Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors
Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microsc...
Saved in:
| Published in | Nature methods Vol. 17; no. 6; pp. 636 - 642 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Nature Publishing Group US
01.06.2020
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1548-7091 1548-7105 1548-7105 |
| DOI | 10.1038/s41592-020-0826-8 |
Cover
| Abstract | Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microscopic visualization, and are currently impossible to screen with pooled methods. Here we combine pooled CRISPR–Cas9 screening with microraft array technology and high-content imaging to screen image-based phenotypes (CRaft-ID; CRISPR-based microRaft followed by guide RNA identification). By isolating microrafts that contain genetic clones harboring individual guide RNAs (gRNA), we identify RNA-binding proteins (RBPs) that influence the formation of stress granules, the punctate protein–RNA assemblies that form during stress. To automate hit identification, we developed a machine-learning model trained on nuclear morphology to remove unhealthy cells or imaging artifacts. In doing so, we identified and validated previously uncharacterized RBPs that modulate stress granule abundance, highlighting the applicability of our approach to facilitate image-based pooled CRISPR screens.
CRISPR-based microraft followed by guide RNA identification (CRaft-ID) combines microraft arrays, microscopy and CRISPR–Cas9 technology for high-content image-based phenotyping. CRaft-ID was used to identify proteins involved in stress granule formation. |
|---|---|
| AbstractList | Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microscopic visualization, and are currently impossible to screen with pooled methods. Here we combine pooled CRISPR–Cas9 screening with microraft array technology and high-content imaging to screen image-based phenotypes (CRaft-ID; CRISPR-based microRaft followed by guide RNA identification). By isolating microrafts that contain genetic clones harboring individual guide RNAs (gRNA), we identify RNA-binding proteins (RBPs) that influence the formation of stress granules, the punctate protein–RNA assemblies that form during stress. To automate hit identification, we developed a machine-learning model trained on nuclear morphology to remove unhealthy cells or imaging artifacts. In doing so, we identified and validated previously uncharacterized RBPs that modulate stress granule abundance, highlighting the applicability of our approach to facilitate image-based pooled CRISPR screens.
CRISPR-based microraft followed by guide RNA identification (CRaft-ID) combines microraft arrays, microscopy and CRISPR–Cas9 technology for high-content image-based phenotyping. CRaft-ID was used to identify proteins involved in stress granule formation. Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microscopic visualization, and are currently impossible to screen with pooled methods. Here we combine pooled CRISPR-Cas9 screening with microraft array technology and high-content imaging to screen image-based phenotypes (CRaft-ID; CRISPR-based microRaft followed by guide RNA identification). By isolating microrafts that contain genetic clones harboring individual guide RNAs (gRNA), we identify RNA-binding proteins (RBPs) that influence the formation of stress granules, the punctate protein-RNA assemblies that form during stress. To automate hit identification, we developed a machine-learning model trained on nuclear morphology to remove unhealthy cells or imaging artifacts. In doing so, we identified and validated previously uncharacterized RBPs that modulate stress granule abundance, highlighting the applicability of our approach to facilitate image-based pooled CRISPR screens.Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microscopic visualization, and are currently impossible to screen with pooled methods. Here we combine pooled CRISPR-Cas9 screening with microraft array technology and high-content imaging to screen image-based phenotypes (CRaft-ID; CRISPR-based microRaft followed by guide RNA identification). By isolating microrafts that contain genetic clones harboring individual guide RNAs (gRNA), we identify RNA-binding proteins (RBPs) that influence the formation of stress granules, the punctate protein-RNA assemblies that form during stress. To automate hit identification, we developed a machine-learning model trained on nuclear morphology to remove unhealthy cells or imaging artifacts. In doing so, we identified and validated previously uncharacterized RBPs that modulate stress granule abundance, highlighting the applicability of our approach to facilitate image-based pooled CRISPR screens. Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microscopic visualization, and are currently impossible to screen with pooled methods. Here we combine pooled CRISPR-Cas9 screening with microraft array technology and high-content imaging to screen image-based phenotypes (CRaft-ID; CRISPR-based microRaft followed by guide RNA identification). By isolating microrafts that contain genetic clones harboring individual guide RNAs (gRNA), we identify RNA-binding proteins (RBPs) that influence the formation of stress granules, the punctate protein-RNA assemblies that form during stress. To automate hit identification, we developed a machine-learning model trained on nuclear morphology to remove unhealthy cells or imaging artifacts. In doing so, we identified and validated previously uncharacterized RBPs that modulate stress granule abundance, highlighting the applicability of our approach to facilitate image-based pooled CRISPR screens. Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microscopic visualization, and are currently impossible to screen with pooled methods. Here we combine pooled CRISPR/Cas9 screening with microRaft array technology and high-content imaging to screen image-based phenotypes (CRaft-ID; CRISPR-based microRaft, followed by gRNA Identification). By isolating microRafts that contain genetic clones harboring individual guide RNAs, we identify RNA binding proteins (RBPs) that influence the formation of stress granules, punctate protein-RNA assemblies, that form during stress. To automate hit identification, we developed a machine-learning model trained on nuclear morphology to remove unhealthy cells or imaging artifacts. In doing so, we identified and validated previously uncharacterized RBPs that modulate stress granule abundance, highlighting the applicability of our approach to facilitate image-based pooled CRISPR screens. Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and sortable markers. However, many biologically relevant cell states involve cellular and subcellular changes that are only accessible by microscopic visualization, and are currently impossible to screen with pooled methods. Here we combine pooled CRISPR-Cas9 screening with microraft array technology and high-content imaging to screen image-based phenotypes (CRaft-ID; CRISPR-based microRaft followed by guide RNA identification). By isolating microrafts that contain genetic clones harboring individual guide RNAs (gRNA), we identify RNA-binding proteins (RBPs) that influence the formation of stress granules, the punctate protein-RNA assemblies that form during stress. To automate hit identification, we developed a machine-learning model trained on nuclear morphology to remove unhealthy cells or imaging artifacts. In doing so, we identified and validated previously uncharacterized RBPs that modulate stress granule abundance, highlighting the applicability of our approach to facilitate image-based pooled CRISPR screens. CRISPR-based microraft followed by guide RNA identification (CRaft-ID) combines microraft arrays, microscopy and CRISPR-Cas9 technology for high-content image-based phenotyping. CRaft-ID was used to identify proteins involved in stress granule formation. |
| Audience | Academic |
| Author | Allbritton, Nancy L. Einstein, Jaclyn M. Yeo, Gene W. Shishkin, Alexander A. Wheeler, Emily C. DiSalvo, Matthew Ahmed, Noorsher Vu, Anthony Q. Van Nostrand, Eric L. Jin, Wenhao |
| AuthorAffiliation | 2 Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California 4 Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 5 Current affiliation: Eclipse BioInnovations, San Diego, California 7 These authors contributed equally 6 Current affiliation: Department of Bioengineering, University of Washington, Seattle, WA 3 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 1 Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California |
| AuthorAffiliation_xml | – name: 3 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina – name: 5 Current affiliation: Eclipse BioInnovations, San Diego, California – name: 1 Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California – name: 6 Current affiliation: Department of Bioengineering, University of Washington, Seattle, WA – name: 4 Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina – name: 7 These authors contributed equally – name: 2 Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California |
| Author_xml | – sequence: 1 givenname: Emily C. surname: Wheeler fullname: Wheeler, Emily C. organization: Department of Cellular and Molecular Medicine, University of California San Diego, Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego – sequence: 2 givenname: Anthony Q. orcidid: 0000-0001-8922-6409 surname: Vu fullname: Vu, Anthony Q. organization: Department of Cellular and Molecular Medicine, University of California San Diego, Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego – sequence: 3 givenname: Jaclyn M. surname: Einstein fullname: Einstein, Jaclyn M. organization: Department of Cellular and Molecular Medicine, University of California San Diego, Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego – sequence: 4 givenname: Matthew surname: DiSalvo fullname: DiSalvo, Matthew organization: Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University – sequence: 5 givenname: Noorsher orcidid: 0000-0003-1701-3994 surname: Ahmed fullname: Ahmed, Noorsher organization: Department of Cellular and Molecular Medicine, University of California San Diego, Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego – sequence: 6 givenname: Eric L. surname: Van Nostrand fullname: Van Nostrand, Eric L. organization: Department of Cellular and Molecular Medicine, University of California San Diego, Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego – sequence: 7 givenname: Alexander A. surname: Shishkin fullname: Shishkin, Alexander A. organization: Department of Cellular and Molecular Medicine, University of California San Diego, Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, Eclipse BioInnovations – sequence: 8 givenname: Wenhao surname: Jin fullname: Jin, Wenhao organization: Department of Cellular and Molecular Medicine, University of California San Diego, Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego – sequence: 9 givenname: Nancy L. surname: Allbritton fullname: Allbritton, Nancy L. organization: Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Department of Chemistry, University of North Carolina at Chapel Hill, Department of Bioengineering, University of Washington – sequence: 10 givenname: Gene W. surname: Yeo fullname: Yeo, Gene W. email: geneyeo@ucsd.edu organization: Department of Cellular and Molecular Medicine, University of California San Diego, Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32393832$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1r3DAQhk1JaT7aH9BLEfTSixN9WCv5UghLPwKBhLQ9q1pp7Chopa1kJ-y_r8xuuk1oQtFhhPS8M8w7c1jthRigqt4SfEwwkye5IbylNaa4xpLOavmiOiC8kbUgmO_d33FL9qvDnG8wZqyh_FW1zyhrmWT0oPp5GaMHi-ZXZ98ur1A2CSBkdOeGa-SWunehRzGgpTMpJt0NSKek1xkluAXtM8pDgpxRn3QYPdQJ-tHrIaY16rQpMb-uXnYFhDfbeFT9-Pzp-_xrfX7x5Wx-el4bzsRQt402eGFlx6lpF62xXGDaNLy1jGspZCONJKaRkllDGz0DKa0kC8GIBcmtZkcV3eQdw0qv77T3apVKB2mtCFaTXWpjlyp2qckuJYvo40a0GhdLsAbCkPROGLVTD3-Cu1Z9vFWCcUHbKcGHbYIUf42QB7V02YD3OkAcs6INJhJzxkRB3z9Cb-KYQvFkotoZlkLgHdVrD8qFLpa6ZkqqTmeUS0IInajjf1DlWCiTKkvSufL-QPDu70b_dHi_CAUgG6DMOecE3X-5Jx5pjBv04OLklfPPKrfDyqVK6CHtvHha9BsbG-Wn |
| CitedBy_id | crossref_primary_10_1016_j_trecan_2021_05_006 crossref_primary_10_1038_s41589_022_01204_2 crossref_primary_10_1016_j_bbamcr_2020_118876 crossref_primary_10_1002_btm2_10474 crossref_primary_10_1038_s41571_024_00966_z crossref_primary_10_1002_ijch_202200056 crossref_primary_10_1038_s41592_020_01053_8 crossref_primary_10_1016_j_bcp_2023_115770 crossref_primary_10_1038_s41592_024_02537_7 crossref_primary_10_1208_s12248_021_00633_6 crossref_primary_10_1038_s41467_023_43470_1 crossref_primary_10_15252_msb_202110768 crossref_primary_10_1016_j_celrep_2022_111145 crossref_primary_10_1083_jcb_202008158 crossref_primary_10_1007_s00018_023_05086_y crossref_primary_10_1093_nar_gkab748 crossref_primary_10_1016_j_isci_2024_110486 crossref_primary_10_1038_s42003_022_04089_y crossref_primary_10_3389_fcell_2023_1158373 crossref_primary_10_1042_EBC20220009 crossref_primary_10_1016_j_tibtech_2020_10_006 crossref_primary_10_1038_s41596_021_00653_8 crossref_primary_10_1134_S0006297922140036 crossref_primary_10_7554_eLife_69142 crossref_primary_10_1038_s43586_021_00093_4 crossref_primary_10_3389_fcell_2021_760226 crossref_primary_10_3389_fbioe_2022_846230 crossref_primary_10_1016_j_neuron_2024_10_007 crossref_primary_10_1016_j_trac_2025_118164 crossref_primary_10_15252_msb_202010025 crossref_primary_10_1083_jcb_202006180 crossref_primary_10_1016_j_celrep_2021_108824 crossref_primary_10_1182_bloodadvances_2020002090 crossref_primary_10_2139_ssrn_4050073 crossref_primary_10_1016_j_molcel_2021_06_014 crossref_primary_10_1016_j_cell_2024_07_035 crossref_primary_10_1093_hmg_ddac194 crossref_primary_10_1038_s41556_022_00933_9 crossref_primary_10_1016_j_molmed_2020_12_003 crossref_primary_10_1002_pro_4261 crossref_primary_10_1002_advs_202204484 crossref_primary_10_1080_14728222_2022_2147063 crossref_primary_10_1016_j_isci_2024_109676 crossref_primary_10_1016_j_crmeth_2024_100737 crossref_primary_10_1016_j_molcel_2024_08_030 crossref_primary_10_1093_procel_pwae057 crossref_primary_10_1016_j_cell_2022_10_017 crossref_primary_10_1038_s41576_021_00409_w crossref_primary_10_1039_D1LC00506E crossref_primary_10_1126_science_abj3013 crossref_primary_10_1186_s13073_024_01414_4 crossref_primary_10_3390_cells11233932 crossref_primary_10_1016_j_tcb_2024_04_007 crossref_primary_10_1021_acs_jproteome_1c00016 crossref_primary_10_1038_s41587_024_02391_0 crossref_primary_10_3389_fmolb_2023_1214489 |
| Cites_doi | 10.1093/brain/awz233 10.1038/s41583-019-0222-5 10.1126/science.aar7366 10.1016/j.cell.2015.06.043 10.1126/science.1247005 10.1016/S0076-6879(07)31005-7 10.15252/msb.20178064 10.1186/gb-2009-10-3-r26 10.1016/j.bbagrm.2014.11.009 10.1063/1.3608133 10.1016/j.cell.2015.12.038 10.1038/ncb1783 10.1038/s41592-019-0629-y 10.1074/jbc.M412882200 10.1186/1475-4924-2-27 10.1039/c0lc00186d 10.1038/ncomms11212 10.1016/j.cell.2015.06.059 10.1016/j.cell.2012.04.031 10.1016/j.molcel.2012.05.021 10.1016/j.cell.2018.11.004 10.1016/j.molcel.2018.10.041 10.1038/eye.2013.137 10.1016/j.neuron.2015.10.030 10.1016/j.molcel.2016.02.012 10.1016/j.cub.2019.12.020 10.1016/j.copbio.2016.04.003 10.1534/g3.117.041277 10.1083/jcb.200212128 10.1038/s41587-018-0001-2 10.1016/j.molcel.2017.12.020 10.1038/nmeth.3047 10.1073/pnas.1903808116 10.1038/srep20877 10.7554/eLife.17290 10.1016/j.cell.2019.09.016 10.1016/j.cell.2016.11.039 10.1038/ncomms10127 10.1038/nmeth.4177 10.1101/gr.1239303 10.1371/journal.pone.0184281 10.1016/j.cell.2016.11.038 10.1016/j.cell.2016.10.002 10.1063/1.5113719 10.1016/j.cell.2016.10.003 10.1021/acs.analchem.5b03579 10.1136/jmedgenet-2012-101288 10.1038/nrg3813 10.1038/ejhg.2017.27 10.1021/acs.analchem.8b00176 10.1016/j.cell.2017.12.032 10.1074/jbc.M109.038984 10.1038/nature14539 10.1016/j.cell.2016.11.035 10.1016/j.cell.2015.07.047 10.1016/j.neuron.2019.05.048 10.1016/j.molcel.2016.06.029 10.1016/j.cell.2016.11.048 10.1016/j.neuron.2017.07.025 10.1038/nchembio.304 10.1126/science.aac7557 10.1016/j.neuron.2016.09.050 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 COPYRIGHT 2020 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/s41592-020-0826-8 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest - Health and Medical ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1548-7105 |
| EndPage | 642 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7357298 PMC7357298 A625811120 32393832 10_1038_s41592_020_0826_8 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI) grantid: K99HG009530 funderid: https://doi.org/10.13039/100000051 – fundername: National Science Foundation (NSF) grantid: GRFP; GRFP funderid: https://doi.org/10.13039/100000001 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: HG004659; EY024556 funderid: https://doi.org/10.13039/100000002 – fundername: NIGMS NIH HHS grantid: T32 GM145427 – fundername: NIGMS NIH HHS grantid: T32 GM008666 – fundername: NEI NIH HHS grantid: R01 EY024556 – fundername: NHGRI NIH HHS grantid: K99 HG009530 – fundername: NCI NIH HHS grantid: F31 CA206233 – fundername: NCI NIH HHS grantid: F31 CA217173 – fundername: NHGRI NIH HHS grantid: R01 HG004659 – fundername: NIGMS NIH HHS grantid: P50 GM085764 – fundername: NCI NIH HHS grantid: U54 CA209891 – fundername: NINDS NIH HHS grantid: R01 NS103172 |
| GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NFIDA NPM AGSTI 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c537t-94ac0bd8f52c9b9cd57024459d35a87848c81c4883dc24a6e88d81b731de85da3 |
| IEDL.DBID | UNPAY |
| ISSN | 1548-7091 1548-7105 |
| IngestDate | Sun Oct 26 04:07:44 EDT 2025 Tue Sep 30 16:46:30 EDT 2025 Wed Oct 01 13:51:17 EDT 2025 Mon Oct 06 17:08:36 EDT 2025 Mon Oct 20 22:30:53 EDT 2025 Mon Oct 20 16:14:23 EDT 2025 Mon Jul 21 06:05:35 EDT 2025 Wed Oct 01 01:14:57 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Fri Feb 21 02:37:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-94ac0bd8f52c9b9cd57024459d35a87848c81c4883dc24a6e88d81b731de85da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 E.C.W., A.Q.V., and G.W.Y conceptualized the project; E.L.V. designed the CRISPR library; J.M.E. cloned the CRISPR library and performed viral infections; A.Q.V. optimized cell plating on microRaft arrays; E.C.W. wrote analysis software and performed targeted library prep; M.D. assisted with confocal imaging and fabricated microRaft arrays; A.A.S. and E.L.V. designed the bulk CRISPR library prep method; N.A. and A.Q.V. implemented neural network analysis; W.J. performed PPI analyses; A.Q.V. and E.C.W performed validation experiments; E.C.W, A.Q.V. and G.W.Y. wrote the manuscript; N.L.A. and G.W.Y supervised the project. Author Contributions |
| ORCID | 0000-0001-8922-6409 0000-0003-1701-3994 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7357298 |
| PMID | 32393832 |
| PQID | 2409608770 |
| PQPubID | 28015 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1038_s41592_020_0826_8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7357298 proquest_miscellaneous_2401805337 proquest_journals_2409608770 gale_infotracmisc_A625811120 gale_infotracacademiconefile_A625811120 pubmed_primary_32393832 crossref_primary_10_1038_s41592_020_0826_8 crossref_citationtrail_10_1038_s41592_020_0826_8 springer_journals_10_1038_s41592_020_0826_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationSubtitle | Techniques for life scientists and chemists |
| PublicationTitle | Nature methods |
| PublicationTitleAbbrev | Nat Methods |
| PublicationTitleAlternate | Nat Methods |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Castello (CR57) 2016; 63 de Groot, Luthi, Lindsay, Holtackers, Pelkmans (CR10) 2018; 14 Jain (CR34) 2016; 164 Tourriere (CR41) 2003; 160 Baltz (CR55) 2012; 46 Martinez (CR30) 2016; 92 Queiroz (CR62) 2019; 37 Grabocka, Bar-Sagi (CR23) 2016; 167 Markmiller (CR33) 2018; 172 Dixit (CR7) 2016; 167 Wang, Lu, Emanuel, Babcock, Zhuang (CR17) 2019; 116 Low (CR43) 2017; 25 Tan (CR50) 2019; 73 McEwen (CR36) 2005; 280 DeJesus (CR3) 2016; 5 Jaitin (CR5) 2016; 167 Handrigan (CR45) 2013; 50 Lee (CR28) 2016; 167 DiSalvo, Smiddy, Allbritton (CR19) 2019; 3 Mackenzie (CR31) 2017; 95 Zhang (CR44) 2013; 27 Ohn, Kedersha, Hickman, Tisdale, Anderson (CR42) 2008; 10 DiSalvo (CR52) 2018; 90 Sundararaman (CR60) 2016; 61 Lin (CR29) 2016; 167 Gerstberger, Hafner, Tuschl (CR37) 2014; 15 Sanjana, Shalem, Zhang (CR51) 2014; 11 Murakami (CR25) 2015; 88 Chung (CR46) 2019; 142 Schneider-Poetsch (CR40) 2010; 6 Link (CR9) 2009; 284 Gach, Wang, Phillips, Sims, Allbritton (CR20) 2011; 5 Liu, Sims, Baum (CR14) 2009; 10 Youn (CR35) 2018; 69 Hart (CR38) 2017; 7 Trendel (CR61) 2019; 176 Shannon (CR49) 2003; 13 Anderson, Kedersha, Ivanov (CR22) 2015; 1849 Castello (CR56) 2012; 149 Camsund (CR16) 2020; 17 Beckmann (CR58) 2015; 6 Huttlin (CR48) 2015; 162 Wolozin, Ivanov (CR24) 2019; 20 Shalem (CR1) 2014; 343 Parnas (CR4) 2015; 162 Feldman (CR15) 2019; 179 Wang (CR18) 2010; 10 Maharana (CR11) 2018; 360 Caicedo, Singh, Carpenter (CR12) 2016; 39 Fang (CR32) 2019; 103 LeCun, Bengio, Hinton (CR39) 2015; 521 Cirillo (CR47) 2020; 30 Adamson (CR6) 2016; 167 Datlinger (CR8) 2017; 14 Blomen (CR2) 2015; 350 Conrad (CR59) 2016; 7 Attayek (CR54) 2015; 87 Patel (CR26) 2015; 162 Kedersha, Anderson (CR21) 2007; 431 Kiger (CR13) 2003; 2 Boeynaems (CR27) 2016; 6 Cao (CR53) 2017; 12 KH Lee (826_CR28) 2016; 167 FE Tan (826_CR50) 2019; 73 A Castello (826_CR57) 2016; 63 EL Huttlin (826_CR48) 2015; 162 E Grabocka (826_CR23) 2016; 167 N Kedersha (826_CR21) 2007; 431 A Dixit (826_CR7) 2016; 167 O Shalem (826_CR1) 2014; 343 T Liu (826_CR14) 2009; 10 AG Baltz (826_CR55) 2012; 46 RML Queiroz (826_CR62) 2019; 37 NE Sanjana (826_CR51) 2014; 11 JC Caicedo (826_CR12) 2016; 39 A Patel (826_CR26) 2015; 162 Q Cao (826_CR53) 2017; 12 T Schneider-Poetsch (826_CR40) 2010; 6 D Feldman (826_CR15) 2019; 179 P Shannon (826_CR49) 2003; 13 T Conrad (826_CR59) 2016; 7 KJ Low (826_CR43) 2017; 25 Y Lin (826_CR29) 2016; 167 M DiSalvo (826_CR19) 2019; 3 BM Beckmann (826_CR58) 2015; 6 VA Blomen (826_CR2) 2015; 350 J Trendel (826_CR61) 2019; 176 S Markmiller (826_CR33) 2018; 172 R de Groot (826_CR10) 2018; 14 T Ohn (826_CR42) 2008; 10 MY Fang (826_CR32) 2019; 103 X Zhang (826_CR44) 2013; 27 W Link (826_CR9) 2009; 284 FJ Martinez (826_CR30) 2016; 92 S Boeynaems (826_CR27) 2016; 6 P Datlinger (826_CR8) 2017; 14 Y Wang (826_CR18) 2010; 10 JY Youn (826_CR35) 2018; 69 S Gerstberger (826_CR37) 2014; 15 D Camsund (826_CR16) 2020; 17 AA Kiger (826_CR13) 2003; 2 DA Jaitin (826_CR5) 2016; 167 C Wang (826_CR17) 2019; 116 R DeJesus (826_CR3) 2016; 5 T Hart (826_CR38) 2017; 7 B Sundararaman (826_CR60) 2016; 61 T Murakami (826_CR25) 2015; 88 A Castello (826_CR56) 2012; 149 H Tourriere (826_CR41) 2003; 160 J Chung (826_CR46) 2019; 142 B Wolozin (826_CR24) 2019; 20 IR Mackenzie (826_CR31) 2017; 95 O Parnas (826_CR4) 2015; 162 B Adamson (826_CR6) 2016; 167 P Anderson (826_CR22) 2015; 1849 S Jain (826_CR34) 2016; 164 GR Handrigan (826_CR45) 2013; 50 L Cirillo (826_CR47) 2020; 30 PJ Attayek (826_CR54) 2015; 87 PC Gach (826_CR20) 2011; 5 E McEwen (826_CR36) 2005; 280 M DiSalvo (826_CR52) 2018; 90 Y LeCun (826_CR39) 2015; 521 S Maharana (826_CR11) 2018; 360 |
| References_xml | – volume: 142 start-page: 3176 year: 2019 end-page: 3189 ident: CR46 article-title: Genome-wide association study of cerebral small vessel disease reveals established and novel loci publication-title: Brain doi: 10.1093/brain/awz233 – volume: 20 start-page: 649 year: 2019 end-page: 666 ident: CR24 article-title: Stress granules and neurodegeneration publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-019-0222-5 – volume: 360 start-page: 918 year: 2018 end-page: 921 ident: CR11 article-title: RNA buffers the phase separation behavior of prion-like RNA binding proteins publication-title: Science doi: 10.1126/science.aar7366 – volume: 162 start-page: 425 year: 2015 end-page: 440 ident: CR48 article-title: The bioplex network: a systematic exploration of the human interactome publication-title: Cell doi: 10.1016/j.cell.2015.06.043 – volume: 343 start-page: 84 year: 2014 end-page: 87 ident: CR1 article-title: Genome-scale CRISPR–cas9 knockout screening in human cells publication-title: Science doi: 10.1126/science.1247005 – volume: 431 start-page: 61 year: 2007 end-page: 81 ident: CR21 article-title: Mammalian stress granules and processing bodies publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(07)31005-7 – volume: 14 start-page: e8064 year: 2018 ident: CR10 article-title: Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR-Cas9 gene perturbation screens publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20178064 – volume: 10 year: 2009 ident: CR14 article-title: Parallel RNAi screens across different cell lines identify generic and cell type-specific regulators of actin organization and cell morphology publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r26 – volume: 1849 start-page: 861 year: 2015 end-page: 870 ident: CR22 article-title: Stress granules, P-bodies and cancer publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2014.11.009 – volume: 5 start-page: 032002 year: 2011 ident: CR20 article-title: Isolation and manipulation of living adherent cells by micromolded magnetic rafts publication-title: Biomicrofluidics doi: 10.1063/1.3608133 – volume: 164 start-page: 487 year: 2016 end-page: 498 ident: CR34 article-title: ATPase-modulated stress granules contain a diverse proteome and substructure publication-title: Cell doi: 10.1016/j.cell.2015.12.038 – volume: 10 start-page: 1224 year: 2008 end-page: 1231 ident: CR42 article-title: A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly publication-title: Nat. Cell Biol. doi: 10.1038/ncb1783 – volume: 17 start-page: 86 year: 2020 end-page: 92 ident: CR16 article-title: Time-resolved imaging-based CRISPRi screening publication-title: Nat. Methods doi: 10.1038/s41592-019-0629-y – volume: 280 start-page: 16925 year: 2005 end-page: 16933 ident: CR36 article-title: Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure publication-title: J. Biol. Chem. doi: 10.1074/jbc.M412882200 – volume: 2 start-page: 27 year: 2003 ident: CR13 article-title: A functional genomic analysis of cell morphology using RNA interference publication-title: J. Biol. doi: 10.1186/1475-4924-2-27 – volume: 10 start-page: 2917 year: 2010 end-page: 2924 ident: CR18 article-title: Micromolded arrays for separation of adherent cells publication-title: Lab Chip doi: 10.1039/c0lc00186d – volume: 7 year: 2016 ident: CR59 article-title: Serial interactome capture of the human cell nucleus publication-title: Nat. Commun. doi: 10.1038/ncomms11212 – volume: 162 start-page: 675 year: 2015 end-page: 686 ident: CR4 article-title: A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks publication-title: Cell doi: 10.1016/j.cell.2015.06.059 – volume: 149 start-page: 1393 year: 2012 end-page: 1406 ident: CR56 article-title: Insights into RNA biology from an atlas of mammalian mRNA-binding proteins publication-title: Cell doi: 10.1016/j.cell.2012.04.031 – volume: 46 start-page: 674 year: 2012 end-page: 690 ident: CR55 article-title: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.021 – volume: 176 start-page: 391 year: 2019 end-page: 403.e19 ident: CR61 article-title: The human RNA-binding proteome and its dynamics during translational arrest publication-title: Cell doi: 10.1016/j.cell.2018.11.004 – volume: 73 start-page: 304 year: 2019 end-page: 313.e3 ident: CR50 article-title: A transcriptome-wide translational program defined by LIN28B expression level publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.041 – volume: 27 start-page: 1204 year: 2013 end-page: 1213 ident: CR44 article-title: Contribution of SNRNP200 sequence variations to retinitis pigmentosa publication-title: Eye doi: 10.1038/eye.2013.137 – volume: 88 start-page: 678 year: 2015 end-page: 690 ident: CR25 article-title: ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function publication-title: Neuron doi: 10.1016/j.neuron.2015.10.030 – volume: 61 start-page: 903 year: 2016 end-page: 913 ident: CR60 article-title: Resources for the comprehensive discovery of functional RNA elements publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.02.012 – volume: 30 start-page: 698 year: 2020 end-page: 707.e96 ident: CR47 article-title: UBAP2L forms distinct cores that act in nucleating stress granules upstream of G3BP1 publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.12.020 – volume: 39 start-page: 134 year: 2016 end-page: 142 ident: CR12 article-title: Applications in image-based profiling of perturbations publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.04.003 – volume: 7 start-page: 2719 year: 2017 end-page: 2727 ident: CR38 article-title: Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens publication-title: G3 doi: 10.1534/g3.117.041277 – volume: 160 start-page: 823 year: 2003 end-page: 831 ident: CR41 article-title: The RasGAP-associated endoribonuclease G3BP assembles stress granules publication-title: J. Cell Biol. doi: 10.1083/jcb.200212128 – volume: 37 start-page: 169 year: 2019 end-page: 178 ident: CR62 article-title: Comprehensive identification of RNA–protein interactions in any organism using orthogonal organic phase separation (OOPS) publication-title: Nat. Biotechnol. doi: 10.1038/s41587-018-0001-2 – volume: 69 start-page: 517 year: 2018 end-page: 532.e11 ident: CR35 article-title: High-density proximity mapping reveals the subcellular organization of mRNS-associated granules and bodies publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.020 – volume: 11 start-page: 783 year: 2014 end-page: 784 ident: CR51 article-title: Improved vectors and genome-wide libraries for CRISPR screening publication-title: Nat. Methods doi: 10.1038/nmeth.3047 – volume: 116 start-page: 10842 year: 2019 end-page: 10851 ident: CR17 article-title: Imaging-based pooled CRISPR screening reveals regulators of lncRNA localization publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1903808116 – volume: 6 year: 2016 ident: CR27 article-title: screen connects nuclear transport genes to DPR pathology in c9ALS/FTD publication-title: Sci. Rep. doi: 10.1038/srep20877 – volume: 5 start-page: e17290 year: 2016 ident: CR3 article-title: Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62 publication-title: eLife doi: 10.7554/eLife.17290 – volume: 179 start-page: 787 year: 2019 end-page: 799.e17 ident: CR15 article-title: Optical pooled screens in human cells publication-title: Cell doi: 10.1016/j.cell.2019.09.016 – volume: 167 start-page: 1883 year: 2016 end-page: 1896.e15 ident: CR5 article-title: Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq publication-title: Cell doi: 10.1016/j.cell.2016.11.039 – volume: 6 year: 2015 ident: CR58 article-title: The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs publication-title: Nat. Commun. doi: 10.1038/ncomms10127 – volume: 14 start-page: 297 year: 2017 end-page: 301 ident: CR8 article-title: Pooled CRISPR screening with single-cell transcriptome readout publication-title: Nat. Methods doi: 10.1038/nmeth.4177 – volume: 13 start-page: 2498 year: 2003 end-page: 2504 ident: CR49 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 12 start-page: e0184281 year: 2017 ident: CR53 article-title: CRISPR-FOCUS: a web server for designing focused CRISPR screening experiments publication-title: PLoS ONE doi: 10.1371/journal.pone.0184281 – volume: 167 start-page: 1853 year: 2016 end-page: 1866.e17 ident: CR7 article-title: Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens publication-title: Cell doi: 10.1016/j.cell.2016.11.038 – volume: 167 start-page: 774 year: 2016 end-page: 788.e17 ident: CR28 article-title: C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles publication-title: Cell doi: 10.1016/j.cell.2016.10.002 – volume: 3 start-page: 036106 year: 2019 ident: CR19 article-title: Automated sensing and splitting of stem cell colonies on microraft arrays publication-title: APL Bioeng. doi: 10.1063/1.5113719 – volume: 167 start-page: 789 year: 2016 end-page: 802.e12 ident: CR29 article-title: Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers publication-title: Cell doi: 10.1016/j.cell.2016.10.003 – volume: 87 start-page: 12281 year: 2015 end-page: 12289 ident: CR54 article-title: Array-based platform to select, release, and capture Epstein–Barr virus-infected cells based on intercellular adhesion publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b03579 – volume: 50 start-page: 163 year: 2013 end-page: 173 ident: CR45 article-title: Deletions in 16q24.2 are associated with autism spectrum disorder, intellectual disability and congenital renal malformation publication-title: J. Med. Genet. doi: 10.1136/jmedgenet-2012-101288 – volume: 15 start-page: 829 year: 2014 end-page: 845 ident: CR37 article-title: A census of human RNA-binding proteins publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3813 – volume: 25 start-page: 552 year: 2017 end-page: 559 ident: CR43 article-title: PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features publication-title: Eur. J. Hum. Genet doi: 10.1038/ejhg.2017.27 – volume: 90 start-page: 4792 year: 2018 end-page: 4800 ident: CR52 article-title: Characterization of tensioned PDMS membranes for imaging cytometry on microraft arrays publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00176 – volume: 172 start-page: 590 year: 2018 end-page: 604.e13 ident: CR33 article-title: Context-dependent and disease-specific diversity in protein interactions within stress granules publication-title: Cell doi: 10.1016/j.cell.2017.12.032 – volume: 284 start-page: 28392 year: 2009 end-page: 28400 ident: CR9 article-title: Chemical interrogation of FOXO3a nuclear translocation identifies potent and selective inhibitors of phosphoinositide 3-kinases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.038984 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR39 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 167 start-page: 1803 year: 2016 end-page: 1813.e12 ident: CR23 article-title: Mutant KRAS enhances tumor cell fitness by upregulating stress granules publication-title: Cell doi: 10.1016/j.cell.2016.11.035 – volume: 162 start-page: 1066 year: 2015 end-page: 1077 ident: CR26 article-title: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation publication-title: Cell doi: 10.1016/j.cell.2015.07.047 – volume: 103 start-page: 802 year: 2019 end-page: 819.e11 ident: CR32 article-title: Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD publication-title: Neuron doi: 10.1016/j.neuron.2019.05.048 – volume: 63 start-page: 696 year: 2016 end-page: 710 ident: CR57 article-title: Comprehensive identification of RNA-binding domains in human cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.06.029 – volume: 167 start-page: 1867 year: 2016 end-page: 1882.e21 ident: CR6 article-title: A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response publication-title: Cell doi: 10.1016/j.cell.2016.11.048 – volume: 95 start-page: 808 year: 2017 end-page: 816.e9 ident: CR31 article-title: TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics publication-title: Neuron doi: 10.1016/j.neuron.2017.07.025 – volume: 6 start-page: 209 year: 2010 end-page: 217 ident: CR40 article-title: Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.304 – volume: 350 start-page: 1092 year: 2015 end-page: 1096 ident: CR2 article-title: Gene essentiality and synthetic lethality in haploid human cells publication-title: Science doi: 10.1126/science.aac7557 – volume: 92 start-page: 780 year: 2016 end-page: 795 ident: CR30 article-title: Protein-RNA networks regulated by normal and ALS-associated mutant HNRNPA2B1 in the nervous system publication-title: Neuron doi: 10.1016/j.neuron.2016.09.050 – volume: 61 start-page: 903 year: 2016 ident: 826_CR60 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.02.012 – volume: 167 start-page: 1853 year: 2016 ident: 826_CR7 publication-title: Cell doi: 10.1016/j.cell.2016.11.038 – volume: 17 start-page: 86 year: 2020 ident: 826_CR16 publication-title: Nat. Methods doi: 10.1038/s41592-019-0629-y – volume: 10 start-page: 2917 year: 2010 ident: 826_CR18 publication-title: Lab Chip doi: 10.1039/c0lc00186d – volume: 6 start-page: 209 year: 2010 ident: 826_CR40 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.304 – volume: 521 start-page: 436 year: 2015 ident: 826_CR39 publication-title: Nature doi: 10.1038/nature14539 – volume: 343 start-page: 84 year: 2014 ident: 826_CR1 publication-title: Science doi: 10.1126/science.1247005 – volume: 280 start-page: 16925 year: 2005 ident: 826_CR36 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M412882200 – volume: 167 start-page: 1867 year: 2016 ident: 826_CR6 publication-title: Cell doi: 10.1016/j.cell.2016.11.048 – volume: 46 start-page: 674 year: 2012 ident: 826_CR55 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.021 – volume: 88 start-page: 678 year: 2015 ident: 826_CR25 publication-title: Neuron doi: 10.1016/j.neuron.2015.10.030 – volume: 167 start-page: 789 year: 2016 ident: 826_CR29 publication-title: Cell doi: 10.1016/j.cell.2016.10.003 – volume: 160 start-page: 823 year: 2003 ident: 826_CR41 publication-title: J. Cell Biol. doi: 10.1083/jcb.200212128 – volume: 27 start-page: 1204 year: 2013 ident: 826_CR44 publication-title: Eye doi: 10.1038/eye.2013.137 – volume: 116 start-page: 10842 year: 2019 ident: 826_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1903808116 – volume: 142 start-page: 3176 year: 2019 ident: 826_CR46 publication-title: Brain doi: 10.1093/brain/awz233 – volume: 350 start-page: 1092 year: 2015 ident: 826_CR2 publication-title: Science doi: 10.1126/science.aac7557 – volume: 167 start-page: 774 year: 2016 ident: 826_CR28 publication-title: Cell doi: 10.1016/j.cell.2016.10.002 – volume: 13 start-page: 2498 year: 2003 ident: 826_CR49 publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 50 start-page: 163 year: 2013 ident: 826_CR45 publication-title: J. Med. Genet. doi: 10.1136/jmedgenet-2012-101288 – volume: 10 start-page: 1224 year: 2008 ident: 826_CR42 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1783 – volume: 73 start-page: 304 year: 2019 ident: 826_CR50 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.041 – volume: 15 start-page: 829 year: 2014 ident: 826_CR37 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3813 – volume: 162 start-page: 675 year: 2015 ident: 826_CR4 publication-title: Cell doi: 10.1016/j.cell.2015.06.059 – volume: 7 start-page: 2719 year: 2017 ident: 826_CR38 publication-title: G3 doi: 10.1534/g3.117.041277 – volume: 431 start-page: 61 year: 2007 ident: 826_CR21 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(07)31005-7 – volume: 164 start-page: 487 year: 2016 ident: 826_CR34 publication-title: Cell doi: 10.1016/j.cell.2015.12.038 – volume: 39 start-page: 134 year: 2016 ident: 826_CR12 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.04.003 – volume: 20 start-page: 649 year: 2019 ident: 826_CR24 publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-019-0222-5 – volume: 176 start-page: 391 year: 2019 ident: 826_CR61 publication-title: Cell doi: 10.1016/j.cell.2018.11.004 – volume: 37 start-page: 169 year: 2019 ident: 826_CR62 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-018-0001-2 – volume: 284 start-page: 28392 year: 2009 ident: 826_CR9 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.038984 – volume: 11 start-page: 783 year: 2014 ident: 826_CR51 publication-title: Nat. Methods doi: 10.1038/nmeth.3047 – volume: 1849 start-page: 861 year: 2015 ident: 826_CR22 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2014.11.009 – volume: 7 year: 2016 ident: 826_CR59 publication-title: Nat. Commun. doi: 10.1038/ncomms11212 – volume: 162 start-page: 1066 year: 2015 ident: 826_CR26 publication-title: Cell doi: 10.1016/j.cell.2015.07.047 – volume: 167 start-page: 1883 year: 2016 ident: 826_CR5 publication-title: Cell doi: 10.1016/j.cell.2016.11.039 – volume: 149 start-page: 1393 year: 2012 ident: 826_CR56 publication-title: Cell doi: 10.1016/j.cell.2012.04.031 – volume: 103 start-page: 802 year: 2019 ident: 826_CR32 publication-title: Neuron doi: 10.1016/j.neuron.2019.05.048 – volume: 95 start-page: 808 year: 2017 ident: 826_CR31 publication-title: Neuron doi: 10.1016/j.neuron.2017.07.025 – volume: 30 start-page: 698 year: 2020 ident: 826_CR47 publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.12.020 – volume: 14 start-page: e8064 year: 2018 ident: 826_CR10 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20178064 – volume: 12 start-page: e0184281 year: 2017 ident: 826_CR53 publication-title: PLoS ONE doi: 10.1371/journal.pone.0184281 – volume: 10 year: 2009 ident: 826_CR14 publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r26 – volume: 63 start-page: 696 year: 2016 ident: 826_CR57 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.06.029 – volume: 179 start-page: 787 year: 2019 ident: 826_CR15 publication-title: Cell doi: 10.1016/j.cell.2019.09.016 – volume: 25 start-page: 552 year: 2017 ident: 826_CR43 publication-title: Eur. J. Hum. Genet doi: 10.1038/ejhg.2017.27 – volume: 87 start-page: 12281 year: 2015 ident: 826_CR54 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b03579 – volume: 5 start-page: e17290 year: 2016 ident: 826_CR3 publication-title: eLife doi: 10.7554/eLife.17290 – volume: 92 start-page: 780 year: 2016 ident: 826_CR30 publication-title: Neuron doi: 10.1016/j.neuron.2016.09.050 – volume: 360 start-page: 918 year: 2018 ident: 826_CR11 publication-title: Science doi: 10.1126/science.aar7366 – volume: 167 start-page: 1803 year: 2016 ident: 826_CR23 publication-title: Cell doi: 10.1016/j.cell.2016.11.035 – volume: 3 start-page: 036106 year: 2019 ident: 826_CR19 publication-title: APL Bioeng. doi: 10.1063/1.5113719 – volume: 6 year: 2015 ident: 826_CR58 publication-title: Nat. Commun. doi: 10.1038/ncomms10127 – volume: 172 start-page: 590 year: 2018 ident: 826_CR33 publication-title: Cell doi: 10.1016/j.cell.2017.12.032 – volume: 6 year: 2016 ident: 826_CR27 publication-title: Sci. Rep. doi: 10.1038/srep20877 – volume: 162 start-page: 425 year: 2015 ident: 826_CR48 publication-title: Cell doi: 10.1016/j.cell.2015.06.043 – volume: 90 start-page: 4792 year: 2018 ident: 826_CR52 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00176 – volume: 14 start-page: 297 year: 2017 ident: 826_CR8 publication-title: Nat. Methods doi: 10.1038/nmeth.4177 – volume: 5 start-page: 032002 year: 2011 ident: 826_CR20 publication-title: Biomicrofluidics doi: 10.1063/1.3608133 – volume: 69 start-page: 517 year: 2018 ident: 826_CR35 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.020 – volume: 2 start-page: 27 year: 2003 ident: 826_CR13 publication-title: J. Biol. doi: 10.1186/1475-4924-2-27 |
| SSID | ssj0033425 |
| Score | 2.5709116 |
| Snippet | Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts, including survival, proliferation and... Genetic screens using pooled CRISPR-based approaches are scalable and inexpensive, but restricted to standard readouts including survival, proliferation and... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 636 |
| SubjectTerms | 631/208 631/61 631/61/191 631/80 631/80/2373 Arrays Automation Binding proteins Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Clustered Regularly Interspaced Short Palindromic Repeats - genetics Crafts CRISPR CRISPR-Cas Systems - genetics Cytology Cytoplasm - metabolism Genetic screening Granular materials gRNA Humans Imaging Learning algorithms Life Sciences Machine Learning Mechanization Microscopy, Confocal - methods Morphology Oxidative Stress - genetics Phenotypes Phenotyping Protein Aggregates - genetics Protein binding Proteins Proteomics Ribonucleic acid RNA RNA, Guide, CRISPR-Cas Systems - genetics RNA-binding protein RNA-Binding Proteins - genetics Tissue Array Analysis - methods |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-NTojxgPheYCAjISExWWvjpHYeEBrTpsFDVRUm7c04tguTsqSkrVD_e-7ytWUP5dlOZPs-fmf7fD-A94hCuPFxIy7GRvDIuzlPyRmGNsHoXniV1tU-J-Pzi-jbZXy5A5P2LQylVbY-sXLUrrB0Rn6EyIPBtpJy-HnxhxNrFN2uthQapqFWcJ-qEmP3YDekylgD2P1yOpnOWt8sRFTRsFKcziVCZXvPKdTREqGMMjFDyu8Kx1z1kOquv74FWHeTKbsb1YfwYJ0vzOavybJboHX2GB410SY7rtXjCez4_Cncr_knN8_g57QoMu_Yyezr9-mMoQehXS2js1l2dV3xF7EiZ9eUtFea-YqZsjSbJaOyT6i2rH5own4h3q0zz8ua174oN6yh8XkOF2enP07OeUO5wG0s5IonkbHD1Kl5jMJKE-tiiSAexYkTsVFSRcqqkUWjF86GkRl7pRwGvlKMnFexM-IFDPIi9_vArENxe4Q-EaeRMdZg7CFdJOYq9CJySQDDdnm1beqREy1Gpqt7caF0LRGNEtEkEa0C-Nh9sqiLcWzr_IFkpslQ8b_WNO8NcHRU8kof485PoacPhwEc9Hqigdl-cyt13Rj4Ut-oYwDvumb6kpLWcl-sqz4jRW-dZQAvayXphi2o9Bx60wBkT326DlT2u9-SX_2uyn9LEeOOCOd32CrazbC2rMZhp4v_X7tX26f8GvbCyk7oMOoABqty7d9gbLZK3zYG9w8O2DNn priority: 102 providerName: ProQuest |
| Title | Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors |
| URI | https://link.springer.com/article/10.1038/s41592-020-0826-8 https://www.ncbi.nlm.nih.gov/pubmed/32393832 https://www.proquest.com/docview/2409608770 https://www.proquest.com/docview/2401805337 https://pubmed.ncbi.nlm.nih.gov/PMC7357298 https://www.ncbi.nlm.nih.gov/pmc/articles/7357298 |
| UnpaywallVersion | submittedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1548-7105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033425 issn: 1548-7105 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest - Health and Medical customDbUrl: eissn: 1548-7105 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0033425 issn: 1548-7105 databaseCode: 7X7 dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1548-7105 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0033425 issn: 1548-7105 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1548-7105 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0033425 issn: 1548-7105 databaseCode: 8FG dateStart: 20041001 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trRDwwDcjMCojISExpW3iJHYey7QyeKiqQqXyFBzbHdXSpEpbofLXc84Xax-G9lJFukvl5H6-O8fn3wG8xyiECx_l2DQQ1Pa0mtuxcYauDDG7p5rHJdvnKLicel9n_uwInPosTFG0L-NFN02W3XTxq6itXC1lr64T6zHqY0LIj6Ed-Jh-t6A9HY0HPwpeVI_brB86zTUmD_VOJuW9NQYrU2vpmgouN7D5Xiw69Mg3QtJhuWSzZ_oQ7m_Tldj9FklyIywNH8OkfqCyGuW6u93EXfnngOvxTk_8BB5VSSoZlKKncKTTZ3CvbFu5ew4_x1mWaEXOJ1--jScEHY9ZDBPzSZcslkXbI5KlZGlq_XIx3xCR52K3JoYtCtFOyvMp5ArD5DbRdq6vTA-xLN-RqvvPC5gOL76fX9pVpwZb-pRt7NATsh8rPvfRxnEolc8w9nt-qKgvOOMel9yR6Cuokq4nAs25wnyZUUdp7itBX0IrzVL9CohUiBKNEZP6sSeEFJiyMOXROXc19VRoQb-2WSQrGnPTTSOJiu10yqPSzBGaOTJmjrgFH5tbViWHx23KHwwQIjO_8X-lqI4p4OgMU1Y0wAUjxwDh9i043dPEeSn3xTWUosovrCPMnxCznDEUv2vE5k5T65bqbFvoONwckWYWnJTIa4ZNDWMdOmEL2B4mGwXDFr4vQUgVrOEViiw4q9H7b1i3vI2zBuD_f3ev76T9Bh64xVw0n7ROobXJt_otZnibuAPHbMbwlw8_d6D96WI0nnSqef4XJvpNSw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVqhwQLxZKGAkEBLVqsnaG3sPFSqlVUJLFJVW6m3rtZ1SKd0Nm0RV_hy_jZl9tekhnHq21_J6Ht-MPQ-Aj4hC6PjYts87mvvC2aGfkDIMTITWPXcqKat99jvdE_HjNDxdgb91LgyFVdY6sVDUNjN0R76FyIPGtpKy9XX8x6euUfS6WrfQ0FVrBbtdlBirEjsO3PwKXbjJdu870vtTEOzvHe92_arLgG9CLqd-JLRpJVYNQ9xfEhkbSsQtEUaWh1pJJZRRbYN8zq0JhO44pSzaepK3rVOh1RzXvQdrgosInb-1b3v9wVGNBZyLou0r-QW-RGiu31W52pogdFLkZ0DxZEHHVwvIeBsfbgDk7eDN5gX3IazP0rGeX-nR6AZI7j-GR5V1y3ZKdnwCKy59CvfLfpfzZ3A2yLKRs2z3qPdrcMRQY5EXzegumF1cFv2SWJaySwoSzPVwynSe6_mEUZkpFBNWJrawc8TX2cj5uTun5mNZPmdV26DncHInh_8CVtMsda-AGYvs5RBqeZgIrY1GW0dawYcqcFzYyINWfbyxqeqfUxuOUVy8w3MVlxSJkSIxUSRWHnxpPhmXxT-WTf5MNItJMeC6Rlf5Dbg7KrEV76CnqRBZgpYHGwszUaDN4nBN9bhSKJP4mv09-NAM05cUJJe6bFbMaSvKrZYevCyZpNk2p1J3qL09kAvs00ygMuOLI-nF76LcuOQhemD4f5s1o11va8lpbDa8-P-ze738l9_Devf452F82OsfvIEHQSEzdBG2AavTfObeol04Td5Vwsfg7K7l_R9VmnAF |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIl4HxJuFAkYCIVGtkqx3Y-8BoaolaiiqokKl3Fyv7ZRK292wSVTlr_HrmNlXmx7CqWc_ZHse34w9ngH4gCiEjo_t-byvuR86O_ETUoaBidG6504mVbbPw_7-cfh9HI034G_zF4bCKhudWCpqmxu6I-8g8qCxLYXodiZ1WMRob_B1-senClL00tqU06hY5MAtL9B9m30Z7iGtPwbB4Nuv3X2_rjDgm4iLuR-H2nQTKycRri2JjY0EYlYYxZZHWgoZSiN7BnmcWxOEuu-ktGjnCd6zTkZWc5z3FtwWnMcUTijGrbPHeVgWfCWPwBcIys2LKpedGYImxXwGFEkW9H25gonXkeEKNF4P22zfbh_AvUU21csLnaZX4HHwCB7Wdi3bqRjxMWy47AncqSpdLp_CySjPU2fZ7tHw5-iIoa4i_5nRLTA7Oy8rJbE8Y-cUHljoyZzpotDLGaMEUyggrPrSwk4RWRep8wt3SmXH8mLJ6oJBz-D4Ro7-OWxmeeZeAjMWGcshyPIoCbU2Gq0cYUM-kYHjoY096DbHq0yd-ZwKcKSqfIHnUlUUUUgRRRRR0oPP7ZBplfZjXedPRDNFKgHnNbr-2YCro-Raagd9TImYEnQ92FrpiaJsVpsbqqtalczUJeN78L5tppEUHpe5fFH26Un6VS08eFExSbtsTknuUG97IFbYp-1ACcZXW7Kz32WiccEj9L1wf9sNo10ua81pbLe8-P-ze7V-y-_gLkq5-jE8PHgN94NSZOgGbAs258XCvUGDcJ68LSWPwclNi_o_L31tnw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44HNAYCAjISExpW1iJ3Yeq4lp8DBVhUrjKTi2OyrSpEobofLXc84XSx-G9hbpLpGT-_nuHJ9_B_AeoxAufLTn0lBSlxm9cBPrDH0VYXZPjUhqts-L8HzOvlwGlwfgtWdhqqJ9lSyHWboaZsufVW3leqVGbZ3YiNMAE0JxBw7DANPvARzOL6aT7xUvKhMuH0ded43JQ7uTScVog8HK1lr6toLLD13Ri0X7HvlaSNovl-z2TB_AvTJby91vmabXwtLZI5i1L1RXo_walttkqP7scT3e6o0fw8MmSSWTWvQEDkz2FO7WbSt3z-DHNM9To8np7PPX6Yyg47GLYWJ_6ZLlqmp7RPKMrGytXyEXWyKLQu42xLJFIdpJfT6FXGGYLFPjFubK9hDLix1puv8cwfzs07fTc7fp1OCqgPKtGzGpxokWiwBtnERKBxxjPwsiTQMpuGBCCU-hr6Ba-UyGRgiN-TKnnjYi0JI-h0GWZ-YlEKURJQYjJg0SJqWSmLJwzehC-IYyHTkwbm0Wq4bG3HbTSONqO52KuDZzjGaOrZlj4cDH7pZ1zeFxk_IHC4TYzm98rpLNMQUcnWXKiie4YBQYIPyxA8c9TZyXqi9uoRQ3fmETY_6EmBWco_hdJ7Z32lq3zORlpeMJe0SaO_CiRl43bGoZ69AJO8B7mOwULFt4X4KQqljDGxQ5cNKi99-wbvgaJx3A___tXt1K-zXc96u5aH9pHcNgW5TmDWZ42-RtM6f_Akm3SeQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pooled+CRISPR+screens+with+imaging+on+microraft+arrays+reveals+stress+granule-regulatory+factors&rft.jtitle=Nature+methods&rft.au=Wheeler%2C+Emily+C.&rft.au=Vu%2C+Anthony+Q.&rft.au=Einstein%2C+Jaclyn+M.&rft.au=DiSalvo%2C+Matthew&rft.date=2020-06-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=17&rft.issue=6&rft.spage=636&rft.epage=642&rft_id=info:doi/10.1038%2Fs41592-020-0826-8&rft.externalDocID=10_1038_s41592_020_0826_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |