Cell Fractionation and the Identification of Host Proteins Involved in Plant–Virus Interactions
Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles d...
Saved in:
Published in | Pathogens (Basel) Vol. 13; no. 1; p. 53 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-0817 2076-0817 |
DOI | 10.3390/pathogens13010053 |
Cover
Abstract | Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant–virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host–virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein–protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops. |
---|---|
AbstractList | Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant–virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host–virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein–protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops. Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant-virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host-virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein-protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops.Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant-virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host-virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein-protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops. |
Audience | Academic |
Author | Gomaa, Amany E. El Mounadi, Kaoutar Garcia-Ruiz, Hernan Parperides, Eric |
Author_xml | – sequence: 1 givenname: Amany E. surname: Gomaa fullname: Gomaa, Amany E. – sequence: 2 givenname: Kaoutar orcidid: 0000-0001-9477-1292 surname: El Mounadi fullname: El Mounadi, Kaoutar – sequence: 3 givenname: Eric surname: Parperides fullname: Parperides, Eric – sequence: 4 givenname: Hernan orcidid: 0000-0002-4681-470X surname: Garcia-Ruiz fullname: Garcia-Ruiz, Hernan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38251360$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhkeoiJbSB2CDRmLTTYqvY8-yiiiNVIkugK3l2Mepo4kdbE8ldrwDb9gnwdOkXAoIW_Ll-D-frd_neXMQYoCmeYnRGaU9erPV5SauIGRMEUaI0yfNEUGimyGJxcEv68PmJOc1qk2iaf-sOaSScEw7dNToOQxDe5G0KT4GPQ2tDrYtN9AuLITinTe7cHTtZcylvU6xgA-5XYTbONyCbX1orwcdyt3Xb598GqeTAntkftE8dXrIcLKfj5uPF28_zC9nV-_fLebnVzPDqSwzQnsmuOVWE6sx60nPrMHE9riXvbPIcXBEoGWniQbhrHMWegDaWdIRhiU9bhY7ro16rbbJb3T6oqL26j4Q00rpVLwZQEm5xIQgyai2TBum8RJ3kgGSTqKuM5V1umNtU_w8Qi5q47OpTukAccyKIoYYx5yL_0pJjwXnrHKr9PUj6TqOKVRTJpUUklQHfqpWuj7VBxdLtXKCqnMhkZSIsYl19hdV7RY23tRKcb7Gf0t4tb98XG7A_jDooRSqQOwEJsWcEzhlfLn_-Ur2g8JITXWn_qi7mokfZT7A_53zHbdP2zI |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_132095 crossref_primary_10_1093_hr_uhae287 crossref_primary_10_1111_mpp_70046 |
Cites_doi | 10.1007/s00018-021-03856-0 10.3389/fpls.2018.01776 10.1016/S0960-9822(02)00898-9 10.1016/bs.mie.2016.09.090 10.1111/mpp.13170 10.1105/tpc.10.7.1107 10.1002/rmv.630 10.4172/jpb.1000102 10.1586/epr.11.67 10.1094/MPMI-11-14-0363-R 10.1016/j.virol.2007.12.014 10.1104/pp.103.022749 10.1016/j.virusres.2012.09.017 10.1007/978-1-4939-6533-5_1 10.3390/ijms18112300 10.1186/s12985-021-01647-4 10.1371/journal.ppat.1004755 10.1073/pnas.111440998 10.1128/JVI.01898-19 10.1186/s12985-018-0999-2 10.1105/tpc.109.073056 10.1002/cpz1.352 10.2217/fmb.10.7 10.3389/fpls.2023.1224958 10.3390/plants11182403 10.1128/JVI.00545-06 10.5423/PPJ.RW.09.2016.0198 10.1111/j.1399-3054.2006.00852.x 10.1038/s41467-020-15895-5 10.3390/v10090484 10.1186/s13007-020-00690-6 10.1111/tpj.13088 10.1002/pmic.201400147 10.1016/j.tim.2019.05.007 10.3389/fpls.2018.01299 10.1128/JVI.01146-12 10.1038/sj.emboj.7601674 10.1371/journal.pone.0050627 10.1128/JVI.01316-16 10.1128/JVI.01243-07 10.3390/v12020197 10.1016/j.gpb.2016.06.003 10.1128/JVI.00743-13 10.1371/journal.ppat.1010888 10.1146/annurev.micro.112408.134012 10.1016/j.coviro.2011.09.009 10.1038/s41598-017-10497-6 10.1016/j.virol.2013.05.028 10.1046/j.1365-313x.2000.00658.x 10.1038/srep28306 10.1128/JVI.01478-16 10.1007/978-1-62703-631-3 10.1128/JVI.77.1.523-534.2003 10.3390/ijms20020253 10.1186/s12864-016-2394-y 10.1002/pmic.200700791 10.3389/fpls.2013.00154 10.1002/mas.20301 10.1046/j.1365-313X.2001.01181.x 10.1104/pp.113.229666 10.1093/emboj/16.13.4049 10.1046/j.1432-1033.2002.02792.x 10.1073/pnas.95.19.11169 10.1099/vir.0.064220-0 10.1016/j.jprot.2013.06.005 10.1371/journal.ppat.1008965 10.3389/fmicb.2021.656809 10.1128/JVI.01824-09 10.1016/j.jprot.2018.11.018 10.1104/pp.16.01253 10.1104/pp.19.01172 10.1186/s12985-020-01414-x 10.1128/JVI.01706-15 10.1371/journal.ppat.1002409 10.1101/2021.05.11.443547 10.1038/s41467-019-11202-z 10.1016/bs.aivir.2020.04.002 10.1007/s10327-014-0505-7 10.1042/BST0320557 10.1080/09553002.2022.1998712 10.1073/pnas.0704632104 10.1007/s11427-019-9598-3 10.1073/pnas.1214287110 10.1111/mpp.12533 10.1111/j.1399-3054.2008.01189.x 10.1038/s41438-021-00470-w 10.1093/plphys/kiac194 10.1105/tpc.19.00081 10.1111/mpp.12851 10.1021/pr060483r 10.1371/journal.ppat.1010909 10.1111/nph.17370 10.15252/msb.20167062 10.3390/v12010077 10.1099/vir.0.81107-0 10.1074/mcp.M600250-MCP200 10.1128/JVI.00928-14 10.1099/vir.0.015321-0 10.1038/nrmicro2692 10.3390/biology11010095 10.3390/v15061282 10.3390/v13040677 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T7 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 DOA |
DOI | 10.3390/pathogens13010053 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2076-0817 |
ExternalDocumentID | oai_doaj_org_article_88b1220843ad4ac4a1b1684e08f8066c A780880446 38251360 10_3390_pathogens13010053 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIH HHS grantid: R01GM120108 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM CGR CUY CVF ECM EIF NPM PQGLB PMFND 7T7 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c538t-239475d5da2da149294dc12d91989fd0f5ef270b6a2ae7fdffde9ee36d2624183 |
IEDL.DBID | M48 |
ISSN | 2076-0817 |
IngestDate | Wed Aug 27 01:21:42 EDT 2025 Fri Sep 05 08:35:05 EDT 2025 Thu Sep 04 22:50:10 EDT 2025 Thu Sep 11 21:12:30 EDT 2025 Tue Jun 17 22:15:56 EDT 2025 Tue Jun 10 21:10:53 EDT 2025 Mon Jul 21 05:43:01 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Tue Jul 01 02:19:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | cell fractionation protein–protein interactions mass spectrometry subcellular localization virus–host interactions |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c538t-239475d5da2da149294dc12d91989fd0f5ef270b6a2ae7fdffde9ee36d2624183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9477-1292 0000-0002-4681-470X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/pathogens13010053 |
PMID | 38251360 |
PQID | 2918782475 |
PQPubID | 2032351 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_88b1220843ad4ac4a1b1684e08f8066c proquest_miscellaneous_3040451557 proquest_miscellaneous_2917554806 proquest_journals_2918782475 gale_infotracmisc_A780880446 gale_infotracacademiconefile_A780880446 pubmed_primary_38251360 crossref_citationtrail_10_3390_pathogens13010053 crossref_primary_10_3390_pathogens13010053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Pathogens (Basel) |
PublicationTitleAlternate | Pathogens |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_92 Jensen (ref_93) 2016; 68 Hyodo (ref_4) 2020; Volume 107 Ershova (ref_54) 2023; 14 ref_98 Hong (ref_1) 2017; 33 ref_96 ref_95 Agrawal (ref_81) 2011; 30 ref_18 Zhu (ref_82) 2020; 63 ref_16 Takac (ref_66) 2016; 6 Chai (ref_62) 2020; 94 Schaad (ref_107) 1997; 16 ref_25 Bao (ref_99) 2017; Volume 588 Rutter (ref_104) 2017; 173 ref_21 Angel (ref_27) 2013; 443 Bucher (ref_52) 2001; 28 Belykh (ref_89) 2022; 98 ref_71 Wu (ref_12) 2013; 89 Reichel (ref_23) 1998; 95 Kudchodkar (ref_44) 2009; 19 Jaquinod (ref_85) 2007; 6 Ivanov (ref_56) 2014; 95 Kim (ref_34) 2007; 104 Song (ref_32) 2009; 135 (ref_43) 2019; 20 Low (ref_111) 2021; 78 Takeda (ref_48) 2010; 22 Cheng (ref_61) 2017; 7 (ref_58) 2014; 88 ref_83 ref_80 Zhang (ref_14) 2019; 10 Iglesias (ref_53) 2000; 21 Zhou (ref_31) 2022; 23 ref_88 Lohmus (ref_78) 2017; 91 ref_87 Beauchemin (ref_70) 2007; 81 ref_84 Dufresne (ref_11) 2008; 374 Ahlquist (ref_19) 2010; 64 Huh (ref_45) 2013; 110 Gallois (ref_39) 2010; 91 Uetz (ref_13) 2010; 5 Parsons (ref_69) 2019; 31 Chan (ref_65) 2007; 6 Han (ref_74) 2003; 77 Delaye (ref_64) 2016; 14 Nishikiori (ref_20) 2006; 80 Das (ref_5) 2019; 194 Grangeon (ref_30) 2012; 86 ref_57 ref_55 Jiang (ref_79) 2021; 231 ref_51 Kim (ref_33) 2004; 32 Heinlein (ref_22) 1998; 10 Wei (ref_3) 2010; 84 ref_59 Gorovits (ref_77) 2013; 171 Li (ref_42) 2019; 27 Blake (ref_50) 2007; 129 ref_68 ref_63 Wamaitha (ref_72) 2018; 15 Vandenbogaert (ref_106) 2008; 8 Ishibashi (ref_73) 2013; 87 Bhattacharyya (ref_26) 2018; 19 Xie (ref_49) 2001; 98 DeBlasio (ref_17) 2015; 28 Hipper (ref_38) 2013; 4 Ivanov (ref_10) 2016; 85 ref_113 Kwon (ref_46) 2020; 17 Lellis (ref_40) 2002; 12 Chen (ref_103) 2022; 2 Collins (ref_86) 2020; 182 DeBlasio (ref_15) 2016; 90 Akhter (ref_7) 2021; 18 Li (ref_90) 2021; 8 Li (ref_67) 2022; 189 Cheng (ref_29) 2013; 163 ref_105 ref_108 Li (ref_112) 2015; 15 Cheng (ref_60) 2017; 91 Cuesta (ref_91) 2020; 11 ref_109 ref_47 Verchot (ref_24) 2011; 1 Shibahara (ref_94) 2002; 269 ref_100 Nagy (ref_37) 2012; 10 ref_41 Ballut (ref_75) 2005; 86 ref_102 Kim (ref_35) 2007; 26 Xu (ref_97) 2020; 16 Doucette (ref_110) 2011; 8 ref_2 ref_9 ref_8 Leastro (ref_76) 2018; 9 Budziszewska (ref_28) 2018; 9 Williams (ref_101) 2003; 132 Hyodo (ref_36) 2014; 80 ref_6 |
References_xml | – volume: 78 start-page: 5325 year: 2021 ident: ref_111 article-title: Recent progress in mass spectrometry-based strategies for elucidating protein–protein interactions publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-021-03856-0 – volume: 9 start-page: 1776 year: 2018 ident: ref_28 article-title: The role of the chloroplast in the replication of positive-sense single-stranded plant RNA viruses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01776 – volume: 12 start-page: 1046 year: 2002 ident: ref_40 article-title: Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF (iso) 4E during potyvirus infection publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00898-9 – volume: Volume 588 start-page: 497 year: 2017 ident: ref_99 article-title: Biochemical methods to monitor autophagic responses in plants publication-title: Methods in Enzymology doi: 10.1016/bs.mie.2016.09.090 – volume: 23 start-page: 760 year: 2022 ident: ref_31 article-title: Extracellular vesicles: Their functions in plant–pathogen interactions publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.13170 – ident: ref_100 – volume: 10 start-page: 1107 year: 1998 ident: ref_22 article-title: Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection publication-title: Plant Cell doi: 10.1105/tpc.10.7.1107 – volume: 19 start-page: 359 year: 2009 ident: ref_44 article-title: Viruses and autophagy publication-title: Rev. Med. Virol. doi: 10.1002/rmv.630 – ident: ref_105 doi: 10.4172/jpb.1000102 – volume: 8 start-page: 787 year: 2011 ident: ref_110 article-title: Intact proteome fractionation strategies compatible with mass spectrometry publication-title: Expert Rev. Proteom. doi: 10.1586/epr.11.67 – volume: 28 start-page: 467 year: 2015 ident: ref_17 article-title: Insights into the polerovirus-plant interactome revealed by coimmunoprecipitation and mass spectrometry publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-11-14-0363-R – volume: 374 start-page: 217 year: 2008 ident: ref_11 article-title: Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles publication-title: Virology doi: 10.1016/j.virol.2007.12.014 – ident: ref_88 – volume: 132 start-page: 2086 year: 2003 ident: ref_101 article-title: Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize publication-title: Plant Physiol. doi: 10.1104/pp.103.022749 – volume: 171 start-page: 33 year: 2013 ident: ref_77 article-title: Progressive aggregation of Tomato yellow leaf curl virus coat protein in systemically infected tomato plants, susceptible and resistant to the virus publication-title: Virus Res. doi: 10.1016/j.virusres.2012.09.017 – ident: ref_80 doi: 10.1007/978-1-4939-6533-5_1 – ident: ref_6 doi: 10.3390/ijms18112300 – volume: 18 start-page: 176 year: 2021 ident: ref_7 article-title: Resistance induction based on the understanding of molecular interactions between plant viruses and host plants publication-title: Virol. J. doi: 10.1186/s12985-021-01647-4 – ident: ref_47 doi: 10.1371/journal.ppat.1004755 – volume: 98 start-page: 6516 year: 2001 ident: ref_49 article-title: An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.111440998 – volume: 94 start-page: e01898-01819 year: 2020 ident: ref_62 article-title: P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement publication-title: J. Virol. doi: 10.1128/JVI.01898-19 – volume: 15 start-page: 90 year: 2018 ident: ref_72 article-title: Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya publication-title: Virol. J. doi: 10.1186/s12985-018-0999-2 – volume: 22 start-page: 481 year: 2010 ident: ref_48 article-title: Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection publication-title: Plant Cell doi: 10.1105/tpc.109.073056 – volume: 2 start-page: e352 year: 2022 ident: ref_103 article-title: Isolation of extracellular vesicles from arabidopsis publication-title: Curr. Protoc. doi: 10.1002/cpz1.352 – volume: 5 start-page: 289 year: 2010 ident: ref_13 article-title: Global approaches to study protein–protein interactions among viruses and hosts publication-title: Future Microbiol. doi: 10.2217/fmb.10.7 – volume: 14 start-page: 1224958 year: 2023 ident: ref_54 article-title: A novel cellular factor of Nicotiana benthamiana susceptibility to tobamovirus infection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2023.1224958 – ident: ref_25 doi: 10.3390/plants11182403 – volume: 80 start-page: 8459 year: 2006 ident: ref_20 article-title: Membrane-bound tomato mosaic virus replication proteins participate in RNA synthesis and are associated with host proteins in a pattern distinct from those that are not membrane bound publication-title: J. Virol. doi: 10.1128/JVI.00545-06 – volume: 33 start-page: 213 year: 2017 ident: ref_1 article-title: The plant cellular systems for plant virus movement publication-title: Plant Pathol. J. doi: 10.5423/PPJ.RW.09.2016.0198 – volume: 129 start-page: 698 year: 2007 ident: ref_50 article-title: Effects of turnip crinkle virus infection on the structure and function of mitochondria and expression of stress proteins in turnips publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2006.00852.x – volume: 11 start-page: 2170 year: 2020 ident: ref_91 article-title: SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance publication-title: Nat. Commun. doi: 10.1038/s41467-020-15895-5 – ident: ref_8 doi: 10.3390/v10090484 – volume: 16 start-page: 1 year: 2020 ident: ref_97 article-title: A simplified method to isolate rice mitochondria publication-title: Plant Methods doi: 10.1186/s13007-020-00690-6 – volume: 85 start-page: 30 year: 2016 ident: ref_10 article-title: Molecular insights into the function of the viral RNA silencing suppressor HCPro publication-title: Plant J. doi: 10.1111/tpj.13088 – volume: 15 start-page: 188 year: 2015 ident: ref_112 article-title: From pathways to networks: Connecting dots by establishing protein–protein interaction networks in signaling pathways using affinity purification and mass spectrometry publication-title: Proteomics doi: 10.1002/pmic.201400147 – volume: 27 start-page: 792 year: 2019 ident: ref_42 article-title: RNA-targeted antiviral immunity: More than just RNA silencing publication-title: Trends Microbiol. doi: 10.1016/j.tim.2019.05.007 – volume: 9 start-page: 1299 year: 2018 ident: ref_76 article-title: Dissecting the subcellular localization, intracellular trafficking, interactions, membrane association, and topology of citrus leprosis virus C proteins publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01299 – ident: ref_92 – volume: 86 start-page: 9255 year: 2012 ident: ref_30 article-title: Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection publication-title: J. Virol. doi: 10.1128/JVI.01146-12 – volume: 26 start-page: 2169 year: 2007 ident: ref_35 article-title: Cajal bodies and the nucleolus are required for a plant virus systemic infection publication-title: EMBO J. doi: 10.1038/sj.emboj.7601674 – ident: ref_41 doi: 10.1371/journal.pone.0050627 – volume: 91 start-page: e01316 year: 2017 ident: ref_78 article-title: Coat protein regulation by CK2, CPIP, HSP70, and CHIP is required for potato virus A replication and coat protein accumulation publication-title: J. Virol. doi: 10.1128/JVI.01316-16 – volume: 81 start-page: 10905 year: 2007 ident: ref_70 article-title: The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection publication-title: J. Virol. doi: 10.1128/JVI.01243-07 – ident: ref_59 doi: 10.3390/v12020197 – volume: 14 start-page: 357 year: 2016 ident: ref_64 article-title: Plant proteins are smaller because they are encoded by fewer exons than animal proteins publication-title: Genom. Proteom. Bioinform. doi: 10.1016/j.gpb.2016.06.003 – volume: 87 start-page: 7933 year: 2013 ident: ref_73 article-title: The resistance protein Tm-1 inhibits formation of a Tomato mosaic virus replication protein-host membrane protein complex publication-title: J. Virol. doi: 10.1128/JVI.00743-13 – ident: ref_18 doi: 10.1371/journal.ppat.1010888 – volume: 64 start-page: 241 year: 2010 ident: ref_19 article-title: Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.112408.134012 – volume: 1 start-page: 388 year: 2011 ident: ref_24 article-title: Wrapping membranes around plant virus infection publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2011.09.009 – volume: 7 start-page: 9868 year: 2017 ident: ref_61 article-title: Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the sugarcane mosaic virus P3N-PIPO publication-title: Sci. Rep. doi: 10.1038/s41598-017-10497-6 – volume: 443 start-page: 363 year: 2013 ident: ref_27 article-title: The P6 protein of Cauliflower mosaic virus interacts with CHUP1, a plant protein which moves chloroplasts on actin microfilaments publication-title: Virology doi: 10.1016/j.virol.2013.05.028 – volume: 21 start-page: 157 year: 2000 ident: ref_53 article-title: Movement of plant viruses is delayed in a β-1, 3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00658.x – ident: ref_95 – volume: 6 start-page: 28306 year: 2016 ident: ref_66 article-title: Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6 publication-title: Sci. Rep. doi: 10.1038/srep28306 – volume: 91 start-page: e01478-01416 year: 2017 ident: ref_60 article-title: The potyvirus silencing suppressor protein VPg mediates degradation of SGS3 via ubiquitination and autophagy pathways publication-title: J. Virol. doi: 10.1128/JVI.01478-16 – ident: ref_55 – ident: ref_98 doi: 10.1007/978-1-62703-631-3 – ident: ref_113 – volume: 77 start-page: 523 year: 2003 ident: ref_74 article-title: Tomato ringspot virus proteins containing the nucleoside triphosphate binding domain are transmembrane proteins that associate with the endoplasmic reticulum and cofractionate with replication complexes publication-title: J. Virol. doi: 10.1128/JVI.77.1.523-534.2003 – ident: ref_83 doi: 10.3390/ijms20020253 – ident: ref_16 doi: 10.1186/s12864-016-2394-y – ident: ref_84 – volume: 8 start-page: 650 year: 2008 ident: ref_106 article-title: Alignment of LC-MS images, with applications to biomarker discovery and protein identification publication-title: Proteomics doi: 10.1002/pmic.200700791 – volume: 4 start-page: 154 year: 2013 ident: ref_38 article-title: Viral and cellular factors involved in phloem transport of plant viruses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00154 – volume: 30 start-page: 772 year: 2011 ident: ref_81 article-title: Plant organelle proteomics: Collaborating for optimal cell function publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.20301 – volume: 28 start-page: 361 year: 2001 ident: ref_52 article-title: Local expression of enzymatically active class I β-1, 3-glucanase enhances symptoms of TMV infection in tobacco publication-title: Plant J. doi: 10.1046/j.1365-313X.2001.01181.x – volume: 163 start-page: 1598 year: 2013 ident: ref_29 article-title: Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants publication-title: Plant Physiol. doi: 10.1104/pp.113.229666 – volume: 16 start-page: 4049 year: 1997 ident: ref_107 article-title: Formation of plant RNA virus replication complexes on membranes: Role of an endoplasmic reticulum-targeted viral protein publication-title: Embo J. doi: 10.1093/emboj/16.13.4049 – volume: 269 start-page: 1474 year: 2002 ident: ref_94 article-title: Identification of the 19S regulatory particle subunits from the rice 26S proteasome publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1033.2002.02792.x – volume: 95 start-page: 11169 year: 1998 ident: ref_23 article-title: Tobacco mosaic virus infection induces severe morphological changes of the endoplasmic reticulum publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.19.11169 – volume: 95 start-page: 1415 year: 2014 ident: ref_56 article-title: Molecular and cellular mechanisms underlying potyvirus infection publication-title: J. Gen. Virol. doi: 10.1099/vir.0.064220-0 – volume: 89 start-page: 124 year: 2013 ident: ref_12 article-title: Comparative proteomic analysis of the plant-virus interaction in resistant and susceptible ecotypes of maize infected with sugarcane mosaic virus publication-title: J. Proteom. doi: 10.1016/j.jprot.2013.06.005 – ident: ref_87 – ident: ref_57 doi: 10.1371/journal.ppat.1008965 – ident: ref_51 doi: 10.3389/fmicb.2021.656809 – volume: 84 start-page: 799 year: 2010 ident: ref_3 article-title: Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication publication-title: J. Virol. doi: 10.1128/JVI.01824-09 – volume: 194 start-page: 191 year: 2019 ident: ref_5 article-title: Comparative proteomics of Tobacco mosaic virus-infected Nicotiana tabacum plants identified major host proteins involved in photosystems and plant defence publication-title: J. Proteom. doi: 10.1016/j.jprot.2018.11.018 – volume: 173 start-page: 728 year: 2017 ident: ref_104 article-title: Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins publication-title: Plant Physiol. doi: 10.1104/pp.16.01253 – volume: 182 start-page: 1762 year: 2020 ident: ref_86 article-title: EPSIN1 Modulates the Plasma Membrane Abundance of FLAGELLIN SENSING2 for Effective Immune Responses publication-title: Plant Physiol. doi: 10.1104/pp.19.01172 – volume: 17 start-page: 149 year: 2020 ident: ref_46 article-title: RNA silencing-related genes contribute to tolerance of infection with potato virus X and Y in a susceptible tomato plant publication-title: Virol. J. doi: 10.1186/s12985-020-01414-x – volume: 90 start-page: 1973 year: 2016 ident: ref_15 article-title: Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology publication-title: J. Virol. doi: 10.1128/JVI.01706-15 – ident: ref_21 doi: 10.1371/journal.ppat.1002409 – ident: ref_109 doi: 10.1101/2021.05.11.443547 – volume: 10 start-page: 3252 year: 2019 ident: ref_14 article-title: TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR immune receptor-mediated immunity publication-title: Nat. Commun. doi: 10.1038/s41467-019-11202-z – volume: Volume 107 start-page: 37 year: 2020 ident: ref_4 article-title: Hijacking of host cellular components as proviral factors by plant-infecting viruses publication-title: Advances in Virus Research doi: 10.1016/bs.aivir.2020.04.002 – volume: 80 start-page: 123 year: 2014 ident: ref_36 article-title: Host factors used by positive-strand RNA plant viruses for genome replication publication-title: J. Gen. Plant Pathol. doi: 10.1007/s10327-014-0505-7 – volume: 32 start-page: 557 year: 2004 ident: ref_33 article-title: Involvement of the nucleolus in plant virus systemic infection publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0320557 – volume: 98 start-page: 60 year: 2022 ident: ref_89 article-title: Responses of genes of DNA repair, alternative oxidase, and pro-/antioxidant state in Arabidopsis thaliana with altered expression of AOX1a to gamma irradiation publication-title: Int. J. Radiat. Biol. doi: 10.1080/09553002.2022.1998712 – volume: 104 start-page: 11115 year: 2007 ident: ref_34 article-title: Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0704632104 – volume: 63 start-page: 343 year: 2020 ident: ref_82 article-title: Protein trafficking in plant cells: Tools and markers publication-title: Sci. China Life Sci. doi: 10.1007/s11427-019-9598-3 – volume: 110 start-page: 779 year: 2013 ident: ref_45 article-title: Arabidopsis Pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1214287110 – volume: 19 start-page: 504 year: 2018 ident: ref_26 article-title: Chloroplast: The Trojan horse in plant–virus interaction publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12533 – volume: 135 start-page: 246 year: 2009 ident: ref_32 article-title: Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2008.01189.x – volume: 8 start-page: 31 year: 2021 ident: ref_90 article-title: Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit publication-title: Hortic. Res. doi: 10.1038/s41438-021-00470-w – ident: ref_102 – ident: ref_96 – volume: 189 start-page: 2454 year: 2022 ident: ref_67 article-title: SAUR15 interaction with BRI1 activates plasma membrane H+-ATPase to promote organ development of Arabidopsis publication-title: Plant Physiol. doi: 10.1093/plphys/kiac194 – volume: 31 start-page: 2010 year: 2019 ident: ref_69 article-title: Separating Golgi proteins from cis to trans reveals underlying properties of cisternal localization publication-title: Plant Cell doi: 10.1105/tpc.19.00081 – volume: 20 start-page: 1588 year: 2019 ident: ref_43 article-title: Host factors against plant viruses publication-title: Mol. Plant Pathol. doi: 10.1111/mpp.12851 – volume: 6 start-page: 1677 year: 2007 ident: ref_65 article-title: Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit publication-title: J. Proteome Res. doi: 10.1021/pr060483r – volume: 68 start-page: 499 year: 2016 ident: ref_93 article-title: The RNA Polymerase-Associated Factor 1 Complex Is Required for Plant Touch Responses publication-title: J. Exp. Bot. – ident: ref_9 doi: 10.1371/journal.ppat.1010909 – volume: 231 start-page: 382 year: 2021 ident: ref_79 article-title: Carrot mottle virus ORF4 movement protein targets plasmodesmata by interacting with the host cell SUMOylation system publication-title: New Phytol. doi: 10.1111/nph.17370 – ident: ref_108 doi: 10.15252/msb.20167062 – ident: ref_63 doi: 10.3390/v12010077 – volume: 86 start-page: 2595 year: 2005 ident: ref_75 article-title: HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities publication-title: J. Gen. Virol. doi: 10.1099/vir.0.81107-0 – volume: 6 start-page: 394 year: 2007 ident: ref_85 article-title: A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M600250-MCP200 – volume: 88 start-page: 10725 year: 2014 ident: ref_58 article-title: Tobacco etch virus protein P1 traffics to the nucleolus and associates with the host 60S ribosomal subunits during infection publication-title: J. Virol. doi: 10.1128/JVI.00928-14 – volume: 91 start-page: 288 year: 2010 ident: ref_39 article-title: Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G publication-title: J. Gen. Virol. doi: 10.1099/vir.0.015321-0 – volume: 10 start-page: 137 year: 2012 ident: ref_37 article-title: The dependence of viral RNA replication on co-opted host factors publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2692 – ident: ref_68 doi: 10.3390/biology11010095 – ident: ref_71 doi: 10.3390/v15061282 – ident: ref_2 doi: 10.3390/v13040677 |
SSID | ssj0000800817 |
Score | 2.2674556 |
SecondaryResourceType | review_article |
Snippet | Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 53 |
SubjectTerms | Analysis Antiviral activity Antiviral agents antiviral properties Cell Fractionation Centrifugation Chloroplasts Cloning Comparative analysis Control Crops Disease resistance Dosage and administration Enzymes Extracellular vesicles Flowers & plants Fractionation genes Genetic modification Genome editing Genomes Host plants Host-Pathogen Interactions Hybridization Identification and classification Immunoprecipitation Infections Kinases Localization Mass Spectrometry Mass spectroscopy Mitochondria Organelles Pathogenesis Plant Diseases - virology Plant Proteins - genetics Plant Proteins - metabolism Plant Viruses precipitin tests Protein interaction Proteins protein–protein interactions Proteome - metabolism Proteomes Proteomics Proteomics - methods Replication RNA polymerase Roles subcellular localization Tobacco Viral infections Viral Proteins - genetics Viral Proteins - metabolism Virus diseases of plants Virus Replication Viruses virus–host interactions Yeast yeasts |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEA9yIPginn-rp0QQBKGYpEmTPp6HyyooPnhybyHNH1xZWtl2hXvzO_gN_STONL3l1kN98bWZlGQymflNkpkh5JkGrwdwuixj24hSBgZ6MHFVCqwu0siUxHRj-u59vTyVb8_U2aVSX_gmLKcHzox7aUzLhWBGVi5I56XjLa-NjMwkA-bSo_YFM3bJmfoy4yDDdb7GrMCvx_fVn3tYkwGUNkfR2zNEU77-q1r5N6w52ZzFLXJzBov0OA_ykFyL3W1yPZePPL9D3Elcr-lik2MTJhZT1wUKmI7mANw0n8jRPtFlP4z0A6ZlWHUDfdOBXvoWA111FAsXjT-___i02myxBYOSp18Od8np4vXHk2U5l0woPWiuscRC51oFFZwIDpwf0cjguQgNPo1KgSUVk9CsrZ1wUaeQUohNjFUdRA223FT3yEHXd_EBob51GNYKCIVV0unomONOqbZVSXuVZEHYBf-sn_OJY1mLtQW_Allur7C8IC92Xb7mZBp_I36Fi7IjxDzY0weQDjtLh_2XdBTkOS6pxd0Kg_NuDjqAKWLeK3usDahZvNQuyNEeJewyv998IRR23uWDFQ03gLCA4wV5umvGnvhyrYv9dqLRCpPq1X-mqUCTSqy1owtyPwvcbtoVLkJVs4f_gx2PyA0BoCwfIR2Rg3GzjY8BVI3tk2n__AKfph47 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFD6sswi-iHerq0QQBKHYpkmTPojsLjuMgsMiruxbSZtkHRjaddoRfPM_-A_9JZ7Tm4yL-zo5HdqcnC9fLud8AC8VrnqQp4vQFRkPhY0QB30sQ07qIpnwnncnph-X6eJMfDiX53uwHHNh6FrliIkdUNu6pD3yNzyLNc5mQsl3l99CUo2i09VRQsMM0gr2bVdi7Absc1JVnsH-0cny9NO060L8SMeqP95McL1P966_1uirBsE8piG5M0F1dfyvovU_HLSbi-Z34PZAItlh7_W7sOeqe3Czl5X8cR_MsVuv2XzT5yx0Xc9MZRlyPdYn5vphp47Vni3qpmWnVK5hVTXsfYV49d1ZtqoYCRq1v3_--rLabKmFkpW7v2wewNn85PPxIhykFMISEa0NSQBdSSut4dbgoohnwpYxtxldmfI28tJ5rqIiNdw45a331mXOJanlKc7xOnkIs6qu3GNgZWEo3RWZS5QIo5yJTGykLArpVSm9CCAa-y8vhzrjJHexznG9QV2eX-nyAF5Pj1z2RTauMz4ip0yGVB-7-6HeXORDuOVaFzHnkRaJscKUwsRFnGrhIu01kqwygFfk0pyiGF-uNEMyAn4i1cPKD5VG-KXD7gAOdiwx-srd5nFQ5EP0N_nfsRrAi6mZnqQbbZWrt52NklRsL_2_TYIIK0iDRwXwqB9w02cn5IQkjZ5c_wJP4RZHGtZvGh3ArN1s3TOkUW3xfIiNP0DcHSE priority: 102 providerName: ProQuest |
Title | Cell Fractionation and the Identification of Host Proteins Involved in Plant–Virus Interactions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38251360 https://www.proquest.com/docview/2918782475 https://www.proquest.com/docview/2917554806 https://www.proquest.com/docview/3040451557 https://doaj.org/article/88b1220843ad4ac4a1b1684e08f8066c |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-0817 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800817 issn: 2076-0817 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-0817 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800817 issn: 2076-0817 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2076-0817 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800817 issn: 2076-0817 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2076-0817 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800817 issn: 2076-0817 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 2076-0817 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800817 issn: 2076-0817 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-0817 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800817 issn: 2076-0817 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2076-0817 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000800817 issn: 2076-0817 databaseCode: M48 dateStart: 20120901 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fi9QwEB_OOwRfxP9WzyWCKAiVNk3a9EHk7rhlFe44xJV7K2mTnCtLe7ftivfmd_Ab-kmcabML653i29JMynYymfwmk8wP4EWGUQ_idBHaMuehMBH6QRfLkBO7SC6c433G9Og4nUzFh1N5ugWr7LlXYHttaEd8UtPF_M33i8t3OOHfUsSJITsdnf7SoLpb9McxWdXL84uQeKUo_-pJNm7ADq5VnOz-yAcAXz1eUj0tL8eAPqTfQ-rz-hdvLF59jf-rnvwPfNqvU-M7cNsDTLY3WMRd2LL1Pbg5UE5e3gd9YOdzNl4M9xn6YWG6NgxxIBsu7Tq_i8caxyZN27ETKuUwq1v2vkZf9s0aNqsZkR11v378_DxbLKmFLjL3r2wfwHR8-OlgEnqahbBCb9eFRI6eSSON5kZjwMRzYaqYm5yOUzkTOWkdz6Iy1VzbzBnnjM2tTVLDU9SpSh7Cdt3U9jGwqtR0FRZRTZQInVkd6VhLWZbSZZV0IoBopb-i8jXIiQpjXmAsQiovrqg8gNfrLudDAY5_Ce_ToKwFqXZ2_6BZnBV-KhZKlTHnkRKJNkJXQsdlnCphI-UUArAqgFc0pAXZHP65SvuLCviJVCur2MsUumZKhAewuyGJM7PabF4ZRbEy7ILnsUJUhhoP4Pm6mXrSabfaNsteJpNUiC_9u0yC3lcQP08WwKPB4NafndAgJGn05D96P4VbHHHasKu0C9vdYmmfIc7qyhHs7B8en3wc9fsUo37i_AZNLCkn |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VVgguiH8CBYwEQkKKSBw7Tg4VaktXu7RdVahFvaVObMNKq6RsdkG98Q59nz4MT8JMkl20VPTWazyOEo9n5vPPzAfwWuGqB3G68G2ecl-YAP2gC6XPiV0kFc7x5sR0fxj3j8SnY3m8AhfzXBi6Vjn3iY2jNlVBe-TveRomGM2Ekh9Ov_vEGkWnq3MKDd1RK5iNpsRYl9ixa89-4hKu3hh8RH2_4by3c7jd9zuWAb9AY5_6xA2upJFGc6NxvcBTYYqQm5RuEzkTOGkdV0Eea66tcsY5Y1Nro9jwGMNfEuF7b8Aawo4IrWpta2d48Hmxy0N4LAlVe5waRWlA97y_VTg3agweIZnAUkBseAMuR4d_MG8T-3p34U4HWtlmO8vuwYot78PNlsby7AHobTses96kzZFoVM10aRhiS9YmArtuZ5BVjvWresoOqDzEqKzZoET_-MMaNioZEShNf_86_zKazKiFkqObV9YP4ehaBvURrJZVaZ8AK3JN6bWIlIJIaGV1oEMtZZ5LpwrphAfBfPyyoqtrTvQa4wzXNzTk2aUh9-DdostpW9TjKuEtUspCkOpxNw-qydesM-8sSfKQ8yARkTZCF0KHeRgnwgaJSxDUFR68JZVm5DXw4wrdJT_gL1L9rWxTJeju6XDdg_UlSbT2Yrl5PimyztvU2V_b8ODVopl60g260lazRkZJKu4X_18mQo8uiPNHefC4nXCL345ICVEcPL36A17Crf7h_l62NxjuPoPbHCFgu2G1DqvTycw-Rwg3zV90dsLg5LpN8w_QT1rA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tXYG4IP4JLGAkEBJStIljx8lhhfavalmoKsSivQUntqFSlSxNC9ob78Bb8Rg8CTNJWlRW7G2v8dhyPJ4f2zPzATxXeOpBP134Nk-5L0yAetCF0ueELpIK53jzYvpuFA-OxZsTebIBv5a5MBRWudSJjaI2VUF35Ns8DRO0ZkLJbdeFRYwP-q9Pv_qEIEUvrUs4Dd3BLJidptxYl-RxZM--43Gu3hkeIO9fcN4__LA_8DvEAb9AwZ_7hBOupJFGc6Px7MBTYYqQm5Qii5wJnLSOqyCPNddWOeOcsam1UWx4jKYwiXDcK7CpKF-0B5t7h6Px-9WND_lmSajap9UoSgOK-f5S4T6p0ZCEJA5rxrHBEDhvKf7xfxs72L8JNzoHlu22O-4WbNjyNlxtIS3P7oDet9Mp68_afImG7UyXhqGfydqkYNfdErLKsUFVz9mYSkVMypoNS9SV36xhk5IRmNL894-fHyezBbVQonQzZH0Xji9lUe9Br6xK-wBYkWtKtUWvKYiEVlYHOtRS5rl0qpBOeBAs1y8ruhrnBLUxzfCsQ0uenVtyD16tupy2BT4uIt4jpqwIqTZ386Gafc46Uc-SJA85DxIRaSN0IXSYh3EibJC4BB28woOXxNKMNAhOrtBdIgT-ItXiynZVgqqfHto92FqjRMkv1puXmyLrNE-d_ZUTD56tmqknRdOVtlo0NEpSob_4_zQRandB-D_Kg_vthlv9dkRMiOLg4cUTeArXUESzt8PR0SO4ztEbbO-utqA3ny3sY_Tm5vmTTkwYfLpsyfwD69xe-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+Fractionation+and+the+Identification+of+Host+Proteins+Involved+in+Plant%E2%80%93Virus+Interactions&rft.jtitle=Pathogens+%28Basel%29&rft.au=Gomaa%2C+Amany+E&rft.au=El+Mounadi%2C+Kaoutar&rft.au=Parperides%2C+Eric&rft.au=Garcia-Ruiz%2C+Hernan&rft.date=2024-01-01&rft.issn=2076-0817&rft.eissn=2076-0817&rft.volume=13&rft.issue=1&rft_id=info:doi/10.3390%2Fpathogens13010053&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0817&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0817&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0817&client=summon |