Spike-timing-dependent plasticity induced in resting lower limb cortex persists during subsequent walking
Transcranial magnetic stimulation (TMS) of human lower limb motor cortex paired with common peroneal nerve electrical stimulation produces a lasting modulation of motor cortex excitability following the principles of spike-timing-dependent plasticity. We previously demonstrated that this “paired ass...
Saved in:
Published in | Brain research Vol. 1153; pp. 92 - 97 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier B.V
11.06.2007
Amsterdam Elsevier New York, NY |
Subjects | |
Online Access | Get full text |
ISSN | 0006-8993 1872-6240 |
DOI | 10.1016/j.brainres.2007.03.062 |
Cover
Abstract | Transcranial magnetic stimulation (TMS) of human lower limb motor cortex paired with common peroneal nerve electrical stimulation produces a lasting modulation of motor cortex excitability following the principles of spike-timing-dependent plasticity. We previously demonstrated that this “paired associative stimulation” (PAS) protocol applied during walking induced a bidirectional modulation of cortical excitability. The present study tested the hypothesis that the excitability of lower limb motor cortex assessed during walking is increased when PAS is applied to the resting cortex. PAS was delivered as a block of 120 pairs at 0.5 Hz to healthy subjects (
n
=
13) in three separate sessions. TMS intensity was related to the active threshold obtained in tibialis anterior (TA) during the late swing phase of walking. Therefore, intensities used were below resting thresholds. When PAS using TMS intensities above active threshold was applied to the resting cortex, the normalized amplitude of potentials evoked in TA during subsequent walking increased to 124%. Using the same parameters and applying PAS during the late swing phase of walking, response amplitude increased to 114% of baseline. When the TMS intensity was set to active threshold, PAS applied to the resting cortex did not significantly modulate cortical excitability. |
---|---|
AbstractList | Abstract Transcranial magnetic stimulation (TMS) of human lower limb motor cortex paired with common peroneal nerve electrical stimulation produces a lasting modulation of motor cortex excitability following the principles of spike-timing-dependent plasticity. We previously demonstrated that this “paired associative stimulation” (PAS) protocol applied during walking induced a bidirectional modulation of cortical excitability. The present study tested the hypothesis that the excitability of lower limb motor cortex assessed during walking is increased when PAS is applied to the resting cortex. PAS was delivered as a block of 120 pairs at 0.5 Hz to healthy subjects ( n = 13) in three separate sessions. TMS intensity was related to the active threshold obtained in tibialis anterior (TA) during the late swing phase of walking. Therefore, intensities used were below resting thresholds. When PAS using TMS intensities above active threshold was applied to the resting cortex, the normalized amplitude of potentials evoked in TA during subsequent walking increased to 124%. Using the same parameters and applying PAS during the late swing phase of walking, response amplitude increased to 114% of baseline. When the TMS intensity was set to active threshold, PAS applied to the resting cortex did not significantly modulate cortical excitability. Transcranial magnetic stimulation (TMS) of human lower limb motor cortex paired with common peroneal nerve electrical stimulation produces a lasting modulation of motor cortex excitability following the principles of spike-timing-dependent plasticity. We previously demonstrated that this "paired associative stimulation" (PAS) protocol applied during walking induced a bidirectional modulation of cortical excitability. The present study tested the hypothesis that the excitability of lower limb motor cortex assessed during walking is increased when PAS is applied to the resting cortex. PAS was delivered as a block of 120 pairs at 0.5 Hz to healthy subjects (n=13) in three separate sessions. TMS intensity was related to the active threshold obtained in tibialis anterior (TA) during the late swing phase of walking. Therefore, intensities used were below resting thresholds. When PAS using TMS intensities above active threshold was applied to the resting cortex, the normalized amplitude of potentials evoked in TA during subsequent walking increased to 124%. Using the same parameters and applying PAS during the late swing phase of walking, response amplitude increased to 114% of baseline. When the TMS intensity was set to active threshold, PAS applied to the resting cortex did not significantly modulate cortical excitability. Transcranial magnetic stimulation (TMS) of human lower limb motor cortex paired with common peroneal nerve electrical stimulation produces a lasting modulation of motor cortex excitability following the principles of spike-timing-dependent plasticity. We previously demonstrated that this “paired associative stimulation” (PAS) protocol applied during walking induced a bidirectional modulation of cortical excitability. The present study tested the hypothesis that the excitability of lower limb motor cortex assessed during walking is increased when PAS is applied to the resting cortex. PAS was delivered as a block of 120 pairs at 0.5 Hz to healthy subjects ( n = 13) in three separate sessions. TMS intensity was related to the active threshold obtained in tibialis anterior (TA) during the late swing phase of walking. Therefore, intensities used were below resting thresholds. When PAS using TMS intensities above active threshold was applied to the resting cortex, the normalized amplitude of potentials evoked in TA during subsequent walking increased to 124%. Using the same parameters and applying PAS during the late swing phase of walking, response amplitude increased to 114% of baseline. When the TMS intensity was set to active threshold, PAS applied to the resting cortex did not significantly modulate cortical excitability. Transcranial magnetic stimulation (TMS) of human lower limb motor cortex paired with common peroneal nerve electrical stimulation produces a lasting modulation of motor cortex excitability following the principles of spike-timing-dependent plasticity. We previously demonstrated that this "paired associative stimulation" (PAS) protocol applied during walking induced a bidirectional modulation of cortical excitability. The present study tested the hypothesis that the excitability of lower limb motor cortex assessed during walking is increased when PAS is applied to the resting cortex. PAS was delivered as a block of 120 pairs at 0.5 Hz to healthy subjects (n=13) in three separate sessions. TMS intensity was related to the active threshold obtained in tibialis anterior (TA) during the late swing phase of walking. Therefore, intensities used were below resting thresholds. When PAS using TMS intensities above active threshold was applied to the resting cortex, the normalized amplitude of potentials evoked in TA during subsequent walking increased to 124%. Using the same parameters and applying PAS during the late swing phase of walking, response amplitude increased to 114% of baseline. When the TMS intensity was set to active threshold, PAS applied to the resting cortex did not significantly modulate cortical excitability.Transcranial magnetic stimulation (TMS) of human lower limb motor cortex paired with common peroneal nerve electrical stimulation produces a lasting modulation of motor cortex excitability following the principles of spike-timing-dependent plasticity. We previously demonstrated that this "paired associative stimulation" (PAS) protocol applied during walking induced a bidirectional modulation of cortical excitability. The present study tested the hypothesis that the excitability of lower limb motor cortex assessed during walking is increased when PAS is applied to the resting cortex. PAS was delivered as a block of 120 pairs at 0.5 Hz to healthy subjects (n=13) in three separate sessions. TMS intensity was related to the active threshold obtained in tibialis anterior (TA) during the late swing phase of walking. Therefore, intensities used were below resting thresholds. When PAS using TMS intensities above active threshold was applied to the resting cortex, the normalized amplitude of potentials evoked in TA during subsequent walking increased to 124%. Using the same parameters and applying PAS during the late swing phase of walking, response amplitude increased to 114% of baseline. When the TMS intensity was set to active threshold, PAS applied to the resting cortex did not significantly modulate cortical excitability. |
Author | Jayaram, Gowri Stinear, James W. Santos, Lynette |
Author_xml | – sequence: 1 givenname: Gowri surname: Jayaram fullname: Jayaram, Gowri organization: Sensory Motor Performance Program, Rehabilitation Institute of Chicago, 345 E. Superior Street, Chicago, IL 60611, USA – sequence: 2 givenname: Lynette surname: Santos fullname: Santos, Lynette organization: Sensory Motor Performance Program, Rehabilitation Institute of Chicago, 345 E. Superior Street, Chicago, IL 60611, USA – sequence: 3 givenname: James W. surname: Stinear fullname: Stinear, James W. email: j-stinear@northwestern.edu organization: Sensory Motor Performance Program, Rehabilitation Institute of Chicago, 345 E. Superior Street, Chicago, IL 60611, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18808590$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17459350$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URLeFr1DlArcsEzuOHQkhUMU_qRKHwtly7AnybtYJttOy3x5Hu1WlHlhOI1u_9zyeNxfkzI8eCbmqYF1B1bzdrLugnQ8Y1xRArIGtoaHPyKqSgpYNreGMrACgKWXbsnNyEeMmHxlr4QU5r0TNW8ZhRdzt5LZYJrdz_ldpcUJv0adiGnRMzri0L5y3s0Gba5GfS5krhvEeQzG4XVeYMST8U0wYoospFnYOCxHnLuLvebG618M2X70kz3s9RHx1rJfk5-dPP66_ljffv3y7_nhTGs5EKiUwKXqBjNZdjR32vJE692t13aGULe8k8EroylJhawrCaslq3Ve86VsqKbskbw6-UxhzAzGpnYsGh0F7HOeoBHAuRStPghRkxSTnGbw6gnO3Q6um4HY67NXDFDPw-gjoaPTQB-2Ni4-clCB5u3DNgTNhjDFg_4iAWmJVG_UQq1piVcBUjjUL3z0R5mR0cqNPGR9Oyz8c5JjnfucwqGgc-hyqC2iSsqM7bfH-iYUZnHf5t1vcY9yMc_A5VVWpSBWo22X1ls0DkU1Y0_zb4H86-AtgVu3e |
CODEN | BRREAP |
CitedBy_id | crossref_primary_10_1007_s11596_018_1960_8 crossref_primary_10_1016_j_brs_2009_06_005 crossref_primary_10_1007_s12311_017_0859_4 crossref_primary_10_1016_j_apmr_2019_08_473 crossref_primary_10_3390_brainsci11020224 crossref_primary_10_1016_j_clinph_2010_11_006 crossref_primary_10_1097_WNP_0b013e3181af1d41 crossref_primary_10_3389_fnins_2019_00895 crossref_primary_10_1007_s00221_007_1183_x crossref_primary_10_1007_s00221_012_3165_x |
Cites_doi | 10.1152/jn.01140.2005 10.1212/01.WNL.0000078809.33581.1F 10.1093/brain/123.3.572 10.1113/jphysiol.2002.023317 10.1016/j.brainres.2006.06.057 10.1016/0013-4694(81)90182-6 10.1007/PL00005641 10.1113/jphysiol.2005.090654 10.1152/jn.00900.2002 |
ContentType | Journal Article |
Copyright | 2007 Elsevier B.V. Elsevier B.V. 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier B.V. – notice: Elsevier B.V. – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1016/j.brainres.2007.03.062 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1872-6240 |
EndPage | 97 |
ExternalDocumentID | 17459350 18808590 10_1016_j_brainres_2007_03_062 S0006899307007366 1_s2_0_S0006899307007366 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 41~ 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYJJ AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SES SEW SNS SPCBC SSN SSZ T5K VH1 WUQ X7M XPP Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG AADPK AAIAV ABYKQ AFMIJ AHPSJ AJBFU EFLBG AAYXX ACLOT CITATION ~HD AGRNS BNPGV IQODW SSH CGR CUY CVF ECM EIF NPM 7TK 7X8 |
ID | FETCH-LOGICAL-c537t-80387f7e324b4ebef568a174da4be8895b80517a1d27d4207da834af156f92823 |
IEDL.DBID | .~1 |
ISSN | 0006-8993 |
IngestDate | Sun Sep 28 11:28:37 EDT 2025 Sun Sep 28 06:11:49 EDT 2025 Wed Feb 19 01:43:45 EST 2025 Mon Jul 21 09:15:38 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Oct 01 02:04:26 EDT 2025 Fri Feb 23 02:30:19 EST 2024 Sun Feb 23 10:19:36 EST 2025 Tue Aug 26 19:06:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Locomotion Transcranial magnetic stimulation Motor cortex Plasticity Paired associative stimulation Human Motor pathway Motor cortex;Transcranial magnetic stimulation;Plasticity;Locomotion;Paired associative stimulation Central nervous system Lower limb Encephalon Walking Rest Magnetic stimulus Timing Motricity |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-80387f7e324b4ebef568a174da4be8895b80517a1d27d4207da834af156f92823 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 17459350 |
PQID | 20813855 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_70558798 proquest_miscellaneous_20813855 pubmed_primary_17459350 pascalfrancis_primary_18808590 crossref_primary_10_1016_j_brainres_2007_03_062 crossref_citationtrail_10_1016_j_brainres_2007_03_062 elsevier_sciencedirect_doi_10_1016_j_brainres_2007_03_062 elsevier_clinicalkeyesjournals_1_s2_0_S0006899307007366 elsevier_clinicalkey_doi_10_1016_j_brainres_2007_03_062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-06-11 |
PublicationDateYYYYMMDD | 2007-06-11 |
PublicationDate_xml | – month: 06 year: 2007 text: 2007-06-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | London Amsterdam New York, NY |
PublicationPlace_xml | – name: Amsterdam – name: London – name: New York, NY – name: Netherlands |
PublicationTitle | Brain research |
PublicationTitleAlternate | Brain Res |
PublicationYear | 2007 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Uy, Ridding, Hillier, Thompson, Miles (bib9) 2003; 61 Stefan, Kunesch, Benecke, Cohen, Classen (bib6) 2002; 543 Wolters, Sandbrink, Schlottmann, Kunesch, Stefan, Cohen, Benecke, Classen (bib11) 2003; 89 Devanne, Lavoie, Capaday (bib2) 1997; 114 Brooke, Staines, Cheng, Misiaszek (bib1) 1996; 37 Stefan, Kunesch, Cohen, Benecke, Classen (bib7) 2000; 123 Prior, Stinear (bib5) 2006; 1110 Hebb (bib3) 1949 Vas, Cracco, Cracco (bib10) 1981; 52 Kujirai, Kujirai, Sinkjaer, Rothwell (bib4) 2006; 96 Stinear, Hornby (bib8) 2005; 567.2 Brooke (10.1016/j.brainres.2007.03.062_bib1) 1996; 37 Wolters (10.1016/j.brainres.2007.03.062_bib11) 2003; 89 Uy (10.1016/j.brainres.2007.03.062_bib9) 2003; 61 Vas (10.1016/j.brainres.2007.03.062_bib10) 1981; 52 Prior (10.1016/j.brainres.2007.03.062_bib5) 2006; 1110 Stefan (10.1016/j.brainres.2007.03.062_bib7) 2000; 123 Kujirai (10.1016/j.brainres.2007.03.062_bib4) 2006; 96 Stinear (10.1016/j.brainres.2007.03.062_bib8) 2005; 567.2 Devanne (10.1016/j.brainres.2007.03.062_bib2) 1997; 114 Hebb (10.1016/j.brainres.2007.03.062_bib3) 1949 Stefan (10.1016/j.brainres.2007.03.062_bib6) 2002; 543 |
References_xml | – volume: 114 start-page: 329 year: 1997 end-page: 338 ident: bib2 article-title: Input–output properties and gain changes in the human corticospinal pathway publication-title: Exp. Brain Res. – volume: 1110 start-page: 150 year: 2006 end-page: 158 ident: bib5 article-title: Phasic spike-timing dependent plasticity of human cortex publication-title: Brain Res. – volume: 37 start-page: 451 year: 1996 end-page: 461 ident: bib1 article-title: Modulation of cerebral somatosensory evoked potentials arising from tibial and sural nerve stimulation during rhythmic active and passive movements of the human lower limb publication-title: Electromyogr. Clin. Neurophysiol. – volume: 567.2 start-page: 701 year: 2005 end-page: 711 ident: bib8 article-title: Stimulation-induced changes in lower limb corticomotor excitability during treadmill walking publication-title: J. Physiol. – volume: 89 start-page: 2339 year: 2003 end-page: 2345 ident: bib11 article-title: A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex publication-title: J. Neurophysiol. – volume: 123 start-page: 572 year: 2000 end-page: 584 ident: bib7 article-title: Induction of plasticity in the human motor cortex by paired associative stimuli publication-title: Brain – volume: 96 start-page: 1337 year: 2006 end-page: 1346 ident: bib4 article-title: Associative plasticity in human motor cortex under voluntary muscle contraction publication-title: J. Neurophysiol. – volume: 61 start-page: 982 year: 2003 end-page: 984 ident: bib9 article-title: Does induction of plastic change in motor cortex improve leg function after stroke? publication-title: Neurology – volume: 52 start-page: 1 year: 1981 end-page: 8 ident: bib10 article-title: Scalp-recorded short latency cortical and subcortical somatosensory evoked potentials to peroneal stimulation publication-title: Electroencephalogr. Clin. Neurophysiol. – year: 1949 ident: bib3 article-title: The Organization of Behavior – volume: 543 start-page: 699 year: 2002 end-page: 708 ident: bib6 article-title: Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation publication-title: J. Physiol. – year: 1949 ident: 10.1016/j.brainres.2007.03.062_bib3 – volume: 96 start-page: 1337 year: 2006 ident: 10.1016/j.brainres.2007.03.062_bib4 article-title: Associative plasticity in human motor cortex under voluntary muscle contraction publication-title: J. Neurophysiol. doi: 10.1152/jn.01140.2005 – volume: 61 start-page: 982 year: 2003 ident: 10.1016/j.brainres.2007.03.062_bib9 article-title: Does induction of plastic change in motor cortex improve leg function after stroke? publication-title: Neurology doi: 10.1212/01.WNL.0000078809.33581.1F – volume: 123 start-page: 572 year: 2000 ident: 10.1016/j.brainres.2007.03.062_bib7 article-title: Induction of plasticity in the human motor cortex by paired associative stimuli publication-title: Brain doi: 10.1093/brain/123.3.572 – volume: 543 start-page: 699 year: 2002 ident: 10.1016/j.brainres.2007.03.062_bib6 article-title: Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.023317 – volume: 1110 start-page: 150 year: 2006 ident: 10.1016/j.brainres.2007.03.062_bib5 article-title: Phasic spike-timing dependent plasticity of human cortex publication-title: Brain Res. doi: 10.1016/j.brainres.2006.06.057 – volume: 52 start-page: 1 year: 1981 ident: 10.1016/j.brainres.2007.03.062_bib10 article-title: Scalp-recorded short latency cortical and subcortical somatosensory evoked potentials to peroneal stimulation publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(81)90182-6 – volume: 114 start-page: 329 year: 1997 ident: 10.1016/j.brainres.2007.03.062_bib2 article-title: Input–output properties and gain changes in the human corticospinal pathway publication-title: Exp. Brain Res. doi: 10.1007/PL00005641 – volume: 567.2 start-page: 701 year: 2005 ident: 10.1016/j.brainres.2007.03.062_bib8 article-title: Stimulation-induced changes in lower limb corticomotor excitability during treadmill walking publication-title: J. Physiol. doi: 10.1113/jphysiol.2005.090654 – volume: 37 start-page: 451 year: 1996 ident: 10.1016/j.brainres.2007.03.062_bib1 article-title: Modulation of cerebral somatosensory evoked potentials arising from tibial and sural nerve stimulation during rhythmic active and passive movements of the human lower limb publication-title: Electromyogr. Clin. Neurophysiol. – volume: 89 start-page: 2339 year: 2003 ident: 10.1016/j.brainres.2007.03.062_bib11 article-title: A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00900.2002 |
SSID | ssj0003390 |
Score | 1.9199591 |
Snippet | Transcranial magnetic stimulation (TMS) of human lower limb motor cortex paired with common peroneal nerve electrical stimulation produces a lasting modulation... Abstract Transcranial magnetic stimulation (TMS) of human lower limb motor cortex paired with common peroneal nerve electrical stimulation produces a lasting... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 92 |
SubjectTerms | Adult Analysis of Variance Biological and medical sciences Electric Stimulation - methods Electromyography - methods Evoked Potentials, Motor - physiology Evoked Potentials, Motor - radiation effects Female Fundamental and applied biological sciences. Psychology Humans Locomotion Lower Extremity - innervation Lower Extremity - physiology Male Middle Aged Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Motor cortex Motor Cortex - physiology Motor Cortex - radiation effects Neurology Paired associative stimulation Peroneal Nerve - physiology Peroneal Nerve - radiation effects Plasticity Rest - physiology Transcranial magnetic stimulation Transcranial Magnetic Stimulation - methods Vertebrates: nervous system and sense organs Walking - physiology |
Title | Spike-timing-dependent plasticity induced in resting lower limb cortex persists during subsequent walking |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006899307007366 https://www.clinicalkey.es/playcontent/1-s2.0-S0006899307007366 https://dx.doi.org/10.1016/j.brainres.2007.03.062 https://www.ncbi.nlm.nih.gov/pubmed/17459350 https://www.proquest.com/docview/20813855 https://www.proquest.com/docview/70558798 |
Volume | 1153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1872-6240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003390 issn: 0006-8993 databaseCode: AIKHN dateStart: 19950109 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003390 issn: 0006-8993 databaseCode: ACRLP dateStart: 19950109 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-6240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003390 issn: 0006-8993 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003390 issn: 0006-8993 databaseCode: AKRWK dateStart: 19930108 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqckFCCCiPUFh8QNyym8R27BxXK6rlVSGgUm-WvbZR2m0aNamgF347M3l0qdAKBKdIkZ1kPeOZ-bwz8xHyMg9c-Cx1MXMeAEq6crEShYqZUZJ5mzjbsTV8OMyXR_ztsTjeIYuxFgbTKgfb39v0zloPd2bDas7qssQa3yQHtIBKC3qaY9tt7P4FOj39sUnzYKw_Z0HkjKN_qRI-mVqkYQBYO7QyZNMkz7Y5qDu1aWDZQs93sT0g7RzTwT1yd4go6bz_6Ptkx1cPyN68AjR9dkVf0S7Hszs83yPl57o89XGLVF5f45EAt6U1xNCYXt1eUcDoIG0HV4q0HTCOrpFJja7LM0tXmJv7ndZ4yta0De2rHGkD5qfLyW7pN7PG0_eH5Ojg9ZfFMh7IFuKVYLIFT8WUDNJDgGU5SDaIXBmAK85w65UqhFXYzsukLpOOZ4l0RjFuAuC_UABuY4_IbnVe-SeEeq6MClkAMGe5AYid5z7YIAX4wcwFHxExrrBeDZ3IkRBjrceUsxM9SgZpMqVOmAbJRGR2Pa_ue3H8cYYcBajHSlOwjRrcxb_N9M2wxRud6ibTif5NDSNSXM-8ocl_9dbJDS3b_Ewws7CHkoi8GNVOgx3AP3dM5c8v8SkqZUqI7SOwb5KShYrI415fN0-XXBRMJE__49P3ye0xlTJNn5Hd9uLSP4d4rbWTbkNOyK354tP7j3h98255-BMMBkQu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-x8rBJ07SNfWQf4Idpb6FJbMfOY4WGyoC-DCTeLLu2p0Ap0RIE_Pc756MMTdWm7alSlUsT3_nufu7d_QA-5Z5xl6U2ptYhQEnnNpa8kDHVUlBnEmtatobjWT49ZV_P-NkG7A29MKGssvf9nU9vvXX_zbhfzXFVlqHHN8kRLQSjRTvN80ewyTj65BFsTg4Op7OVQ6a0O2oJ4DkI_NIofL5rAhMDItt-miHdTfJsXYx6WukaV853lBfrc9I2Nu0_h2d9Ukkm3XO_gA23fAlbkyUC6ss78pm0ZZ7t-fkWlN-q8sLFTWDz-h4PHLgNqTCNDhXWzR1BmI4Kt_hJAnMHXkcWgUyNLMpLQ-ahPPeWVOGgrW5q0jU6kho9UFuW3ZAbvQgH8K_gdP_Lyd407vkW4jmnosFgRaXwwmGOZRgq1_NcakQsVjPjpCy4kWGil05tJizLEmG1pEx7hIC-QOhGX8NoebV0b4E4JrX0mUc8Z5hGlJ3nzhsvOIbCzHoXAR9WWM37YeSBE2OhhqqzczVoJjBlCpVQhZqJYLySq7pxHH-UEIMC1dBsiu5RYcT4N0lX97u8VqmqM5Wo3ywxgmIl-cCY_-pXtx9Y2f1roqfFbZREsDOYnUJXEP7f0Ut3dR3uIlMqOV9_RRidJEUhI3jT2ev93QXjBeXJu_949B14PD05PlJHB7PD9_BkqKxM0w8wan5cu4-YvjVmu9-ePwG-MkVE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spike-timing-dependent+plasticity+induced+in+resting+lower+limb+cortex+persists+during+subsequent+walking&rft.jtitle=Brain+research&rft.au=JAYARAM%2C+Gowri&rft.au=SANTOS%2C+Lynette&rft.au=STINEAR%2C+James+W&rft.date=2007-06-11&rft.pub=Elsevier&rft.issn=0006-8993&rft.volume=1153&rft.spage=92&rft.epage=97&rft_id=info:doi/10.1016%2Fj.brainres.2007.03.062&rft.externalDBID=n%2Fa&rft.externalDocID=18808590 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00068993%2FS0006899307X18274%2Fcov150h.gif |