results of a phase II trial publication-title: Urology doi: 10.1016/j.urology.2009.05.016 – volume: 11 start-page: 59 year: 2016 ident: 2022061706065631200_bib17 article-title: The incorporation of microfluidics into circulating tumor cell isolation for clinical applications publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2016.01.005 – volume: 21 start-page: 4992 year: 2015 ident: 2022061706065631200_bib15 article-title: CCR 20th anniversary commentary: circulating tumor cells in prostate cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-3129 – volume: 66 start-page: 8598 year: 2006 ident: 2022061706065631200_bib47 article-title: Low-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-1228 – volume: 73 start-page: 1635 year: 2013 ident: 2022061706065631200_bib12 article-title: HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-3349 – volume: 127 start-page: 679 year: 2006 ident: 2022061706065631200_bib14 article-title: Cancer metastasis: building a framework publication-title: Cell doi: 10.1016/j.cell.2006.11.001 – volume: 5 start-page: 280 year: 1999 ident: 2022061706065631200_bib5 article-title: A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase publication-title: Nat Med doi: 10.1038/6495 – volume: 13 start-page: 385 year: 2008 ident: 2022061706065631200_bib44 article-title: Survival of cancer cells is maintained by EGFR independent of its kinase activity publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.03.015 – volume: 10 start-page: e0130118 year: 2015 ident: 2022061706065631200_bib32 article-title: Enrichment of the cancer stem phenotype in sphere cultures of prostate cancer cell lines occurs through activation of developmental pathways mediated by the transcriptional regulator DeltaNp63alpha publication-title: PLoS One doi: 10.1371/journal.pone.0130118 – volume: 470 start-page: 548 year: 2011 ident: 2022061706065631200_bib11 article-title: Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling publication-title: Nature doi: 10.1038/nature09707 – volume: 101 start-page: 107 year: 2009 ident: 2022061706065631200_bib20 article-title: Effect of lapatinib on the development of estrogen receptor-negative mammary tumors in mice publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djn436 – volume: 19 start-page: 253 year: 2014 ident: 2022061706065631200_bib50 article-title: The HER2 signaling network in breast cancer–like a spider in its web publication-title: J Mammary Gland Biol Neoplasia doi: 10.1007/s10911-014-9329-5 – volume: 31 start-page: 211 year: 2013 ident: 2022061706065631200_bib54 article-title: Eastern Cooperative Oncology Group Phase II Trial of lapatinib in men with biochemically relapsed, androgen dependent prostate cancer publication-title: Urol Oncol doi: 10.1016/j.urolonc.2011.01.002 – volume: 34 start-page: 1483 year: 2014 ident: 2022061706065631200_bib7 article-title: Pertuzumab: development beyond breast cancer publication-title: Anticancer Res – volume: 102 start-page: 457 year: 2010 ident: 2022061706065631200_bib9 article-title: Epidermal growth factor signalling and bone metastasis publication-title: Br J Cancer doi: 10.1038/sj.bjc.6605490 – reference: 27843146 - Nat Rev Urol. 2017 Jan;14(1):7 |
SSID | ssj0005105 |
Score | 2.57519 |
Snippet | Activation of the EGF receptors EGFR (ErbB1) and HER2 (ErbB2) drives the progression of multiple cancer types through complex mechanisms that are still not... Simultaneous inhibition of HER2 and EGFR exploits their distinct roles supporting metastatic progression in human prostate cancer, given preclinical evidence... Activation of the epidermal growth factor receptors EGFR (ErbB1) and HER2 (ErbB2) drive the progression of multiple cancer types through complex mechanisms... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 74 |
SubjectTerms | Animals Blotting, Western Bone cancer Bone Neoplasms - secondary Bone tumors Cell Line, Tumor Disease Progression Epidermal growth factor receptors ErbB Receptors - biosynthesis ErbB-1 protein ErbB-2 protein Flow Cytometry Gene amplification Heterografts Humans Immunohistochemistry In Situ Hybridization, Fluorescence Male Metastases Metastasis Mice Mice, Inbred NOD Mice, SCID Neoplasm Invasiveness - pathology Neoplastic Cells, Circulating - pathology Neoplastic Stem Cells - pathology NF-κB protein Prostate cancer Prostatic Neoplasms - pathology Receptor, ErbB-2 - biosynthesis Tissue Array Analysis Tumor cells Up-Regulation Xenografts |
Title | HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27793843 https://www.proquest.com/docview/1983258269 https://www.proquest.com/docview/1835677857 https://www.proquest.com/docview/1868316964 https://pubmed.ncbi.nlm.nih.gov/PMC5214538 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiHcDBS0St8jBr334WEJKVEgRpUW9WWt7rUZK7Sh1VMiFv86MvX4kLc-LZXnXa2vn83hmd-YbQl4rcBp8N8HiLrG2_NTjVpAkyrJFlESgDVmaYr7z9IhPTv3DM3bW6_3oRC2timgYr2_MK_kfqcI1kCtmyf6DZJtB4QKcg3zhCBKG41_JeDI-dsvV__H7g-PBJ3h__c0EtsJXu1qgbT2Y6kJh2hDGwGMwlmnG2DfM-ABbczBC0S_RDH2bZ9vkBdhiKIHOyz3fKnijVC7z-bCzlPBOfe8GaLQLsB_zpc7Wqihmg8nMFNkGbCZqvlo0wPqQry-wjHY5xhRLYLfjXpntrS8lk8Rhd6nCEZ2lCt2qV-FXBJK1_jVlXLo4q5RpVb7nuo5nsgqKlBbzhTsc7R9ZDreQRqjbH0S1uCgF7wpQQrJig9oi166bbpHbrgDjC3f1P7d082h9mrQveOqbG5-JdNJmlE3b5prDsh132zFkTu6Te8YDofsVnB6Qns4ekjtTE2PxiHxFVFFAFUVU0U1UUYMq2qKKdlBF85TWqKIVdmiRU0TVY3J6MD4ZTSxTfcOKQUqFpWOVSN9J7EBrV0XcS7F2mZ3ENk8CxsDsjxIVaclcG05i7nANc2BrFstUiFR4T8hOBsPvEuqxNGYy9iOwP33XdiPGZaCk5rZKuXTjPvHreQtjQ02PFVLmYemiMokhEjLEmQ9h5kOHhzjzfTJsbltU3Cx_umGvFkpoPuPL0Angp8bAyw765FXTDEoWd85UpvMV9AE_BZkWmfhdHy49hwfc75OnlZybt6oB0idiAwFNByR532zJZucl2TvDUgKefPbLMZ-Tu-23tkd2iuVKvwBDuYhelmD-CQCZug8 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HER2+and+EGFR+Overexpression+Support+Metastatic+Progression+of+Prostate+Cancer+to+Bone&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Day%2C+Kathleen+C&rft.au=Lorenzatti+Hiles%2C+Guadalupe&rft.au=Kozminsky%2C+Molly&rft.au=Dawsey%2C+Scott+J&rft.date=2017-01-01&rft.eissn=1538-7445&rft.volume=77&rft.issue=1&rft.spage=74&rft_id=info:doi/10.1158%2F0008-5472.CAN-16-1656&rft_id=info%3Apmid%2F27793843&rft.externalDocID=27793843 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |