Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy

Background Increased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural (e.g. spasticity) and non-neural (e.g. contracture) components. The aim of this study was to simulate instrumented, clinical assessment of t...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroengineering and rehabilitation Vol. 13; no. 1; p. 64
Main Authors van der Krogt, Marjolein Margaretha, Bar-On, Lynn, Kindt, Thalia, Desloovere, Kaat, Harlaar, Jaap
Format Journal Article
LanguageEnglish
Published London BioMed Central 16.07.2016
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1743-0003
1743-0003
DOI10.1186/s12984-016-0170-5

Cover

Abstract Background Increased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural (e.g. spasticity) and non-neural (e.g. contracture) components. The aim of this study was to simulate instrumented, clinical assessment of the hamstring muscles in CP using a conceptual model of contracture and spasticity, and to determine to what extent contracture can be explained by altered passive muscle stiffness, and spasticity by (purely) velocity-dependent stretch reflex. Methods Instrumented hamstrings spasticity assessment was performed on 11 children with CP and 9 typically developing children. In this test, the knee was passively stretched at slow and fast speed, and knee angle, applied forces and EMG were measured. A dedicated OpenSim model was created with motion and muscles around the knee only. Contracture was modeled by optimizing the passive muscle stiffness parameters of vasti and hamstrings, based on slow stretch data. Spasticity was modeled using a velocity-dependent feedback controller, with threshold values derived from experimental data and gain values optimized for individual subjects. Forward dynamic simulations were performed to predict muscle behavior during slow and fast passive stretches. Results Both slow and fast stretch data could be successfully simulated by including subject-specific levels of contracture and, for CP fast stretches, spasticity. The RMS errors of predicted knee motion in CP were 1.1 ± 0.9° for slow and 5.9 ± 2.1° for fast stretches. CP hamstrings were found to be stiffer compared with TD, and both hamstrings and vasti were more compliant than the original generic model, except for the CP hamstrings. The purely velocity-dependent spasticity model could predict response during fast passive stretch in terms of predicted knee angle, muscle activity, and fiber length and velocity. Only sustained muscle activity, independent of velocity, was not predicted by our model. Conclusion The presented individually tunable, conceptual model for contracture and spasticity could explain most of the hamstring muscle behavior during slow and fast passive stretch. Future research should attempt to apply the model to study the effects of spasticity and contracture during dynamic tasks such as gait.
AbstractList Background Increased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural (e.g. spasticity) and non-neural (e.g. contracture) components. The aim of this study was to simulate instrumented, clinical assessment of the hamstring muscles in CP using a conceptual model of contracture and spasticity, and to determine to what extent contracture can be explained by altered passive muscle stiffness, and spasticity by (purely) velocity-dependent stretch reflex. Methods Instrumented hamstrings spasticity assessment was performed on 11 children with CP and 9 typically developing children. In this test, the knee was passively stretched at slow and fast speed, and knee angle, applied forces and EMG were measured. A dedicated OpenSim model was created with motion and muscles around the knee only. Contracture was modeled by optimizing the passive muscle stiffness parameters of vasti and hamstrings, based on slow stretch data. Spasticity was modeled using a velocity-dependent feedback controller, with threshold values derived from experimental data and gain values optimized for individual subjects. Forward dynamic simulations were performed to predict muscle behavior during slow and fast passive stretches. Results Both slow and fast stretch data could be successfully simulated by including subject-specific levels of contracture and, for CP fast stretches, spasticity. The RMS errors of predicted knee motion in CP were 1.1 ± 0.9° for slow and 5.9 ± 2.1° for fast stretches. CP hamstrings were found to be stiffer compared with TD, and both hamstrings and vasti were more compliant than the original generic model, except for the CP hamstrings. The purely velocity-dependent spasticity model could predict response during fast passive stretch in terms of predicted knee angle, muscle activity, and fiber length and velocity. Only sustained muscle activity, independent of velocity, was not predicted by our model. Conclusion The presented individually tunable, conceptual model for contracture and spasticity could explain most of the hamstring muscle behavior during slow and fast passive stretch. Future research should attempt to apply the model to study the effects of spasticity and contracture during dynamic tasks such as gait.
Increased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural (e.g. spasticity) and non-neural (e.g. contracture) components. The aim of this study was to simulate instrumented, clinical assessment of the hamstring muscles in CP using a conceptual model of contracture and spasticity, and to determine to what extent contracture can be explained by altered passive muscle stiffness, and spasticity by (purely) velocity-dependent stretch reflex. Instrumented hamstrings spasticity assessment was performed on 11 children with CP and 9 typically developing children. In this test, the knee was passively stretched at slow and fast speed, and knee angle, applied forces and EMG were measured. A dedicated OpenSim model was created with motion and muscles around the knee only. Contracture was modeled by optimizing the passive muscle stiffness parameters of vasti and hamstrings, based on slow stretch data. Spasticity was modeled using a velocity-dependent feedback controller, with threshold values derived from experimental data and gain values optimized for individual subjects. Forward dynamic simulations were performed to predict muscle behavior during slow and fast passive stretches. Both slow and fast stretch data could be successfully simulated by including subject-specific levels of contracture and, for CP fast stretches, spasticity. The RMS errors of predicted knee motion in CP were 1.1 ± 0.9° for slow and 5.9 ± 2.1° for fast stretches. CP hamstrings were found to be stiffer compared with TD, and both hamstrings and vasti were more compliant than the original generic model, except for the CP hamstrings. The purely velocity-dependent spasticity model could predict response during fast passive stretch in terms of predicted knee angle, muscle activity, and fiber length and velocity. Only sustained muscle activity, independent of velocity, was not predicted by our model. The presented individually tunable, conceptual model for contracture and spasticity could explain most of the hamstring muscle behavior during slow and fast passive stretch. Future research should attempt to apply the model to study the effects of spasticity and contracture during dynamic tasks such as gait.
BACKGROUNDIncreased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural (e.g. spasticity) and non-neural (e.g. contracture) components. The aim of this study was to simulate instrumented, clinical assessment of the hamstring muscles in CP using a conceptual model of contracture and spasticity, and to determine to what extent contracture can be explained by altered passive muscle stiffness, and spasticity by (purely) velocity-dependent stretch reflex.METHODSInstrumented hamstrings spasticity assessment was performed on 11 children with CP and 9 typically developing children. In this test, the knee was passively stretched at slow and fast speed, and knee angle, applied forces and EMG were measured. A dedicated OpenSim model was created with motion and muscles around the knee only. Contracture was modeled by optimizing the passive muscle stiffness parameters of vasti and hamstrings, based on slow stretch data. Spasticity was modeled using a velocity-dependent feedback controller, with threshold values derived from experimental data and gain values optimized for individual subjects. Forward dynamic simulations were performed to predict muscle behavior during slow and fast passive stretches.RESULTSBoth slow and fast stretch data could be successfully simulated by including subject-specific levels of contracture and, for CP fast stretches, spasticity. The RMS errors of predicted knee motion in CP were 1.1 ± 0.9° for slow and 5.9 ± 2.1° for fast stretches. CP hamstrings were found to be stiffer compared with TD, and both hamstrings and vasti were more compliant than the original generic model, except for the CP hamstrings. The purely velocity-dependent spasticity model could predict response during fast passive stretch in terms of predicted knee angle, muscle activity, and fiber length and velocity. Only sustained muscle activity, independent of velocity, was not predicted by our model.CONCLUSIONThe presented individually tunable, conceptual model for contracture and spasticity could explain most of the hamstring muscle behavior during slow and fast passive stretch. Future research should attempt to apply the model to study the effects of spasticity and contracture during dynamic tasks such as gait.
Background Increased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural (e.g. spasticity) and non-neural (e.g. contracture) components. The aim of this study was to simulate instrumented, clinical assessment of the hamstring muscles in CP using a conceptual model of contracture and spasticity, and to determine to what extent contracture can be explained by altered passive muscle stiffness, and spasticity by (purely) velocity-dependent stretch reflex. Methods Instrumented hamstrings spasticity assessment was performed on 11 children with CP and 9 typically developing children. In this test, the knee was passively stretched at slow and fast speed, and knee angle, applied forces and EMG were measured. A dedicated OpenSim model was created with motion and muscles around the knee only. Contracture was modeled by optimizing the passive muscle stiffness parameters of vasti and hamstrings, based on slow stretch data. Spasticity was modeled using a velocity-dependent feedback controller, with threshold values derived from experimental data and gain values optimized for individual subjects. Forward dynamic simulations were performed to predict muscle behavior during slow and fast passive stretches. Results Both slow and fast stretch data could be successfully simulated by including subject-specific levels of contracture and, for CP fast stretches, spasticity. The RMS errors of predicted knee motion in CP were 1.1 ± 0.9° for slow and 5.9 ± 2.1° for fast stretches. CP hamstrings were found to be stiffer compared with TD, and both hamstrings and vasti were more compliant than the original generic model, except for the CP hamstrings. The purely velocity-dependent spasticity model could predict response during fast passive stretch in terms of predicted knee angle, muscle activity, and fiber length and velocity. Only sustained muscle activity, independent of velocity, was not predicted by our model. Conclusion The presented individually tunable, conceptual model for contracture and spasticity could explain most of the hamstring muscle behavior during slow and fast passive stretch. Future research should attempt to apply the model to study the effects of spasticity and contracture during dynamic tasks such as gait.
ArticleNumber 64
Audience Academic
Author Desloovere, Kaat
van der Krogt, Marjolein Margaretha
Kindt, Thalia
Bar-On, Lynn
Harlaar, Jaap
Author_xml – sequence: 1
  givenname: Marjolein Margaretha
  surname: van der Krogt
  fullname: van der Krogt, Marjolein Margaretha
  email: m.vanderkrogt@vumc.nl
  organization: Department of Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam
– sequence: 2
  givenname: Lynn
  surname: Bar-On
  fullname: Bar-On, Lynn
  organization: Department of Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam, Department of Rehabilitation Sciences, KU Leuven, Clinical Motion Analysis Laboratory, University Hospital Leuven
– sequence: 3
  givenname: Thalia
  surname: Kindt
  fullname: Kindt, Thalia
  organization: Clinical Motion Analysis Laboratory, University Hospital Leuven
– sequence: 4
  givenname: Kaat
  surname: Desloovere
  fullname: Desloovere, Kaat
  organization: Department of Rehabilitation Sciences, KU Leuven, Clinical Motion Analysis Laboratory, University Hospital Leuven
– sequence: 5
  givenname: Jaap
  surname: Harlaar
  fullname: Harlaar, Jaap
  organization: Department of Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27423898$$D View this record in MEDLINE/PubMed
BookMark eNp9kklv1DAYhiNURBf4AVxQJC5cUrwlti9IVcUmVXCBs-U438y4OPbgpWj-PQ5TyrQCZFm24ud9822nzZEPHprmOUbnGIvhdcJECtYhPNTNUdc_ak4wZ7RDCNGjg_txc5rSdb0w1LMnzTHhjFAhxUlz8wlKDN1ckikupG_gIGvXJjsXp7MNvg2r1vqUY5nBZ5haE3yO2uQSodV-atNWp2yNzbtWpwQpLVyVtGZj3RTBtz9s3rQGIoyxWm-1S7unzeNVPeHZ7XnWfH339svlh-7q8_uPlxdXnekpz50YCR8MNUiSkTIzDiPFXOABuJ6YlowRQ5EhkkCPJOrr2zgS3BuQg2ScS3rWvNn7bss4w2Rgid2pbbSzjjsVtFX3X7zdqHW4UazqiVgMXt0axPC9QMpqtsmAc9pDKElhUSsqGJW0oi8foNehRF_TWygueyJx_4daawfK-lVYqrmYqgs2YMExFUOlzv9C1TXBbGsHYGXr93uCF4eJ3mX4u9MVwHvAxJBShNUdgpFapkntp0nVaVLLNKklVv5AU9v8aypqNNb9V0n2ylT_4tcQD2rxT9FPr_Te4Q
CitedBy_id crossref_primary_10_1038_s41598_024_51993_w
crossref_primary_10_1109_TMECH_2024_3361466
crossref_primary_10_3390_s24010041
crossref_primary_10_1113_JP282609
crossref_primary_10_1371_journal_pone_0233706
crossref_primary_10_1590_1809_2950_18018026042019
crossref_primary_10_3389_fbioe_2022_1002731
crossref_primary_10_1109_TBME_2017_2704085
crossref_primary_10_1371_journal_pone_0235966
crossref_primary_10_1016_j_gaitpost_2022_07_140
crossref_primary_10_1142_S0219519421500081
crossref_primary_10_3389_fnbot_2019_00102
crossref_primary_10_1007_s10237_024_01825_7
crossref_primary_10_1016_j_jbiomech_2018_11_037
crossref_primary_10_1016_j_gaitpost_2021_09_198
crossref_primary_10_1016_j_gaitpost_2020_10_022
crossref_primary_10_3389_fphys_2021_804188
crossref_primary_10_1016_j_clinbiomech_2020_105025
crossref_primary_10_1016_j_clinbiomech_2022_105660
crossref_primary_10_21876_rcshci_v11i2_1072
crossref_primary_10_3389_fneur_2023_1121323
crossref_primary_10_3389_fbioe_2023_1140527
crossref_primary_10_1016_j_jbiomech_2019_02_025
crossref_primary_10_1137_22M1506985
crossref_primary_10_1186_s12984_023_01206_8
crossref_primary_10_1371_journal_pcbi_1006993
crossref_primary_10_3389_fnhum_2017_00277
crossref_primary_10_1123_jab_2021_0310
crossref_primary_10_3389_fneur_2019_00301
crossref_primary_10_1007_s10237_022_01626_w
crossref_primary_10_3389_fspor_2021_695383
crossref_primary_10_3390_app14198678
crossref_primary_10_1016_j_gaitpost_2021_02_016
crossref_primary_10_1007_s10237_020_01367_8
crossref_primary_10_1051_sm_2017016
crossref_primary_10_1002_jor_26058
crossref_primary_10_3389_fnbot_2019_00054
crossref_primary_10_3389_fninf_2018_00018
crossref_primary_10_1038_s41598_024_65183_1
crossref_primary_10_1371_journal_pcbi_1006223
crossref_primary_10_1007_s10439_022_03107_8
crossref_primary_10_1016_j_jbiomech_2021_110874
crossref_primary_10_1109_TNSRE_2025_3544551
crossref_primary_10_1371_journal_pone_0208811
crossref_primary_10_1152_japplphysiol_00473_2021
crossref_primary_10_1016_j_clinbiomech_2023_106074
crossref_primary_10_1111_joa_13261
crossref_primary_10_1371_journal_pone_0291789
crossref_primary_10_1016_j_gaitpost_2018_07_172
crossref_primary_10_3389_fbioe_2023_1287385
crossref_primary_10_1123_jab_2018_0049
crossref_primary_10_1002_wsbm_1368
crossref_primary_10_1109_TRO_2021_3133137
crossref_primary_10_3389_fnhum_2020_00040
Cites_doi 10.1111/j.1469-8749.2011.03930.x
10.1016/j.gaitpost.2003.08.010
10.1186/1743-0003-11-78
10.1109/10.102791
10.1016/S1350-4533(99)00067-3
10.1002/mus.20285
10.1111/dmcn.12124
10.1016/S0268-0033(99)00069-8
10.1016/j.gaitpost.2015.04.006
10.2340/16501977-0579
10.1007/s11832-015-0664-x
10.1016/j.gaitpost.2013.05.018
10.1114/1.1355277
10.1115/1.2798283
10.1002/cnm.2639
10.1016/j.pmr.2014.09.005
10.1109/TBME.2007.901024
10.1007/978-1-4612-2104-3_11
10.1016/j.gaitpost.2012.01.017
10.1111/j.1469-8749.2011.03913.x
10.1017/S0012162201001864
10.1113/jphysiol.2010.203364
10.1016/j.jelekin.2007.02.009
10.1016/j.apmr.2009.12.022
10.1186/1743-0003-10-81
10.1152/japplphysiol.91189.2008
10.1016/j.jneumeth.2009.02.005
10.1212/WNL.30.12.1303
10.1007/s10439-009-9852-5
10.1371/journal.pone.0101038
10.1016/j.gaitpost.2009.08.031
10.1016/j.jbiomech.2011.01.001
10.1016/j.ridd.2014.07.053
10.1097/PHM.0b013e318214f699
10.1152/japplphysiol.01361.2010
10.1016/j.braindev.2013.05.008
10.1016/j.gaitpost.2012.11.003
10.1111/j.1651-2227.2010.01819.x
10.1186/1743-0003-7-35
10.1016/S0268-0033(01)00084-5
10.1115/1.1531112
10.1016/j.gaitpost.2014.04.207
10.1016/S1388-2457(99)00034-6
10.1148/radiographics.22.2.g02mr19257
10.1093/ptj/67.2.206
10.1016/j.gaitpost.2013.07.032
10.1109/TNSRE.2003.819926
10.1371/journal.pone.0091759
ContentType Journal Article
Copyright The Author(s). 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright BioMed Central 2016
Copyright_xml – notice: The Author(s). 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
– notice: Copyright BioMed Central 2016
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TB
7TK
7TS
7X7
7XB
88C
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
L6V
LK8
M0S
M0T
M1P
M7P
M7S
NAPCQ
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1186/s12984-016-0170-5
DatabaseName Open Access Journals from Springer Nature
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
PML(ProQuest Medical Library)
Biological Science Database
ProQuest Engineering Database (NC LIVE)
ProQuest Nursing and Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 64
ExternalDocumentID PMC4947289
4134235241
A461871386
27423898
10_1186_s12984_016_0170_5
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GrantInformation_xml – fundername: Fonds Wetenschappelijk Onderzoek
  grantid: 12R4215N
  funderid: http://dx.doi.org/10.13039/501100003130
– fundername: NIH National Center for Simulation in Rehabilitation Research
  grantid: Grant R24 HD065690 (Visiting Scholars Program 2011); Grant R24 HD065690 (Pilot Project Program 2013)
– fundername: KU Leuven
  grantid: DBOF/12/058
  funderid: http://dx.doi.org/10.13039/501100004040
– fundername: NICHD NIH HHS
  grantid: R24 HD065690
– fundername: NICHD NIH HHS
  grantid: P2C HD065690
– fundername: ;
  grantid: 12R4215N
– fundername: ;
  grantid: Grant R24 HD065690 (Visiting Scholars Program 2011); Grant R24 HD065690 (Pilot Project Program 2013)
– fundername: ;
  grantid: DBOF/12/058
GroupedDBID ---
0R~
29L
2QV
2WC
4.4
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QO
7TB
7TK
7TS
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c537t-8b276c3c092b34cb6b317816e7ad4a9442c30c292e50905178bb215ce96947793
IEDL.DBID M48
ISSN 1743-0003
IngestDate Thu Aug 21 13:59:56 EDT 2025
Fri Sep 05 07:30:33 EDT 2025
Fri Jul 25 10:36:57 EDT 2025
Tue Jun 17 22:04:47 EDT 2025
Tue Jun 10 21:03:17 EDT 2025
Thu Jan 02 22:30:23 EST 2025
Tue Jul 01 02:19:55 EDT 2025
Thu Apr 24 22:53:33 EDT 2025
Sat Sep 06 07:18:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biomechanics
Cerebral palsy
Muscle stiffness
Neuro-musculoskeletal modeling
Electromyography
Rehabilitation
Muscle spasticity
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-8b276c3c092b34cb6b317816e7ad4a9442c30c292e50905178bb215ce96947793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1807952915?pq-origsite=%requestingapplication%
PMID 27423898
PQID 1807952915
PQPubID 55356
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4947289
proquest_miscellaneous_1805484393
proquest_journals_1807952915
gale_infotracmisc_A461871386
gale_infotracacademiconefile_A461871386
pubmed_primary_27423898
crossref_primary_10_1186_s12984_016_0170_5
crossref_citationtrail_10_1186_s12984_016_0170_5
springer_journals_10_1186_s12984_016_0170_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-16
PublicationDateYYYYMMDD 2016-07-16
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-16
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAbbrev J NeuroEngineering Rehabil
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References M Švehlík (170_CR14) 2013; 38
EM Arnold (170_CR38) 2010; 38
K Himmelmann (170_CR2) 2010; 99
AS Arnold (170_CR53) 2001; 29
NR Fry (170_CR7) 2004; 20
M Willerslev-Olsen (170_CR24) 2013; 55
170_CR3
F Gao (170_CR50) 2011; 90
T Sinkjaer (170_CR27) 1999; 110
L Bar-On (170_CR17) 2013; 38
K Jansen (170_CR26) 2014; 11
MK Lebiedowska (170_CR45) 2009; 179
L Scheys (170_CR52) 2011; 44
JW Lance (170_CR4) 1980; 30
L Bar-On (170_CR20) 2014; 40
MM Krogt Van der (170_CR28) 2010; 42
G Staude (170_CR36) 1999; 21
L Bar-On (170_CR15) 2014; 9
RW Bohannon (170_CR30) 1987; 67
MM Krogt Van der (170_CR37) 2012; 36
DG Thelen (170_CR33) 2003; 125
AD Pandyan (170_CR46) 2001; 16
A Campen Van (170_CR41) 2014; 30
M Hösl (170_CR8) 2015; 9
AAA Alhusaini (170_CR5) 2011; 53
LH Sloot (170_CR22) 2015; 42
170_CR34
KL Groep De Gooijer-van de (170_CR23) 2013; 10
170_CR39
JC Noort Van den (170_CR47) 2010; 91
L Barber (170_CR13) 2011; 53
LR Smith (170_CR16) 2011; 589
G Kalsi (170_CR49) 2009; 30
L Bar-On (170_CR18) 2014; 39
A Thilman (170_CR44) 1991; 114
JJ Noble (170_CR43) 2014; 36
J Harlaar (170_CR21) 2000; 15
170_CR42
R Malaiya (170_CR10) 2007; 17
RL Lieber (170_CR12) 1997; 119
E Vlugt De (170_CR25) 2010; 7
MM Krogt Van der (170_CR32) 2009; 107
J-M Gracies (170_CR48) 2005; 31
DS Morrell (170_CR6) 2002; 22
SL Delp (170_CR19) 1990; 37
JW Fee (170_CR40) 2004; 12
AP Shortland (170_CR11) 2002; 44
S Delp (170_CR31) 2007; 54
FCT Helm Van der (170_CR35) 2000
H Zhao (170_CR51) 2011; 111
P Rosenbaum (170_CR1) 2007; 109
L Bar-On (170_CR29) 2014; 35
MA Mathewson (170_CR9) 2015; 26
25240217 - Res Dev Disabil. 2014 Dec;35(12):3354-64
17459729 - J Electromyogr Kinesiol. 2007 Dec;17 (6):657-63
24753493 - Int J Numer Method Biomed Eng. 2014 Oct;30(10):969-87
23880287 - J Neuroeng Rehabil. 2013 Jul 23;10:81
23218728 - Gait Posture. 2013 May;38(1):141-7
15714511 - Muscle Nerve. 2005 May;31(5):552-71
11310788 - Ann Biomed Eng. 2001 Mar;29(3):263-74
21574991 - Dev Med Child Neurol. 2011 Jun;53(6):553-8
25479779 - Phys Med Rehabil Clin N Am. 2015 Feb;26(1):57-67
10624741 - Med Eng Phys. 1999 Jul-Sep;21(6-7):449-67
21295307 - J Biomech. 2011 Apr 29;44(7):1346-53
19428544 - J Neurosci Methods. 2009 May 15;179(2):323-30
21506995 - Dev Med Child Neurol. 2011 Jun;53(6):543-8
24651860 - PLoS One. 2014 Mar 20;9(3):e91759
21486759 - J Physiol. 2011 May 15;589(Pt 10):2625-39
17370477 - Dev Med Child Neurol Suppl. 2007 Feb;109:8-14
25936760 - Gait Posture. 2015 Jun;42(1):7-15
23790825 - Brain Dev. 2014 Apr;36(4):294-300
20377538 - Acta Paediatr. 2010 Sep;99(9):1337-43
10675667 - Clin Biomech (Bristol, Avon). 2000 May;15(4):261-70
21765255 - Am J Phys Med Rehabil. 2011 May;90(5):364-71
22386624 - Gait Posture. 2012 May;36(1):113-9
24885302 - J Neuroeng Rehabil. 2014 Apr 30;11:78
1998884 - Brain. 1991 Feb;114 ( Pt 1A):233-44
7192811 - Neurology. 1980 Dec;30(12):1303-13
26108740 - J Child Orthop. 2015 Jun;9(3):209-19
18018689 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50
24931109 - Gait Posture. 2014 Jul;40(3):346-51
23517272 - Dev Med Child Neurol. 2013 Jul;55(7):617-23
24977410 - PLoS One. 2014 Jun 30;9(6):e101038
11896216 - Radiographics. 2002 Mar-Apr;22(2):257-68
12005316 - Dev Med Child Neurol. 2002 Mar;44(3):158-63
19957039 - Ann Biomed Eng. 2010 Feb;38(2):269-79
19589956 - J Appl Physiol (1985). 2009 Sep;107(3):801-8
11733123 - Clin Biomech (Bristol, Avon). 2001 Dec;16(10 ):859-65
20382296 - Arch Phys Med Rehabil. 2010 Apr;91(4):615-23
9407275 - J Biomech Eng. 1997 Nov;119(4):386-91
12661198 - J Biomech Eng. 2003 Feb;125(1):70-7
20663189 - J Neuroeng Rehabil. 2010 Jul 27;7:35
20603696 - J Rehabil Med. 2010 Jul;42(7):656-63
15068188 - IEEE Trans Neural Syst Rehabil Eng. 2004 Mar;12(1):55-64
15336288 - Gait Posture. 2004 Oct;20(2):177-82
3809245 - Phys Ther. 1987 Feb;67(2):206-7
10400211 - Clin Neurophysiol. 1999 May;110(5):951-9
2210784 - IEEE Trans Biomed Eng. 1990 Aug;37(8):757-67
23791154 - Gait Posture. 2014 Jan;39(1):17-22
21596920 - J Appl Physiol (1985). 2011 Aug;111(2):435-42
References_xml – volume: 53
  start-page: 553
  year: 2011
  ident: 170_CR5
  publication-title: Dev Med Child Neurol
  doi: 10.1111/j.1469-8749.2011.03930.x
– volume: 20
  start-page: 177
  year: 2004
  ident: 170_CR7
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2003.08.010
– volume: 11
  start-page: 78
  year: 2014
  ident: 170_CR26
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-11-78
– volume: 37
  start-page: 757
  year: 1990
  ident: 170_CR19
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.102791
– volume: 21
  start-page: 449
  year: 1999
  ident: 170_CR36
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(99)00067-3
– volume: 31
  start-page: 552
  year: 2005
  ident: 170_CR48
  publication-title: Muscle Nerve
  doi: 10.1002/mus.20285
– volume: 55
  start-page: 617
  year: 2013
  ident: 170_CR24
  publication-title: Dev Med Child Neurol
  doi: 10.1111/dmcn.12124
– volume: 15
  start-page: 261
  year: 2000
  ident: 170_CR21
  publication-title: Clin Biomech
  doi: 10.1016/S0268-0033(99)00069-8
– volume: 42
  start-page: 7
  year: 2015
  ident: 170_CR22
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.04.006
– volume: 42
  start-page: 656
  year: 2010
  ident: 170_CR28
  publication-title: J Rehabil Med
  doi: 10.2340/16501977-0579
– volume: 9
  start-page: 209
  year: 2015
  ident: 170_CR8
  publication-title: J Child Orthop
  doi: 10.1007/s11832-015-0664-x
– volume: 39
  start-page: 17
  year: 2014
  ident: 170_CR18
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.05.018
– volume: 29
  start-page: 263
  year: 2001
  ident: 170_CR53
  publication-title: Ann Biomed Eng
  doi: 10.1114/1.1355277
– volume: 119
  start-page: 386
  year: 1997
  ident: 170_CR12
  publication-title: J Biomech Eng
  doi: 10.1115/1.2798283
– ident: 170_CR3
– volume: 30
  start-page: 969
  year: 2014
  ident: 170_CR41
  publication-title: Int j numer method biomed eng
  doi: 10.1002/cnm.2639
– volume: 26
  start-page: 57
  year: 2015
  ident: 170_CR9
  publication-title: Phys Med Rehabil Clin N Am
  doi: 10.1016/j.pmr.2014.09.005
– volume: 54
  start-page: 1940
  year: 2007
  ident: 170_CR31
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.901024
– volume: 109
  start-page: 8
  year: 2007
  ident: 170_CR1
  publication-title: Dev Med Child Neurol Suppl
– start-page: 164
  volume-title: Biomechanics and Neural Control of Posture and Movement
  year: 2000
  ident: 170_CR35
  doi: 10.1007/978-1-4612-2104-3_11
– volume: 36
  start-page: 113
  year: 2012
  ident: 170_CR37
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.01.017
– volume: 53
  start-page: 543
  year: 2011
  ident: 170_CR13
  publication-title: Dev Med Child Neurol
  doi: 10.1111/j.1469-8749.2011.03913.x
– volume: 44
  start-page: 158
  year: 2002
  ident: 170_CR11
  publication-title: Dev Med Child Neurol
  doi: 10.1017/S0012162201001864
– volume: 589
  start-page: 2625
  year: 2011
  ident: 170_CR16
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2010.203364
– volume: 17
  start-page: 657
  year: 2007
  ident: 170_CR10
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2007.02.009
– volume: 91
  start-page: 615
  year: 2010
  ident: 170_CR47
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2009.12.022
– volume: 10
  start-page: 81
  year: 2013
  ident: 170_CR23
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-10-81
– volume: 114
  start-page: 233
  year: 1991
  ident: 170_CR44
  publication-title: Brain
– volume: 107
  start-page: 801
  year: 2009
  ident: 170_CR32
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.91189.2008
– volume: 179
  start-page: 323
  year: 2009
  ident: 170_CR45
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2009.02.005
– volume: 30
  start-page: 1303
  year: 1980
  ident: 170_CR4
  publication-title: Neurology
  doi: 10.1212/WNL.30.12.1303
– volume: 38
  start-page: 269
  year: 2010
  ident: 170_CR38
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9852-5
– ident: 170_CR42
  doi: 10.1371/journal.pone.0101038
– volume: 30
  start-page: S18
  year: 2009
  ident: 170_CR49
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.08.031
– volume: 44
  start-page: 1346
  year: 2011
  ident: 170_CR52
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.01.001
– volume: 35
  start-page: 3354
  year: 2014
  ident: 170_CR29
  publication-title: Res Dev Disabil
  doi: 10.1016/j.ridd.2014.07.053
– volume: 90
  start-page: 364
  year: 2011
  ident: 170_CR50
  publication-title: Am J Phys Med Rehabil
  doi: 10.1097/PHM.0b013e318214f699
– volume: 111
  start-page: 435
  year: 2011
  ident: 170_CR51
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01361.2010
– volume: 36
  start-page: 294
  year: 2014
  ident: 170_CR43
  publication-title: Brain Dev
  doi: 10.1016/j.braindev.2013.05.008
– volume: 38
  start-page: 141
  year: 2013
  ident: 170_CR17
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.11.003
– ident: 170_CR39
– volume: 99
  start-page: 1337
  year: 2010
  ident: 170_CR2
  publication-title: Acta Paediatr
  doi: 10.1111/j.1651-2227.2010.01819.x
– volume: 7
  start-page: 35
  year: 2010
  ident: 170_CR25
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-7-35
– volume: 16
  start-page: 859
  year: 2001
  ident: 170_CR46
  publication-title: Clin Biomech (Bristol, Avon)
  doi: 10.1016/S0268-0033(01)00084-5
– volume: 125
  start-page: 70
  year: 2003
  ident: 170_CR33
  publication-title: J Biomech Eng
  doi: 10.1115/1.1531112
– volume: 40
  start-page: 346
  year: 2014
  ident: 170_CR20
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.04.207
– volume: 110
  start-page: 951
  year: 1999
  ident: 170_CR27
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00034-6
– volume: 22
  start-page: 257
  year: 2002
  ident: 170_CR6
  publication-title: Radiographics
  doi: 10.1148/radiographics.22.2.g02mr19257
– volume: 67
  start-page: 206
  year: 1987
  ident: 170_CR30
  publication-title: Phys Ther
  doi: 10.1093/ptj/67.2.206
– volume: 38
  start-page: S12
  year: 2013
  ident: 170_CR14
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.07.032
– volume: 12
  start-page: 55
  year: 2004
  ident: 170_CR40
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2003.819926
– volume: 9
  year: 2014
  ident: 170_CR15
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0091759
– ident: 170_CR34
– reference: 11310788 - Ann Biomed Eng. 2001 Mar;29(3):263-74
– reference: 18018689 - IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50
– reference: 21295307 - J Biomech. 2011 Apr 29;44(7):1346-53
– reference: 26108740 - J Child Orthop. 2015 Jun;9(3):209-19
– reference: 24977410 - PLoS One. 2014 Jun 30;9(6):e101038
– reference: 23790825 - Brain Dev. 2014 Apr;36(4):294-300
– reference: 19428544 - J Neurosci Methods. 2009 May 15;179(2):323-30
– reference: 24885302 - J Neuroeng Rehabil. 2014 Apr 30;11:78
– reference: 17370477 - Dev Med Child Neurol Suppl. 2007 Feb;109:8-14
– reference: 23880287 - J Neuroeng Rehabil. 2013 Jul 23;10:81
– reference: 10624741 - Med Eng Phys. 1999 Jul-Sep;21(6-7):449-67
– reference: 24753493 - Int J Numer Method Biomed Eng. 2014 Oct;30(10):969-87
– reference: 22386624 - Gait Posture. 2012 May;36(1):113-9
– reference: 1998884 - Brain. 1991 Feb;114 ( Pt 1A):233-44
– reference: 20377538 - Acta Paediatr. 2010 Sep;99(9):1337-43
– reference: 10675667 - Clin Biomech (Bristol, Avon). 2000 May;15(4):261-70
– reference: 11733123 - Clin Biomech (Bristol, Avon). 2001 Dec;16(10 ):859-65
– reference: 17459729 - J Electromyogr Kinesiol. 2007 Dec;17 (6):657-63
– reference: 23218728 - Gait Posture. 2013 May;38(1):141-7
– reference: 25936760 - Gait Posture. 2015 Jun;42(1):7-15
– reference: 20603696 - J Rehabil Med. 2010 Jul;42(7):656-63
– reference: 7192811 - Neurology. 1980 Dec;30(12):1303-13
– reference: 11896216 - Radiographics. 2002 Mar-Apr;22(2):257-68
– reference: 24651860 - PLoS One. 2014 Mar 20;9(3):e91759
– reference: 15068188 - IEEE Trans Neural Syst Rehabil Eng. 2004 Mar;12(1):55-64
– reference: 20663189 - J Neuroeng Rehabil. 2010 Jul 27;7:35
– reference: 21574991 - Dev Med Child Neurol. 2011 Jun;53(6):553-8
– reference: 25240217 - Res Dev Disabil. 2014 Dec;35(12):3354-64
– reference: 12661198 - J Biomech Eng. 2003 Feb;125(1):70-7
– reference: 20382296 - Arch Phys Med Rehabil. 2010 Apr;91(4):615-23
– reference: 24931109 - Gait Posture. 2014 Jul;40(3):346-51
– reference: 19957039 - Ann Biomed Eng. 2010 Feb;38(2):269-79
– reference: 23517272 - Dev Med Child Neurol. 2013 Jul;55(7):617-23
– reference: 21486759 - J Physiol. 2011 May 15;589(Pt 10):2625-39
– reference: 25479779 - Phys Med Rehabil Clin N Am. 2015 Feb;26(1):57-67
– reference: 10400211 - Clin Neurophysiol. 1999 May;110(5):951-9
– reference: 3809245 - Phys Ther. 1987 Feb;67(2):206-7
– reference: 19589956 - J Appl Physiol (1985). 2009 Sep;107(3):801-8
– reference: 23791154 - Gait Posture. 2014 Jan;39(1):17-22
– reference: 21506995 - Dev Med Child Neurol. 2011 Jun;53(6):543-8
– reference: 21596920 - J Appl Physiol (1985). 2011 Aug;111(2):435-42
– reference: 12005316 - Dev Med Child Neurol. 2002 Mar;44(3):158-63
– reference: 15714511 - Muscle Nerve. 2005 May;31(5):552-71
– reference: 9407275 - J Biomech Eng. 1997 Nov;119(4):386-91
– reference: 15336288 - Gait Posture. 2004 Oct;20(2):177-82
– reference: 21765255 - Am J Phys Med Rehabil. 2011 May;90(5):364-71
– reference: 2210784 - IEEE Trans Biomed Eng. 1990 Aug;37(8):757-67
SSID ssj0034054
Score 2.3820186
Snippet Background Increased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural...
Increased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural (e.g....
Background Increased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural...
BACKGROUNDIncreased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Adolescent
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Cerebral palsy
Cerebral Palsy - complications
Cerebral Palsy - physiopathology
Child
Complications and side effects
Computer Simulation
Contracture - physiopathology
Electromyography
Hamstring Muscles - physiopathology
Humans
Male
Muscle Spasticity - etiology
Muscle Spasticity - physiopathology
Muscle, Skeletal - physiopathology
Neurology
Neurosciences
Reflex, Stretch - physiology
Rehabilitation Medicine
Risk factors
Spasticity
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3raxQxEB-0gugHH-drtUoEH2BZuo9sHp-kiGcRKiIt9NuSZHN42O6ebiv43zuTzZ63B_ZzZiGbmUx-k5n8BuBVpRttECekWhpDT3J0aqxt0qzRHhGqUENtztEXcXjCP59Wp_HCrY9llaNPDI666Rzdke_nKpO6KnRevV_9TKlrFGVXYwuN63AjL9CS6KX4_NPoiUsEIzxmMnMl9ns82xTVXFAMLbO0mpxF2x5540jaLpfcypmGo2h-D-5EDMkOBqXfh2u-ncHtDWbBGdw8ijnzGbzeJBJmxwOLAHvDvk04umdw92tU2SjzAH4H6o70_JKqVbv-Bx5RiNVZvzyPTb9Yt2DLwEEbuD0bFirfTUhLMNM2DP0VEUEj1GdmzQGKn7DxETmji2Dm_C9KYJ-xFe6GPw_hZP7x-MNhGhs1pK4q5UWqbCGFK12mC1tyZ4VFVKJy4aVpuNGcF67MXKELj_CESMGUtQg1nNdCc4ke4hHstF3rnwCrcqvdgue8Uhi7WWXMQjV-IajvFSJbmUA2qqx2cYWomcZZHaIZJepByzVVrpGW6yqBd-tPVgOFx1XCb8kOatretF4mvlLA2RFRVn3ARY4xZqlEArsTSdyWbjo8WlId3UJf_zPiBF6uh-lLKnVrfXcZZDCKRJxYJvB4MLz1tENeXWmVgJyY5FqAyMKnI-3yeyAN57jSGFwnsDca78a0_rcaT6_-iWdwqwi7Saa52IUdtDb_HDHahX0RNuJfLzU78Q
  priority: 102
  providerName: ProQuest
– databaseName: Open Access Journals from Springer Nature
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB60gtgHL0erq1UieAFlcS_ZXB7LwVKEikgLfVuSbA4e2u4pPa3Qf9-ZbHbZPajgcyZsyExmvtmZfAF4V-lGG8QJqZbG0JUcnRprmzRrtEeEKlTXm3P4XRwc828n1Ukki6a7MOP6fa7ElzXGI0V9EpT3yiyt7sK9Cv0ude_Nxbx3uiXiDh6Lln-cNgk7m853FH02OyM3yqMh6uw_hocRLrK9Tr9P4I5vZ7A9IhGcwf3DWB6fwfsxZzA76ggD2Af2c0LHPYNHP6J2epmn8DuwdKTn19SYulqfYjRCWM7Wy_P4vhdbLdgy0M0GGs-GhSZ3EyoQzLQNQ9dEnM-I6pkZ6D5xCuvvizP658ucv6Ra9Rm7QMO_eQbH-1-P5gdpfJMhdVUpr1JlCylc6TJd2JI7KywCEJULL03Djea8cGXmCl14RCLE_6WsRVThvBaaS3QGO7DVrlr_AliVW-0WPOeVwjTNKmMWqvELQU9cIYiVCWS9ymoXd4jezTirQ-KiRN1puaYmNdJyXSXwaZhy0bF1_Ev4I9lBTSeZ9svECwm4OuLEqve4yDGdLJVIYHciiSfQTYd7S6qjB1jXucqkrgqd43feDsM0k7raWr-6DjKYMCIkLBN43hnesOxQQldaJSAnJjkIEC_4dKRd_gr84Bx3GvPoBD73xjta1t924-V_Sb-CB0U4XDLNxS5sofH514jOruybcC5vAQIbNFs
  priority: 102
  providerName: Springer Nature
Title Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy
URI https://link.springer.com/article/10.1186/s12984-016-0170-5
https://www.ncbi.nlm.nih.gov/pubmed/27423898
https://www.proquest.com/docview/1807952915
https://www.proquest.com/docview/1805484393
https://pubmed.ncbi.nlm.nih.gov/PMC4947289
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RBZ
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: KQ8
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: ABDBF
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: DIK
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: RPM
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: AAJSJ
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1743-0003
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034054
  issn: 1743-0003
  databaseCode: C6C
  dateStart: 20041201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxNBEB_6ANEPPuLrtIYVfIByeo-9fXwQqaGxCCmlNJBvx-7eBYPppTat2P_emb0HSaiCXwLH7l6W2ZmdmZuZ3wC8ynShDdoJoZbGUEmODo21RRgVukQLVag6N2d0JA7H_Nskm2xB296qIeDyRteO-kmNL-Yffv-8_owC_8kLvBIfl6izFOVSkG8sozDbhl1UTAkx-Yh3QYUUbRNe10emVEydNkHOG1-xpqY2L-sVbbWZSbkRTvVaangf7jbmJduv-eEBbJVVD-6sgA724NaoCaf34PUqxjA7rQEG2Bt2sgbf3YN7x81ptnMewi-P6hGeXVEi62L5A7UXUpAtZ2dNPzC2mLKZh6f1sJ8F80nxxkcsmKkKhlcZYUSjF8BMBw-KS1hbX87oGzFz5QXFtufsHA_s-hGMhweng8Ow6eEQuiyVl6GyiRQudZFObMqdFRYNFhWLUpqCG8154tLIJTop0XIhvDBlLVohrtRCc4mXx2PYqRZV-RRYFlvtpjzmmUK3zipjpqoop4JaYqHRKwOI2iPLXUMh6rMxz72jo0Ren3JOSW10ynkWwLtuyXmN7vGvyW-JD3LiRaKXaQoYcHeEoZXvcxGj-5kqEcDe2kyUWLc-3HJS3jJ8HqtI6izRMf7Py26YVlIWXFUurvwcdDDRhEwDeFIzXrdtH3JXWgUg11iym0A44usj1ey7xxPnSGn0uwN43zLvyrb-Ro1n_0O653A78bIlw1jswQ7yXvkCjblL24dtOZH4q4Zf-7D75eDo-ASfBmLQ959H-l6E_wBKLEmF
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB5VReJ44FiuQAEjUZBAUXM4Ph4QqoBqS7sVQltp34LjeMWKNruwLah_it_IjHOwqUTf-uyx5Njjmfky428AXmS61AbjhFBLY-hJjg5NUZRhVGqHEapQdW3O6EAMD_mnSTZZgz_tWxgqq2xtojfU5dzSP_KtWEVSZ4mOs3eLHyF1jaLsattCo1aLPXf2GyHb8u3uBzzfzSTZ-Th-PwybrgKhzVJ5EqoikcKmNtJJkXJbiAJdqIqFk6bkRnOe2DSyiU4c-lJisFJFgX7ROi00l5LIl9DkX-FpxImrX046gJdi8MObzGmsxNYSfamiGg_C7DIKs57vO-8BVlzg-fLMczla7_p2bsPNJmZl27WS3YE1Vw3gxgqT4QCujpoc_QA2V4mL2bhmLWAv2ZceJ_gAbn1uVKSVuQu_PFVIeHxK1bHz5Xd0iYgN2HJ23DQZY_Mpm3nOW88lWjJfaW98GoSZqmRoH4l4GqEFMx3nKE5h7aN1Rj-emXU_KWF-xBZ4-87uweGlHOF9WK_mlXsILIsLbac85plCrFgoY6aqdFNBfbYwkpYBRO2R5bbZIWrecZR79KREXp9yTpVydMp5FsDrbsqipgy5SPgV6UFO5oT2yzSvInB1RMyVb3MRI6ZNlQhgoyeJZsD2h1tNyhsztMz_XZoAnnfDNJNK6yo3P_UyiFoxLk0DeFArXrdsn8dXWgUgeyrZCRA5eX-kmn3zJOUcdxrBfABvWuVdWdb_duPRxR_xDK4Nx6P9fH_3YO8xXE_8zZJhLDZgHTXPPcH48KR46i8lg6-XbQX-Ahaudmk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEB-0hWI_-Dhfq1Uj-IDK0n1k8_h4qEc9bSnaQr-FJLuLR9u9w70K_vdOstnj9lDBz5mwITOT-c3O5BeAV4UspUacEEuutbuSI2NtTBknpawQoTLR9eYcHbPDMzo9L87DO6dt3-3elyS7Ow2OpalZHizKunNxwQ5ajFLCdU-4bJgncXETtkUhGWZf2-Px9Nu0P4xzxCM0FDP_OHEQjjYP5bWotNkxuVE29dFochduBxhJxp3e78GNqhnB7hq54Ah2jkLZfASv17mEyWlHJEDekK8Dmu4R3DkJWutl7sNPz94RX127htV5e4FRCuE6aWdX4d0vMq_JzNPQenrPkvjmd-0rE0Q3JcEjy3FBI9onekUDilNIf4-cuH_BxFY_XA37kizQIX49gLPJx9P3h3F4qyG2Rc6XsTAZZza3icxMTq1hBoGJSFnFdUm1pDSzeWIzmVWIUBwvmDAG0YatJJOU4yHxELaaeVM9BlKkRtqaprQQmL4ZoXUtyqpm7ukrBLc8gqRXmbJhh9x7GpfKJzSCqU7LyjWvOS2rIoL91ZRFx-LxL-G3zg6U83C3XzpcVMDVOa4sNaYsxTQzFyyCvYEkeqYdDveWpMLJ0KpUJFwWmUzxOy9Xw26m63Zrqvm1l8FEEqFiHsGjzvBWy_aldSFFBHxgkisBxxc-HGlm3z1vOMWdxvw6gne98a4t62-78eS_pF_AzsmHifry6fjzU7iVeT_jccr2YAvtsHqGAG5pngcn_Q2_KEEG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuro-musculoskeletal+simulation+of+instrumented+contracture+and+spasticity+assessment+in+children+with+cerebral+palsy&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=van+der+Krogt%2C+Marjolein+Margaretha&rft.au=Bar-On%2C+Lynn&rft.au=Kindt%2C+Thalia&rft.au=Desloovere%2C+Kaat&rft.date=2016-07-16&rft.issn=1743-0003&rft.eissn=1743-0003&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1186%2Fs12984-016-0170-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12984_016_0170_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon