Using Artificial Intelligence Resources in Dialysis and Kidney Transplant Patients: A Literature Review

Background. The purpose of this review is to depict current research and impact of artificial intelligence/machine learning (AI/ML) algorithms on dialysis and kidney transplantation. Published studies were presented from two points of view: What medical aspects were covered? What AI/ML algorithms ha...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2020; no. 2020; pp. 1 - 14
Main Authors Covic, Adrian, Lupu, Paula Madalina, Popa, Iolanda Valentina, Jugrin, Daniel, Iftene, Adrian, Burlacu, Alexandru, Vlad, Cristiana
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN2314-6133
2314-6141
2314-6141
DOI10.1155/2020/9867872

Cover

More Information
Summary:Background. The purpose of this review is to depict current research and impact of artificial intelligence/machine learning (AI/ML) algorithms on dialysis and kidney transplantation. Published studies were presented from two points of view: What medical aspects were covered? What AI/ML algorithms have been used? Methods. We searched four electronic databases or studies that used AI/ML in hemodialysis (HD), peritoneal dialysis (PD), and kidney transplantation (KT). Sixty-nine studies were split into three categories: AI/ML and HD, PD, and KT, respectively. We identified 43 trials in the first group, 8 in the second, and 18 in the third. Then, studies were classified according to the type of algorithm. Results. AI and HD trials covered: (a) dialysis service management, (b) dialysis procedure, (c) anemia management, (d) hormonal/dietary issues, and (e) arteriovenous fistula assessment. PD studies were divided into (a) peritoneal technique issues, (b) infections, and (c) cardiovascular event prediction. AI in transplantation studies were allocated into (a) management systems (ML used as pretransplant organ-matching tools), (b) predicting graft rejection, (c) tacrolimus therapy modulation, and (d) dietary issues. Conclusions. Although guidelines are reluctant to recommend AI implementation in daily practice, there is plenty of evidence that AI/ML algorithms can predict better than nephrologists: volumes, Kt/V, and hypotension or cardiovascular events during dialysis. Altogether, these trials report a robust impact of AI/ML on quality of life and survival in G5D/T patients. In the coming years, one would probably witness the emergence of AI/ML devices that facilitate the management of dialysis patients, thus increasing the quality of life and survival.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-3
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Academic Editor: Rafia Al-Lamki
ISSN:2314-6133
2314-6141
2314-6141
DOI:10.1155/2020/9867872