Information Geometry Theoretic Measures for Characterizing Neural Information Processing from Simulated EEG Signals
In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models for both healthy subjects and Alzheimer’s disease (AD) patients with both eyes-closed and eyes-open condition...
        Saved in:
      
    
          | Published in | Entropy (Basel, Switzerland) Vol. 26; no. 3; p. 213 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        28.02.2024
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1099-4300 1099-4300  | 
| DOI | 10.3390/e26030213 | 
Cover
| Abstract | In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models for both healthy subjects and Alzheimer’s disease (AD) patients with both eyes-closed and eyes-open conditions. In particular, we employ information rates to quantify the time evolution of probability density functions of simulated EEG signals, and employ causal information rates to quantify one signal’s instantaneous influence on another signal’s information rate. These two measures help us find significant and interesting distinctions between healthy subjects and AD patients when they open or close their eyes. These distinctions may be further related to differences in neural information processing activities of the corresponding brain regions, and to differences in connectivities among these brain regions. Our results show that information rate and causal information rate are superior to their more traditional or established information-theoretic counterparts, i.e., differential entropy and transfer entropy, respectively. Since these novel, information geometry theoretic measures can be applied to experimental EEG signals in a model-free manner, and they are capable of quantifying non-stationary time-varying effects, nonlinearity, and non-Gaussian stochasticity presented in real-world EEG signals, we believe that they can form an important and powerful tool-set for both understanding neural information processing in the brain and the diagnosis of neurological disorders, such as Alzheimer’s disease as presented in this work. | 
    
|---|---|
| AbstractList | In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models for both healthy subjects and Alzheimer’s disease (AD) patients with both eyes-closed and eyes-open conditions. In particular, we employ information rates to quantify the time evolution of probability density functions of simulated EEG signals, and employ causal information rates to quantify one signal’s instantaneous influence on another signal’s information rate. These two measures help us find significant and interesting distinctions between healthy subjects and AD patients when they open or close their eyes. These distinctions may be further related to differences in neural information processing activities of the corresponding brain regions, and to differences in connectivities among these brain regions. Our results show that information rate and causal information rate are superior to their more traditional or established information-theoretic counterparts, i.e., differential entropy and transfer entropy, respectively. Since these novel, information geometry theoretic measures can be applied to experimental EEG signals in a model-free manner, and they are capable of quantifying non-stationary time-varying effects, nonlinearity, and non-Gaussian stochasticity presented in real-world EEG signals, we believe that they can form an important and powerful tool-set for both understanding neural information processing in the brain and the diagnosis of neurological disorders, such as Alzheimer’s disease as presented in this work. In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models for both healthy subjects and Alzheimer's disease (AD) patients with both eyes-closed and eyes-open conditions. In particular, we employ information rates to quantify the time evolution of probability density functions of simulated EEG signals, and employ causal information rates to quantify one signal's instantaneous influence on another signal's information rate. These two measures help us find significant and interesting distinctions between healthy subjects and AD patients when they open or close their eyes. These distinctions may be further related to differences in neural information processing activities of the corresponding brain regions, and to differences in connectivities among these brain regions. Our results show that information rate and causal information rate are superior to their more traditional or established information-theoretic counterparts, i.e., differential entropy and transfer entropy, respectively. Since these novel, information geometry theoretic measures can be applied to experimental EEG signals in a model-free manner, and they are capable of quantifying non-stationary time-varying effects, nonlinearity, and non-Gaussian stochasticity presented in real-world EEG signals, we believe that they can form an important and powerful tool-set for both understanding neural information processing in the brain and the diagnosis of neurological disorders, such as Alzheimer's disease as presented in this work.In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models for both healthy subjects and Alzheimer's disease (AD) patients with both eyes-closed and eyes-open conditions. In particular, we employ information rates to quantify the time evolution of probability density functions of simulated EEG signals, and employ causal information rates to quantify one signal's instantaneous influence on another signal's information rate. These two measures help us find significant and interesting distinctions between healthy subjects and AD patients when they open or close their eyes. These distinctions may be further related to differences in neural information processing activities of the corresponding brain regions, and to differences in connectivities among these brain regions. Our results show that information rate and causal information rate are superior to their more traditional or established information-theoretic counterparts, i.e., differential entropy and transfer entropy, respectively. Since these novel, information geometry theoretic measures can be applied to experimental EEG signals in a model-free manner, and they are capable of quantifying non-stationary time-varying effects, nonlinearity, and non-Gaussian stochasticity presented in real-world EEG signals, we believe that they can form an important and powerful tool-set for both understanding neural information processing in the brain and the diagnosis of neurological disorders, such as Alzheimer's disease as presented in this work.  | 
    
| Audience | Academic | 
    
| Author | He, Fei Hua, Jia-Chen Kim, Eun-jin  | 
    
| AuthorAffiliation | 1 Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 2NL, UK; ejk92122@gmail.com 2 Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 2TL, UK; fei.he@coventry.ac.uk  | 
    
| AuthorAffiliation_xml | – name: 2 Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 2TL, UK; fei.he@coventry.ac.uk – name: 1 Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 2NL, UK; ejk92122@gmail.com  | 
    
| Author_xml | – sequence: 1 givenname: Jia-Chen orcidid: 0000-0002-6591-1417 surname: Hua fullname: Hua, Jia-Chen – sequence: 2 givenname: Eun-jin orcidid: 0000-0001-5607-6635 surname: Kim fullname: Kim, Eun-jin – sequence: 3 givenname: Fei orcidid: 0000-0001-9176-6674 surname: He fullname: He, Fei  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38539727$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp1kkuP0zAUhSM0iHnAgj-AIrEBpM74FTteoVFVSqXhITGsLce5bl0lcbETUPn1ONOhtKNBWTi-_nySc-49z04630GWvcToklKJroBwRBHB9El2hpGUE0YROjl4P83OY1wjRCjB_Fl2SsuCSkHEWRYXnfWh1b3zXT4H30IftvntCnyA3pn8E-g4BIh5ovLpSgdtegjut-uW-WcYgm7yQ4WvwRuIcTy1wbf5N9cOje6hzmezedotO93E59lTmxZ4cb9eZN8_zG6nHyc3X-aL6fXNxBRU9BNRIQMGW2QEB8N0YRjGtoRKY14XhFogMpWZQAJjzLERJnninDBSVjWX9CJb7HRrr9dqE1yrw1Z57dRdwYel0iGZbEABrpg0hS21ZUyiojJMFrUhhaBaGIuS1rud1tBt9PaXbpq9IEZq7ILadyHB73fwZqhaqA10fQrq6A-OTzq3Ukv_M0lJLnHBk8Kbe4XgfwwQe9W6aKBpdAd-iIoizBDiBOOEvn6Arv0QxpwThTAWhSzJP2qpk12XWpY-bEZRdS3KkjDO2ZjY5SNUemponUlDZ12qH114deh0b_HvgCXgageY4GMMYJVx_d2sJGXXPBre2wc3_h_0H9Q77bY | 
    
| CitedBy_id | crossref_primary_10_1088_1361_6587_adab1c crossref_primary_10_3390_e26070539 crossref_primary_10_1103_PhysRevE_110_045209  | 
    
| Cites_doi | 10.1016/j.bspc.2022.103818 10.1016/j.clinph.2007.07.028 10.1111/ncn3.12674 10.1016/j.clinph.2004.01.001 10.1063/1.4772195 10.1186/s13195-022-01046-z 10.1098/rsta.2015.0109 10.1016/j.neuroscience.2023.05.033 10.1016/j.clinph.2015.07.040 10.1109/VIS49827.2021.9623301 10.3390/brainsci13010122 10.1137/S0036144500378302 10.3389/fncom.2015.00048 10.1080/01621459.1985.10477163 10.3390/e23081087 10.1002/hbm.24539 10.1016/j.physleta.2010.10.005 10.3389/fnhum.2018.00422 10.1016/j.bspc.2023.105181 10.1109/JBHI.2021.3105397 10.3390/e20090660 10.1016/j.biopsycho.2017.09.010 10.1017/CBO9780511616907 10.1016/j.neuroimage.2013.12.060 10.3390/e23060694 10.1007/978-3-031-08757-8_18 10.3390/e25050806 10.3389/fnhum.2015.00081 10.1109/ICARCV50220.2020.9305339 10.1519/00139143-200704000-00003 10.1016/j.neuroimage.2003.12.026 10.3390/e24081113 10.1016/j.clinph.2009.08.006 10.1016/j.difgeo.2007.11.027 10.1073/pnas.17.5.315 10.1038/s41598-020-73346-z  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024  | 
    
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024  | 
    
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/e26030213 | 
    
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 1099-4300 | 
    
| ExternalDocumentID | oai_doaj_org_article_e1b49c5f8af44905bc495dc2573a7cf0 10.3390/e26030213 PMC10969156 A788246649 38539727 10_3390_e26030213  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/W036770/1 – fundername: EPSRC grantid: EP/W036770/1  | 
    
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A CH8 IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c537t-7b0cec1f0c76ec4a5c411f8eba16d523fe29c4a470711161c7c972662428bd693 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1099-4300 | 
    
| IngestDate | Fri Oct 03 12:51:08 EDT 2025 Sun Oct 26 04:03:55 EDT 2025 Tue Sep 30 17:09:47 EDT 2025 Thu Sep 04 19:12:08 EDT 2025 Fri Jul 25 10:39:25 EDT 2025 Mon Oct 20 22:58:51 EDT 2025 Mon Oct 20 17:06:55 EDT 2025 Thu Jan 02 22:30:53 EST 2025 Thu Oct 16 04:36:11 EDT 2025 Thu Apr 24 23:09:07 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | electroencephalography Alzheimer’s disease signal processing neural information processing stochastic simulation brain networks information rate stochastic oscillators causal information rate causality information length information geometry dementia information theory  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c537t-7b0cec1f0c76ec4a5c411f8eba16d523fe29c4a470711161c7c972662428bd693 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-9176-6674 0000-0001-5607-6635 0000-0002-6591-1417  | 
    
| OpenAccessLink | https://www.proquest.com/docview/3001175982?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PMID | 38539727 | 
    
| PQID | 3001175982 | 
    
| PQPubID | 2032401 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e1b49c5f8af44905bc495dc2573a7cf0 unpaywall_primary_10_3390_e26030213 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10969156 proquest_miscellaneous_3014006211 proquest_journals_3001175982 gale_infotracmisc_A788246649 gale_infotracacademiconefile_A788246649 pubmed_primary_38539727 crossref_citationtrail_10_3390_e26030213 crossref_primary_10_3390_e26030213  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240228 | 
    
| PublicationDateYYYYMMDD | 2024-02-28 | 
    
| PublicationDate_xml | – month: 2 year: 2024 text: 20240228 day: 28  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Entropy (Basel, Switzerland) | 
    
| PublicationTitleAlternate | Entropy (Basel) | 
    
| PublicationYear | 2024 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Koopman (ref_38) 1931; 17 Facchi (ref_33) 2010; 374 Groen (ref_5) 2022; Volume 13352 Zhang (ref_20) 2015; 9 Jeong (ref_22) 2004; 115 ref_35 ref_32 ref_31 Terrell (ref_36) 1985; 80 ref_30 Jennings (ref_7) 2022; 14 Gunawardena (ref_10) 2023; 523 ref_15 Marx (ref_19) 2004; 21 Itoh (ref_34) 2008; 26 Agcaoglu (ref_14) 2019; 40 Springer (ref_18) 2007; 30 Ghorbanian (ref_1) 2015; 9 Wei (ref_17) 2018; 12 Barry (ref_11) 2007; 118 Montani (ref_28) 2015; 373 Pritchard (ref_23) 1991; 2 ref_25 ref_24 Xu (ref_21) 2014; 90 Matsutomo (ref_13) 2023; 11 Higham (ref_29) 2001; 43 Klepl (ref_9) 2022; 26 Miraglia (ref_16) 2016; 127 ref_2 Mohr (ref_37) 2012; 22 ref_27 ref_26 ref_8 Barry (ref_12) 2009; 120 ref_4 Nguyen (ref_3) 2020; 10 Barry (ref_6) 2017; 129  | 
    
| References_xml | – ident: ref_4 doi: 10.1016/j.bspc.2022.103818 – volume: 118 start-page: 2765 year: 2007 ident: ref_11 article-title: EEG Differences between Eyes-Closed and Eyes-Open Resting Conditions publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.07.028 – volume: 11 start-page: 10 year: 2023 ident: ref_13 article-title: Effects of Eyes-Closed Resting and Eyes-Open Conditions on Cerebral Blood Flow Measurement Using Arterial Spin Labeling Magnetic Resonance Imaging publication-title: Neurol. Clin. Neurosci. doi: 10.1111/ncn3.12674 – volume: 115 start-page: 1490 year: 2004 ident: ref_22 article-title: EEG Dynamics in Patients with Alzheimer’s Disease publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.01.001 – volume: 22 start-page: 047510 year: 2012 ident: ref_37 article-title: Applied Koopmanism publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.4772195 – volume: 14 start-page: 109 year: 2022 ident: ref_7 article-title: Investigating the Power of Eyes Open Resting State EEG for Assisting in Dementia Diagnosis publication-title: Alzheimer’s Res. Ther. doi: 10.1186/s13195-022-01046-z – volume: 373 start-page: 20150109 year: 2015 ident: ref_28 article-title: Causal Information Quantification of Prominent Dynamical Features of Biological Neurons publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2015.0109 – volume: 523 start-page: 140 year: 2023 ident: ref_10 article-title: Kernel-Based Nonlinear Manifold Learning for EEG-based Functional Connectivity Analysis and Channel Selection with Application to Alzheimer’s Disease publication-title: Neuroscience doi: 10.1016/j.neuroscience.2023.05.033 – volume: 127 start-page: 1261 year: 2016 ident: ref_16 article-title: EEG Characteristics in “Eyes-Open” versus “Eyes-Closed” Conditions: Small-world Network Architecture in Healthy Aging and Age-Related Brain Degeneration publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.07.040 – ident: ref_35 doi: 10.1109/VIS49827.2021.9623301 – ident: ref_15 doi: 10.3390/brainsci13010122 – volume: 43 start-page: 525 year: 2001 ident: ref_29 article-title: An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations publication-title: SIAM Rev. doi: 10.1137/S0036144500378302 – volume: 9 start-page: 48 year: 2015 ident: ref_1 article-title: Stochastic Non-Linear Oscillator Models of EEG: The Alzheimer’s Disease Case publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2015.00048 – volume: 80 start-page: 209 year: 1985 ident: ref_36 article-title: Oversmoothed Nonparametric Density Estimates publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1985.10477163 – volume: 2 start-page: 102 year: 1991 ident: ref_23 article-title: Altered EEG Dynamical Responsivity Associated with Normal Aging and Probable Alzheimer’s Disease publication-title: Dementia – ident: ref_25 doi: 10.3390/e23081087 – volume: 40 start-page: 2488 year: 2019 ident: ref_14 article-title: Resting State Connectivity Differences in Eyes Open versus Eyes Closed Conditions publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24539 – volume: 374 start-page: 4801 year: 2010 ident: ref_33 article-title: Classical and Quantum Fisher Information in the Geometrical Formulation of Quantum Mechanics publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.10.005 – volume: 12 start-page: 422 year: 2018 ident: ref_17 article-title: Eyes-Open and Eyes-Closed Resting States with Opposite Brain Activity in Sensorimotor and Occipital Regions: Multidimensional Evidences from Machine Learning Perspective publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00422 – ident: ref_31 – ident: ref_8 doi: 10.1016/j.bspc.2023.105181 – volume: 26 start-page: 992 year: 2022 ident: ref_9 article-title: Characterising Alzheimer’s Disease with EEG-Based Energy Landscape Analysis publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3105397 – ident: ref_27 doi: 10.3390/e20090660 – volume: 129 start-page: 293 year: 2017 ident: ref_6 article-title: EEG Differences between Eyes-Closed and Eyes-Open Resting Remain in Healthy Ageing publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2017.09.010 – ident: ref_32 doi: 10.1017/CBO9780511616907 – volume: 90 start-page: 246 year: 2014 ident: ref_21 article-title: Different Topological Organization of Human Brain Functional Networks with Eyes Open versus Eyes Closed publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.060 – ident: ref_30 doi: 10.3390/e23060694 – volume: Volume 13352 start-page: 188 year: 2022 ident: ref_5 article-title: Analysis of Parameters Distribution of EEG Signals for Five Epileptic Seizure Phases Modeled by Duffing Van Der Pol Oscillator publication-title: Proceedings of the Computational Science—ICCS 2022 doi: 10.1007/978-3-031-08757-8_18 – ident: ref_26 doi: 10.3390/e25050806 – volume: 9 start-page: 81 year: 2015 ident: ref_20 article-title: Directionality of Large-Scale Resting-State Brain Networks during Eyes Open and Eyes Closed Conditions publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00081 – ident: ref_2 doi: 10.1109/ICARCV50220.2020.9305339 – volume: 30 start-page: 8 year: 2007 ident: ref_18 article-title: Normative Values for the Unipedal Stance Test with Eyes Open and Closed publication-title: J. Geriatr. Phys. Ther. doi: 10.1519/00139143-200704000-00003 – volume: 21 start-page: 1818 year: 2004 ident: ref_19 article-title: Eyes Open and Eyes Closed as Rest Conditions: Impact on Brain Activation Patterns publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.12.026 – ident: ref_24 doi: 10.3390/e24081113 – volume: 120 start-page: 1806 year: 2009 ident: ref_12 article-title: EEG Differences in Children between Eyes-Closed and Eyes-Open Resting Conditions publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.08.006 – volume: 26 start-page: 347 year: 2008 ident: ref_34 article-title: Fisher Information Metric and Poisson Kernels publication-title: Differ. Geom. Its Appl. doi: 10.1016/j.difgeo.2007.11.027 – volume: 17 start-page: 315 year: 1931 ident: ref_38 article-title: Hamiltonian Systems and Transformation in Hilbert Space publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.17.5.315 – volume: 10 start-page: 16342 year: 2020 ident: ref_3 article-title: Collective Almost Synchronization-Based Model to Extract and Predict Features of EEG Signals publication-title: Sci. Rep. doi: 10.1038/s41598-020-73346-z  | 
    
| SSID | ssj0023216 | 
    
| Score | 2.3574703 | 
    
| Snippet | In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 213 | 
    
| SubjectTerms | Advertising executives Alzheimer's disease Biomarkers Brain causal information rate causality Data processing Distribution (Probability theory) Electroencephalography Entropy Geometry information geometry information length Information processing information rate Information theory Nervous system diseases Neurological diseases Neurological disorders Neurophysiology Nonlinearity Optimization techniques Oscillators Physiology Probability density functions Simulation stochastic oscillators  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll_RSWtKH2ySoD2gvJpYlW9YxCZuEQnppArkJaVZuAxtvyO5S0l-fGUtr1n3QS4-2Zo01-sYz36L5xNgH7aAAhE5elh5yZZzLPWapXJW-roQLulDUjXz-pT67VJ-vqquNo75oT1iUB46OOwjCKwNV27hWKVNUHrCknwIiTToNbc_Wi8asyVSiWrIUddQRkkjqDwJW7RKzmRxln16k__dP8UYu-nWf5Paqu3X3P9xstpGETp6yJ6l65IfxrZ-xR6HbYYvUUkQu5qdhfhOWd_f8Yt2hyM_j34ALjlb8eBBo_olJi5M2Bz5w8wmpdYBGqfeEf72-oSO-wpRPJqd49Y0Ul5-zy5PJxfFZns5SyKGSeplrX0AA0Rag6wDKVaCEaJvgnainSEbbUBq8rTSWHAKrQNBgNCZvzOCNn9ZGvmBb3bwLrxhvSyBRQd04r1QFxkmM6VDU4J0soNYZ-7T2sYUkNE7nXcwsEg5aDjssR8beDaa3UV3jT0ZHtFCDAQli9zcQJjbBxP4LJhn7SMtsKWzxZcCl7gOcEglg2UONVIOk9k3GdkeWGG4wHl4DxaZwX1gZJU9NU2bs7TBMv6QtbF2Yr8gGuWxRI-HO2MuIq2FKEosmdDe6rhkhbjTn8Uh3_b0XAxfIQQ2S8Iy9H8D5d1--_h--fMMel1jaxcb-Xba1vFuFPSzNln6_j8IHV6o3XQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QEuPMQrpSAXkOCS4sSOHR-XatsKqRUSXamcInvWgYpttupmVbW_nvEmGzblIY6JJ1E8nvHMxP4-A7zVFjmS6cRp6jCWxtrYUZSKZepUllivuQxo5KNjdTiWn06z0w3YWWFh1tbvBZXjHzzl24LikLgDmyqjdHsAm-Pjz8Ovy1VMY2IpOG8Yg_ryvTizpOP_fdJdizq3d0TeXVQX9vrKTqdr4Wb_wS_QTrPL5Mfuona7eHOLw_GfPXkI99tkkw0b63gEG756DPMWgRRGhB342bmvL6_ZyQrQyI6av4ZzRlJsr-NzvqEYxwKVB71w_Q0t0iC0BqgK-3J2Hk4E8xM2Gh3Q1bdA0PwExvujk73DuD16IcZM6DrWjqPHpOSolUdpM5RJUube2URNqHYtfWrottSUoSSUNKJGoynWU8DP3UQZ8RQG1azyz4GVKQYOQp1bJ2WGxgqaAjxX6KzgqHQE71cDVWDLSx6Ox5gWVJ8EzRWd5iJ43YleNGQcfxL6GEa7Ewj82csbNBhF646FT5w0mJW5LaU0PHNIheIEaf4SVmPJI3gXbKUIXk4fg7YFK1CXAl9WMdRUmQRmfhPBdk-SvBP7zStrK9rZYV6IhiHV5GkEO11zeDLseKv8bBFkqPTliurzCJ41xtl1SVCOReom1eU9s-31ud9SnX1fcoeTzyhDNXsEbzoL_7sut_5L6gXcSynVa4D-2zCoLxf-JaVqtXvVOutP3jQ5cQ priority: 102 providerName: Unpaywall  | 
    
| Title | Information Geometry Theoretic Measures for Characterizing Neural Information Processing from Simulated EEG Signals | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38539727 https://www.proquest.com/docview/3001175982 https://www.proquest.com/docview/3014006211 https://pubmed.ncbi.nlm.nih.gov/PMC10969156 https://doi.org/10.3390/e26030213 https://doaj.org/article/e1b49c5f8af44905bc495dc2573a7cf0  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: HH5 dateStart: 19990101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEF4S56F9KSm91KRGPaB9EdFqV1rpoRQn2A6FmNDG4D6J3dEqDTiy64OS_vrO6KrV68Xg3bHQzs653vmGsTdKgw8oOl4QGPBkorVn0Et5MjBRyLVVvqRq5ItJdD6VH2fhbI9NmloYulbZ2MTSUGcLoDPyE1GhSiZx8GH5zaOuUfTvatNCQ9etFbL3JcTYPjsICBmrxw5Oh5PLT20KJgIeVfhCApP9E4vRvEAvJzpeqQTv_9NE7_io3-9P3tsWS333Xc_nO85pdMge1FGlO6jE4CHbs8Ujtq5LjYj17tgubu1mdedeNZWL7kV1PLh2kco9a4Gbf6AzcwmzAx-4-4S6pIBmqSbF_XxzS62_bOYOh2P8dk1IzI_ZdDS8Ojv36h4LHoRCbTxlfLDAcx9UZEHqECTneWyN5lGGSWpugwSHpcJQhGN0CAoShU4dPXtssigRT1ivWBT2GXPzAAhsUMXaSBlCogXquvUjMFr4ECmHvWt4nEINQE59MOYpJiK0HWm7HQ571ZIuK9SNvxGd0ka1BASUXQ4sVtdprXep5UYmEOaxzqVM_NAAZoQZoKESWkHuO-wtbXNK6owvA7quSsAlETBWOlCYghAEf-Kw4w4lqiF0pxtBSWszsE5_Ca3DXrbT9Eu62lbYxZZoMMf1I0zEHfa0kqt2SQKDKWQ3si7uSFxnzd2Z4uZrCRLOMTdNMDl32OtWOP_Ny-f_f_sjdj_AYK4q5T9mvc1qa19gMLYxfbYfj8b9Ws_65ZEGfo5nHMemk8vBl59NxTlK | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFcEIiXocDyElys2t6113uoUFvSprSJEKRSb-56vC6VUifkoSr8OH4bM_GDmNetx3gnlndmdmY_e-cbxl4rAx6g67hBkIIrtTFuilnKlUEahb6xypNUjdzrR91T-fEsPFtjP-paGDpWWcfEZaDORkDvyLdFySqp4-D9-JtLXaPo62rdQsNUrRWynSXFWFXYcWwX1wjhpjtHH9Deb4LgoDPY77pVlwEXQqFmrko9sODnHqjIgjQhSN_PY5saP8oQpuU20HhZKkzGPu6PQIFWmNYwt8VpFhEZE6aADSmkRvC3sdfpf_rcQD4R-FHJZySE9rYtogeBWVW0suCyWcCfKWElJ_5-XnNzXozN4toMhyvJ8OAOu13tYvlu6XZ32Zot7rFpVdpEpuaHdnRlZ5MFH9SVkrxXvo6ccpTi-w1R9HdMnpw4QvCGq3eoShholGpg-JfLK2o1ZjPe6Rzirwtifr7PTm9E2w_YejEq7CPG8wCI3FDFJpUyBG0ExhbrRZAa4UGkHPau1nECFeE59d0YJgh8yBxJYw6HvWxExyXLx9-E9shQjQARcy8vjCYXSbXOE-unUkOYxyaXUnthCohAM8DAKIyC3HPYWzJzQuEDHwZMVQWBUyIirmRXIeQhyn_tsK2WJC57aA_XjpJUYWea_FokDnvRDNM_6ShdYUdzkkFM7UUI_B32sPSrZkoCN2-oblRd3PK41pzbI8Xl1yUpuY9YWPth5LBXjXP-W5eP___0z9lmd9A7SU6O-sdP2K0AN5IljcAWW59N5vYpbgRn6bNqtXF2ftML_CeE13Ee | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5VrQS8oCIuQ4HlErxYsb1rr_2AUGmTtJRWSLRS39zd8bpUSu2QQ1X4afw6ZuKDmOutj_FOLO_cY-98w9grpcEDVB03CAy4MtHaNRilXBmYKPS1VZ6kbuTDo2jvRH48DU_X2I-mF4aOVTY-cemosxLoHXlPVKiSSRz08vpYxOfdwfvxN5cmSNGX1macRqUiB3ZxheXb9N3-Lsr6dRAM-sc7e249YcCFUKiZq4wHFvzcAxVZkDoE6ft5bI32owxLtNwGCV6WCgOxj7kRKEgUhjSMa7HJIgJiQve_oQjFnbrUB8O22BOBH1VIRkIkXs9i3SAwnopO_FuOCfgzGKxEw99Pat6cF2O9uNKj0UoYHGyy23X-yrcrhbvD1mxxl03rpiYSMh_a8tLOJgt-3PRI8sPqReSUIxXfaSGiv2PY5IQOgjdcvUPdvECr1P3Cv1xc0pAxm_F-f4i_zgnz-R47uRZe32frRVnYh4znARCsoYq1kTKERAv0KtaLwGjhQaQc9rbhcQo11DlN3BilWPKQONJWHA570ZKOK3yPvxF9IEG1BATJvbxQTs7T2sJT6xuZQJjHOpcy8UIDWHtmgC5RaAW557A3JOaUHAc-DOi6_wG3RBBc6bbCYofA_hOHbXUo0eChu9woSlo7nGn6yzwc9rxdpn_SIbrClnOiwWrai7Dkd9iDSq_aLQlM25DdyLq4o3GdPXdXiouvSzhyH6vgxA8jh71slfPfvHz0_6d_xm6gWaef9o8OHrNbAWaQFX7AFlufTeb2CWaAM_N0aWqcnV23bf8EcG5uuA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QEuPMQrpSAXkOCS4sSOHR-XatsKqRUSXamcInvWgYpttupmVbW_nvEmGzblIY6JJ1E8nvHMxP4-A7zVFjmS6cRp6jCWxtrYUZSKZepUllivuQxo5KNjdTiWn06z0w3YWWFh1tbvBZXjHzzl24LikLgDmyqjdHsAm-Pjz8Ovy1VMY2IpOG8Yg_ryvTizpOP_fdJdizq3d0TeXVQX9vrKTqdr4Wb_wS_QTrPL5Mfuona7eHOLw_GfPXkI99tkkw0b63gEG756DPMWgRRGhB342bmvL6_ZyQrQyI6av4ZzRlJsr-NzvqEYxwKVB71w_Q0t0iC0BqgK-3J2Hk4E8xM2Gh3Q1bdA0PwExvujk73DuD16IcZM6DrWjqPHpOSolUdpM5RJUube2URNqHYtfWrottSUoSSUNKJGoynWU8DP3UQZ8RQG1azyz4GVKQYOQp1bJ2WGxgqaAjxX6KzgqHQE71cDVWDLSx6Ox5gWVJ8EzRWd5iJ43YleNGQcfxL6GEa7Ewj82csbNBhF646FT5w0mJW5LaU0PHNIheIEaf4SVmPJI3gXbKUIXk4fg7YFK1CXAl9WMdRUmQRmfhPBdk-SvBP7zStrK9rZYV6IhiHV5GkEO11zeDLseKv8bBFkqPTliurzCJ41xtl1SVCOReom1eU9s-31ud9SnX1fcoeTzyhDNXsEbzoL_7sut_5L6gXcSynVa4D-2zCoLxf-JaVqtXvVOutP3jQ5cQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+Geometry+Theoretic+Measures+for+Characterizing+Neural+Information+Processing+from+Simulated+EEG+Signals&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Hua%2C+Jia-Chen&rft.au=Kim%2C+Eun-jin&rft.au=He%2C+Fei&rft.date=2024-02-28&rft.pub=MDPI+AG&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=26&rft.issue=3&rft_id=info:doi/10.3390%2Fe26030213&rft.externalDocID=A788246649 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |