Ultrasound-assisted green synthesis of gold nanoparticles using citrus peel extract and their enhanced anti-inflammatory activity

[Display omitted] •Ultrasound decreased the size and distribution of AuNPs.•Ultrasound increased the yield and the anti-inflammatory activity of AuNPs.•AuNPs synthesized using citrus peel extract under ultrasound are stable.•The IC50 of AuNPs against nitric oxide was negatively correlated with ΔTPC....

Full description

Saved in:
Bibliographic Details
Published inUltrasonics sonochemistry Vol. 83; p. 105940
Main Authors Gao, Ling, Mei, Suhuan, Ma, Haile, Chen, Xiumin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2022
Elsevier
Subjects
Online AccessGet full text
ISSN1350-4177
1873-2828
1873-2828
DOI10.1016/j.ultsonch.2022.105940

Cover

Abstract [Display omitted] •Ultrasound decreased the size and distribution of AuNPs.•Ultrasound increased the yield and the anti-inflammatory activity of AuNPs.•AuNPs synthesized using citrus peel extract under ultrasound are stable.•The IC50 of AuNPs against nitric oxide was negatively correlated with ΔTPC.•Hesperidin is the major reductant in citrus peel extract for AuNPs synthesis. Ultrasound and plant extract are two green approaches that have been used to synthesize gold nanoparticles (AuNPs); however, how the combination of ultrasound and citrus peel extract (CPE) affects the structure characteristics and the bioactivity of AuNPs remains unknown. Here we investigated the effects of ultrasound conditions on the particle size, stability, yield, phenolic encapsulation efficacy, and the anti-inflammatory activity of AuNPs. The results showed that temperature was positively correlated to the particle size and the anti-inflammatory activity of synthesized AuNPs. Increasing the power intensity significantly decreased the particle size, while increased the change of total phenolic content (ΔTPC) in the reaction mixture. The increase of ΔTPC caused the enhanced anti-inflammatory activity of AuNPs. The AuNPs synthesized with or without ultrasound treatment were characterized using UV–Vis, DLS, SEM, TEM, EDS, XRD, and FT-IR. The result verified the formation of negatively charged, spherical, stable, and monodispersed AuNPs. AuNPs synthesized with ultrasound (AuNPs-U) has smaller particle size (13.65 nm vs 16.80 nm), greater yield and anti-inflammatory activity (IC50, 82.91 vs 157.71 μg/mL) than its non-ultrasound counterpart (AuNPs-NU). HPLC analysis showed that hesperidin was the key reductant for the synthesis of AuNPs. AuNPs-U also inhibited the mRNA and protein expression of iNOS and COX-2 in the LPS-induced Raw 264.7 cells. Our research elucidates the relationship between the reaction conditions and the structure characteristics and the anti-inflammatory activity of AuNPs synthesized using CPE with the help of ultrasound, thereafter, provides a feasible and economic way to synthesize AuNPs that can be used to ameliorate inflammation.
AbstractList [Display omitted] •Ultrasound decreased the size and distribution of AuNPs.•Ultrasound increased the yield and the anti-inflammatory activity of AuNPs.•AuNPs synthesized using citrus peel extract under ultrasound are stable.•The IC50 of AuNPs against nitric oxide was negatively correlated with ΔTPC.•Hesperidin is the major reductant in citrus peel extract for AuNPs synthesis. Ultrasound and plant extract are two green approaches that have been used to synthesize gold nanoparticles (AuNPs); however, how the combination of ultrasound and citrus peel extract (CPE) affects the structure characteristics and the bioactivity of AuNPs remains unknown. Here we investigated the effects of ultrasound conditions on the particle size, stability, yield, phenolic encapsulation efficacy, and the anti-inflammatory activity of AuNPs. The results showed that temperature was positively correlated to the particle size and the anti-inflammatory activity of synthesized AuNPs. Increasing the power intensity significantly decreased the particle size, while increased the change of total phenolic content (ΔTPC) in the reaction mixture. The increase of ΔTPC caused the enhanced anti-inflammatory activity of AuNPs. The AuNPs synthesized with or without ultrasound treatment were characterized using UV–Vis, DLS, SEM, TEM, EDS, XRD, and FT-IR. The result verified the formation of negatively charged, spherical, stable, and monodispersed AuNPs. AuNPs synthesized with ultrasound (AuNPs-U) has smaller particle size (13.65 nm vs 16.80 nm), greater yield and anti-inflammatory activity (IC50, 82.91 vs 157.71 μg/mL) than its non-ultrasound counterpart (AuNPs-NU). HPLC analysis showed that hesperidin was the key reductant for the synthesis of AuNPs. AuNPs-U also inhibited the mRNA and protein expression of iNOS and COX-2 in the LPS-induced Raw 264.7 cells. Our research elucidates the relationship between the reaction conditions and the structure characteristics and the anti-inflammatory activity of AuNPs synthesized using CPE with the help of ultrasound, thereafter, provides a feasible and economic way to synthesize AuNPs that can be used to ameliorate inflammation.
Ultrasound and plant extract are two green approaches that have been used to synthesize gold nanoparticles (AuNPs); however, how the combination of ultrasound and citrus peel extract (CPE) affects the structure characteristics and the bioactivity of AuNPs remains unknown. Here we investigated the effects of ultrasound conditions on the particle size, stability, yield, phenolic encapsulation efficacy, and the anti-inflammatory activity of AuNPs. The results showed that temperature was positively correlated to the particle size and the anti-inflammatory activity of synthesized AuNPs. Increasing the power intensity significantly decreased the particle size, while increased the change of total phenolic content (ΔTPC) in the reaction mixture. The increase of ΔTPC caused the enhanced anti-inflammatory activity of AuNPs. The AuNPs synthesized with or without ultrasound treatment were characterized using UV-Vis, DLS, SEM, TEM, EDS, XRD, and FT-IR. The result verified the formation of negatively charged, spherical, stable, and monodispersed AuNPs. AuNPs synthesized with ultrasound (AuNPs-U) has smaller particle size (13.65 nm vs 16.80 nm), greater yield and anti-inflammatory activity (IC50, 82.91 vs 157.71 μg/mL) than its non-ultrasound counterpart (AuNPs-NU). HPLC analysis showed that hesperidin was the key reductant for the synthesis of AuNPs. AuNPs-U also inhibited the mRNA and protein expression of iNOS and COX-2 in the LPS-induced Raw 264.7 cells. Our research elucidates the relationship between the reaction conditions and the structure characteristics and the anti-inflammatory activity of AuNPs synthesized using CPE with the help of ultrasound, thereafter, provides a feasible and economic way to synthesize AuNPs that can be used to ameliorate inflammation.Ultrasound and plant extract are two green approaches that have been used to synthesize gold nanoparticles (AuNPs); however, how the combination of ultrasound and citrus peel extract (CPE) affects the structure characteristics and the bioactivity of AuNPs remains unknown. Here we investigated the effects of ultrasound conditions on the particle size, stability, yield, phenolic encapsulation efficacy, and the anti-inflammatory activity of AuNPs. The results showed that temperature was positively correlated to the particle size and the anti-inflammatory activity of synthesized AuNPs. Increasing the power intensity significantly decreased the particle size, while increased the change of total phenolic content (ΔTPC) in the reaction mixture. The increase of ΔTPC caused the enhanced anti-inflammatory activity of AuNPs. The AuNPs synthesized with or without ultrasound treatment were characterized using UV-Vis, DLS, SEM, TEM, EDS, XRD, and FT-IR. The result verified the formation of negatively charged, spherical, stable, and monodispersed AuNPs. AuNPs synthesized with ultrasound (AuNPs-U) has smaller particle size (13.65 nm vs 16.80 nm), greater yield and anti-inflammatory activity (IC50, 82.91 vs 157.71 μg/mL) than its non-ultrasound counterpart (AuNPs-NU). HPLC analysis showed that hesperidin was the key reductant for the synthesis of AuNPs. AuNPs-U also inhibited the mRNA and protein expression of iNOS and COX-2 in the LPS-induced Raw 264.7 cells. Our research elucidates the relationship between the reaction conditions and the structure characteristics and the anti-inflammatory activity of AuNPs synthesized using CPE with the help of ultrasound, thereafter, provides a feasible and economic way to synthesize AuNPs that can be used to ameliorate inflammation.
Ultrasound and plant extract are two green approaches that have been used to synthesize gold nanoparticles (AuNPs); however, how the combination of ultrasound and citrus peel extract (CPE) affects the structure characteristics and the bioactivity of AuNPs remains unknown. Here we investigated the effects of ultrasound conditions on the particle size, stability, yield, phenolic encapsulation efficacy, and the anti-inflammatory activity of AuNPs. The results showed that temperature was positively correlated to the particle size and the anti-inflammatory activity of synthesized AuNPs. Increasing the power intensity significantly decreased the particle size, while increased the change of total phenolic content (ΔTPC) in the reaction mixture. The increase of ΔTPC caused the enhanced anti-inflammatory activity of AuNPs. The AuNPs synthesized with or without ultrasound treatment were characterized using UV-Vis, DLS, SEM, TEM, EDS, XRD, and FT-IR. The result verified the formation of negatively charged, spherical, stable, and monodispersed AuNPs. AuNPs synthesized with ultrasound (AuNPs-U) has smaller particle size (13.65 nm vs 16.80 nm), greater yield and anti-inflammatory activity (IC , 82.91 vs 157.71 μg/mL) than its non-ultrasound counterpart (AuNPs-NU). HPLC analysis showed that hesperidin was the key reductant for the synthesis of AuNPs. AuNPs-U also inhibited the mRNA and protein expression of iNOS and COX-2 in the LPS-induced Raw 264.7 cells. Our research elucidates the relationship between the reaction conditions and the structure characteristics and the anti-inflammatory activity of AuNPs synthesized using CPE with the help of ultrasound, thereafter, provides a feasible and economic way to synthesize AuNPs that can be used to ameliorate inflammation.
• Ultrasound decreased the size and distribution of AuNPs. • Ultrasound increased the yield and the anti-inflammatory activity of AuNPs. • AuNPs synthesized using citrus peel extract under ultrasound are stable. • The IC 50 of AuNPs against nitric oxide was negatively correlated with ΔTPC. • Hesperidin is the major reductant in citrus peel extract for AuNPs synthesis. Ultrasound and plant extract are two green approaches that have been used to synthesize gold nanoparticles (AuNPs); however, how the combination of ultrasound and citrus peel extract (CPE) affects the structure characteristics and the bioactivity of AuNPs remains unknown. Here we investigated the effects of ultrasound conditions on the particle size, stability, yield, phenolic encapsulation efficacy, and the anti-inflammatory activity of AuNPs. The results showed that temperature was positively correlated to the particle size and the anti-inflammatory activity of synthesized AuNPs. Increasing the power intensity significantly decreased the particle size, while increased the change of total phenolic content (ΔTPC) in the reaction mixture. The increase of ΔTPC caused the enhanced anti-inflammatory activity of AuNPs. The AuNPs synthesized with or without ultrasound treatment were characterized using UV–Vis, DLS, SEM, TEM, EDS, XRD, and FT-IR. The result verified the formation of negatively charged, spherical, stable, and monodispersed AuNPs. AuNPs synthesized with ultrasound (AuNPs-U) has smaller particle size (13.65 nm vs 16.80 nm), greater yield and anti-inflammatory activity (IC 50 , 82.91 vs 157.71 μg/mL) than its non-ultrasound counterpart (AuNPs-NU). HPLC analysis showed that hesperidin was the key reductant for the synthesis of AuNPs. AuNPs-U also inhibited the mRNA and protein expression of iNOS and COX-2 in the LPS-induced Raw 264.7 cells. Our research elucidates the relationship between the reaction conditions and the structure characteristics and the anti-inflammatory activity of AuNPs synthesized using CPE with the help of ultrasound, thereafter, provides a feasible and economic way to synthesize AuNPs that can be used to ameliorate inflammation.
Ultrasound and plant extract are two green approaches that have been used to synthesize gold nanoparticles (AuNPs); however, how the combination of ultrasound and citrus peel extract (CPE) affects the structure characteristics and the bioactivity of AuNPs remains unknown. Here we investigated the effects of ultrasound conditions on the particle size, stability, yield, phenolic encapsulation efficacy, and the anti-inflammatory activity of AuNPs. The results showed that temperature was positively correlated to the particle size and the anti-inflammatory activity of synthesized AuNPs. Increasing the power intensity significantly decreased the particle size, while increased the change of total phenolic content (ΔTPC) in the reaction mixture. The increase of ΔTPC caused the enhanced anti-inflammatory activity of AuNPs. The AuNPs synthesized with or without ultrasound treatment were characterized using UV–Vis, DLS, SEM, TEM, EDS, XRD, and FT-IR. The result verified the formation of negatively charged, spherical, stable, and monodispersed AuNPs. AuNPs synthesized with ultrasound (AuNPs-U) has smaller particle size (13.65 nm vs 16.80 nm), greater yield and anti-inflammatory activity (IC50, 82.91 vs 157.71 μg/mL) than its non-ultrasound counterpart (AuNPs-NU). HPLC analysis showed that hesperidin was the key reductant for the synthesis of AuNPs. AuNPs-U also inhibited the mRNA and protein expression of iNOS and COX-2 in the LPS-induced Raw 264.7 cells. Our research elucidates the relationship between the reaction conditions and the structure characteristics and the anti-inflammatory activity of AuNPs synthesized using CPE with the help of ultrasound, thereafter, provides a feasible and economic way to synthesize AuNPs that can be used to ameliorate inflammation.
ArticleNumber 105940
Author Ma, Haile
Gao, Ling
Chen, Xiumin
Mei, Suhuan
Author_xml – sequence: 1
  givenname: Ling
  surname: Gao
  fullname: Gao, Ling
  email: 18110798025@189.cn
  organization: School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
– sequence: 2
  givenname: Suhuan
  surname: Mei
  fullname: Mei, Suhuan
  organization: School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
– sequence: 3
  givenname: Haile
  surname: Ma
  fullname: Ma, Haile
  email: mhl@ujs.edu.cn
  organization: School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
– sequence: 4
  givenname: Xiumin
  orcidid: 0000-0003-2622-1824
  surname: Chen
  fullname: Chen, Xiumin
  email: xmchen@ujs.edu.cn
  organization: School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu 212013, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35149377$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhleoiH7AX6h85LLBH2vvroQQqOKjUiUu9GzNemcTR44dbG_VHPnnOCRBlEtPMxrP-4zG71xWZz54rKprRheMMvVuvZhdTsGb1YJTzktR9g19UV2wrhU173h3VnIhad2wtj2vLlNaU0pFz-mr6lxI1vSibS-qX_cuR0hh9mMNKdmUcSTLiOhJ2vm8wlIiYSLL4EbiwYctxGyNw0TmZP2SGJvjnMgW0RF8LCyTCfiRFKmNBP0KvClI8NnW1k8ONhvIIe5IabQPNu9eVy8ncAnfHONVdf_l84-bb_Xd96-3N5_uaiNFm-teCaaEGQYlqBQGaFfSEsTARC8ZAKc4TJJ1bADBOpwoa8emBzDTNHKlxFV1e-COAdZ6G-0G4k4HsPpPIcSlPq6mJxh7FKOkLfCGC9qZgVFQinNuJJNTYX04sLbzsMHRoC-LuyfQpy_ervQyPOiua1jXiQJ4ewTE8HPGlPXGJoPOgccwJ81VsbBvlZCl9frfWX-HnDwsDe8PDSaGlCJOungC2Yb9aOs0o3p_MnqtTyej9yejDydT5Oo_-WnCs8KPByEW1x4sRp2Mxb3bNqLJ5Vvtc4jfs_Pj_Q
CitedBy_id crossref_primary_10_1016_j_fpsl_2023_101068
crossref_primary_10_1016_j_carbpol_2024_122200
crossref_primary_10_1016_j_inoche_2024_112096
crossref_primary_10_1016_j_scitotenv_2023_168211
crossref_primary_10_3390_chemosensors12030033
crossref_primary_10_1007_s12668_024_01436_7
crossref_primary_10_1016_j_surfin_2023_103347
crossref_primary_10_1039_D4RA00614C
crossref_primary_10_1007_s11696_022_02197_x
crossref_primary_10_1016_j_bcab_2024_103271
crossref_primary_10_1007_s00210_024_03221_5
crossref_primary_10_1155_2024_8180102
crossref_primary_10_3390_molecules28010421
crossref_primary_10_1016_j_ultsonch_2023_106371
crossref_primary_10_3390_ph16081081
crossref_primary_10_1016_j_biteb_2022_101261
crossref_primary_10_1016_j_fbio_2024_104639
crossref_primary_10_1111_1750_3841_16516
crossref_primary_10_1016_j_jece_2023_109506
crossref_primary_10_1016_j_jafr_2025_101780
crossref_primary_10_1016_j_ceramint_2022_10_318
crossref_primary_10_1016_j_nanoso_2024_101247
crossref_primary_10_3390_nano14221854
crossref_primary_10_1021_acssuschemeng_2c03033
crossref_primary_10_1039_D2RA04557E
crossref_primary_10_1016_j_ultsonch_2023_106345
crossref_primary_10_1088_2053_1591_ad7dd4
crossref_primary_10_1016_j_plana_2024_100130
crossref_primary_10_3390_molecules27248949
crossref_primary_10_1016_j_jphotochem_2023_115150
crossref_primary_10_1080_10942912_2023_2238920
crossref_primary_10_1016_j_jcis_2024_07_003
crossref_primary_10_1080_10408347_2022_2162331
crossref_primary_10_1007_s42250_024_00979_2
crossref_primary_10_1016_j_jddst_2023_104740
crossref_primary_10_1016_j_ceja_2023_100460
crossref_primary_10_1039_D2NJ05278D
crossref_primary_10_3390_inorganics12020036
crossref_primary_10_1016_j_jcrysgro_2022_126991
crossref_primary_10_1007_s10653_024_02018_y
Cites_doi 10.1016/j.arabjc.2013.04.007
10.1016/j.procbio.2011.01.025
10.1021/jp0549374
10.1021/la020276f
10.1016/j.saa.2012.09.042
10.1016/j.procbio.2021.09.010
10.1186/s11671-018-2728-6
10.1016/j.foodchem.2014.10.010
10.1111/ijfs.14099
10.1007/s11356-018-3105-9
10.1016/j.arabjc.2010.11.011
10.1016/j.ultsonch.2010.10.009
10.1016/j.ibiod.2020.104935
10.1016/j.ultsonch.2005.04.003
10.1039/C5NJ02128F
10.1039/C8AN01068D
10.3938/jkps.76.848
10.1021/jp062536y
10.1007/s10311-020-01074-x
10.3390/app9122423
10.1016/j.foodchem.2021.131480
10.1039/C8NJ03783C
10.1007/s10876-016-1050-7
10.1039/C4CS00363B
10.1016/j.foodres.2005.05.001
10.1016/j.ultsonch.2020.105274
10.1049/iet-nbt.2016.0183
10.1016/j.biortech.2012.01.015
10.1016/j.foodchem.2016.09.016
10.2147/IJN.S216972
10.1016/j.immuni.2019.06.025
10.2147/NSA.S156115
10.2307/3579465
10.1016/j.colsurfb.2010.08.036
10.1016/j.fct.2021.111997
10.1039/B514191E
10.1016/j.matlet.2011.06.079
10.1007/s11010-015-2438-7
10.1016/j.actbio.2018.12.046
10.1002/cphc.201402697
10.2147/IJN.S199781
10.1039/C8AY02765J
10.1080/15567036.2017.1410597
10.1016/j.foodchem.2017.12.073
10.1016/j.colsurfa.2010.10.028
10.1016/j.foodres.2020.109114
10.1016/j.jtemb.2016.11.012
10.1007/s10853-019-04121-3
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.ultsonch.2022.105940
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DAOJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-2828
ExternalDocumentID oai_doaj_org_article_fad9e3d507a242308cb10a66222c515f
PMC8841883
35149377
10_1016_j_ultsonch_2022_105940
S1350417722000335
Genre Journal Article
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFPKN
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPM
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPD
SPG
SSK
SSQ
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
~HD
5PM
ID FETCH-LOGICAL-c537t-963163cbb63053ca08bb6ca03b13951aa20ebf5181ba318ef017d49aacffd2663
IEDL.DBID AIKHN
ISSN 1350-4177
1873-2828
IngestDate Wed Aug 27 01:27:11 EDT 2025
Thu Aug 21 13:57:59 EDT 2025
Sun Sep 28 10:18:14 EDT 2025
Wed Feb 19 02:27:34 EST 2025
Thu Apr 24 23:04:49 EDT 2025
Tue Jul 01 03:33:11 EDT 2025
Fri Feb 23 02:40:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords NO
COX-2
TPC
HRP
FT-IR
DLS
XRD
LPS
Anti-inflammation
NF-κB
IFN-γ
EDS
AuNPs
iNOS
Green synthesis
PGE-2
MT
AuNPs-U
Citrus peel
AuNPs-NU
IL-1β
MAPK
PVDF
IL-6
NPs
Ultrasonication
TNF-α
CPE
SEM
FE-TEM
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-963163cbb63053ca08bb6ca03b13951aa20ebf5181ba318ef017d49aacffd2663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2622-1824
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1350417722000335
PMID 35149377
PQID 2628297635
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_fad9e3d507a242308cb10a66222c515f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8841883
proquest_miscellaneous_2628297635
pubmed_primary_35149377
crossref_citationtrail_10_1016_j_ultsonch_2022_105940
crossref_primary_10_1016_j_ultsonch_2022_105940
elsevier_sciencedirect_doi_10_1016_j_ultsonch_2022_105940
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics sonochemistry
PublicationTitleAlternate Ultrason Sonochem
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bonigala, Kasukurthi, Konduri, Mangamuri, Gorrepati, Poda (b0240) 2018; 25
Oza, Reyes-Calderón, Mewada, Arriaga, Betanzos-Cabrera, Luna, Iqbal, Sharon, Sharma (b0065) 2020; 55
Eustis, el-Sayed (b0165) 2006; 35
Liu, Kim, Kim, Perumalsamy, Lee, Hwang, Yi (b0225) 2019; 14
Khalil, Ismail, El-Baghdady, Mohamed (b0195) 2014; 7
Jahandari, Taher, Karimi-Maleh (b0015) 2019; 11
Sujitha, Kannan (b0275) 2013; 102
Singh, Sungeun, Jong-Pyo, Veronika, Huo, Singh, Chokkaligam, Farh, Castro-Aceituno, Kim, Yang (b0250) 2017; 46
Lee, El-Sayed (b0160) 2006; 110
Chen, Kitts, Ji, Ding (b0150) 2019; 54
Chen, Tait, Kitts (b0080) 2017; 218
Saha, Trivedi, Dutta Gupta (b0245) 2016; 27
Foroozandeh, Aziz (b0210) 2018; 13
Germolec, Shipkowski, Frawley, Evans (b0115) 1803; 2018
Ji, Wang, Lu, Ma, Chen (b0140) 2022; 373
Gao, Wang, Xiong, Sun, Wang, Wang, Lu, Bao, Turvey, Li, Yang (b0285) 2019; 85
Fuentes-García, Santoyo-Salzar, Rangel-Cortes, Goya, Cardozo-Mata, Pescador-Rojas (b0035) 2021; 70
Chen, Kitts (b0155) 2015; 406
Singh, Singh, Kaur, Singh (b0075) 2020; 132
Okitsu, Ashokkumar, Grieser (b0025) 2005; 109
Siddiqi, Husen (b0005) 2017; 40
Elbagory, Hussein, Meyer (b0130) 2019; 14
Park, Atobe, Fuchigami (b0060) 2006; 13
Mei, Ma, Chen (b0125) 2021; 149
Caruso, Ashokkumar, Grieser (b0045) 2002; 18
Ji, Yang, Guo, Song, Ding, Yang (b0180) 2010; 372
Omran, Nassar, Fatthallah, Hamdy, El-Shatoury, El-Gendy (b0090) 2018; 40
J. Sierra restrepo, C. Vanoni, M. Tumelero, C. Plá Cid, R. Faccio, D. Franceschini, t. Creczynski-Pasa, A. Pasa, Biogenic approaches using citrus extracts for the synthesis of metal nanoparticles: The role of flavonoids in gold reduction and stabilization, New J. Chem. 40 (2015) 1420-1429.
Cubillana-Aguilera, Franco-Romano, Gil, Naranjo-Rodríguez, Hidalgo-Hidalgo de Cisneros, Palacios-Santander (b0055) 2011; 18
Jadoun, Arif, Jangid, Meena (b0280) 2021; 19
Sungeun, Singh, Castro-Aceituno, Simu, Kim, Mathiyalagan, Yang (b0135) 2016; 45
Mohammed, Mahmood, Pegah (b0185) 2021; 127
Duan, Wang, Li (b0020) 2015; 44
Chen, Ma, Kitts (b0145) 2018; 249
Yang, Qi, Tan, Yu, Qu (b0100) 2019; 9
Gao, Xu, Ren, Zeng, Wu (b0085) 2020; 126
Tian, Chen, Liu, Ge (b0260) 2018; 143
Nagata, Mizukoshi, Okitsu, Maeda (b0040) 1996; 146
M. Fahimeh, M. Mohsen, E. Mohammad, M. Zahra, Mahdi, H. Seyed Mousalreza, Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells, Process Biochem. 111 (2021) 167-177.
Gan, Ng, Huang, Li (b0175) 2012; 113
de Barros, Cruz, Mayrink, Tasic (b0220) 2018; 11
Food and Agriculture Organization, Citrus fruit fresh and processed statistical bulletin 2020, https://www.fao.org/3/cb6492en/cb6492en.pdf. (Accessed Nov. 10 2021).
Khalil, Ismail, El-Magdoub (b0200) 2012; 5
Greten, Grivennikov (b0120) 2019; 51
Zhao, Duan, Guo, Dou, Dong, Zhou, Li, Liu (b0215) 2015; 173
Bashir, Ali, Farrukh (b0110) 2020; 76
Castro, Blázquez, Muñoz, González, García-Balboa, Ballester (b0235) 2011; 46
Okitsu (b0255) 2011
Ituen, Ekemini, Yuanhua, Li, Singh (b0105) 2020; 149
Yuan, Huo, Gui, Cao (b0095) 2017; 11
Danila Di, Marco, Maurizio La, Elisa, Santo, Enrico (b0265) 2005; 38
Prathna, Chandrasekaran, Raichur, Mukherjee (b0190) 2011; 82
Yusof, Ashokkumar (b0030) 2015; 16
Sujitha, Kannan (b0170) 2013; 102
Kenji, Itsuya, Ben, Norimichi, Hiroshi (b0050) 2020; 69
Tahernejad-Javazmi, Shabani-Nooshabadi, Karimi-Maleh (b0010) 2018; 42
Zhan, Huang, Du, Ibrahim, Ma, Li (b0230) 2011; 65
Caruso (10.1016/j.ultsonch.2022.105940_b0045) 2002; 18
de Barros (10.1016/j.ultsonch.2022.105940_b0220) 2018; 11
Castro (10.1016/j.ultsonch.2022.105940_b0235) 2011; 46
Eustis (10.1016/j.ultsonch.2022.105940_b0165) 2006; 35
Ji (10.1016/j.ultsonch.2022.105940_b0180) 2010; 372
Mohammed (10.1016/j.ultsonch.2022.105940_b0185) 2021; 127
Mei (10.1016/j.ultsonch.2022.105940_b0125) 2021; 149
Tahernejad-Javazmi (10.1016/j.ultsonch.2022.105940_b0010) 2018; 42
Bonigala (10.1016/j.ultsonch.2022.105940_b0240) 2018; 25
Chen (10.1016/j.ultsonch.2022.105940_b0150) 2019; 54
Oza (10.1016/j.ultsonch.2022.105940_b0065) 2020; 55
Okitsu (10.1016/j.ultsonch.2022.105940_b0025) 2005; 109
Danila Di (10.1016/j.ultsonch.2022.105940_b0265) 2005; 38
Foroozandeh (10.1016/j.ultsonch.2022.105940_b0210) 2018; 13
Liu (10.1016/j.ultsonch.2022.105940_b0225) 2019; 14
Germolec (10.1016/j.ultsonch.2022.105940_b0115) 1803; 2018
Sungeun (10.1016/j.ultsonch.2022.105940_b0135) 2016; 45
Gan (10.1016/j.ultsonch.2022.105940_b0175) 2012; 113
Bashir (10.1016/j.ultsonch.2022.105940_b0110) 2020; 76
Fuentes-García (10.1016/j.ultsonch.2022.105940_b0035) 2021; 70
Tian (10.1016/j.ultsonch.2022.105940_b0260) 2018; 143
10.1016/j.ultsonch.2022.105940_b0270
Elbagory (10.1016/j.ultsonch.2022.105940_b0130) 2019; 14
Jahandari (10.1016/j.ultsonch.2022.105940_b0015) 2019; 11
Gao (10.1016/j.ultsonch.2022.105940_b0085) 2020; 126
Prathna (10.1016/j.ultsonch.2022.105940_b0190) 2011; 82
Sujitha (10.1016/j.ultsonch.2022.105940_b0170) 2013; 102
Khalil (10.1016/j.ultsonch.2022.105940_b0200) 2012; 5
10.1016/j.ultsonch.2022.105940_b0070
Sujitha (10.1016/j.ultsonch.2022.105940_b0275) 2013; 102
Gao (10.1016/j.ultsonch.2022.105940_b0285) 2019; 85
Ji (10.1016/j.ultsonch.2022.105940_b0140) 2022; 373
Khalil (10.1016/j.ultsonch.2022.105940_b0195) 2014; 7
Chen (10.1016/j.ultsonch.2022.105940_b0080) 2017; 218
Zhao (10.1016/j.ultsonch.2022.105940_b0215) 2015; 173
Lee (10.1016/j.ultsonch.2022.105940_b0160) 2006; 110
Yusof (10.1016/j.ultsonch.2022.105940_b0030) 2015; 16
Nagata (10.1016/j.ultsonch.2022.105940_b0040) 1996; 146
Greten (10.1016/j.ultsonch.2022.105940_b0120) 2019; 51
Kenji (10.1016/j.ultsonch.2022.105940_b0050) 2020; 69
Chen (10.1016/j.ultsonch.2022.105940_b0145) 2018; 249
Yang (10.1016/j.ultsonch.2022.105940_b0100) 2019; 9
Siddiqi (10.1016/j.ultsonch.2022.105940_b0005) 2017; 40
Park (10.1016/j.ultsonch.2022.105940_b0060) 2006; 13
Yuan (10.1016/j.ultsonch.2022.105940_b0095) 2017; 11
Chen (10.1016/j.ultsonch.2022.105940_b0155) 2015; 406
Singh (10.1016/j.ultsonch.2022.105940_b0250) 2017; 46
Singh (10.1016/j.ultsonch.2022.105940_b0075) 2020; 132
10.1016/j.ultsonch.2022.105940_b0205
Cubillana-Aguilera (10.1016/j.ultsonch.2022.105940_b0055) 2011; 18
Omran (10.1016/j.ultsonch.2022.105940_b0090) 2018; 40
Saha (10.1016/j.ultsonch.2022.105940_b0245) 2016; 27
Duan (10.1016/j.ultsonch.2022.105940_b0020) 2015; 44
Jadoun (10.1016/j.ultsonch.2022.105940_b0280) 2021; 19
Zhan (10.1016/j.ultsonch.2022.105940_b0230) 2011; 65
Ituen (10.1016/j.ultsonch.2022.105940_b0105) 2020; 149
Okitsu (10.1016/j.ultsonch.2022.105940_b0255) 2011
References_xml – volume: 42
  start-page: 16378
  year: 2018
  end-page: 16383
  ident: b0010
  article-title: Gold nanoparticles and reduced graphene oxide-amplified label-free DNA biosensor for dasatinib detection
  publication-title: New J. Chem.
– volume: 132
  year: 2020
  ident: b0075
  article-title: Phenolic composition, antioxidant potential and health benefits of citrus peel
  publication-title: Food Res. Int.
– volume: 127
  year: 2021
  ident: b0185
  article-title: Sonochemical-assisted synthesis of highly stable gold nanoparticles catalyst for decoloration of methylene blue dye
  publication-title: Inorg. Chem. Commun.
– volume: 146
  start-page: 333
  year: 1996
  end-page: 338
  ident: b0040
  article-title: Sonochemical formation of gold particles in aqueous solution
  publication-title: Radiat. Res.
– volume: 27
  start-page: 1893
  year: 2016
  end-page: 1912
  ident: b0245
  article-title: Surface plasmon resonance (SPR) based optimization of biosynthesis of silver nanoparticles from rhizome extract of Curculigo orchioides gaertn. and its antioxidant potential
  publication-title: J. Cluster Sci.
– volume: 102
  start-page: 15
  year: 2013
  end-page: 23
  ident: b0275
  article-title: Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization, Spectrochim
  publication-title: Acta Part A Mol. Biomol. Spectrosc.
– volume: 11
  start-page: 2658
  year: 2019
  end-page: 2662
  ident: b0015
  article-title: A first adrenalone electrochemical sensor using a gold-nanoparticle/poly(pyrrole) composite-modified graphite electrode
  publication-title: Anal. Methods
– volume: 18
  start-page: 7831
  year: 2002
  end-page: 7836
  ident: b0045
  article-title: Sonochemical formation of gold sols
  publication-title: Langmuir
– volume: 373
  year: 2022
  ident: b0140
  article-title: The effects of ultrasonication on the phytochemicals, antioxidant, and polyphenol oxidase and peroxidase activities in coffee leaves
  publication-title: Food Chem.
– volume: 46
  start-page: 1076
  year: 2011
  end-page: 1082
  ident: b0235
  article-title: Biosynthesis of gold nanowires using sugar beet pulp
  publication-title: Process Biochem.
– volume: 55
  start-page: 1
  year: 2020
  end-page: 22
  ident: b0065
  article-title: Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach
  publication-title: J. Mater. Sci.
– volume: 14
  start-page: 9007
  year: 2019
  end-page: 9018
  ident: b0130
  article-title: The in vitro immunomodulatory effects of gold nanoparticles synthesized from Hypoxis hemerocallidea aqueous extract and hypoxoside on macrophage and natural killer cells
  publication-title: Int. J. Nanomedicine
– volume: 113
  start-page: 132
  year: 2012
  end-page: 135
  ident: b0175
  article-title: Green synthesis of gold nanoparticles using palm oil mill effluent (POME): A low-cost and eco-friendly viable approach
  publication-title: Bioresour. Technol.
– volume: 249
  start-page: 143
  year: 2018
  end-page: 153
  ident: b0145
  article-title: Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves
  publication-title: Food Chem.
– volume: 11
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0220
  article-title: Bio-based synthesis of silver nanoparticles from orange waste: effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity
  publication-title: Nanotechnol. Sci. Appl.
– volume: 2018
  start-page: 57
  year: 1803
  end-page: 79
  ident: b0115
  article-title: Markers of Inflammation
  publication-title: Methods Mol. Biol.
– volume: 40
  start-page: 10
  year: 2017
  end-page: 23
  ident: b0005
  article-title: Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system
  publication-title: J. Trace Elem. Med. Biol.
– volume: 70
  year: 2021
  ident: b0035
  article-title: Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticles
  publication-title: Ultrason. Sonochem.
– volume: 19
  start-page: 355
  year: 2021
  end-page: 374
  ident: b0280
  article-title: Green synthesis of nanoparticles using plant extracts: a review
  publication-title: Environ. Chem. Lett.
– volume: 82
  start-page: 152
  year: 2011
  end-page: 159
  ident: b0190
  article-title: Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size
  publication-title: Colloids Surf. B Biointerfaces
– volume: 149
  year: 2020
  ident: b0105
  article-title: Mitigation of microbial biodeterioration and acid corrosion of pipework steel using Citrus reticulata peels extract mediated copper nanoparticles composite
  publication-title: Int. Biodeterior. Biodegrad.
– volume: 13
  start-page: 339
  year: 2018
  ident: b0210
  article-title: Insight into cellular uptake and intracellular trafficking of nanoparticles
  publication-title: Nanoscale Res. Lett.
– volume: 85
  start-page: 203
  year: 2019
  end-page: 217
  ident: b0285
  article-title: Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury
  publication-title: Acta Biomater.
– volume: 44
  start-page: 5778
  year: 2015
  end-page: 5792
  ident: b0020
  article-title: Green chemistry for nanoparticle synthesis
  publication-title: Chem. Soc. Rev.
– reference: Food and Agriculture Organization, Citrus fruit fresh and processed statistical bulletin 2020, https://www.fao.org/3/cb6492en/cb6492en.pdf. (Accessed Nov. 10 2021).
– reference: M. Fahimeh, M. Mohsen, E. Mohammad, M. Zahra, Mahdi, H. Seyed Mousalreza, Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells, Process Biochem. 111 (2021) 167-177.
– volume: 16
  start-page: 775
  year: 2015
  end-page: 781
  ident: b0030
  article-title: Sonochemical synthesis of gold nanoparticles by using high intensity focused ultrasound
  publication-title: ChemPhysChem
– volume: 18
  start-page: 789
  year: 2011
  end-page: 794
  ident: b0055
  article-title: New, fast and green procedure for the synthesis of gold nanoparticles based on sonocatalysis
  publication-title: Ultrason. Sonochem.
– volume: 35
  start-page: 209
  year: 2006
  end-page: 217
  ident: b0165
  article-title: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 2945
  year: 2019
  end-page: 2959
  ident: b0225
  article-title: Green synthesis of gold nanoparticles using euphrasia officinalisleaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in Raw 264.7 macrophages
  publication-title: Int. J. Nanomedicine
– start-page: 131
  year: 2011
  end-page: 150
  ident: b0255
  article-title: Sonochemical synthesis of metal nanoparticles
  publication-title: Theoretical and Experimental Sonochemistry Involving Inorganic Systems
– volume: 65
  start-page: 2989
  year: 2011
  end-page: 2991
  ident: b0230
  article-title: Green synthesis of Au–Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract
  publication-title: Mater. Lett.
– volume: 13
  start-page: 237
  year: 2006
  end-page: 241
  ident: b0060
  article-title: Synthesis of multiple shapes of gold nanoparticles with controlled sizes in aqueous solution using ultrasound
  publication-title: Ultrason. Sonochem.
– volume: 11
  start-page: 523
  year: 2017
  end-page: 530
  ident: b0095
  article-title: Green synthesis of gold nanoparticles using citrus maxima peel extract and their catalytic/antibacterial activities
  publication-title: IET Nanobiotechnol.
– volume: 25
  start-page: 32540
  year: 2018
  end-page: 32548
  ident: b0240
  article-title: Green synthesis of silver and gold nanoparticles using Stemona tuberosa Lour and screening for their catalytic activity in the degradation of toxic chemicals
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 218
  start-page: 15
  year: 2017
  end-page: 21
  ident: b0080
  article-title: Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities
  publication-title: Food Chem.
– reference: J. Sierra restrepo, C. Vanoni, M. Tumelero, C. Plá Cid, R. Faccio, D. Franceschini, t. Creczynski-Pasa, A. Pasa, Biogenic approaches using citrus extracts for the synthesis of metal nanoparticles: The role of flavonoids in gold reduction and stabilization, New J. Chem. 40 (2015) 1420-1429.
– volume: 9
  start-page: 2423
  year: 2019
  ident: b0100
  article-title: Study of green synthesis of ultrasmall gold nanoparticles using Citrus sinensis peel
  publication-title: Appl. Sci.
– volume: 109
  start-page: 20673
  year: 2005
  end-page: 20675
  ident: b0025
  article-title: Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency
  publication-title: J. Phys. Chem. B
– volume: 173
  start-page: 54
  year: 2015
  end-page: 60
  ident: b0215
  article-title: Chemical and biological comparison of the fruit extracts of Citrus wilsonii tanaka and Citrus medica L
  publication-title: Food Chem.
– volume: 38
  start-page: 1161
  year: 2005
  end-page: 1166
  ident: b0265
  article-title: Flavanones in Citrus fruit: Structure–antioxidant activity relationships
  publication-title: Food Res. Int.
– volume: 406
  start-page: 205
  year: 2015
  end-page: 215
  ident: b0155
  article-title: Evidence for inhibition of nitric oxide and inducible nitric oxide synthase in Caco-2 and Raw 264.7 cells by a maillard reaction product 5-(5,6-dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl -methanol
  publication-title: Mol. Cell. Biochem.
– volume: 126
  start-page: 109297
  year: 2020
  ident: b0085
  article-title: Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: A comparison study, LWT–Food Sci
  publication-title: Technol.
– volume: 54
  start-page: 2872
  year: 2019
  end-page: 2879
  ident: b0150
  article-title: Free radical scavenging activities of phytochemical mixtures and aqueous methanolic extracts recovered from processed coffee leaves
  publication-title: Int. J. Food Sci. Technol.
– volume: 110
  start-page: 19220
  year: 2006
  end-page: 19225
  ident: b0160
  article-title: Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition
  publication-title: J. Phys. Chem. B
– volume: 45
  start-page: 270
  year: 2016
  end-page: 276
  ident: b0135
  article-title: Gold nanoparticles synthesized using Panax ginseng leaves suppress inflammatory - mediators production via blockade of NF-κB activation in macrophages, Artif Cells Nanomed
  publication-title: Biotechnol
– volume: 46
  start-page: 2022
  year: 2017
  end-page: 2032
  ident: b0250
  article-title: In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of prunus serrulata : a green synthetic approach, Artif Cells Nanomed
  publication-title: Biotechnol
– volume: 102
  start-page: 15
  year: 2013
  end-page: 23
  ident: b0170
  article-title: Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 372
  start-page: 204
  year: 2010
  end-page: 209
  ident: b0180
  article-title: Bimetallic Ag/Au nanoparticles: A low temperature ripening strategy in aqueous solution
  publication-title: Colloids Surf., A
– volume: 40
  start-page: 227
  year: 2018
  end-page: 236
  ident: b0090
  article-title: Waste upcycling of Citrus sinensis peels as a green route for the synthesis of silver nanoparticles
  publication-title: Energy Sources Part A
– volume: 51
  start-page: 27
  year: 2019
  end-page: 41
  ident: b0120
  article-title: Inflammation and cancer: Triggers, mechanisms, and consequences
  publication-title: Immunity
– volume: 5
  start-page: 431
  year: 2012
  end-page: 437
  ident: b0200
  article-title: Biosynthesis of Au nanoparticles using olive leaf extract: 1st Nano Updates
  publication-title: Arab. J. Chem.
– volume: 69
  year: 2020
  ident: b0050
  article-title: Mechanism for sonochemical reduction of Au(III) in aqueous butanol solution under Ar based on the analysis of gaseous and water-soluble products
  publication-title: Ultrason. Sonochem.
– volume: 7
  start-page: 1131
  year: 2014
  end-page: 1139
  ident: b0195
  article-title: Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity
  publication-title: Arab. J. Chem.
– volume: 149
  start-page: 111997
  year: 2021
  ident: b0125
  article-title: Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms
  publication-title: Food Chem. Toxicol.
– volume: 76
  start-page: 848
  year: 2020
  end-page: 854
  ident: b0110
  article-title: Green synthesis of Fe2O3 nanoparticles from orange peel extract and a study of its antibacterial activity
  publication-title: J. Korean Phys. Soc.
– volume: 143
  start-page: 4630
  year: 2018
  end-page: 4637
  ident: b0260
  article-title: Size-dependent adsorption and its application in determining the number of surfactant molecule adsorbed on multimodal SiO2 particles by 2D-DCS†
  publication-title: Analyst
– volume: 7
  start-page: 1131
  issue: 6
  year: 2014
  ident: 10.1016/j.ultsonch.2022.105940_b0195
  article-title: Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2013.04.007
– volume: 46
  start-page: 1076
  issue: 5
  year: 2011
  ident: 10.1016/j.ultsonch.2022.105940_b0235
  article-title: Biosynthesis of gold nanowires using sugar beet pulp
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2011.01.025
– volume: 109
  start-page: 20673
  issue: 44
  year: 2005
  ident: 10.1016/j.ultsonch.2022.105940_b0025
  article-title: Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0549374
– volume: 18
  start-page: 7831
  issue: 21
  year: 2002
  ident: 10.1016/j.ultsonch.2022.105940_b0045
  article-title: Sonochemical formation of gold sols
  publication-title: Langmuir
  doi: 10.1021/la020276f
– volume: 102
  start-page: 15
  year: 2013
  ident: 10.1016/j.ultsonch.2022.105940_b0275
  article-title: Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization, Spectrochim
  publication-title: Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2012.09.042
– ident: 10.1016/j.ultsonch.2022.105940_b0205
  doi: 10.1016/j.procbio.2021.09.010
– volume: 13
  start-page: 339
  year: 2018
  ident: 10.1016/j.ultsonch.2022.105940_b0210
  article-title: Insight into cellular uptake and intracellular trafficking of nanoparticles
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-018-2728-6
– volume: 173
  start-page: 54
  year: 2015
  ident: 10.1016/j.ultsonch.2022.105940_b0215
  article-title: Chemical and biological comparison of the fruit extracts of Citrus wilsonii tanaka and Citrus medica L
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.10.010
– volume: 102
  start-page: 15
  year: 2013
  ident: 10.1016/j.ultsonch.2022.105940_b0170
  article-title: Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2012.09.042
– volume: 54
  start-page: 2872
  issue: 10
  year: 2019
  ident: 10.1016/j.ultsonch.2022.105940_b0150
  article-title: Free radical scavenging activities of phytochemical mixtures and aqueous methanolic extracts recovered from processed coffee leaves
  publication-title: Int. J. Food Sci. Technol.
  doi: 10.1111/ijfs.14099
– volume: 25
  start-page: 32540
  issue: 32
  year: 2018
  ident: 10.1016/j.ultsonch.2022.105940_b0240
  article-title: Green synthesis of silver and gold nanoparticles using Stemona tuberosa Lour and screening for their catalytic activity in the degradation of toxic chemicals
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-018-3105-9
– volume: 5
  start-page: 431
  issue: 4
  year: 2012
  ident: 10.1016/j.ultsonch.2022.105940_b0200
  article-title: Biosynthesis of Au nanoparticles using olive leaf extract: 1st Nano Updates
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2010.11.011
– volume: 18
  start-page: 789
  issue: 3
  year: 2011
  ident: 10.1016/j.ultsonch.2022.105940_b0055
  article-title: New, fast and green procedure for the synthesis of gold nanoparticles based on sonocatalysis
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2010.10.009
– volume: 149
  year: 2020
  ident: 10.1016/j.ultsonch.2022.105940_b0105
  article-title: Mitigation of microbial biodeterioration and acid corrosion of pipework steel using Citrus reticulata peels extract mediated copper nanoparticles composite
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2020.104935
– volume: 13
  start-page: 237
  issue: 3
  year: 2006
  ident: 10.1016/j.ultsonch.2022.105940_b0060
  article-title: Synthesis of multiple shapes of gold nanoparticles with controlled sizes in aqueous solution using ultrasound
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2005.04.003
– start-page: 131
  year: 2011
  ident: 10.1016/j.ultsonch.2022.105940_b0255
  article-title: Sonochemical synthesis of metal nanoparticles
– ident: 10.1016/j.ultsonch.2022.105940_b0270
  doi: 10.1039/C5NJ02128F
– volume: 143
  start-page: 4630
  issue: 19
  year: 2018
  ident: 10.1016/j.ultsonch.2022.105940_b0260
  article-title: Size-dependent adsorption and its application in determining the number of surfactant molecule adsorbed on multimodal SiO2 particles by 2D-DCS†
  publication-title: Analyst
  doi: 10.1039/C8AN01068D
– volume: 76
  start-page: 848
  issue: 9
  year: 2020
  ident: 10.1016/j.ultsonch.2022.105940_b0110
  article-title: Green synthesis of Fe2O3 nanoparticles from orange peel extract and a study of its antibacterial activity
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.76.848
– volume: 110
  start-page: 19220
  year: 2006
  ident: 10.1016/j.ultsonch.2022.105940_b0160
  article-title: Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp062536y
– volume: 19
  start-page: 355
  issue: 1
  year: 2021
  ident: 10.1016/j.ultsonch.2022.105940_b0280
  article-title: Green synthesis of nanoparticles using plant extracts: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-020-01074-x
– volume: 9
  start-page: 2423
  year: 2019
  ident: 10.1016/j.ultsonch.2022.105940_b0100
  article-title: Study of green synthesis of ultrasmall gold nanoparticles using Citrus sinensis peel
  publication-title: Appl. Sci.
  doi: 10.3390/app9122423
– volume: 373
  year: 2022
  ident: 10.1016/j.ultsonch.2022.105940_b0140
  article-title: The effects of ultrasonication on the phytochemicals, antioxidant, and polyphenol oxidase and peroxidase activities in coffee leaves
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.131480
– volume: 42
  start-page: 16378
  issue: 19
  year: 2018
  ident: 10.1016/j.ultsonch.2022.105940_b0010
  article-title: Gold nanoparticles and reduced graphene oxide-amplified label-free DNA biosensor for dasatinib detection
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ03783C
– volume: 27
  start-page: 1893
  issue: 6
  year: 2016
  ident: 10.1016/j.ultsonch.2022.105940_b0245
  article-title: Surface plasmon resonance (SPR) based optimization of biosynthesis of silver nanoparticles from rhizome extract of Curculigo orchioides gaertn. and its antioxidant potential
  publication-title: J. Cluster Sci.
  doi: 10.1007/s10876-016-1050-7
– volume: 44
  start-page: 5778
  issue: 16
  year: 2015
  ident: 10.1016/j.ultsonch.2022.105940_b0020
  article-title: Green chemistry for nanoparticle synthesis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00363B
– volume: 127
  year: 2021
  ident: 10.1016/j.ultsonch.2022.105940_b0185
  article-title: Sonochemical-assisted synthesis of highly stable gold nanoparticles catalyst for decoloration of methylene blue dye
  publication-title: Inorg. Chem. Commun.
– volume: 2018
  start-page: 57
  year: 1803
  ident: 10.1016/j.ultsonch.2022.105940_b0115
  article-title: Markers of Inflammation
  publication-title: Methods Mol. Biol.
– volume: 38
  start-page: 1161
  issue: 10
  year: 2005
  ident: 10.1016/j.ultsonch.2022.105940_b0265
  article-title: Flavanones in Citrus fruit: Structure–antioxidant activity relationships
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2005.05.001
– volume: 70
  year: 2021
  ident: 10.1016/j.ultsonch.2022.105940_b0035
  article-title: Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticles
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2020.105274
– volume: 11
  start-page: 523
  issue: 5
  year: 2017
  ident: 10.1016/j.ultsonch.2022.105940_b0095
  article-title: Green synthesis of gold nanoparticles using citrus maxima peel extract and their catalytic/antibacterial activities
  publication-title: IET Nanobiotechnol.
  doi: 10.1049/iet-nbt.2016.0183
– volume: 113
  start-page: 132
  year: 2012
  ident: 10.1016/j.ultsonch.2022.105940_b0175
  article-title: Green synthesis of gold nanoparticles using palm oil mill effluent (POME): A low-cost and eco-friendly viable approach
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.015
– volume: 46
  start-page: 2022
  year: 2017
  ident: 10.1016/j.ultsonch.2022.105940_b0250
  article-title: In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of prunus serrulata : a green synthetic approach, Artif Cells Nanomed
  publication-title: Biotechnol
– volume: 218
  start-page: 15
  year: 2017
  ident: 10.1016/j.ultsonch.2022.105940_b0080
  article-title: Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2016.09.016
– volume: 14
  start-page: 9007
  year: 2019
  ident: 10.1016/j.ultsonch.2022.105940_b0130
  article-title: The in vitro immunomodulatory effects of gold nanoparticles synthesized from Hypoxis hemerocallidea aqueous extract and hypoxoside on macrophage and natural killer cells
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S216972
– volume: 51
  start-page: 27
  issue: 1
  year: 2019
  ident: 10.1016/j.ultsonch.2022.105940_b0120
  article-title: Inflammation and cancer: Triggers, mechanisms, and consequences
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.06.025
– volume: 11
  start-page: 1
  year: 2018
  ident: 10.1016/j.ultsonch.2022.105940_b0220
  article-title: Bio-based synthesis of silver nanoparticles from orange waste: effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity
  publication-title: Nanotechnol. Sci. Appl.
  doi: 10.2147/NSA.S156115
– volume: 146
  start-page: 333
  issue: 3
  year: 1996
  ident: 10.1016/j.ultsonch.2022.105940_b0040
  article-title: Sonochemical formation of gold particles in aqueous solution
  publication-title: Radiat. Res.
  doi: 10.2307/3579465
– volume: 82
  start-page: 152
  issue: 1
  year: 2011
  ident: 10.1016/j.ultsonch.2022.105940_b0190
  article-title: Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2010.08.036
– volume: 149
  start-page: 111997
  year: 2021
  ident: 10.1016/j.ultsonch.2022.105940_b0125
  article-title: Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2021.111997
– volume: 35
  start-page: 209
  year: 2006
  ident: 10.1016/j.ultsonch.2022.105940_b0165
  article-title: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B514191E
– volume: 65
  start-page: 2989
  issue: 19
  year: 2011
  ident: 10.1016/j.ultsonch.2022.105940_b0230
  article-title: Green synthesis of Au–Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.06.079
– ident: 10.1016/j.ultsonch.2022.105940_b0070
– volume: 406
  start-page: 205
  issue: 1-2
  year: 2015
  ident: 10.1016/j.ultsonch.2022.105940_b0155
  article-title: Evidence for inhibition of nitric oxide and inducible nitric oxide synthase in Caco-2 and Raw 264.7 cells by a maillard reaction product 5-(5,6-dihydro-4H-pyridin-3-ylidenemethyl)furan-2-yl -methanol
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-015-2438-7
– volume: 85
  start-page: 203
  year: 2019
  ident: 10.1016/j.ultsonch.2022.105940_b0285
  article-title: Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.12.046
– volume: 16
  start-page: 775
  issue: 4
  year: 2015
  ident: 10.1016/j.ultsonch.2022.105940_b0030
  article-title: Sonochemical synthesis of gold nanoparticles by using high intensity focused ultrasound
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201402697
– volume: 14
  start-page: 2945
  year: 2019
  ident: 10.1016/j.ultsonch.2022.105940_b0225
  article-title: Green synthesis of gold nanoparticles using euphrasia officinalisleaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in Raw 264.7 macrophages
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S199781
– volume: 11
  start-page: 2658
  issue: 20
  year: 2019
  ident: 10.1016/j.ultsonch.2022.105940_b0015
  article-title: A first adrenalone electrochemical sensor using a gold-nanoparticle/poly(pyrrole) composite-modified graphite electrode
  publication-title: Anal. Methods
  doi: 10.1039/C8AY02765J
– volume: 126
  start-page: 109297
  year: 2020
  ident: 10.1016/j.ultsonch.2022.105940_b0085
  article-title: Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: A comparison study, LWT–Food Sci
  publication-title: Technol.
– volume: 40
  start-page: 227
  issue: 2
  year: 2018
  ident: 10.1016/j.ultsonch.2022.105940_b0090
  article-title: Waste upcycling of Citrus sinensis peels as a green route for the synthesis of silver nanoparticles
  publication-title: Energy Sources Part A
  doi: 10.1080/15567036.2017.1410597
– volume: 69
  year: 2020
  ident: 10.1016/j.ultsonch.2022.105940_b0050
  article-title: Mechanism for sonochemical reduction of Au(III) in aqueous butanol solution under Ar based on the analysis of gaseous and water-soluble products
  publication-title: Ultrason. Sonochem.
– volume: 249
  start-page: 143
  year: 2018
  ident: 10.1016/j.ultsonch.2022.105940_b0145
  article-title: Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.12.073
– volume: 372
  start-page: 204
  issue: 1
  year: 2010
  ident: 10.1016/j.ultsonch.2022.105940_b0180
  article-title: Bimetallic Ag/Au nanoparticles: A low temperature ripening strategy in aqueous solution
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2010.10.028
– volume: 45
  start-page: 270
  year: 2016
  ident: 10.1016/j.ultsonch.2022.105940_b0135
  article-title: Gold nanoparticles synthesized using Panax ginseng leaves suppress inflammatory - mediators production via blockade of NF-κB activation in macrophages, Artif Cells Nanomed
  publication-title: Biotechnol
– volume: 132
  year: 2020
  ident: 10.1016/j.ultsonch.2022.105940_b0075
  article-title: Phenolic composition, antioxidant potential and health benefits of citrus peel
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2020.109114
– volume: 40
  start-page: 10
  year: 2017
  ident: 10.1016/j.ultsonch.2022.105940_b0005
  article-title: Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system
  publication-title: J. Trace Elem. Med. Biol.
  doi: 10.1016/j.jtemb.2016.11.012
– volume: 55
  start-page: 1
  year: 2020
  ident: 10.1016/j.ultsonch.2022.105940_b0065
  article-title: Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-04121-3
SSID ssj0003920
Score 2.546948
Snippet [Display omitted] •Ultrasound decreased the size and distribution of AuNPs.•Ultrasound increased the yield and the anti-inflammatory activity of AuNPs.•AuNPs...
Ultrasound and plant extract are two green approaches that have been used to synthesize gold nanoparticles (AuNPs); however, how the combination of ultrasound...
• Ultrasound decreased the size and distribution of AuNPs. • Ultrasound increased the yield and the anti-inflammatory activity of AuNPs. • AuNPs synthesized...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105940
SubjectTerms Anti-inflammation
Anti-Inflammatory Agents - pharmacology
AuNPs
Citrus
Citrus peel
Gold - chemistry
Gold - pharmacology
Green Chemistry Technology - methods
Green synthesis
Metal Nanoparticles - chemistry
Plant Extracts - chemistry
Plant Extracts - pharmacology
Short Communication
Spectroscopy, Fourier Transform Infrared
Ultrasonication
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hlRBcECyv8JKRuJpN4jzsI6xYrZDgRKW9WY4f3a6Cu1K7B478c2bspGrh0AunRG5jxZ7xzDeZF8AH2bm6byvLRVd53vSl4spJxauuNJ1wg1Ep6_3b9-5y0Xy9aq_2Wn1RTFguD5w37iwYp7xwCFsMqf5S2qHCaTrUaxZ1cSDpW6pyNqYmGYxaP-cHtyVvqr7fyw2--Xg3bhHLJldEXVOjW0WfPvbUUqref6Cd_kWffwdR7mmli8fwaIKT7FNexhO45-MpPDifu7idwv0U4mk3T-H3YsQZNtRGiSNiJvI6tqSwG7b5FREH4hBbB7Zcj45FE9GanoLmGAXHL5lNCRrs1vuRoUin9CpmomPJ18B8vE7BBDi0XXHkW2S1n8mFzyh3glpUPIPFxZcf55d8asDAbSv6LcfDiXDNDkOHUkFYU0q8xYsYEDe2lTF16YfQIkgYDMoGH_B4u0YZY0NwqPnFcziJ6-hfAlPComEiQlChQYuQDCeJ2Kuvg6-CbE0B7bz_2k7VyalJxqjnMLQbPdNNE910plsBZ7vnbnN9jqNPfCby7v5N9bXTAHKdnjZWH-O6AtTMHHqCKhmC4FSroy_wfuYmjcxADhoT_fpuo-uO_NpUIrCAF5m7dq9JGRcIJfsC-gO-O1jH4S9xdZ3qhUvZVFKKV_9j4a_hIS0lx62_gRNkPP8WYdl2eJdO4B8OXTdY
  priority: 102
  providerName: Directory of Open Access Journals
Title Ultrasound-assisted green synthesis of gold nanoparticles using citrus peel extract and their enhanced anti-inflammatory activity
URI https://dx.doi.org/10.1016/j.ultsonch.2022.105940
https://www.ncbi.nlm.nih.gov/pubmed/35149377
https://www.proquest.com/docview/2628297635
https://pubmed.ncbi.nlm.nih.gov/PMC8841883
https://doaj.org/article/fad9e3d507a242308cb10a66222c515f
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH_aOiG4IBhf4aMyEtescRwnznFUTAXELlBpt8hx7C5TSCraHbgg8Z_znpNULRx24NTWqSPH7-fnn_O-AN6ptIozyU0oUm7DJIvyMK9UHvI00qmoSp37qPcvl-limXy6kldHMB9jYcitctD9vU732npomQ2zOVvX9ewrFzJKOLJDijYRQh7DSYy7vZrAyfnHz4vLnULGxj5YWEYhddgLFL45u222SGy9XSKOqeptTu9B9vYon8r_YKv6l4r-7VG5t0VdPIKHA7dk5_3wH8ORbU_h_nws6XYK97y_p9k8gd_LBu-woZpKIdJnknXFVuSDwzY_WySF2MQ6x1ZdU7FWt3i0HjzoGHnKr5jx0RpsbW3DUL9TrBXTbcW84YHZ9tp7FmDTtg4RxIi7796ezyiQgupVPIXlxYdv80U4VGMIjRTZNsSVitzNlGWKKkIYHSn8ih-iRBIpudZxZEsnkTGUGhWFdbjWqyTX2jhXIQ0Qz2DSdq19ASwXBk8pwrncJXg8pFOUQiKWxc5yp6QOQI7zX5ghVTlVzGiK0SftphjlVpDcil5uAcx2_dZ9so47e7wn8e7-Tcm2fUP3Y1UME1s4XeVWVMicNbHPSJmSI5JTpFYG6aALIB_BURxgF29V3zmAtyOaCgQDWWt0a7vbTRGnZOSmfIEBPO_RtRsmhV8gr8wCyA5wd_Ach1fa-tonD1cq4UqJl_8x5lfwgH71vuuvYYJ4s2-Qmm3LKRyf_eLTYQFO_QuOPwJaPQA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED6kDop0Kdr0pT5ZoCtrSdRzTI0GTpN4aQxkIyiKdBSoklE7Q8f-895RkmG1Q4ZOEihToHkfjx91L4BPWVKGaRxoLpLA8Cj1c56XWc6DxFeJKAuVu6j3y0UyX0bfruPrA5gNsTDkVtnr_k6nO23dt0z72Zyuq2r6PRCxHwXIDinaRIj4ARxGVNR6AocnZ-fzxU4hIwXogoVjn1OHvUDh28939RaJrbNLhCFVvc3pO8jeHuVS-Y-2qn-p6N8elXtb1OkTeNxzS3bSDf8pHJjmGI5mQ0m3Y3jo_D315hn8Xtb4hg3VVOJIn0nWJVuRDw7b_GqQFGITay1btXXJGtXg0br3oGPkKb9i2kVrsLUxNUP9TrFWTDUlc4YHZpob51mATduKI4gRdz-cPZ9RIAXVq3gOy9OvV7M576sxcB2LdMtxpSJ300WRoIoQWvkZ3uJFFEgi40Cp0DeFjZExFAoVhbG41ssoV0pbWyINEC9g0rSNeQUsFxpPKcLa3EZ4PKRTVIZELA2tCWwWKw_iYf6l7lOVU8WMWg4-abdykJskuclObh5Md_3WXbKOe3t8IfHufk3Jtl1D-3Ml-4mVVpW5ESUyZ0Xs0890ESCSE6RWGumg9SAfwCFH2MVXVfcO4OOAJolgIGuNakx7t5FhQkZuyhfowcsOXbthUvgF8srUg3SEu9H_GD9pqhuXPDzLoiDLxOv_GPMHOJpfXV7Ii7PF-Rt4RE86P_a3MEHsmXdI07bF-34Z_gEDuT3x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasound-assisted+green+synthesis+of+gold+nanoparticles+using+citrus+peel+extract+and+their+enhanced+anti-inflammatory+activity&rft.jtitle=Ultrasonics+sonochemistry&rft.au=Gao%2C+Ling&rft.au=Mei%2C+Suhuan&rft.au=Ma%2C+Haile&rft.au=Chen%2C+Xiumin&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=1350-4177&rft.eissn=1873-2828&rft.volume=83&rft_id=info:doi/10.1016%2Fj.ultsonch.2022.105940&rft.externalDocID=S1350417722000335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4177&client=summon