Biological assessment of robust noise models in microarray data analysis

Motivation: Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions. Gaussian noise models foster computational efficiency. This comes, however, at the expense of increased sensitivity to outlying obser...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 27; no. 6; pp. 807 - 814
Main Authors Posekany, A., Felsenstein, K., Sykacek, P.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.03.2011
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
1460-2059
DOI10.1093/bioinformatics/btr018

Cover

Abstract Motivation: Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions. Gaussian noise models foster computational efficiency. This comes, however, at the expense of increased sensitivity to outlying observations. Assessing potential insufficiencies of Gaussian noise in microarray data analysis is thus important and of general interest. Results: We propose to this end assessing different noise models on a large number of microarray experiments. The goodness of fit of noise models is quantified by a hierarchical Bayesian analysis of variance model, which predicts normalized expression values as a mixture of a Gaussian density and t-distributions with adjustable degrees of freedom. Inference of differentially expressed genes is taken into consideration at a second mixing level. For attaining far reaching validity, our investigations cover a wide range of analysis platforms and experimental settings. As the most striking result, we find irrespective of the chosen preprocessing and normalization method in all experiments that a heavy-tailed noise model is a better fit than a simple Gaussian. Further investigations revealed that an appropriate choice of noise model has a considerable influence on biological interpretations drawn at the level of inferred genes and gene ontology terms. We conclude from our investigation that neglecting the over dispersed noise in microarray data can mislead scientific discovery and suggest that the convenience of Gaussian-based modelling should be replaced by non-parametric approaches or other methods that account for heavy-tailed noise. Contact:  peter.sykacek@boku.ac.at Availability:  http://bioinf.boku.ac.at/alexp/robmca.html.
AbstractList Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions. Gaussian noise models foster computational efficiency. This comes, however, at the expense of increased sensitivity to outlying observations. Assessing potential insufficiencies of Gaussian noise in microarray data analysis is thus important and of general interest. We propose to this end assessing different noise models on a large number of microarray experiments. The goodness of fit of noise models is quantified by a hierarchical Bayesian analysis of variance model, which predicts normalized expression values as a mixture of a Gaussian density and t-distributions with adjustable degrees of freedom. Inference of differentially expressed genes is taken into consideration at a second mixing level. For attaining far reaching validity, our investigations cover a wide range of analysis platforms and experimental settings. As the most striking result, we find irrespective of the chosen preprocessing and normalization method in all experiments that a heavy-tailed noise model is a better fit than a simple Gaussian. Further investigations revealed that an appropriate choice of noise model has a considerable influence on biological interpretations drawn at the level of inferred genes and gene ontology terms. We conclude from our investigation that neglecting the over dispersed noise in microarray data can mislead scientific discovery and suggest that the convenience of Gaussian-based modelling should be replaced by non-parametric approaches or other methods that account for heavy-tailed noise.
Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions. Gaussian noise models foster computational efficiency. This comes, however, at the expense of increased sensitivity to outlying observations. Assessing potential insufficiencies of Gaussian noise in microarray data analysis is thus important and of general interest.MOTIVATIONAlthough several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions. Gaussian noise models foster computational efficiency. This comes, however, at the expense of increased sensitivity to outlying observations. Assessing potential insufficiencies of Gaussian noise in microarray data analysis is thus important and of general interest.We propose to this end assessing different noise models on a large number of microarray experiments. The goodness of fit of noise models is quantified by a hierarchical Bayesian analysis of variance model, which predicts normalized expression values as a mixture of a Gaussian density and t-distributions with adjustable degrees of freedom. Inference of differentially expressed genes is taken into consideration at a second mixing level. For attaining far reaching validity, our investigations cover a wide range of analysis platforms and experimental settings. As the most striking result, we find irrespective of the chosen preprocessing and normalization method in all experiments that a heavy-tailed noise model is a better fit than a simple Gaussian. Further investigations revealed that an appropriate choice of noise model has a considerable influence on biological interpretations drawn at the level of inferred genes and gene ontology terms. We conclude from our investigation that neglecting the over dispersed noise in microarray data can mislead scientific discovery and suggest that the convenience of Gaussian-based modelling should be replaced by non-parametric approaches or other methods that account for heavy-tailed noise.RESULTSWe propose to this end assessing different noise models on a large number of microarray experiments. The goodness of fit of noise models is quantified by a hierarchical Bayesian analysis of variance model, which predicts normalized expression values as a mixture of a Gaussian density and t-distributions with adjustable degrees of freedom. Inference of differentially expressed genes is taken into consideration at a second mixing level. For attaining far reaching validity, our investigations cover a wide range of analysis platforms and experimental settings. As the most striking result, we find irrespective of the chosen preprocessing and normalization method in all experiments that a heavy-tailed noise model is a better fit than a simple Gaussian. Further investigations revealed that an appropriate choice of noise model has a considerable influence on biological interpretations drawn at the level of inferred genes and gene ontology terms. We conclude from our investigation that neglecting the over dispersed noise in microarray data can mislead scientific discovery and suggest that the convenience of Gaussian-based modelling should be replaced by non-parametric approaches or other methods that account for heavy-tailed noise.
Motivation: Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions. Gaussian noise models foster computational efficiency. This comes, however, at the expense of increased sensitivity to outlying observations. Assessing potential insufficiencies of Gaussian noise in microarray data analysis is thus important and of general interest. Results: We propose to this end assessing different noise models on a large number of microarray experiments. The goodness of fit of noise models is quantified by a hierarchical Bayesian analysis of variance model, which predicts normalized expression values as a mixture of a Gaussian density and t-distributions with adjustable degrees of freedom. Inference of differentially expressed genes is taken into consideration at a second mixing level. For attaining far reaching validity, our investigations cover a wide range of analysis platforms and experimental settings. As the most striking result, we find irrespective of the chosen preprocessing and normalization method in all experiments that a heavy-tailed noise model is a better fit than a simple Gaussian. Further investigations revealed that an appropriate choice of noise model has a considerable influence on biological interpretations drawn at the level of inferred genes and gene ontology terms. We conclude from our investigation that neglecting the over dispersed noise in microarray data can mislead scientific discovery and suggest that the convenience of Gaussian-based modelling should be replaced by non-parametric approaches or other methods that account for heavy-tailed noise. Contact: peter.sykacek@boku.ac.at Availability: http://bioinf.boku.ac.at/alexp/robmca.html.
Motivation: Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions. Gaussian noise models foster computational efficiency. This comes, however, at the expense of increased sensitivity to outlying observations. Assessing potential insufficiencies of Gaussian noise in microarray data analysis is thus important and of general interest.Results: We propose to this end assessing different noise models on a large number of microarray experiments. The goodness of fit of noise models is quantified by a hierarchical Bayesian analysis of variance model, which predicts normalized expression values as a mixture of a Gaussian density and t-distributions with adjustable degrees of freedom. Inference of differentially expressed genes is taken into consideration at a second mixing level. For attaining far reaching validity, our investigations cover a wide range of analysis platforms and experimental settings. As the most striking result, we find irrespective of the chosen preprocessing and normalization method in all experiments that a heavy-tailed noise model is a better fit than a simple Gaussian. Further investigations revealed that an appropriate choice of noise model has a considerable influence on biological interpretations drawn at the level of inferred genes and gene ontology terms. We conclude from our investigation that neglecting the over dispersed noise in microarray data can mislead scientific discovery and suggest that the convenience of Gaussian-based modelling should be replaced by non-parametric approaches or other methods that account for heavy-tailed noise.Contact: peter.sykacekoku.ac.atAvailability: http://bioinf.boku.ac.at/alexp/robmca.html.
Motivation: Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions. Gaussian noise models foster computational efficiency. This comes, however, at the expense of increased sensitivity to outlying observations. Assessing potential insufficiencies of Gaussian noise in microarray data analysis is thus important and of general interest. Results: We propose to this end assessing different noise models on a large number of microarray experiments. The goodness of fit of noise models is quantified by a hierarchical Bayesian analysis of variance model, which predicts normalized expression values as a mixture of a Gaussian density and t-distributions with adjustable degrees of freedom. Inference of differentially expressed genes is taken into consideration at a second mixing level. For attaining far reaching validity, our investigations cover a wide range of analysis platforms and experimental settings. As the most striking result, we find irrespective of the chosen preprocessing and normalization method in all experiments that a heavy-tailed noise model is a better fit than a simple Gaussian. Further investigations revealed that an appropriate choice of noise model has a considerable influence on biological interpretations drawn at the level of inferred genes and gene ontology terms. We conclude from our investigation that neglecting the over dispersed noise in microarray data can mislead scientific discovery and suggest that the convenience of Gaussian-based modelling should be replaced by non-parametric approaches or other methods that account for heavy-tailed noise. Contact:  peter.sykacek@boku.ac.at Availability:  http://bioinf.boku.ac.at/alexp/robmca.html.
Author Posekany, A.
Sykacek, P.
Felsenstein, K.
AuthorAffiliation 1 Chair of Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences, Gregor Mendel Straße 33, 1180, Vienna and 2 Department of Statistics, Vienna University of Technology, Karlsplatz 13, 1040 Vienna, Austria
AuthorAffiliation_xml – name: 1 Chair of Bioinformatics, Department of Biotechnology, University of Natural Resources and Life Sciences, Gregor Mendel Straße 33, 1180, Vienna and 2 Department of Statistics, Vienna University of Technology, Karlsplatz 13, 1040 Vienna, Austria
Author_xml – sequence: 1
  givenname: A.
  surname: Posekany
  fullname: Posekany, A.
– sequence: 2
  givenname: K.
  surname: Felsenstein
  fullname: Felsenstein, K.
– sequence: 3
  givenname: P.
  surname: Sykacek
  fullname: Sykacek, P.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23955846$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21252077$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1LHTEUxUOx1I_2T2jJprh6NZlMMjMUCip-FAQ3ug53koxNySSvuTPK---NvKdWN7pK4P7O4d5zdslWTNER8pWzH5x14qD3ycch5REmb_CgnzLj7Qeyw4VqFnXL-dbTn4ltsov4lzEmmVSfyHbFK1mxptkh50c-hXTjDQQKiA5xdHGiaaA59TNONCaPjo7JuoDURzp6kxPkDCtqYQIKEcIKPX4mHwcI6L5s3j1yfXpydXy-uLg8-318eLEwUrTTwjBrVW1Vx6VqOgdCOME7aEUvRG372rqKAethsFUPqqk7U5URcFsLo8AwsUfU2neOS1jdQQh6mf0IeaU50w_R6JfR6HU0RfhrLVzO_eisKWdmeBYn8PrlJPo_-ibdasEkF1VdDPY3Bjn9mx1OevRoXAgQXZpRt6prK8Gbd5DldtWUMgr57f-lnrZ5LKgA3zcAYOloyBCNx2dOdFK2tSqcXHOlHcTshnen8vOVzvipEOkhAx_eUN8D8FfQ4w
CitedBy_id crossref_primary_10_1109_TNNLS_2022_3183294
crossref_primary_10_1142_S0219720012310038
crossref_primary_10_1371_journal_pone_0138810
crossref_primary_10_1371_journal_pcbi_1002838
crossref_primary_10_1093_bib_bbs057
crossref_primary_10_1186_s12864_016_2796_x
crossref_primary_10_1109_TSP_2016_2605079
crossref_primary_10_3389_fsysb_2023_1188009
crossref_primary_10_1038_nrneurol_2012_156
crossref_primary_10_1287_moor_2021_1176
crossref_primary_10_1080_01621459_2016_1246366
crossref_primary_10_1016_j_eml_2015_10_002
crossref_primary_10_1371_journal_pone_0038919
crossref_primary_10_1186_1471_2105_13_135
crossref_primary_10_1371_journal_pone_0046935
crossref_primary_10_1371_journal_pone_0123791
crossref_primary_10_1214_17_AOS1588
crossref_primary_10_1080_19466315_2014_924876
crossref_primary_10_1093_bioinformatics_bts405
crossref_primary_10_1186_s12859_022_04839_z
crossref_primary_10_1007_s00440_017_0824_7
crossref_primary_10_1080_07350015_2021_1910041
crossref_primary_10_1021_acs_jproteome_9b00280
Cites_doi 10.1186/1471-2105-9-S1-S9
10.1093/biomet/82.4.711
10.1152/physiolgenomics.00030.2006
10.1162/neco.1992.4.3.415
10.1186/1471-2105-6-186
10.1124/jpet.103.053256
10.1093/bioinformatics/bti583
10.1095/biolreprod.104.033696
10.1111/1541-0420.00064
10.1016/j.chemolab.2009.04.011
10.1016/j.neurobiolaging.2007.01.014
10.1186/cc1820
10.1093/hmg/ddi457
10.1093/bioinformatics/btg455
10.1093/bioinformatics/btf879
10.1002/9780470316870
10.1093/nar/30.1.207
10.1007/978-1-4757-4145-2
10.1093/biostatistics/kxp003
10.1093/bioinformatics/18.suppl_1.S96
10.1007/BF02562676
10.1098/rstb.2007.2129
10.1093/bioinformatics/17.6.509
10.1158/1078-0432.CCR-05-0683
10.1371/journal.pone.0001504
10.1093/nar/30.4.e15
10.1038/75556
10.2202/1544-6115.1314
10.1198/016214503000224
10.1073/pnas.091062498
10.1111/j.1541-0420.2005.00397.x
10.1093/bioinformatics/19.2.185
10.1093/bioinformatics/btm280
10.1081/BIP-200067778
10.1186/gb-2003-4-9-r60
10.1198/016214502753479257
10.1186/gb-2005-6-2-r16
10.1093/bioinformatics/btg311
10.1016/j.nut.2003.10.002
10.1007/0-387-29362-0_23
10.1093/bioinformatics/btl361
10.1186/1745-6150-1-27
10.1093/bioinformatics/bth419
10.1186/1471-2164-8-319
10.1093/biostatistics/4.2.249
10.1073/pnas.0308512100
10.1186/1471-2105-7-448
10.1111/j.1399-3054.2007.01002.x
10.1126/science.1153795
10.1093/bioinformatics/18.11.1454
10.1038/oby.2007.116
10.2202/1544-6115.1590
ContentType Journal Article
Copyright 2015 INIST-CNRS
The Author(s) 2011. Published by Oxford University Press. 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: The Author(s) 2011. Published by Oxford University Press. 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btr018
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic

Engineering Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
1460-2059
EndPage 814
ExternalDocumentID 10.1093/bioinformatics/btr018
PMC3051324
21252077
23955846
10_1093_bioinformatics_btr018
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
.-4
.GJ
ABEFU
ABNGD
ACUKT
AFFNX
AGQPQ
AI.
AQDSO
ATTQO
AZFZN
ELUNK
HVGLF
IQODW
NTWIH
O~Y
PB-
RIG
RNI
RZF
RZO
VH1
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
482
7QO
8FD
ABJNI
FR3
P64
ROZ
TN5
WH7
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c538t-c0dd64d6915679ea33e319a83b334db4de20a0bafd2ba6749c23b3a1d43c6ac03
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Wed Oct 29 12:12:26 EDT 2025
Tue Sep 30 16:43:15 EDT 2025
Tue Oct 07 09:31:11 EDT 2025
Thu Jul 10 22:12:42 EDT 2025
Mon Jul 21 05:52:08 EDT 2025
Mon Jul 21 09:15:37 EDT 2025
Thu Apr 24 23:10:34 EDT 2025
Tue Jul 01 03:27:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Data analysis
Data
Microarray
Noise
Biological model
Language English
License http://creativecommons.org/licenses/by-nc/2.0/uk
CC BY 4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c538t-c0dd64d6915679ea33e319a83b334db4de20a0bafd2ba6749c23b3a1d43c6ac03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor: Martin Bishop
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/27/6/807/643408/btr018.pdf
PMID 21252077
PQID 856767050
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btr018
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3051324
proquest_miscellaneous_869823174
proquest_miscellaneous_856767050
pubmed_primary_21252077
pascalfrancis_primary_23955846
crossref_primary_10_1093_bioinformatics_btr018
crossref_citationtrail_10_1093_bioinformatics_btr018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-15
PublicationDateYYYYMMDD 2011-03-15
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2011
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Holmes (2023012511554980200_B22) 2006; 1
Gao (2023012511554980200_B16) 2005; 6
Troyanskaya (2023012511554980200_B49) 2002; 18
Bolstad (2023012511554980200_B9) 2003; 19
MacKay (2023012511554980200_B35) 1992; 4
Whitley (2023012511554980200_B53) 2002; 6
Tadesse (2023012511554980200_B47) 2003; 59
Yang (2023012511554980200_B54) 2002; 30
Blalock (2023012511554980200_B8) 2004; 101
Choe (2023012511554980200_B11) 2005; 6
Plummer (2023012511554980200_B39) 2006; 6
Liu (2023012511554980200_B33) 2005; 21
Van Hoewyk (2023012511554980200_B52) 2008; 132
Upton (2023012511554980200_B51) 2010; 9
de Haan (2023012511554980200_B12) 2009; 98
Huber (2023012511554980200_B24) 2002; 18
Li (2023012511554980200_B32) 2008; 16
Edgar (2023012511554980200_B15) 2002; 30
Novak (2023012511554980200_B38) 2006; 1
Ishwaran (2023012511554980200_B27) 2003; 98
Lee (2023012511554980200_B30) 2005; 15
Middleton (2023012511554980200_B37) 2004; 20
Affara (2023012511554980200_B1) 2007; 362
Jin (2023012511554980200_B29) 2003; 307
Somel (2023012511554980200_B44) 2008; 3
Zhao (2023012511554980200_B56) 2008; 9
Tusher (2023012511554980200_B50) 2001; 98
Irizarry (2023012511554980200_B26) 2003; 31
Small (2023012511554980200_B42) 2005; 72
Someya (2023012511554980200_B45) 2008; 29
Sykacek (2023012511554980200_B46) 2007; 23
Jeffreys (2023012511554980200_B28) 1961
Giles (2023012511554980200_B17) 2003; 19
Gottardo (2023012511554980200_B19) 2006; 62
Baldi (2023012511554980200_B5) 2001; 17
Cameron (2023012511554980200_B10) 2005; 11
Liu (2023012511554980200_B34) 2006; 22
Talantov (2023012511554980200_B48) 2005; 11
Dinneny (2023012511554980200_B14) 2008; 320
Bae (2023012511554980200_B4) 2004; 20
Shahbaba (2023012511554980200_B41) 2006; 7
Dennis (2023012511554980200_B13) 2003; 4
Huang (2023012511554980200_B23) 2002; 58
Ibrahim (2023012511554980200_B25) 2002; 97
Bernardo (2023012511554980200_B7) 1994
Lewin (2023012511554980200_B31) 2007; 6
Yao (2023012511554980200_B55) 2007; 8
Zimmerman (2023012511554980200_B58) 2006; 27
Green (2023012511554980200_B20) 1995; 82
Zhao (2023012511554980200_B57) 2003; 19
Robert (2023012511554980200_B40) 2004
Ashburner (2023012511554980200_B3) 2000; 25
Hardin (2023012511554980200_B21) 2009; 10
MacLennan (2023012511554980200_B36) 2006; 15
Smyth (2023012511554980200_B43) 2005
Al-Shahrour (2023012511554980200_B2) 2004; 20
Gilks (2023012511554980200_B18) 1996
Berger (2023012511554980200_B6) 1994; 3
16368706 - Hum Mol Genet. 2006 Feb 1;15(3):405-15
12801864 - Bioinformatics. 2003 Jun 12;19(9):1046-54
12169536 - Bioinformatics. 2002;18 Suppl 1:S96-104
12493072 - Crit Care. 2002 Dec;6(6):509-13
18171320 - Stat Appl Genet Mol Biol. 2007;6:Article36
18231591 - PLoS One. 2008;3(1):e1504
17038174 - BMC Bioinformatics. 2006;7:448
21044041 - Stat Appl Genet Mol Biol. 2010;9:Article37
15693945 - Genome Biol. 2005;6(2):R16
19276243 - Biostatistics. 2009 Jul;10(3):446-50
12808002 - J Pharmacol Exp Ther. 2003 Oct;307(1):93-109
18436742 - Science. 2008 May 16;320(5878):942-5
16820429 - Bioinformatics. 2006 Sep 1;22(17):2107-13
11395427 - Bioinformatics. 2001 Jun;17(6):509-19
14990455 - Bioinformatics. 2004 Mar 1;20(4):578-80
16042764 - BMC Bioinformatics. 2005;6:186
18315862 - BMC Bioinformatics. 2008;9 Suppl 1:S9
17540682 - Bioinformatics. 2007 Aug 1;23(15):1936-44
18251864 - Physiol Plant. 2008 Feb;132(2):236-53
12925520 - Biostatistics. 2003 Apr;4(2):249-64
11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10
12795414 - Recent Prog Horm Res. 2003;58:55-73
11842121 - Nucleic Acids Res. 2002 Feb 15;30(4):e15
14630654 - Bioinformatics. 2003 Nov 22;19(17):2254-62
18239588 - Obesity (Silver Spring). 2008 Apr;16(4):811-8
15256404 - Bioinformatics. 2004 Dec 12;20(18):3423-30
16078385 - J Biopharm Stat. 2005;15(5):783-97
16959036 - Biol Direct. 2006 Sep 07;1:27
16020470 - Bioinformatics. 2005 Sep 15;21(18):3637-44
17363114 - Neurobiol Aging. 2008 Jul;29(7):1080-92
16243793 - Clin Cancer Res. 2005 Oct 15;11(20):7234-42
15496517 - Biol Reprod. 2005 Feb;72(2):492-501
17850668 - BMC Genomics. 2007;8:319
16954408 - Physiol Genomics. 2006 Nov 27;27(3):337-50
14769913 - Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2173-8
10802651 - Nat Genet. 2000 May;25(1):25-9
16542223 - Biometrics. 2006 Mar;62(1):10-8
11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
14698009 - Nutrition. 2004 Jan;20(1):14-25
14601755 - Biometrics. 2003 Sep;59(3):542-54
12734009 - Genome Biol. 2003;4(5):P3
17569639 - Philos Trans R Soc Lond B Biol Sci. 2007 Aug 29;362(1484):1469-87
12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93
12424116 - Bioinformatics. 2002 Nov;18(11):1454-61
16205622 - Mol Vis. 2005;11:775-91
References_xml – volume: 9
  start-page: S9
  issue: Suppl. 1
  year: 2008
  ident: 2023012511554980200_B56
  article-title: Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-S1-S9
– volume: 82
  start-page: 711
  year: 1995
  ident: 2023012511554980200_B20
  article-title: Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination
  publication-title: Biometrika
  doi: 10.1093/biomet/82.4.711
– volume: 27
  start-page: 337
  year: 2006
  ident: 2023012511554980200_B58
  article-title: Multiple mechanisms limit the duration of wakefulness in Drosophila brain
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00030.2006
– volume: 6
  start-page: 7
  year: 2006
  ident: 2023012511554980200_B39
  article-title: CODA: convergence diagnosis and output analysis for MCMC
  publication-title: R. News
– volume: 4
  start-page: 415
  year: 1992
  ident: 2023012511554980200_B35
  article-title: Bayesian interpolation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.415
– volume: 6
  start-page: 186
  year: 2005
  ident: 2023012511554980200_B16
  article-title: Nonparametric tests for differential gene expression and interaction effects in multi-factorial microarray experiments
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-186
– volume: 307
  start-page: 93
  year: 2003
  ident: 2023012511554980200_B29
  article-title: Modeling of corticosteroid pharmacogenomics in rat liver using gene microarrays
  publication-title: J. Pharmalcol. Exp. Ther.
  doi: 10.1124/jpet.103.053256
– volume: 21
  start-page: 3637
  year: 2005
  ident: 2023012511554980200_B33
  article-title: A tractable probabilistic model for affymetrix probe-level analysis across multiple chips
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti583
– volume: 72
  start-page: 492
  year: 2005
  ident: 2023012511554980200_B42
  article-title: Profiling gene expression during the differentiation and development of the murine embryonic gonad
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.104.033696
– volume: 59
  start-page: 542
  year: 2003
  ident: 2023012511554980200_B47
  article-title: Identification of differentially expressed genes in high-density oligonucleotide arrays accounting for the quantification limits of the technology
  publication-title: Biometrics
  doi: 10.1111/1541-0420.00064
– volume: 98
  start-page: 38
  year: 2009
  ident: 2023012511554980200_B12
  article-title: Robust anova for microarray data
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2009.04.011
– volume: 29
  start-page: 1080
  year: 2008
  ident: 2023012511554980200_B45
  article-title: The role of mtdna mutations in the pathogenesis of age-related hearing loss in mice carrying a mutator dna polymerase gamma
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2007.01.014
– volume: 6
  start-page: 509
  year: 2002
  ident: 2023012511554980200_B53
  article-title: Statistics review 6: nonparametric methods
  publication-title: Crit. Care
  doi: 10.1186/cc1820
– volume: 15
  start-page: 405
  year: 2006
  ident: 2023012511554980200_B36
  article-title: Targeted disruption of glycerol kinase gene in mice: expression analysis in liver shows alterations in network partners related to glycerol kinase activity
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddi457
– volume: 20
  start-page: 578
  year: 2004
  ident: 2023012511554980200_B2
  article-title: Fatigo: a web tool for finding significant association of gene ontology terms with groups of genes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg455
– volume: 19
  start-page: 1046
  year: 2003
  ident: 2023012511554980200_B57
  article-title: Modified nonparametric approaches to detecting differentially expressed genes in replicated microarray experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btf879
– volume-title: Bayesian Theory.
  year: 1994
  ident: 2023012511554980200_B7
  doi: 10.1002/9780470316870
– volume: 30
  start-page: 207
  year: 2002
  ident: 2023012511554980200_B15
  article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository
  publication-title: Nucleic Acid Res.
  doi: 10.1093/nar/30.1.207
– volume-title: Monte Carlo Statistical Methods.
  year: 2004
  ident: 2023012511554980200_B40
  doi: 10.1007/978-1-4757-4145-2
– volume: 10
  start-page: 446
  year: 2009
  ident: 2023012511554980200_B21
  article-title: A note on oligonucleotide expression values not being normally distributed
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxp003
– volume: 18
  start-page: S96
  issue: Suppl. 1
  year: 2002
  ident: 2023012511554980200_B24
  article-title: Variance stabilization applied to microarray data calibration and to the quantification of differential expression
  publication-title: Bioinformaics
  doi: 10.1093/bioinformatics/18.suppl_1.S96
– volume: 3
  start-page: 5
  year: 1994
  ident: 2023012511554980200_B6
  article-title: An overview of robust Bayesian analysis
  publication-title: Test
  doi: 10.1007/BF02562676
– volume: 362
  start-page: 1469
  year: 2007
  ident: 2023012511554980200_B1
  article-title: Understanding endothelial cell apoptosis: what can the transcriptome, glycome and proteome reveal?
  publication-title: Philos. Trans. R. Soc. B
  doi: 10.1098/rstb.2007.2129
– volume: 17
  start-page: 509
  year: 2001
  ident: 2023012511554980200_B5
  article-title: A bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.509
– volume: 11
  start-page: 7234
  year: 2005
  ident: 2023012511554980200_B48
  article-title: Novel genes associated with malignant melanoma but not benign melanocytic lesions
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-05-0683
– volume-title: Theory of Probability
  year: 1961
  ident: 2023012511554980200_B28
– volume: 3
  start-page: e1504
  year: 2008
  ident: 2023012511554980200_B44
  article-title: Human and chimpanzee gene expression differences replicated in mice fed different diets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001504
– volume: 30
  start-page: e15
  year: 2002
  ident: 2023012511554980200_B54
  article-title: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation
  publication-title: Nucleic Acid Res.
  doi: 10.1093/nar/30.4.e15
– volume: 25
  start-page: 25
  year: 2000
  ident: 2023012511554980200_B3
  article-title: Gene ontology: tool for the unification of biology. the gene ontology consortium
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– volume: 6
  year: 2007
  ident: 2023012511554980200_B31
  article-title: Fully Bayesian mixture model for differential gene expression: simulations and model checks
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1314
– volume: 98
  start-page: 438
  year: 2003
  ident: 2023012511554980200_B27
  article-title: Detecting differentially expressed gene in microarrays using Bayesian model selection
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214503000224
– volume: 98
  start-page: 5116
  year: 2001
  ident: 2023012511554980200_B50
  article-title: Significance analysis of microarrays applied to the ionizing radiation response
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.091062498
– volume: 62
  start-page: 10
  year: 2006
  ident: 2023012511554980200_B19
  article-title: Bayesian robust inference for differential gene expression in microarrays with multiple samples
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00397.x
– volume: 19
  start-page: 185
  year: 2003
  ident: 2023012511554980200_B9
  article-title: A comparison of normalization methods for high density oligonucleotide array data based on bias and variance
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.2.185
– volume: 23
  start-page: 1936
  year: 2007
  ident: 2023012511554980200_B46
  article-title: Bayesian modelling of shared gene function
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm280
– volume: 15
  start-page: 783
  year: 2005
  ident: 2023012511554980200_B30
  article-title: Nonparametric methods for microarray data based on exchangeability and borrowed power
  publication-title: J. Biopharm. Stat.
  doi: 10.1081/BIP-200067778
– volume: 4
  start-page: R60
  year: 2003
  ident: 2023012511554980200_B13
  article-title: DAVID: Database for Annotation, Visualization, and Integrated Discovery
  publication-title: Genome Biol.
  doi: 10.1186/gb-2003-4-9-r60
– volume: 58
  start-page: 55
  year: 2002
  ident: 2023012511554980200_B23
  article-title: Gene expression profiling for prediction of clinical characteristics of breast cancer
  publication-title: Hormone Res.
– volume: 97
  start-page: 88
  year: 2002
  ident: 2023012511554980200_B25
  article-title: Bayesian models for gene expression with dna microarray data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214502753479257
– volume: 1
  start-page: 145
  year: 2006
  ident: 2023012511554980200_B22
  article-title: Bayesian auxiliary variable models for binary and multinomial regression
  publication-title: Bayesian Anal.
– volume: 6
  start-page: R16
  year: 2005
  ident: 2023012511554980200_B11
  article-title: Preferred analysis methods for affymetrix genechips revealed by a wholly defined control dataset
  publication-title: Genome Biol.
  doi: 10.1186/gb-2005-6-2-r16
– volume: 19
  start-page: 2254
  year: 2003
  ident: 2023012511554980200_B17
  article-title: Normality of oligonucleotide microarray data and implications for parametric statistical analyses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg311
– volume: 20
  start-page: 14
  year: 2004
  ident: 2023012511554980200_B37
  article-title: Application of genomic technologies: DNA microarrays and metabolic profiling of obesity in the hypothalamus and in subcutaneous fat
  publication-title: Nutrition
  doi: 10.1016/j.nut.2003.10.002
– start-page: 397
  volume-title: Bioinformatics and Computational Biology Solutions using R and BioConductor.
  year: 2005
  ident: 2023012511554980200_B43
  article-title: Limma: linear models for microarray data
  doi: 10.1007/0-387-29362-0_23
– volume: 22
  start-page: 2107
  year: 2006
  ident: 2023012511554980200_B34
  article-title: Probe-level measurement error improves accuracy in detecting differential gene expression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl361
– volume: 1
  start-page: 27
  year: 2006
  ident: 2023012511554980200_B38
  article-title: Generalization of DNA microarray dispersion properties: microarray equivalent of t-distribution
  publication-title: Biol. Direct
  doi: 10.1186/1745-6150-1-27
– volume: 20
  start-page: 3423
  year: 2004
  ident: 2023012511554980200_B4
  article-title: Gene selection using a two-level hierarchical bayesian model
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth419
– volume: 8
  start-page: 319
  year: 2007
  ident: 2023012511554980200_B55
  article-title: A Marfan syndrome gene expression phenotype in cultured skin fibroblasts
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-319
– volume-title: Markov Chain Monte Carlo in Practice.
  year: 1996
  ident: 2023012511554980200_B18
– volume: 31
  start-page: 249
  year: 2003
  ident: 2023012511554980200_B26
  article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– volume: 101
  start-page: 2173
  year: 2004
  ident: 2023012511554980200_B8
  article-title: Incipient alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0308512100
– volume: 7
  start-page: 448
  year: 2006
  ident: 2023012511554980200_B41
  article-title: Gene function classification using Bayesian models with hierarchy-based priors
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-448
– volume: 132
  start-page: 236
  year: 2008
  ident: 2023012511554980200_B52
  article-title: Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in arabidopsis
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2007.01002.x
– volume: 11
  start-page: 775
  year: 2005
  ident: 2023012511554980200_B10
  article-title: Gene expression profiles of intact and regenerating zebrafish retina
  publication-title: Mol. Vis.
– volume: 320
  start-page: 942
  year: 2008
  ident: 2023012511554980200_B14
  article-title: Cell identity mediates the response of Arabidopsis roots to abiotic stress
  publication-title: Science
  doi: 10.1126/science.1153795
– volume: 18
  start-page: 1454
  year: 2002
  ident: 2023012511554980200_B49
  article-title: Nonparametric methods for identifying differentially expressed genes in microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.11.1454
– volume: 16
  start-page: 811
  year: 2008
  ident: 2023012511554980200_B32
  article-title: Assessment of diet-induced obese rats as an obesity model by comparative functional genomics
  publication-title: Obesity
  doi: 10.1038/oby.2007.116
– volume: 9
  year: 2010
  ident: 2023012511554980200_B51
  article-title: The detection of blur in Affymetrix GeneChips
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1590
– reference: 16954408 - Physiol Genomics. 2006 Nov 27;27(3):337-50
– reference: 18315862 - BMC Bioinformatics. 2008;9 Suppl 1:S9
– reference: 18251864 - Physiol Plant. 2008 Feb;132(2):236-53
– reference: 12734009 - Genome Biol. 2003;4(5):P3
– reference: 16020470 - Bioinformatics. 2005 Sep 15;21(18):3637-44
– reference: 16078385 - J Biopharm Stat. 2005;15(5):783-97
– reference: 16959036 - Biol Direct. 2006 Sep 07;1:27
– reference: 18239588 - Obesity (Silver Spring). 2008 Apr;16(4):811-8
– reference: 11395427 - Bioinformatics. 2001 Jun;17(6):509-19
– reference: 14601755 - Biometrics. 2003 Sep;59(3):542-54
– reference: 11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10
– reference: 17540682 - Bioinformatics. 2007 Aug 1;23(15):1936-44
– reference: 12538238 - Bioinformatics. 2003 Jan 22;19(2):185-93
– reference: 12925520 - Biostatistics. 2003 Apr;4(2):249-64
– reference: 14698009 - Nutrition. 2004 Jan;20(1):14-25
– reference: 16042764 - BMC Bioinformatics. 2005;6:186
– reference: 11309499 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
– reference: 19276243 - Biostatistics. 2009 Jul;10(3):446-50
– reference: 12169536 - Bioinformatics. 2002;18 Suppl 1:S96-104
– reference: 16205622 - Mol Vis. 2005;11:775-91
– reference: 17363114 - Neurobiol Aging. 2008 Jul;29(7):1080-92
– reference: 16243793 - Clin Cancer Res. 2005 Oct 15;11(20):7234-42
– reference: 12493072 - Crit Care. 2002 Dec;6(6):509-13
– reference: 21044041 - Stat Appl Genet Mol Biol. 2010;9:Article37
– reference: 16820429 - Bioinformatics. 2006 Sep 1;22(17):2107-13
– reference: 14630654 - Bioinformatics. 2003 Nov 22;19(17):2254-62
– reference: 14990455 - Bioinformatics. 2004 Mar 1;20(4):578-80
– reference: 18171320 - Stat Appl Genet Mol Biol. 2007;6:Article36
– reference: 17850668 - BMC Genomics. 2007;8:319
– reference: 12795414 - Recent Prog Horm Res. 2003;58:55-73
– reference: 10802651 - Nat Genet. 2000 May;25(1):25-9
– reference: 18436742 - Science. 2008 May 16;320(5878):942-5
– reference: 17569639 - Philos Trans R Soc Lond B Biol Sci. 2007 Aug 29;362(1484):1469-87
– reference: 15496517 - Biol Reprod. 2005 Feb;72(2):492-501
– reference: 15693945 - Genome Biol. 2005;6(2):R16
– reference: 12424116 - Bioinformatics. 2002 Nov;18(11):1454-61
– reference: 11842121 - Nucleic Acids Res. 2002 Feb 15;30(4):e15
– reference: 14769913 - Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2173-8
– reference: 16542223 - Biometrics. 2006 Mar;62(1):10-8
– reference: 18231591 - PLoS One. 2008;3(1):e1504
– reference: 12801864 - Bioinformatics. 2003 Jun 12;19(9):1046-54
– reference: 15256404 - Bioinformatics. 2004 Dec 12;20(18):3423-30
– reference: 17038174 - BMC Bioinformatics. 2006;7:448
– reference: 12808002 - J Pharmacol Exp Ther. 2003 Oct;307(1):93-109
– reference: 16368706 - Hum Mol Genet. 2006 Feb 1;15(3):405-15
SSID ssj0005056
ssj0051444
Score 2.1665432
Snippet Motivation: Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian...
Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions....
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 807
SubjectTerms Algorithms
Analysis of Variance
Bayes Theorem
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Statistical
Oligonucleotide Array Sequence Analysis - methods
Original Papers
Reproducibility of Results
Title Biological assessment of robust noise models in microarray data analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/21252077
https://www.proquest.com/docview/856767050
https://www.proquest.com/docview/869823174
https://pubmed.ncbi.nlm.nih.gov/PMC3051324
https://academic.oup.com/bioinformatics/article-pdf/27/6/807/643408/btr018.pdf
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9swEB52s5QWSu_DPYIe-mpHtmTZflxKl1Bo2ocNpE9Gl2nY1A4-KOmvrxTZbr0tPaAvRiCNjMYj-ZM08w3AK8yp0CKjfhSFwqdCpT5PiPQLHhUxKSiX1AYnv1ux5Zq-3cSbE1gNsTC89woPhpAGsa16ClFLW7zo9envVbEwu3a2SLF5UkJxuhBtjcM0MFWncMZig81ncLZefTj_6IKvEp-mx1TJfTkMh5CejFx_j-tr8rO6veeN0VvhEl78CpH-7Fh5syv3_PCF73Y__LUu7kI1jNc5q1wFXSsC-fUaFeT_U8g9uNMDXHTuBO7DiS4fwA2X8vLwEJauZE0D8ZEVFFUFqivRNS0qq22j0TFBT4O2JfpsPQZ5XfMDst6siPcsKo9gffHm8vXS77M5-NIsqq0vsVKMKpaZHWOSaU7s8WvGUyIIoUpQpSPMseCFigRnCc1kZKp4qCiRjEtMHsOsrEr9FJASzADLsMhkrKkwGCrSRaplokJdMBVLD-jw2XLZU53bjBu73F25k3yqxNwpyoNgFNs7ro8_CcwnNjFKRSSLLbLzAA1Gkptpa-9ieKmrrsnT2DLl4Rj_pgnL7B1tQj144szqe_8GlkY4STxIJgY3NrCk4dOacvvpSB5u1vfQgGgPFqNp_t1gn_2zxHO45U7giR_GL2DW1p1-aSBcK-Zwevl-M-9n5zcnPVIN
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD6ss4iCeL_Uy5IHX9umTZq2j4u4DIKDDw6sTyVXHBzboRdk_PUmk7Y6q3gBX0ogOSk5PUm_JOd8B-Al5lRoUdIwTRMRUqGKkOdEhoanJiOGckldcPLbFVuu6ZvL7PIEVlMsDB-9wqMppEFsmpFC1NEWx6M-w50ysd21s7jA9kkJxUUs-hYnRWSrrsEpyyw2X8DpevXu_IMPvspDWhxSJY_lJJlCekpy9T2-r6Of1a0d76zejE948StE-rNj5Y2h3vH9F77d_vDXurgDzTRe76zyKRp6EcmvV6gg_59C7sLtEeCicy9wD050fR-u-5SX-wew9CVnGojPrKCoMahtxND1qG42nUaHBD0d2tTos_MY5G3L98h5syI-sqg8hPXF6_evluGYzSGUdlHtQ4mVYlSx0u4Y81Jz4o5fS14QQQhVgiqdYo4FNyoVnOW0lKmt4omiRDIuMXkEi7qp9RNASjALLBNTykxTYTFUqk2hZa4SbZjKZAB0-myVHKnOXcaNbeWv3El1rMTKKyqAaBbbea6PPwmcHdnELJWSMnPILgA0GUllp627i-G1boauKjLHlIcz_JsmrHR3tDkN4LE3q-_9W1ia4jwPID8yuLmBIw0_rqk3Hw_k4XZ9TyyIDiCeTfPvBvv0nyWewU1_Ak_CJHsOi74d9AsL4XpxNs7Lb0AHUPE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+assessment+of+robust+noise+models+in+microarray+data+analysis&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Posekany%2C+A&rft.au=Felsenstein%2C+K&rft.au=Sykacek%2C+P&rft.date=2011-03-15&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=27&rft.issue=6&rft.spage=807&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtr018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon