QSPRpred: a Flexible Open-Source Quantitative Structure-Property Relationship Modelling Tool

Building reliable and robust quantitative structure–property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologie...

Full description

Saved in:
Bibliographic Details
Published inJournal of cheminformatics Vol. 16; no. 1; pp. 128 - 16
Main Authors van den Maagdenberg, Helle W., Šícho, Martin, Araripe, David Alencar, Luukkonen, Sohvi, Schoenmaker, Linde, Jespers, Michiel, Béquignon, Olivier J. M., González, Marina Gorostiola, van den Broek, Remco L., Bernatavicius, Andrius, van Hasselt, J. G. Coen, van der Graaf, Piet. H., van Westen, Gerard J. P.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 14.11.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1758-2946
1758-2946
DOI10.1186/s13321-024-00908-y

Cover

Abstract Building reliable and robust quantitative structure–property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred’s modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrates customized implementations in a “plug-and-play” manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred’s functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at https://github.com/CDDLeiden/QSPRpred . Scientific Contribution QSPRpred aims to provide a complex, but comprehensive Python API to conduct all tasks encountered in QSPR modelling from data preparation and analysis to model creation and model deployment. In contrast to similar packages, QSPRpred offers a wider and more exhaustive range of capabilities and integrations with many popular packages that also go beyond QSPR modelling. A significant contribution of QSPRpred is also in its automated and highly standardized serialization scheme, which significantly improves reproducibility and transferability of models.
AbstractList Building reliable and robust quantitative structure-property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred's modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrates customized implementations in a "plug-and-play" manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred's functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at https://github.com/CDDLeiden/QSPRpred .Scientific ContributionQSPRpred aims to provide a complex, but comprehensive Python API to conduct all tasks encountered in QSPR modelling from data preparation and analysis to model creation and model deployment. In contrast to similar packages, QSPRpred offers a wider and more exhaustive range of capabilities and integrations with many popular packages that also go beyond QSPR modelling. A significant contribution of QSPRpred is also in its automated and highly standardized serialization scheme, which significantly improves reproducibility and transferability of models.
Abstract Building reliable and robust quantitative structure–property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred’s modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrates customized implementations in a “plug-and-play” manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred’s functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at https://github.com/CDDLeiden/QSPRpred . Scientific Contribution QSPRpred aims to provide a complex, but comprehensive Python API to conduct all tasks encountered in QSPR modelling from data preparation and analysis to model creation and model deployment. In contrast to similar packages, QSPRpred offers a wider and more exhaustive range of capabilities and integrations with many popular packages that also go beyond QSPR modelling. A significant contribution of QSPRpred is also in its automated and highly standardized serialization scheme, which significantly improves reproducibility and transferability of models.
Building reliable and robust quantitative structure-property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred's modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrates customized implementations in a "plug-and-play" manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred's functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at https://github.com/CDDLeiden/QSPRpred .Scientific ContributionQSPRpred aims to provide a complex, but comprehensive Python API to conduct all tasks encountered in QSPR modelling from data preparation and analysis to model creation and model deployment. In contrast to similar packages, QSPRpred offers a wider and more exhaustive range of capabilities and integrations with many popular packages that also go beyond QSPR modelling. A significant contribution of QSPRpred is also in its automated and highly standardized serialization scheme, which significantly improves reproducibility and transferability of models.Building reliable and robust quantitative structure-property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred's modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrates customized implementations in a "plug-and-play" manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred's functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at https://github.com/CDDLeiden/QSPRpred .Scientific ContributionQSPRpred aims to provide a complex, but comprehensive Python API to conduct all tasks encountered in QSPR modelling from data preparation and analysis to model creation and model deployment. In contrast to similar packages, QSPRpred offers a wider and more exhaustive range of capabilities and integrations with many popular packages that also go beyond QSPR modelling. A significant contribution of QSPRpred is also in its automated and highly standardized serialization scheme, which significantly improves reproducibility and transferability of models.
Building reliable and robust quantitative structure–property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred’s modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrates customized implementations in a “plug-and-play” manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred’s functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at https://github.com/CDDLeiden/QSPRpred . Scientific Contribution QSPRpred aims to provide a complex, but comprehensive Python API to conduct all tasks encountered in QSPR modelling from data preparation and analysis to model creation and model deployment. In contrast to similar packages, QSPRpred offers a wider and more exhaustive range of capabilities and integrations with many popular packages that also go beyond QSPR modelling. A significant contribution of QSPRpred is also in its automated and highly standardized serialization scheme, which significantly improves reproducibility and transferability of models.
Building reliable and robust quantitative structure-property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred's modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrates customized implementations in a "plug-and-play" manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred's functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at https://github.com/CDDLeiden/QSPRpred.
Building reliable and robust quantitative structure-property relationship (QSPR) models is a challenging task. First, the experimental data needs to be obtained, analyzed and curated. Second, the number of available methods is continuously growing and evaluating different algorithms and methodologies can be arduous. Finally, the last hurdle that researchers face is to ensure the reproducibility of their models and facilitate their transferability into practice. In this work, we introduce QSPRpred, a toolkit for analysis of bioactivity data sets and QSPR modelling, which attempts to address the aforementioned challenges. QSPRpred's modular Python API enables users to intuitively describe different parts of a modelling workflow using a plethora of pre-implemented components, but also integrates customized implementations in a "plug-and-play" manner. QSPRpred data sets and models are directly serializable, which means they can be readily reproduced and put into operation after training as the models are saved with all required data pre-processing steps to make predictions on new compounds directly from SMILES strings. The general-purpose character of QSPRpred is also demonstrated by inclusion of support for multi-task and proteochemometric modelling. The package is extensively documented and comes with a large collection of tutorials to help new users. In this paper, we describe all of QSPRpred's functionalities and also conduct a small benchmarking case study to illustrate how different components can be leveraged to compare a diverse set of models. QSPRpred is fully open-source and available at Scientific Contribution QSPRpred aims to provide a complex, but comprehensive Python API to conduct all tasks encountered in QSPR modelling from data preparation and analysis to model creation and model deployment. In contrast to similar packages, QSPRpred offers a wider and more exhaustive range of capabilities and integrations with many popular packages that also go beyond QSPR modelling. A significant contribution of QSPRpred is also in its automated and highly standardized serialization scheme, which significantly improves reproducibility and transferability of models. Keywords: QSPR modelling, QSAR modelling, Proteochemometrics, Cheminformatics, Machine learning, Software
ArticleNumber 128
Audience Academic
Author Béquignon, Olivier J. M.
van den Broek, Remco L.
van Hasselt, J. G. Coen
Šícho, Martin
González, Marina Gorostiola
van der Graaf, Piet. H.
Araripe, David Alencar
Luukkonen, Sohvi
van den Maagdenberg, Helle W.
Jespers, Michiel
Schoenmaker, Linde
Bernatavicius, Andrius
van Westen, Gerard J. P.
Author_xml – sequence: 1
  givenname: Helle W.
  orcidid: 0000-0002-9718-7806
  surname: van den Maagdenberg
  fullname: van den Maagdenberg, Helle W.
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University
– sequence: 2
  givenname: Martin
  orcidid: 0000-0002-8771-1731
  surname: Šícho
  fullname: Šícho, Martin
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague
– sequence: 3
  givenname: David Alencar
  orcidid: 0000-0002-5104-1959
  surname: Araripe
  fullname: Araripe, David Alencar
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Department of Human Genetics, Leiden University Medical Center
– sequence: 4
  givenname: Sohvi
  orcidid: 0000-0001-9387-1427
  surname: Luukkonen
  fullname: Luukkonen, Sohvi
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University
– sequence: 5
  givenname: Linde
  orcidid: 0000-0001-9879-1004
  surname: Schoenmaker
  fullname: Schoenmaker, Linde
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University
– sequence: 6
  givenname: Michiel
  orcidid: 0009-0003-2083-0159
  surname: Jespers
  fullname: Jespers, Michiel
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University
– sequence: 7
  givenname: Olivier J. M.
  orcidid: 0000-0002-7554-9220
  surname: Béquignon
  fullname: Béquignon, Olivier J. M.
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam
– sequence: 8
  givenname: Marina Gorostiola
  orcidid: 0000-0003-1568-0881
  surname: González
  fullname: González, Marina Gorostiola
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Oncode Institute
– sequence: 9
  givenname: Remco L.
  orcidid: 0009-0008-5661-1157
  surname: van den Broek
  fullname: van den Broek, Remco L.
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University
– sequence: 10
  givenname: Andrius
  orcidid: 0000-0002-0058-3678
  surname: Bernatavicius
  fullname: Bernatavicius, Andrius
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Leiden Institute of Advanced Computer Science, Leiden University
– sequence: 11
  givenname: J. G. Coen
  orcidid: 0000-0002-1664-7314
  surname: van Hasselt
  fullname: van Hasselt, J. G. Coen
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University
– sequence: 12
  givenname: Piet. H.
  orcidid: 0000-0003-1314-3484
  surname: van der Graaf
  fullname: van der Graaf, Piet. H.
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Certara UK
– sequence: 13
  givenname: Gerard J. P.
  orcidid: 0000-0003-0717-1817
  surname: van Westen
  fullname: van Westen, Gerard J. P.
  email: gerard@lacdr.leidenuniv.nl
  organization: Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39543652$$D View this record in MEDLINE/PubMed
BookMark eNqNkltv0zAYhiM0xA7wB7hAkbhhFxk-xInD3TSxUWloWzvukCwfvhRXaZzZDqz_Hq8tG0UIIV_Ysp_3lf3Ih9le73rIstcYnWDMq_cBU0pwgUhZINQgXqyeZQe4ZrwgTVnt_bbezw5DWCBUsRrVL7J92rCSVowcZF9vZtfTwYP5kMv8vIN7qzrIrwboi5kbvYb8ZpR9tFFG-x3yWfSjjqOH4tq7AXxc5VPo0pnrwzc75J-dga6z_Ty_da57mT1vZRfg1XY-yr6cf7w9-1RcXl1Mzk4vC81oHQuNKsRp0xKGWiYb1JacyZpLXfK2NozjqmxKAoZBA6olBtW01spwxYBI1Gh6lE02vcbJhRi8XUq_Ek5asd5wfi6kj1Z3IBoDSmOFmKxwqThXmiqomCLIUGmMTF100zX2g1z9kF33WIiRePAuNt5F8i7W3sUqpd5tUoN3dyOEKJY26KRC9uDGICgmnJP02jqhb_9AF0l0n_ysqbKqq5I-UXOZbm371kUv9UOpOE1CMKMNxYk6-QuVhoGl1em3tDbt7wSOdwKJiXAf53IMQUxm0132zfaio1qCedTw6_MkgGwA7V0IHtr_M7X1GxLcz8E_Pf8fqZ9p6eQx
Cites_doi 10.1021/acs.jcim.4c00049
10.1002/bip.20296
10.1093/molbev/mst010
10.1186/s13321-018-0258-y
10.1021/acs.jcim.9b00237
10.1186/s13321-023-00730-y
10.1016/j.molliq.2021.117631
10.1039/D0CS00098A
10.1186/s13321-015-0086-2
10.1021/jm00390a003
10.1039/C7SC02664A
10.1093/nar/gkac956
10.1186/s13321-020-0408-x
10.1021/acs.jcim.1c00086
10.1371/journal.pcbi.1011301
10.1186/s13321-022-00672-x
10.1186/s13321-024-00837-w
10.1021/acs.jcim.3c00132
10.1186/s13321-018-0281-z
10.1007/s11095-015-1832-x
10.1093/nar/gky1075
10.1021/ci800038f
10.1080/17460441.2021.1909567
10.1002/minf.201800108
10.1038/s41598-023-45086-3
10.1021/jm4004285
10.1021/acs.jcim.2c01073
10.1002/jcc.21707
10.1021/ci010132r
10.1038/sdata.2016.18
10.1016/j.jbi.2020.103484
10.1186/s13321-021-00550-y
10.1021/acs.jcim.3c00523
10.1186/s13321-023-00689-w
10.1186/s13321-023-00743-7
10.1126/science.359.6377.725
10.3390/molecules26041111
10.1038/s41573-023-00832-0
10.1186/s13321-020-0413-0
10.1021/acs.jcim.9b01204
10.1186/s13321-023-00745-5
10.1021/acs.jcim.9b01053
10.1021/acs.jcim.7b00523
10.3390/molecules25215172
10.1021/acs.jcim.1c00889
10.1038/msb.2011.75
10.1101/2022.12.13.520154
10.1186/s13321-019-0385-0
10.1089/cmb.2008.0173
10.1021/acs.jcim.6b00088
10.1038/s41467-023-41948-6
10.1021/acs.molpharmaceut.3c00812
10.1016/j.drudis.2022.03.017
10.1021/acs.jcim.4c00457
10.1002/minf.202000113
10.1038/s41467-024-51321-w
10.1016/j.ddtec.2020.08.003
10.1039/C4MD00216D
10.48550/arXiv.2207.08815
10.26434/chemrxiv-2023-fzqwd
10.48550/arXiv.2305.02997
10.1145/3292500.3330701
10.1145/2939672.2939785
10.26434/chemrxiv-2022-m8l33-v2
10.1021/acs.jcim.3c00434
10.1007/978-3-540-78246-9_38
10.26434/chemrxiv-2023-3zcfl-v3
10.1109/TPAMI.2021.3054719
10.25080/Majora-92bf1922-00a
10.1021/ja01062a035
10.1021/ci5001168
10.26434/chemrxiv-2023-q11q4-v2
10.48550/arXiv.2211.12858
10.1186/s13321-017-0232-0
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7X7
7XB
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
ADTOC
UNPAY
DOA
DOI 10.1186/s13321-024-00908-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest: Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database
MEDLINE - Academic

CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1758-2946
EndPage 16
ExternalDocumentID oai_doaj_org_article_9debc1b05a614b88bc3be65b20d3adda
10.1186/s13321-024-00908-y
A816153931
39543652
10_1186_s13321_024_00908_y
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Education, Youth and Sports of the Czech Republic
  grantid: LM2023052
– fundername: Dutch National Growth Fund
  grantid: NGFOP2201
– fundername: HORIZON EUROPE Marie Sklodowska-Curie Actions
  grantid: 955879
  funderid: http://dx.doi.org/10.13039/100018694
– fundername: Czech Science Foundation Grant
  grantid: 22-17367O
– fundername: HORIZON EUROPE Marie Sklodowska-Curie Actions
  grantid: 955879
GroupedDBID 0R~
29K
2WC
4.4
40G
53G
5VS
7X7
8AO
8FE
8FG
8FH
8FI
AAFWJ
AAJSJ
AAKKN
AAKPC
AASML
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ACULB
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFGXO
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
D-I
D1I
DIK
E3Z
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
IAO
IGS
IHR
ISR
ITC
KB.
KQ8
LK8
M48
M7P
MK0
M~E
O5R
O5S
OK1
P62
PDBOC
PGMZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
RPM
RVI
SOJ
SPH
TR2
TUS
U2A
UKHRP
8FJ
AAYXX
AEUYN
CCPQU
CITATION
HMCUK
PHGZM
PHGZT
PQGLB
PUEGO
-5F
-5G
-A0
-BR
3V.
ADINQ
FRP
NPM
RSV
7QO
7XB
8FD
8FK
AZQEC
COVID
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
2VQ
ADTOC
AHSBF
EJD
H13
IPNFZ
RIG
ROL
UNPAY
ID FETCH-LOGICAL-c537t-c060839f250f5a90f485a78ac48f7d58164942ed5e9ebf2d0737cbd8b5e2a09c3
IEDL.DBID U2A
ISSN 1758-2946
IngestDate Tue Oct 14 18:48:28 EDT 2025
Sun Oct 26 04:08:23 EDT 2025
Fri Sep 05 10:27:39 EDT 2025
Sat Oct 18 23:48:20 EDT 2025
Mon Oct 20 22:43:48 EDT 2025
Mon Oct 20 16:56:39 EDT 2025
Thu Oct 16 15:41:03 EDT 2025
Wed Feb 19 02:02:59 EST 2025
Wed Oct 01 04:27:26 EDT 2025
Mon Jul 21 06:23:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Proteochemometrics
Cheminformatics
Software
QSPR modelling
QSAR modelling
Machine learning
Language English
License 2024. The Author(s).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-c060839f250f5a90f485a78ac48f7d58164942ed5e9ebf2d0737cbd8b5e2a09c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5104-1959
0000-0001-9879-1004
0000-0003-1568-0881
0000-0002-1664-7314
0000-0003-0717-1817
0000-0002-9718-7806
0000-0002-0058-3678
0000-0002-7554-9220
0000-0003-1314-3484
0000-0002-8771-1731
0009-0008-5661-1157
0000-0001-9387-1427
0009-0003-2083-0159
OpenAccessLink https://link.springer.com/10.1186/s13321-024-00908-y
PMID 39543652
PQID 3128467643
PQPubID 54992
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_9debc1b05a614b88bc3be65b20d3adda
unpaywall_primary_10_1186_s13321_024_00908_y
proquest_miscellaneous_3128825377
proquest_journals_3128467643
gale_infotracmisc_A816153931
gale_infotracacademiconefile_A816153931
gale_incontextgauss_ISR_A816153931
pubmed_primary_39543652
crossref_primary_10_1186_s13321_024_00908_y
springer_journals_10_1186_s13321_024_00908_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-14
PublicationDateYYYYMMDD 2024-11-14
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-14
  day: 14
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle Journal of cheminformatics
PublicationTitleAbbrev J Cheminform
PublicationTitleAlternate J Cheminform
PublicationYear 2024
Publisher Springer International Publishing
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: Springer International Publishing
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References Wilkinson, Dumontier, Aalbersberg, Appleton, Axton, Baak, Blomberg, Boiten, Silva Santos, Bourne, Bouwman, Brookes, Clark, Crosas, Dillo, Dumon, Edmunds, Evelo, Finkers, Gonzalez-Beltran, Gray, Groth, Goble, Grethe, Heringa, Hoen, Hooft, Kuhn, Kok, Kok, Lusher, Martone, Mons, Packer, Persson, Rocca-Serra, Roos, Schaik, Sansone, Schultes, Sengstag, Slater, Strawn, Swertz, Thompson, Lei, Mulligen, Velterop, Waagmeester, Wittenburg, Wolstencroft, Zhao, Mons (CR84) 2016; 3
Durant, Leland, Henry, Nourse (CR64) 2002; 42
Rácz, Bajusz, Héberger (CR73) 2021; 26
CR38
Clark (CR41) 2019; 11
CR36
CR35
Bequignon, Bongers (CR57) 2023; 15
CR31
CR30
Kursa, Rudnicki (CR72) 2010; 30
Atas Guvenilir, Doğan (CR20) 2023; 15
Tejera, Munteanu, López-Cortés, Cabrera-Andrade, Pérez-Castillo (CR5) 2020; 25
Sicho, Liu, Svozil, Westen (CR99) 2021; 13
Janela, Bajorath (CR24) 2023; 13
Burggraaff, Lenselink, Jespers, Engelen, Bongers, Gorostiola González, Liu, Hoos, Vlijmen, IJzerman, Westen (CR15) 2020; 60
Boldini, Grisoni, Kuhn, Friedrich, Sieber (CR33) 2023; 15
Moriwaki, Tian, Kawashita, Takagi (CR61) 2018; 10
Playe, Stoven (CR19) 2020; 12
Born, Huynh, Stroobants, Cornell, Manica (CR17) 2022; 62
CR48
CR45
CR44
Minnich, McLoughlin, Tse, Deng, Weber, Murad, Madej, Ramsundar, Rush, Calad-Thomson, Brase, Allen (CR47) 2020; 60
Lanini, Santarossa, Sirockin, Lewis, Fechner, Misztela, Lewis, Maziarz, Stanley, Segler, Stiefl, Schneider (CR51) 2023
Sievers, Wilm, Dineen, Gibson, Karplus, Li, Lopez, McWilliam, Remmert, Söding, Thompson, Higgins (CR69) 2011; 7
CR59
CR58
Tropsha, Isayev, Varnek, Schneider, Cherkasov (CR12) 2023; 1
CR56
CR54
CR52
Yap (CR63) 2011; 32
Hoyt, Zdrazil, Guha, Jeliazkova, Martinez-Mayorga, Nittinger (CR42) 2023; 15
Alves, Bobrowski, Melo-Filho, Korn, Auerbach, Schmitt, Muratov, Tropsha (CR4) 2021; 40
León, Chen, Gillet (CR93) 2018; 10
Välitalo, Griffioen, Rizk, Visser, Danhof, Rao, Graaf, Hasselt (CR6) 2016; 33
Wu, Ramsundar, Feinberg, Gomes, Geniesse, Pappu, Leswing, Pande (CR29) 2018; 9
Kim, Chen, Cheng, Gindulyte, He, He, Li, Shoemaker, Thiessen, Yu, Zaslavsky, Zhang, Bolton (CR10) 2023; 51
CR68
Mei, Liao, Zhou, Li (CR67) 2005; 80
Paduszyński, Klebowski, Królikowska (CR7) 2021; 344
CR60
Tilborg, Alenicheva, Grisoni (CR32) 2022; 62
Patel, Chilton, Sartini, Gibson, Barber, Covey-Crump, Przybylak, Cronin, Madden (CR43) 2018; 58
Turon, Hlozek, Woodland, Chibale, Duran-Frigola (CR50) 2022
Mervin, Voronov, Kabeshov, Engkvist (CR53) 2024; 64
Luukkonen, Meijer, Tricarico, Hofmans, Stouten, Westen, Lenselink (CR22) 2023; 63
Jiménez-Luna, Grisoni, Weskamp, Schneider (CR3) 2021; 16
Hong, Xie, Ge, Qian, Fang, Shi, Su, Perkins, Tong (CR62) 2008; 48
Muratov, Bajorath, Sheridan, Tetko, Filimonov, Poroikov, Oprea, Baskin, Varnek, Roitberg, Isayev, Curtalolo, Fourches, Cohen, Aspuru-Guzik, Winkler, Agrafiotis, Cherkasov, Tropsha (CR1) 2020; 49
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (CR74) 2011; 12
Kanev, Zhang, Kooistra, Bender, Leurs, Bailey, Würdinger, Graaf, Esch, Westerman (CR23) 2023; 19
Cherkasov, Muratov, Fourches, Varnek, Baskin, Cronin, Dearden, Gramatica, Martin, Todeschini, Consonni, Kuz’min, Cramer, Benigni, Yang, Rathman, Terfloth, Gasteiger, Richard, Tropsha (CR11) 2014; 57
CR78
Shuqi, Gao, He, Zhang, Ke (CR49) 2024; 15
CR77
CR76
CR75
Hutson (CR39) 2018; 359
CR71
Lombardo, Bentzien, Berellini, Muegge (CR94) 2024
Gramatica, Sangion (CR34) 2016; 56
CR2
Bongers, IJzerman, Van Westen (CR13) 2019; 32
CR88
CR87
CR86
CR85
Schaduangrat, Lampa, Simeon, Gleeson, Spjuth, Nantasenamat (CR40) 2020; 12
CR83
CR82
CR81
Murrell, Cortes-Ciriano, Westen, Stott, Bender, Malliavin, Glen (CR55) 2015; 7
CR80
Hellberg, Sjoestroem, Skagerberg, Wold (CR65) 1987; 30
Sosnin, Vashurina, Withnall, Karpov, Fedorov, Tetko (CR90) 2019; 38
Gorostiola González, Broek, Braun, Chatzopoulou, Jespers, IJzerman, Heitman, Westen (CR16) 2023; 15
Pillai, Dasgupta, Sudsakorn, Fretland, Mavroudis (CR8) 2022; 27
Yang, Swanson, Jin, Coley, Eiden, Gao, Guzman-Perez, Hopper, Kelley, Mathea, Palmer, Settels, Jaakkola, Jensen, Barzilay (CR27) 2019; 59
CR18
CR14
Zhao, Qin, Gou, Zhang, Yang (CR89) 2020; 108
CR98
CR97
CR96
CR95
CR92
CR91
Landrum, Riniker (CR37) 2024
Deng, Yang, Wang, Ojima, Samaras, Wang (CR28) 2023; 14
Georgiev (CR66) 2009; 16
Ramsundar, Eastman, Walters, Pande (CR46) 2019
Lopez-del Rio, Picart-Armada, Perera-Lluna (CR21) 2021; 61
CR26
CR25
Mendez, Gaulton, Bento, Chambers, De Veij, Félix, Magariños, Mosquera, Mutowo, Nowotka, Gordillo-Marañón, Hunter, Junco, Mugumbate, Rodriguez-Lopez, Atkinson, Bosc, Radoux, Segura-Cabrera, Hersey, Leach (CR9) 2019; 47
Guesné, Hanser, Werner, Boobier, Scott (CR79) 2024; 16
Katoh, Standley (CR70) 2013; 30
CT Hoyt (908_CR42) 2023; 15
908_CR2
J Jiménez-Luna (908_CR3) 2021; 16
908_CR82
SJJ Guesné (908_CR79) 2024; 16
908_CR81
908_CR80
908_CR88
908_CR87
908_CR86
908_CR85
S Hellberg (908_CR65) 1987; 30
908_CR83
P Gramatica (908_CR34) 2016; 56
J Born (908_CR17) 2022; 62
M Gorostiola González (908_CR16) 2023; 15
B Playe (908_CR19) 2020; 12
AG Georgiev (908_CR66) 2009; 16
908_CR71
Z Wu (908_CR29) 2018; 9
908_CR78
K Katoh (908_CR70) 2013; 30
908_CR77
M Hutson (908_CR39) 2018; 359
908_CR76
908_CR75
N Schaduangrat (908_CR40) 2020; 12
908_CR26
908_CR25
A Cherkasov (908_CR11) 2014; 57
OJ Bequignon (908_CR57) 2023; 15
D Mendez (908_CR9) 2019; 47
MD Wilkinson (908_CR84) 2016; 3
T Janela (908_CR24) 2023; 13
H Hong (908_CR62) 2008; 48
M Patel (908_CR43) 2018; 58
BJ Bongers (908_CR13) 2019; 32
L Shuqi (908_CR49) 2024; 15
908_CR18
Z Zhao (908_CR89) 2020; 108
J Deng (908_CR28) 2023; 14
908_CR14
RD Clark (908_CR41) 2019; 11
B Ramsundar (908_CR46) 2019
908_CR92
G Turon (908_CR50) 2022
908_CR91
M Sicho (908_CR99) 2021; 13
N Pillai (908_CR8) 2022; 27
908_CR98
908_CR97
908_CR96
908_CR95
A Lopez-del Rio (908_CR21) 2021; 61
908_CR48
H Atas Guvenilir (908_CR20) 2023; 15
K Yang (908_CR27) 2019; 59
MB Kursa (908_CR72) 2010; 30
EN Muratov (908_CR1) 2020; 49
S Kim (908_CR10) 2023; 51
VM Alves (908_CR4) 2021; 40
908_CR45
JL Durant (908_CR64) 2002; 42
908_CR44
H Mei (908_CR67) 2005; 80
GA Landrum (908_CR37) 2024
D Tilborg (908_CR32) 2022; 62
CW Yap (908_CR63) 2011; 32
908_CR38
F Lombardo (908_CR94) 2024
908_CR36
A León (908_CR93) 2018; 10
F Pedregosa (908_CR74) 2011; 12
908_CR35
DS Murrell (908_CR55) 2015; 7
908_CR31
908_CR30
L Mervin (908_CR53) 2024; 64
908_CR60
L Burggraaff (908_CR15) 2020; 60
H Moriwaki (908_CR61) 2018; 10
A Tropsha (908_CR12) 2023; 1
GK Kanev (908_CR23) 2023; 19
AJ Minnich (908_CR47) 2020; 60
908_CR68
F Sievers (908_CR69) 2011; 7
E Tejera (908_CR5) 2020; 25
PAJ Välitalo (908_CR6) 2016; 33
J Lanini (908_CR51) 2023
S Luukkonen (908_CR22) 2023; 63
908_CR59
D Boldini (908_CR33) 2023; 15
908_CR58
S Sosnin (908_CR90) 2019; 38
K Paduszyński (908_CR7) 2021; 344
A Rácz (908_CR73) 2021; 26
908_CR56
908_CR54
908_CR52
References_xml – ident: CR45
– ident: CR97
– ident: CR68
– year: 2024
  ident: CR37
  article-title: Combining IC50 or Ki Values from Different Sources Is a Source of Significant Noise
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.4c00049
– volume: 80
  start-page: 775
  issue: 6
  year: 2005
  end-page: 786
  ident: CR67
  article-title: A new set of amino acid descriptors and its application in peptide QSARs
  publication-title: Peptide Sci
  doi: 10.1002/bip.20296
– volume: 30
  start-page: 772
  issue: 4
  year: 2010
  end-page: 780
  ident: CR72
  article-title: Feature Selection with the Boruta Package
  publication-title: J Stat Softw
  doi: 10.1093/molbev/mst010
– volume: 10
  start-page: 4
  issue: 1
  year: 2018
  ident: CR61
  article-title: Mordred: a molecular descriptor calculator
  publication-title: J Cheminform
  doi: 10.1186/s13321-018-0258-y
– volume: 59
  start-page: 3370
  issue: 8
  year: 2019
  end-page: 3388
  ident: CR27
  article-title: Analyzing learned molecular representations for property prediction
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.9b00237
– volume: 15
  start-page: 62
  issue: 1
  year: 2023
  ident: CR42
  article-title: Improving reproducibility and reusability in the Journal of Cheminformatics
  publication-title: J Cheminform
  doi: 10.1186/s13321-023-00730-y
– ident: CR54
– ident: CR80
– volume: 344
  year: 2021
  ident: CR7
  article-title: Predicting melting point of ionic liquids using QSPR approach: Literature review and new models
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2021.117631
– ident: CR77
– volume: 49
  start-page: 3525
  issue: 11
  year: 2020
  end-page: 3564
  ident: CR1
  article-title: QSAR without borders
  publication-title: Chem Soc Rev
  doi: 10.1039/D0CS00098A
– ident: CR25
– volume: 7
  start-page: 45
  issue: 1
  year: 2015
  ident: CR55
  article-title: Chemically Aware Model Builder (camb): an R package for property and bioactivity modelling of small molecules
  publication-title: J Cheminform
  doi: 10.1186/s13321-015-0086-2
– volume: 30
  start-page: 1126
  issue: 7
  year: 1987
  end-page: 1135
  ident: CR65
  article-title: Peptide quantitative structure-activity relationships, a multivariate approach
  publication-title: J Med Chem
  doi: 10.1021/jm00390a003
– ident: CR71
– volume: 9
  start-page: 513
  issue: 2
  year: 2018
  end-page: 530
  ident: CR29
  article-title: MoleculeNet: a benchmark for molecular machine learning
  publication-title: Chem Sci
  doi: 10.1039/C7SC02664A
– volume: 51
  start-page: 1373
  issue: D1
  year: 2023
  end-page: 1380
  ident: CR10
  article-title: PubChem 2023 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac956
– volume: 12
  start-page: 9
  issue: 1
  year: 2020
  ident: CR40
  article-title: Towards reproducible computational drug discovery
  publication-title: J Cheminform
  doi: 10.1186/s13321-020-0408-x
– ident: CR92
– ident: CR88
– volume: 61
  start-page: 1657
  issue: 4
  year: 2021
  end-page: 1669
  ident: CR21
  article-title: Balancing data on deep learning-based proteochemometric activity classification
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.1c00086
– volume: 19
  start-page: 1011301
  issue: 9
  year: 2023
  ident: CR23
  article-title: Predicting the target landscape of kinase inhibitors using 3D convolutional neural networks
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.1011301
– ident: CR60
– ident: CR36
– ident: CR85
– volume: 15
  start-page: 3
  issue: 1
  year: 2023
  ident: CR57
  article-title: Papyrus: a large-scale curated dataset aimed at bioactivity predictions
  publication-title: J Cheminform
  doi: 10.1186/s13321-022-00672-x
– volume: 16
  start-page: 43
  issue: 1
  year: 2024
  ident: CR79
  article-title: Mind your prevalence!
  publication-title: J Cheminform
  doi: 10.1186/s13321-024-00837-w
– volume: 63
  start-page: 3688
  issue: 12
  year: 2023
  end-page: 3696
  ident: CR22
  article-title: Large-scale modeling of sparse protein kinase activity data
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.3c00132
– ident: CR18
– volume: 10
  start-page: 26
  issue: 1
  year: 2018
  ident: CR93
  article-title: Effect of missing data on multitask prediction methods
  publication-title: Journal of Cheminformatics
  doi: 10.1186/s13321-018-0281-z
– ident: CR91
– volume: 33
  start-page: 856
  issue: 4
  year: 2016
  end-page: 867
  ident: CR6
  article-title: Structure-Based Prediction of Anti-infective Drug Concentrations in the Human Lung Epithelial Lining Fluid
  publication-title: Pharmac Res
  doi: 10.1007/s11095-015-1832-x
– ident: CR30
– volume: 47
  start-page: 930
  issue: D1
  year: 2019
  end-page: 940
  ident: CR9
  article-title: ChEMBL: towards direct deposition of bioassay data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1075
– volume: 48
  start-page: 1337
  issue: 7
  year: 2008
  end-page: 1344
  ident: CR62
  article-title: Mold2, Molecular Descriptors from 2D Structures for Chemoinformatics and Toxicoinformatics
  publication-title: J Chem Inform Model
  doi: 10.1021/ci800038f
– volume: 16
  start-page: 949
  issue: 9
  year: 2021
  end-page: 959
  ident: CR3
  article-title: Artificial intelligence in drug discovery: recent advances and future perspectives
  publication-title: Exp Opin Drug Disc
  doi: 10.1080/17460441.2021.1909567
– ident: CR86
– volume: 38
  start-page: 1800108
  issue: 4
  year: 2019
  ident: CR90
  article-title: A survey of multi-task learning methods in chemoinformatics
  publication-title: Mol Inform
  doi: 10.1002/minf.201800108
– volume: 13
  start-page: 17816
  issue: 1
  year: 2023
  ident: CR24
  article-title: Rationalizing general limitations in assessing and comparing methods for compound potency prediction
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-45086-3
– volume: 57
  start-page: 4977
  issue: 12
  year: 2014
  end-page: 5010
  ident: CR11
  article-title: QSAR Modeling: where have you been? Where are you going to?
  publication-title: J Med Chem
  doi: 10.1021/jm4004285
– volume: 62
  start-page: 5938
  issue: 23
  year: 2022
  end-page: 5951
  ident: CR32
  article-title: Exposing the limitations of molecular machine learning with activity cliffs
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.2c01073
– volume: 32
  start-page: 1466
  issue: 7
  year: 2011
  end-page: 1474
  ident: CR63
  article-title: PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.21707
– ident: CR44
– volume: 42
  start-page: 1273
  issue: 6
  year: 2002
  end-page: 1280
  ident: CR64
  article-title: Reoptimization of MDL keys for use in drug discovery
  publication-title: J Chem Inform Comput Sci
  doi: 10.1021/ci010132r
– volume: 3
  issue: 1
  year: 2016
  ident: CR84
  article-title: The FAIR Guiding Principles for scientific data management and stewardship
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.18
– volume: 108
  year: 2020
  ident: CR89
  article-title: Multi-task learning models for predicting active compounds
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2020.103484
– ident: CR38
– ident: CR52
– volume: 13
  start-page: 73
  issue: 1
  year: 2021
  ident: CR99
  article-title: GenUI: interactive and extensible open source software platform for de novo molecular generation and cheminformatics
  publication-title: J Cheminform
  doi: 10.1186/s13321-021-00550-y
– volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  end-page: 2830
  ident: CR74
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– year: 2023
  ident: CR51
  article-title: PREFER: a new predictive modeling framework for molecular discovery
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.3c00523
– volume: 15
  start-page: 16
  issue: 1
  year: 2023
  ident: CR20
  article-title: How to approach machine learning-based prediction of drug/compound-target interactions
  publication-title: J Cheminform
  doi: 10.1186/s13321-023-00689-w
– ident: CR83
– volume: 15
  start-page: 73
  issue: 1
  year: 2023
  ident: CR33
  article-title: Practical guidelines for the use of gradient boosting for molecular property prediction
  publication-title: J Cheminform
  doi: 10.1186/s13321-023-00743-7
– volume: 359
  start-page: 725
  issue: 6377
  year: 2018
  end-page: 726
  ident: CR39
  article-title: Artificial intelligence faces reproducibility crisis
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.359.6377.725
– year: 2019
  ident: CR46
  publication-title: Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More, 1st
– ident: CR87
– volume: 26
  start-page: 1111
  issue: 4
  year: 2021
  ident: CR73
  article-title: Effect of Dataset Size and Train/Test Split Ratios in QSAR/QSPR Multiclass Classification
  publication-title: Molecules
  doi: 10.3390/molecules26041111
– ident: CR35
– volume: 1
  start-page: 1
  year: 2023
  end-page: 15
  ident: CR12
  article-title: Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR
  publication-title: Nat Rev Drug Disc
  doi: 10.1038/s41573-023-00832-0
– ident: CR58
– volume: 30
  start-page: 772
  issue: 4
  year: 2013
  end-page: 780
  ident: CR70
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst010
– volume: 12
  start-page: 11
  issue: 1
  year: 2020
  ident: CR19
  article-title: Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity
  publication-title: J Cheminform
  doi: 10.1186/s13321-020-0413-0
– volume: 60
  start-page: 4283
  issue: 9
  year: 2020
  end-page: 4295
  ident: CR15
  article-title: Successive statistical and structure-based modeling to identify chemically novel kinase inhibitors
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.9b01204
– volume: 15
  start-page: 74
  issue: 1
  year: 2023
  ident: CR16
  article-title: 3DDPDs: describing protein dynamics for proteochemometric bioactivity prediction. A case for (mutant) G protein-coupled receptors
  publication-title: J Cheminform
  doi: 10.1186/s13321-023-00745-5
– volume: 60
  start-page: 1955
  issue: 4
  year: 2020
  end-page: 1968
  ident: CR47
  article-title: AMPL: A Data-Driven Modeling Pipeline for Drug Discovery
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.9b01053
– ident: CR96
– ident: CR75
– volume: 58
  start-page: 673
  issue: 3
  year: 2018
  end-page: 682
  ident: CR43
  article-title: Assessment and Reproducibility of Quantitative Structure-Activity Relationship Models by the Nonexpert
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/acs.jcim.7b00523
– volume: 25
  start-page: 5172
  issue: 21
  year: 2020
  ident: CR5
  article-title: Drugs Repurposing Using QSAR, Docking and Molecular Dynamics for Possible Inhibitors of the SARS-CoV-2 Mpro Protease
  publication-title: Molecules
  doi: 10.3390/molecules25215172
– ident: CR78
– ident: CR81
– ident: CR26
– ident: CR95
– volume: 62
  start-page: 240
  issue: 2
  year: 2022
  end-page: 257
  ident: CR17
  article-title: Active Site Sequence Representations of Human Kinases Outperform Full Sequence Representations for Affinity Prediction and Inhibitor Generation: 3D Effects in a 1D Model
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.1c00889
– ident: CR14
– ident: CR2
– volume: 7
  start-page: 539
  issue: 1
  year: 2011
  ident: CR69
  article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.75
– year: 2022
  ident: CR50
  article-title: First fully-automated AI/ML virtual screening cascade implemented at a drug discovery centre in Africa
  publication-title: BioRxiv
  doi: 10.1101/2022.12.13.520154
– ident: CR82
– volume: 11
  start-page: 62
  issue: 1
  year: 2019
  ident: CR41
  article-title: A path to next-generation reproducibility in cheminformatics
  publication-title: J Cheminform.
  doi: 10.1186/s13321-019-0385-0
– volume: 16
  start-page: 703
  issue: 5
  year: 2009
  end-page: 723
  ident: CR66
  article-title: Interpretable numerical descriptors of amino acid space
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2008.0173
– ident: CR56
– ident: CR98
– ident: CR48
– volume: 56
  start-page: 1127
  issue: 6
  year: 2016
  end-page: 1131
  ident: CR34
  article-title: A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.6b00088
– volume: 14
  start-page: 6395
  issue: 1
  year: 2023
  ident: CR28
  article-title: A systematic study of key elements underlying molecular property prediction
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-41948-6
– ident: CR31
– year: 2024
  ident: CR94
  article-title: Prediction of Human Clearance Using In Silico Models with Reduced Bias
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.3c00812
– volume: 27
  start-page: 2209
  issue: 8
  year: 2022
  end-page: 2215
  ident: CR8
  article-title: Machine Learning guided early drug discovery of small molecules
  publication-title: Drug Disc Today
  doi: 10.1016/j.drudis.2022.03.017
– volume: 64
  start-page: 5365
  issue: 14
  year: 2024
  end-page: 5374
  ident: CR53
  article-title: QSARtuna: An Automated QSAR Modeling Platform for Molecular Property Prediction in Drug Design
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.4c00457
– volume: 40
  start-page: 2000113
  issue: 1
  year: 2021
  ident: CR4
  article-title: QSAR Modeling of SARS-CoV Mpro Inhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against SARS-CoV-2
  publication-title: Mol Inform
  doi: 10.1002/minf.202000113
– volume: 15
  start-page: 1
  year: 2024
  ident: CR49
  article-title: Data-driven quantum chemical property prediction leveraging 3d conformations with uni-mol+
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-51321-w
– volume: 32
  start-page: 89
  year: 2019
  end-page: 98
  ident: CR13
  article-title: Proteochemometrics: recent developments in bioactivity and selectivity modeling
  publication-title: Drug Disc Today
  doi: 10.1016/j.ddtec.2020.08.003
– ident: CR59
– ident: CR76
– year: 2023
  ident: 908_CR51
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.3c00523
– volume-title: Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More, 1st
  year: 2019
  ident: 908_CR46
– volume: 16
  start-page: 43
  issue: 1
  year: 2024
  ident: 908_CR79
  publication-title: J Cheminform
  doi: 10.1186/s13321-024-00837-w
– year: 2024
  ident: 908_CR94
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.3c00812
– ident: 908_CR52
– volume: 9
  start-page: 513
  issue: 2
  year: 2018
  ident: 908_CR29
  publication-title: Chem Sci
  doi: 10.1039/C7SC02664A
– volume: 14
  start-page: 6395
  issue: 1
  year: 2023
  ident: 908_CR28
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-41948-6
– volume: 59
  start-page: 3370
  issue: 8
  year: 2019
  ident: 908_CR27
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.9b00237
– volume: 15
  start-page: 16
  issue: 1
  year: 2023
  ident: 908_CR20
  publication-title: J Cheminform
  doi: 10.1186/s13321-023-00689-w
– volume: 19
  start-page: 1011301
  issue: 9
  year: 2023
  ident: 908_CR23
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.1011301
– volume: 48
  start-page: 1337
  issue: 7
  year: 2008
  ident: 908_CR62
  publication-title: J Chem Inform Model
  doi: 10.1021/ci800038f
– volume: 15
  start-page: 74
  issue: 1
  year: 2023
  ident: 908_CR16
  publication-title: J Cheminform
  doi: 10.1186/s13321-023-00745-5
– ident: 908_CR14
  doi: 10.1039/C4MD00216D
– ident: 908_CR35
– volume: 7
  start-page: 45
  issue: 1
  year: 2015
  ident: 908_CR55
  publication-title: J Cheminform
  doi: 10.1186/s13321-015-0086-2
– volume: 10
  start-page: 4
  issue: 1
  year: 2018
  ident: 908_CR61
  publication-title: J Cheminform
  doi: 10.1186/s13321-018-0258-y
– volume: 1
  start-page: 1
  year: 2023
  ident: 908_CR12
  publication-title: Nat Rev Drug Disc
  doi: 10.1038/s41573-023-00832-0
– ident: 908_CR26
  doi: 10.48550/arXiv.2207.08815
– volume: 11
  start-page: 62
  issue: 1
  year: 2019
  ident: 908_CR41
  publication-title: J Cheminform.
  doi: 10.1186/s13321-019-0385-0
– ident: 908_CR54
  doi: 10.26434/chemrxiv-2023-fzqwd
– ident: 908_CR38
– ident: 908_CR86
– volume: 38
  start-page: 1800108
  issue: 4
  year: 2019
  ident: 908_CR90
  publication-title: Mol Inform
  doi: 10.1002/minf.201800108
– volume: 60
  start-page: 4283
  issue: 9
  year: 2020
  ident: 908_CR15
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.9b01204
– volume: 3
  issue: 1
  year: 2016
  ident: 908_CR84
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.18
– volume: 10
  start-page: 26
  issue: 1
  year: 2018
  ident: 908_CR93
  publication-title: Journal of Cheminformatics
  doi: 10.1186/s13321-018-0281-z
– volume: 30
  start-page: 772
  issue: 4
  year: 2010
  ident: 908_CR72
  publication-title: J Stat Softw
  doi: 10.1093/molbev/mst010
– volume: 15
  start-page: 73
  issue: 1
  year: 2023
  ident: 908_CR33
  publication-title: J Cheminform
  doi: 10.1186/s13321-023-00743-7
– volume: 63
  start-page: 3688
  issue: 12
  year: 2023
  ident: 908_CR22
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.3c00132
– volume: 359
  start-page: 725
  issue: 6377
  year: 2018
  ident: 908_CR39
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.359.6377.725
– ident: 908_CR83
– year: 2024
  ident: 908_CR37
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.4c00049
– volume: 33
  start-page: 856
  issue: 4
  year: 2016
  ident: 908_CR6
  publication-title: Pharmac Res
  doi: 10.1007/s11095-015-1832-x
– volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  ident: 908_CR74
  publication-title: J Mach Learn Res
– volume: 27
  start-page: 2209
  issue: 8
  year: 2022
  ident: 908_CR8
  publication-title: Drug Disc Today
  doi: 10.1016/j.drudis.2022.03.017
– volume: 62
  start-page: 5938
  issue: 23
  year: 2022
  ident: 908_CR32
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.2c01073
– ident: 908_CR97
– volume: 47
  start-page: 930
  issue: D1
  year: 2019
  ident: 908_CR9
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1075
– volume: 80
  start-page: 775
  issue: 6
  year: 2005
  ident: 908_CR67
  publication-title: Peptide Sci
  doi: 10.1002/bip.20296
– ident: 908_CR25
  doi: 10.48550/arXiv.2305.02997
– volume: 56
  start-page: 1127
  issue: 6
  year: 2016
  ident: 908_CR34
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.6b00088
– ident: 908_CR81
  doi: 10.1145/3292500.3330701
– ident: 908_CR91
  doi: 10.1145/2939672.2939785
– volume: 26
  start-page: 1111
  issue: 4
  year: 2021
  ident: 908_CR73
  publication-title: Molecules
  doi: 10.3390/molecules26041111
– ident: 908_CR88
– volume: 15
  start-page: 62
  issue: 1
  year: 2023
  ident: 908_CR42
  publication-title: J Cheminform
  doi: 10.1186/s13321-023-00730-y
– ident: 908_CR36
– volume: 60
  start-page: 1955
  issue: 4
  year: 2020
  ident: 908_CR47
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.9b01053
– volume: 30
  start-page: 772
  issue: 4
  year: 2013
  ident: 908_CR70
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst010
– volume: 32
  start-page: 1466
  issue: 7
  year: 2011
  ident: 908_CR63
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.21707
– ident: 908_CR75
  doi: 10.26434/chemrxiv-2022-m8l33-v2
– ident: 908_CR59
– ident: 908_CR95
  doi: 10.1021/acs.jcim.3c00434
– volume: 15
  start-page: 1
  year: 2024
  ident: 908_CR49
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-51321-w
– volume: 25
  start-page: 5172
  issue: 21
  year: 2020
  ident: 908_CR5
  publication-title: Molecules
  doi: 10.3390/molecules25215172
– volume: 30
  start-page: 1126
  issue: 7
  year: 1987
  ident: 908_CR65
  publication-title: J Med Chem
  doi: 10.1021/jm00390a003
– ident: 908_CR71
– volume: 7
  start-page: 539
  issue: 1
  year: 2011
  ident: 908_CR69
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.75
– ident: 908_CR45
– ident: 908_CR68
– volume: 13
  start-page: 73
  issue: 1
  year: 2021
  ident: 908_CR99
  publication-title: J Cheminform
  doi: 10.1186/s13321-021-00550-y
– volume: 62
  start-page: 240
  issue: 2
  year: 2022
  ident: 908_CR17
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.1c00889
– ident: 908_CR44
  doi: 10.1007/978-3-540-78246-9_38
– volume: 344
  year: 2021
  ident: 908_CR7
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2021.117631
– ident: 908_CR85
– volume: 16
  start-page: 949
  issue: 9
  year: 2021
  ident: 908_CR3
  publication-title: Exp Opin Drug Disc
  doi: 10.1080/17460441.2021.1909567
– ident: 908_CR60
– ident: 908_CR56
– ident: 908_CR80
– volume: 15
  start-page: 3
  issue: 1
  year: 2023
  ident: 908_CR57
  publication-title: J Cheminform
  doi: 10.1186/s13321-022-00672-x
– volume: 51
  start-page: 1373
  issue: D1
  year: 2023
  ident: 908_CR10
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac956
– volume: 13
  start-page: 17816
  issue: 1
  year: 2023
  ident: 908_CR24
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-45086-3
– volume: 42
  start-page: 1273
  issue: 6
  year: 2002
  ident: 908_CR64
  publication-title: J Chem Inform Comput Sci
  doi: 10.1021/ci010132r
– ident: 908_CR78
  doi: 10.26434/chemrxiv-2023-3zcfl-v3
– ident: 908_CR96
– volume: 16
  start-page: 703
  issue: 5
  year: 2009
  ident: 908_CR66
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2008.0173
– volume: 108
  year: 2020
  ident: 908_CR89
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2020.103484
– volume: 57
  start-page: 4977
  issue: 12
  year: 2014
  ident: 908_CR11
  publication-title: J Med Chem
  doi: 10.1021/jm4004285
– ident: 908_CR31
– year: 2022
  ident: 908_CR50
  publication-title: BioRxiv
  doi: 10.1101/2022.12.13.520154
– ident: 908_CR92
  doi: 10.1109/TPAMI.2021.3054719
– volume: 32
  start-page: 89
  year: 2019
  ident: 908_CR13
  publication-title: Drug Disc Today
  doi: 10.1016/j.ddtec.2020.08.003
– volume: 40
  start-page: 2000113
  issue: 1
  year: 2021
  ident: 908_CR4
  publication-title: Mol Inform
  doi: 10.1002/minf.202000113
– volume: 64
  start-page: 5365
  issue: 14
  year: 2024
  ident: 908_CR53
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.4c00457
– ident: 908_CR58
  doi: 10.25080/Majora-92bf1922-00a
– ident: 908_CR2
  doi: 10.1021/ja01062a035
– ident: 908_CR87
– ident: 908_CR98
  doi: 10.1021/ci5001168
– volume: 58
  start-page: 673
  issue: 3
  year: 2018
  ident: 908_CR43
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/acs.jcim.7b00523
– volume: 49
  start-page: 3525
  issue: 11
  year: 2020
  ident: 908_CR1
  publication-title: Chem Soc Rev
  doi: 10.1039/D0CS00098A
– volume: 61
  start-page: 1657
  issue: 4
  year: 2021
  ident: 908_CR21
  publication-title: J Chem Inform Model
  doi: 10.1021/acs.jcim.1c00086
– ident: 908_CR30
  doi: 10.26434/chemrxiv-2023-q11q4-v2
– ident: 908_CR76
– ident: 908_CR48
– ident: 908_CR77
  doi: 10.48550/arXiv.2211.12858
– volume: 12
  start-page: 11
  issue: 1
  year: 2020
  ident: 908_CR19
  publication-title: J Cheminform
  doi: 10.1186/s13321-020-0413-0
– ident: 908_CR82
– volume: 12
  start-page: 9
  issue: 1
  year: 2020
  ident: 908_CR40
  publication-title: J Cheminform
  doi: 10.1186/s13321-020-0408-x
– ident: 908_CR18
  doi: 10.1186/s13321-017-0232-0
SSID ssj0065707
Score 2.3852112
Snippet Building reliable and robust quantitative structure–property relationship (QSPR) models is a challenging task. First, the experimental data needs to be...
Building reliable and robust quantitative structure-property relationship (QSPR) models is a challenging task. First, the experimental data needs to be...
Abstract Building reliable and robust quantitative structure–property relationship (QSPR) models is a challenging task. First, the experimental data needs to...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 128
SubjectTerms Algorithms
Biological activity
Cheminformatics
Chemistry
Chemistry and Materials Science
Computational Biology/Bioinformatics
Computer Applications in Chemistry
Data analysis
Datasets
Documentation and Information in Chemistry
Machine learning
Modelling
Open source software
Packages
Proteochemometrics
QSAR modelling
QSPR modelling
Reproducibility
Research from the Ninth Joint Sheffield Conference on Chemoinformatics
Software
Task complexity
Theoretical and Computational Chemistry
Workflow
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA7Sl-qD1PvYKlEEH2zodHL3rRaXKihtt4U-CCHJZFRYZpbdHWT_vSeZi7sI6oOPM3MSZs4l-U7m5AtCr3ypaBBBESc9I4xJSxSEEQlSegDsTKsQ_-h--izOrtnHG36zcdRXrAnr6IE7xR3pMjh_7HJuoaVTynnqguCuyEsKnSZolCs9JFPdGBzrOeSwRUaJoyVkYgWkzQUjgClyRdZb01Bi6_99TN6YlMa_pHfQblvP7fqHnc02JqLJHrrbI0h80r35PXQr1PfR7ulwcNsD9OVien45X4TyLbZ4Egkv3SzgWDlCpmmpHl-0tk6by2Cow9PEINsuAjmPC_OL1RqPFXLfvs9xPC0tEXfjq6aZPUTXk_dXp2ekP0SBeE7livhcAMrSFUCdiludV0xxK5X1TFWy5ArSJc2KUPKgg6uKEkJeelcqx0Nhc-3pI7RTN3V4gjBkalZwGhyzllnv4IpqJoPw2gYrZIbeDDo1844rw6QcQwnTWcCABUyygFln6F1U-ygZea7TDbC-6a1v_mb9DL2MRjORyaKOpTJfbbtcmg_TS3OiEpjV9DhDr3uhqlktrLf9zgP4qkh-tSV5sCUJhvPbjwffMH2oLw2NM7yQgOwy9GJ8HFvG8rU6NG0nA6k4laCjx51Pjd9NNWdU8CJDh4OT_er8T-o7HB3xH7T99H9oex_dLmIMxSpIdoB2wD_DM8BkK_c8hd9PpAox1A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdd-tDtYeyz89YNbwz2sIq61vdgjLY0dIOFNGmhDwMhyXI3CHaWD0b---kU220YlD3GPpv47qfTnXT6HULvXSGJ515iKxzFlAqDZRhG2AvhQsBOlfSwo_t9wM8u6bcrdrWFBu1ZGCirbH1idNRF7WCN_ICAI-UiTKBfpr8xdI2C3dW2hYZpWisUnyPF2D20nQMzVg9tH58OhqPWN0Odh2iPzkh-MA8ZWh7S6ZziEGtkEq82pqfI4v-vr741WXW7pw_QzrKamtUfM5ncmqD6j9DDJrJMj9ZQeIy2fPUE7Zy0Dd2eoh_n4-FoOvPFp9SkfSDCtBOfQkUJHscl_PR8aap46Cy4wHQcmWWXM4-HsGA_W6zSrnLu569pCl3UIqF3elHXk2fosn96cXKGm-YK2DEiFthlPERfqgwhUMmMykoqmRHSOCpLUTAZ0ihFc18wr7wt8yK4AuFsIS3zucmUI89Rr6or_wKlIYMznBFvqTHUOBt-EUWF504Zb7hI0MdWp3q65tDQMfeQXK8toIMFdLSAXiXoGNTeSQL_dbxQz651M5y0Krx1hzZjJuDJSmkdsZ4zm2cFCVAzCXoHRtPAcFFBCc21Wc7n-ut4pI9kDHIVOUzQh0aorBcz40xzIiF8FZBibUjubUgGw7nN2y02dOMC5voGsAl6292GJ6GsrfL1ci0TUnQigo5215jqvpsoRglneYL2W5DdvPwu9e13QPwPbb-8-6-_QvdzGB1Q90j3UC8gz78OUdjCvmmG1l95Bi4N
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9qfag-iN9Gq0QRfLCrafZbEKnFowqVtteDPgjL7mZThZCcuTv0_ntn95LYwyL6mGR2ITO_2ZnZnZ1B6LkrJPHcS2yFo5hSYbAENcJeCAcOO1XShxPdw8_8YEI_nbGzDdS3O-oYOLs0tAv9pCZt9ern9-U7UPi3UeElfz2DOCuHoDinGDyGTOLlFXQVLJUKrRwO6XCqELI8RH9x5tJxa8Yp1vD_c6W-YKqGs9PraGtRT83yh6mqC-ZpdBPd6PzKdG8FhFtow9e30dZ-387tDvpyPD46mba-eJOadBTKYNrKpyGfBI_jBn56vDB1vHIGC2A6jnVlF63HR2G7vp0v0yFv7uu3aRp6qMVy3ulp01R30WT04XT_AHetFbBjRMyxyzj4XqoEB6hkRmUllcwIaRyVpSiYhCBK0dwXzCtvy7yAhUA4W0jLfG4y5cg9tFk3tX-AUojfDGfEW2oMNc7CE1FUeO6U8YaLBL3seaqnqwoaOkYekuuVBDRIQEcJ6GWC3ge2D5Sh-nV80bTnulMmrQpv3a7NmAE0WSmtI9ZzZvOsIAA0k6BnQWg61LeoQwLNuVnMZvrj-ETvyejiKrKboBcdUdnMW-NMdx8B_iqUxFqj3F6jBMG59c89NnSPX02C3ecC_L0EPR0-h5Ehqa32zWJFAwE6EcCj-ytMDf9NFKOEszxBOz3Ifk_-N_btDED8B24__L_ZH6FredCWkAVJt9EmINE_Bp9sbp9ERfsFy1YvXg
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagexg8cL8EBgoIiQfmkcZ33spENZCYunWVhjTJsh0HEFVStY1Q-fUcJ2loAaHxmOQkko8_29-Jz_mM0AuXSeK5l9gKRzGlwmAJwwh7IRwQdqqkDzu6H4_50YR-OGfnrUxOqIXZ3L_vS_56ATFUCgFvSjGwgUTi1VW0wxnw7h7amRyPBp_qikcWSgkoX1fF_PXFrZWnFuj_cxreWIe6jdHraLcqZmb13UynG2vP8GZziNGiliwMKSffDqqlPXA_fhN0vFyzbqEbLQWNBw1mbqMrvriDdg_XJ7_dRRcn49HpbO6zN7GJh0Ex0059HFJP8Lj-1x-fVKaoq9NgrozHtQRtNfd4FP7sz5eruEux-_J1Fofj1mrl7_isLKf30GT47uzwCLenMGDHiFhil3CgaSoHrpQzo5KcSmaENI7KXGRMQrylaOoz5pW3eZrBnCGczaRlPjWJcuQ-6hVl4R-iGEI9wxnxlhpDjbNwRRQVnjtlvOEiQq_WPaRnjdiGroMUyXXjMQ0e07XH9CpCb0MndpZBKLu-AY7W7bjTKvPW9W3CDADPSmkdsZ4zmyYZAUyaCD0PENBBCqMIuTafTbVY6PfjUz2QNRtWpB-hl61RXi7nxpm2dAFaFdSztiz3tiyh49z24zXSdDtXLDQJFIELoIYRetY9Dm-G_LfCl1VjA7E8EeCjBw1Cu3YTxSjhLI3Q_hqyvz7-L_ftd7C-hLcf_Z_5Y3QtDegOCZN0D_UAif4J0LelfdqO25-QBTmD
  priority: 102
  providerName: Unpaywall
Title QSPRpred: a Flexible Open-Source Quantitative Structure-Property Relationship Modelling Tool
URI https://link.springer.com/article/10.1186/s13321-024-00908-y
https://www.ncbi.nlm.nih.gov/pubmed/39543652
https://www.proquest.com/docview/3128467643
https://www.proquest.com/docview/3128825377
https://doi.org/10.1186/s13321-024-00908-y
https://doaj.org/article/9debc1b05a614b88bc3be65b20d3adda
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: HH5
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: RBZ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: ABDBF
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: M48
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: AAJSJ
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: C6C
  dateStart: 20090112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 40G
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: U2A
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: C24
  dateStart: 20090112
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbY9jB4QNwJjCogJB5YRBrfeeuqdQNpVbeuUpGQLNtxBlKVVL0I9d9z7CZhFQjBy1EuJ5ZyLvY59vFnhN7aXGDHnEgMtyQhhOtEgBsljnMLATuRwvkV3YshO5-Qz1M6rTeFLZtq92ZJMvTUwa0F-7CEbCqD1DcjCcQFqUg2e-iAejgvsOJJ1mv6X1_LwZvtMX_8bmcICkj9v_fHtwakdoX0Hjpcl3O9-aFns1uD0OABul9Hj3Fvq-6H6I4rH6HDfnNo22P09XI8upovXP4x1vHAg12amYt91UgyDtP08eVal2FjGXRz8Tigx64XLhn5SfnFahO31XHfvs9jf1JaAO2Or6tq9gRNBqfX_fOkPkAhsRTzVWJTBhGWLCDMKaiWaUEE1VxoS0TBcyogVZIkczl10pkiy8HduTW5MNRlOpUWP0X7ZVW65yiGLE0zip0hWhNtDdxhSbhjVmqnGY_Q-0amar7FyVAhvxBMbTWgQAMqaEBtInTixd5yeozr8KBa3KjaZZTMnbFdk1INNmOEMBYbx6jJ0hyDOekIvfFKUx7FovRlMjd6vVyqT-Mr1RMhkJW4G6F3NVNRrRba6nrXAfyVB77a4Tza4QTF2d3XjW2o2s2XCvvRnXGI6iL0un3tv_Sla6Wr1lseSMMxBxk929pU-99YUoIZzSJ03BjZr8b_Jr7j1hD_Qdov_q_1l-hu5r3F1zqSI7QPluheQeS1Mh20R9IzoHzKgYoBXB-cnA5HV3DXz4inrN8J8xpAz6ZdoBdEdIKDAu9kOOp9-QkFgS9B
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQQOiDcLBRYE4kCtbtf22kZCqBSihD7UNqmUA5Kxvd6CFO2GPFTlT_EbGe-rjZAqLj0mO1llZ7557YxnEHpjU0Fc4gQ23FJMKddYgBphx7mFgJ1K4XxF9-Aw6Z3SbyM2WkN_mrMwvq2ysYmloU4L69-RbxFvSBMODvTT5Df2W6N8dbVZoVHBYs8tzyFlm33sfwH5vo3j7tfhbg_XWwWwZYTPsY0SCDtkBr4_Y1pGGRVMc6EtFRlPmYD8QdLYpcxJZ7I4BR3g1qTCMBfrSFoC972BblICtgT0h4_aBM93kfDmYI5ItmaQ_8WQrMcUQyQTCbxccX7ljoB_PcElV9jWZm-jziKf6OW5Ho8vub_uXXSnjlvDnQpo99Cay--jzm6zLu4B-n48ODqZTF36IdRh14_ZNGMX-n4VPCgLBOHxQuflkTYwsOGgnFu7mDp85MsB0_kybPvyfv6ahH5HWzkuPBwWxfghOr0WJj9C63mRuycohPxQJ4w4Q7Wm2hr4RCTlLrFSO53wAL1veKom1YQOVWY2IlGVBBRIQJUSUMsAffZsbyn9dO3yi2J6pmplVTJ1xm6biGlAqxHCWGJcwkwcpQSArAP02gtN-fkZuW_QOdOL2Uz1BydqR5QhtCTbAXpXE2XFfKqtrs87wFP5kVsrlBsrlCA4u3q5wYaqDcxMXahDgF61l_0vfdNc7opFRSNikAfw6HGFqfa5iWSUJCwO0GYDsoubX8W-zRaI_8Htp1f_9Zeo0xse7Kv9_uHeM3Qr9priOyzpBloHFLrnEO_NzYtSyUL047q1-i-D0GRS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkNh4QHyOwACDQDwwq1nsxDYSQmOjWhlM3bpJfUAytuMMpCop_dDUf42_jnO-tgpp4mWPba5Rc_e7r9z5DqHXNhXUJU4Qwy0jjHFNBKgRcZxbCNiZFM5XdL8dJvun7MswHq6gP81ZGN9W2djE0lCnhfXvyDvUG9KEgwPtZHVbRH-v-3H8m_gNUr7S2qzTqCBy4BbnkL5NP_T2QNZvoqj7-WR3n9QbBoiNKZ8RGyYQgsgM4oAs1jLMmIg1F9oykfE0FpBLSBa5NHbSmSxKQR-4NakwsYt0KC2F-95ANzml0rcT8mGb7PmOEt4c0hFJZwq5YASJe8QIRDWhIIslR1juC_jXK1xyi22d9jZam-djvTjXo9ElV9i9i-7UMSzeqUB3D624_D5a221Wxz1A348G_ePxxKXvscZdP3LTjBz2vStkUBYL8NFc5-XxNjC2eFDOsJ1PHOn70sBktsBtj97PX2Ps97WVo8PxSVGMHqLTa2HyI7SaF7l7jDDkijqJqTNMa6atgU9UMu4SK7XTCQ_Qu4analxN61BlliMSVUlAgQRUKQG1CNAnz_aW0k_aLr8oJmeqVlwlU2fstgljDcg1QhhLjUtiE4UpBVDrAL3yQlN-lkbuUXmm59Op6g2O1Y4ow2lJtwP0tibKitlEW12ffYCn8uO3lig3lyhBcHb5coMNVRubqbpQjQC9bC_7X_oGutwV84pGRCAP4NFGhan2uQG8jCZxFKCtBmQXN7-KfVstEP-D20-u_usv0C3QZ_W1d3jwFK1HXlF8syXbRKsAQvcMQr-ZeV7qGEY_rlup_wKMJWiV
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLagexg8cL8EBgoIiQfmkcZ33spENZCYunWVhjTJsh0HEFVStY1Q-fUcJ2loAaHxmOQkko8_29-Jz_mM0AuXSeK5l9gKRzGlwmAJwwh7IRwQdqqkDzu6H4_50YR-OGfnrUxOqIXZ3L_vS_56ATFUCgFvSjGwgUTi1VW0wxnw7h7amRyPBp_qikcWSgkoX1fF_PXFrZWnFuj_cxreWIe6jdHraLcqZmb13UynG2vP8GZziNGiliwMKSffDqqlPXA_fhN0vFyzbqEbLQWNBw1mbqMrvriDdg_XJ7_dRRcn49HpbO6zN7GJh0Ex0059HFJP8Lj-1x-fVKaoq9NgrozHtQRtNfd4FP7sz5eruEux-_J1Fofj1mrl7_isLKf30GT47uzwCLenMGDHiFhil3CgaSoHrpQzo5KcSmaENI7KXGRMQrylaOoz5pW3eZrBnCGczaRlPjWJcuQ-6hVl4R-iGEI9wxnxlhpDjbNwRRQVnjtlvOEiQq_WPaRnjdiGroMUyXXjMQ0e07XH9CpCb0MndpZBKLu-AY7W7bjTKvPW9W3CDADPSmkdsZ4zmyYZAUyaCD0PENBBCqMIuTafTbVY6PfjUz2QNRtWpB-hl61RXi7nxpm2dAFaFdSztiz3tiyh49z24zXSdDtXLDQJFIELoIYRetY9Dm-G_LfCl1VjA7E8EeCjBw1Cu3YTxSjhLI3Q_hqyvz7-L_ftd7C-hLcf_Z_5Y3QtDegOCZN0D_UAif4J0LelfdqO25-QBTmD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QSPRpred%3A+a+Flexible+Open-Source+Quantitative+Structure-Property+Relationship+Modelling+Tool&rft.jtitle=Journal+of+cheminformatics&rft.au=van+den+Maagdenberg%2C+Helle+W.&rft.au=%C5%A0%C3%ADcho%2C+Martin&rft.au=Araripe%2C+David+Alencar&rft.au=Luukkonen%2C+Sohvi&rft.date=2024-11-14&rft.pub=Springer+International+Publishing&rft.eissn=1758-2946&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs13321-024-00908-y&rft.externalDocID=10_1186_s13321_024_00908_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2946&client=summon