Information Geometry Theoretic Measures for Characterizing Neural Information Processing from Simulated EEG Signals

In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models for both healthy subjects and Alzheimer’s disease (AD) patients with both eyes-closed and eyes-open condition...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 26; no. 3; p. 213
Main Authors Hua, Jia-Chen, Kim, Eun-jin, He, Fei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.02.2024
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e26030213

Cover

Abstract In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models for both healthy subjects and Alzheimer’s disease (AD) patients with both eyes-closed and eyes-open conditions. In particular, we employ information rates to quantify the time evolution of probability density functions of simulated EEG signals, and employ causal information rates to quantify one signal’s instantaneous influence on another signal’s information rate. These two measures help us find significant and interesting distinctions between healthy subjects and AD patients when they open or close their eyes. These distinctions may be further related to differences in neural information processing activities of the corresponding brain regions, and to differences in connectivities among these brain regions. Our results show that information rate and causal information rate are superior to their more traditional or established information-theoretic counterparts, i.e., differential entropy and transfer entropy, respectively. Since these novel, information geometry theoretic measures can be applied to experimental EEG signals in a model-free manner, and they are capable of quantifying non-stationary time-varying effects, nonlinearity, and non-Gaussian stochasticity presented in real-world EEG signals, we believe that they can form an important and powerful tool-set for both understanding neural information processing in the brain and the diagnosis of neurological disorders, such as Alzheimer’s disease as presented in this work.
AbstractList In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models for both healthy subjects and Alzheimer’s disease (AD) patients with both eyes-closed and eyes-open conditions. In particular, we employ information rates to quantify the time evolution of probability density functions of simulated EEG signals, and employ causal information rates to quantify one signal’s instantaneous influence on another signal’s information rate. These two measures help us find significant and interesting distinctions between healthy subjects and AD patients when they open or close their eyes. These distinctions may be further related to differences in neural information processing activities of the corresponding brain regions, and to differences in connectivities among these brain regions. Our results show that information rate and causal information rate are superior to their more traditional or established information-theoretic counterparts, i.e., differential entropy and transfer entropy, respectively. Since these novel, information geometry theoretic measures can be applied to experimental EEG signals in a model-free manner, and they are capable of quantifying non-stationary time-varying effects, nonlinearity, and non-Gaussian stochasticity presented in real-world EEG signals, we believe that they can form an important and powerful tool-set for both understanding neural information processing in the brain and the diagnosis of neurological disorders, such as Alzheimer’s disease as presented in this work.
In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models for both healthy subjects and Alzheimer's disease (AD) patients with both eyes-closed and eyes-open conditions. In particular, we employ information rates to quantify the time evolution of probability density functions of simulated EEG signals, and employ causal information rates to quantify one signal's instantaneous influence on another signal's information rate. These two measures help us find significant and interesting distinctions between healthy subjects and AD patients when they open or close their eyes. These distinctions may be further related to differences in neural information processing activities of the corresponding brain regions, and to differences in connectivities among these brain regions. Our results show that information rate and causal information rate are superior to their more traditional or established information-theoretic counterparts, i.e., differential entropy and transfer entropy, respectively. Since these novel, information geometry theoretic measures can be applied to experimental EEG signals in a model-free manner, and they are capable of quantifying non-stationary time-varying effects, nonlinearity, and non-Gaussian stochasticity presented in real-world EEG signals, we believe that they can form an important and powerful tool-set for both understanding neural information processing in the brain and the diagnosis of neurological disorders, such as Alzheimer's disease as presented in this work.In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models for both healthy subjects and Alzheimer's disease (AD) patients with both eyes-closed and eyes-open conditions. In particular, we employ information rates to quantify the time evolution of probability density functions of simulated EEG signals, and employ causal information rates to quantify one signal's instantaneous influence on another signal's information rate. These two measures help us find significant and interesting distinctions between healthy subjects and AD patients when they open or close their eyes. These distinctions may be further related to differences in neural information processing activities of the corresponding brain regions, and to differences in connectivities among these brain regions. Our results show that information rate and causal information rate are superior to their more traditional or established information-theoretic counterparts, i.e., differential entropy and transfer entropy, respectively. Since these novel, information geometry theoretic measures can be applied to experimental EEG signals in a model-free manner, and they are capable of quantifying non-stationary time-varying effects, nonlinearity, and non-Gaussian stochasticity presented in real-world EEG signals, we believe that they can form an important and powerful tool-set for both understanding neural information processing in the brain and the diagnosis of neurological disorders, such as Alzheimer's disease as presented in this work.
Audience Academic
Author He, Fei
Hua, Jia-Chen
Kim, Eun-jin
AuthorAffiliation 1 Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 2NL, UK; ejk92122@gmail.com
2 Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 2TL, UK; fei.he@coventry.ac.uk
AuthorAffiliation_xml – name: 2 Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 2TL, UK; fei.he@coventry.ac.uk
– name: 1 Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 2NL, UK; ejk92122@gmail.com
Author_xml – sequence: 1
  givenname: Jia-Chen
  orcidid: 0000-0002-6591-1417
  surname: Hua
  fullname: Hua, Jia-Chen
– sequence: 2
  givenname: Eun-jin
  orcidid: 0000-0001-5607-6635
  surname: Kim
  fullname: Kim, Eun-jin
– sequence: 3
  givenname: Fei
  orcidid: 0000-0001-9176-6674
  surname: He
  fullname: He, Fei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38539727$$D View this record in MEDLINE/PubMed
BookMark eNp1kkuP0zAUhSM0iHnAgj-AIrEBpM74FTteoVFVSqXhITGsLce5bl0lcbETUPn1ONOhtKNBWTi-_nySc-49z04630GWvcToklKJroBwRBHB9El2hpGUE0YROjl4P83OY1wjRCjB_Fl2SsuCSkHEWRYXnfWh1b3zXT4H30IftvntCnyA3pn8E-g4BIh5ovLpSgdtegjut-uW-WcYgm7yQ4WvwRuIcTy1wbf5N9cOje6hzmezedotO93E59lTmxZ4cb9eZN8_zG6nHyc3X-aL6fXNxBRU9BNRIQMGW2QEB8N0YRjGtoRKY14XhFogMpWZQAJjzLERJnninDBSVjWX9CJb7HRrr9dqE1yrw1Z57dRdwYel0iGZbEABrpg0hS21ZUyiojJMFrUhhaBaGIuS1rud1tBt9PaXbpq9IEZq7ILadyHB73fwZqhaqA10fQrq6A-OTzq3Ukv_M0lJLnHBk8Kbe4XgfwwQe9W6aKBpdAd-iIoizBDiBOOEvn6Arv0QxpwThTAWhSzJP2qpk12XWpY-bEZRdS3KkjDO2ZjY5SNUemponUlDZ12qH114deh0b_HvgCXgageY4GMMYJVx_d2sJGXXPBre2wc3_h_0H9Q77bY
CitedBy_id crossref_primary_10_1088_1361_6587_adab1c
crossref_primary_10_3390_e26070539
crossref_primary_10_1103_PhysRevE_110_045209
Cites_doi 10.1016/j.bspc.2022.103818
10.1016/j.clinph.2007.07.028
10.1111/ncn3.12674
10.1016/j.clinph.2004.01.001
10.1063/1.4772195
10.1186/s13195-022-01046-z
10.1098/rsta.2015.0109
10.1016/j.neuroscience.2023.05.033
10.1016/j.clinph.2015.07.040
10.1109/VIS49827.2021.9623301
10.3390/brainsci13010122
10.1137/S0036144500378302
10.3389/fncom.2015.00048
10.1080/01621459.1985.10477163
10.3390/e23081087
10.1002/hbm.24539
10.1016/j.physleta.2010.10.005
10.3389/fnhum.2018.00422
10.1016/j.bspc.2023.105181
10.1109/JBHI.2021.3105397
10.3390/e20090660
10.1016/j.biopsycho.2017.09.010
10.1017/CBO9780511616907
10.1016/j.neuroimage.2013.12.060
10.3390/e23060694
10.1007/978-3-031-08757-8_18
10.3390/e25050806
10.3389/fnhum.2015.00081
10.1109/ICARCV50220.2020.9305339
10.1519/00139143-200704000-00003
10.1016/j.neuroimage.2003.12.026
10.3390/e24081113
10.1016/j.clinph.2009.08.006
10.1016/j.difgeo.2007.11.027
10.1073/pnas.17.5.315
10.1038/s41598-020-73346-z
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/e26030213
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic

PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_e1b49c5f8af44905bc495dc2573a7cf0
10.3390/e26030213
PMC10969156
A788246649
38539727
10_3390_e26030213
Genre Journal Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/W036770/1
– fundername: EPSRC
  grantid: EP/W036770/1
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
CH8
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c537t-7b0cec1f0c76ec4a5c411f8eba16d523fe29c4a470711161c7c972662428bd693
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Fri Oct 03 12:51:08 EDT 2025
Sun Oct 26 04:03:55 EDT 2025
Tue Sep 30 17:09:47 EDT 2025
Thu Sep 04 19:12:08 EDT 2025
Fri Jul 25 10:39:25 EDT 2025
Mon Oct 20 22:58:51 EDT 2025
Mon Oct 20 17:06:55 EDT 2025
Thu Jan 02 22:30:53 EST 2025
Thu Oct 16 04:36:11 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords electroencephalography
Alzheimer’s disease
signal processing
neural information processing
stochastic simulation
brain networks
information rate
stochastic oscillators
causal information rate
causality
information length
information geometry
dementia
information theory
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-7b0cec1f0c76ec4a5c411f8eba16d523fe29c4a470711161c7c972662428bd693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9176-6674
0000-0001-5607-6635
0000-0002-6591-1417
OpenAccessLink https://www.proquest.com/docview/3001175982?pq-origsite=%requestingapplication%&accountid=15518
PMID 38539727
PQID 3001175982
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_e1b49c5f8af44905bc495dc2573a7cf0
unpaywall_primary_10_3390_e26030213
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10969156
proquest_miscellaneous_3014006211
proquest_journals_3001175982
gale_infotracmisc_A788246649
gale_infotracacademiconefile_A788246649
pubmed_primary_38539727
crossref_citationtrail_10_3390_e26030213
crossref_primary_10_3390_e26030213
PublicationCentury 2000
PublicationDate 20240228
PublicationDateYYYYMMDD 2024-02-28
PublicationDate_xml – month: 2
  year: 2024
  text: 20240228
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Koopman (ref_38) 1931; 17
Facchi (ref_33) 2010; 374
Groen (ref_5) 2022; Volume 13352
Zhang (ref_20) 2015; 9
Jeong (ref_22) 2004; 115
ref_35
ref_32
ref_31
Terrell (ref_36) 1985; 80
ref_30
Jennings (ref_7) 2022; 14
Gunawardena (ref_10) 2023; 523
ref_15
Marx (ref_19) 2004; 21
Itoh (ref_34) 2008; 26
Agcaoglu (ref_14) 2019; 40
Springer (ref_18) 2007; 30
Ghorbanian (ref_1) 2015; 9
Wei (ref_17) 2018; 12
Barry (ref_11) 2007; 118
Montani (ref_28) 2015; 373
Pritchard (ref_23) 1991; 2
ref_25
ref_24
Xu (ref_21) 2014; 90
Matsutomo (ref_13) 2023; 11
Higham (ref_29) 2001; 43
Klepl (ref_9) 2022; 26
Miraglia (ref_16) 2016; 127
ref_2
Mohr (ref_37) 2012; 22
ref_27
ref_26
ref_8
Barry (ref_12) 2009; 120
ref_4
Nguyen (ref_3) 2020; 10
Barry (ref_6) 2017; 129
References_xml – ident: ref_4
  doi: 10.1016/j.bspc.2022.103818
– volume: 118
  start-page: 2765
  year: 2007
  ident: ref_11
  article-title: EEG Differences between Eyes-Closed and Eyes-Open Resting Conditions
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.07.028
– volume: 11
  start-page: 10
  year: 2023
  ident: ref_13
  article-title: Effects of Eyes-Closed Resting and Eyes-Open Conditions on Cerebral Blood Flow Measurement Using Arterial Spin Labeling Magnetic Resonance Imaging
  publication-title: Neurol. Clin. Neurosci.
  doi: 10.1111/ncn3.12674
– volume: 115
  start-page: 1490
  year: 2004
  ident: ref_22
  article-title: EEG Dynamics in Patients with Alzheimer’s Disease
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.01.001
– volume: 22
  start-page: 047510
  year: 2012
  ident: ref_37
  article-title: Applied Koopmanism
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.4772195
– volume: 14
  start-page: 109
  year: 2022
  ident: ref_7
  article-title: Investigating the Power of Eyes Open Resting State EEG for Assisting in Dementia Diagnosis
  publication-title: Alzheimer’s Res. Ther.
  doi: 10.1186/s13195-022-01046-z
– volume: 373
  start-page: 20150109
  year: 2015
  ident: ref_28
  article-title: Causal Information Quantification of Prominent Dynamical Features of Biological Neurons
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2015.0109
– volume: 523
  start-page: 140
  year: 2023
  ident: ref_10
  article-title: Kernel-Based Nonlinear Manifold Learning for EEG-based Functional Connectivity Analysis and Channel Selection with Application to Alzheimer’s Disease
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2023.05.033
– volume: 127
  start-page: 1261
  year: 2016
  ident: ref_16
  article-title: EEG Characteristics in “Eyes-Open” versus “Eyes-Closed” Conditions: Small-world Network Architecture in Healthy Aging and Age-Related Brain Degeneration
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.07.040
– ident: ref_35
  doi: 10.1109/VIS49827.2021.9623301
– ident: ref_15
  doi: 10.3390/brainsci13010122
– volume: 43
  start-page: 525
  year: 2001
  ident: ref_29
  article-title: An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144500378302
– volume: 9
  start-page: 48
  year: 2015
  ident: ref_1
  article-title: Stochastic Non-Linear Oscillator Models of EEG: The Alzheimer’s Disease Case
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2015.00048
– volume: 80
  start-page: 209
  year: 1985
  ident: ref_36
  article-title: Oversmoothed Nonparametric Density Estimates
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1985.10477163
– volume: 2
  start-page: 102
  year: 1991
  ident: ref_23
  article-title: Altered EEG Dynamical Responsivity Associated with Normal Aging and Probable Alzheimer’s Disease
  publication-title: Dementia
– ident: ref_25
  doi: 10.3390/e23081087
– volume: 40
  start-page: 2488
  year: 2019
  ident: ref_14
  article-title: Resting State Connectivity Differences in Eyes Open versus Eyes Closed Conditions
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24539
– volume: 374
  start-page: 4801
  year: 2010
  ident: ref_33
  article-title: Classical and Quantum Fisher Information in the Geometrical Formulation of Quantum Mechanics
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2010.10.005
– volume: 12
  start-page: 422
  year: 2018
  ident: ref_17
  article-title: Eyes-Open and Eyes-Closed Resting States with Opposite Brain Activity in Sensorimotor and Occipital Regions: Multidimensional Evidences from Machine Learning Perspective
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00422
– ident: ref_31
– ident: ref_8
  doi: 10.1016/j.bspc.2023.105181
– volume: 26
  start-page: 992
  year: 2022
  ident: ref_9
  article-title: Characterising Alzheimer’s Disease with EEG-Based Energy Landscape Analysis
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3105397
– ident: ref_27
  doi: 10.3390/e20090660
– volume: 129
  start-page: 293
  year: 2017
  ident: ref_6
  article-title: EEG Differences between Eyes-Closed and Eyes-Open Resting Remain in Healthy Ageing
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2017.09.010
– ident: ref_32
  doi: 10.1017/CBO9780511616907
– volume: 90
  start-page: 246
  year: 2014
  ident: ref_21
  article-title: Different Topological Organization of Human Brain Functional Networks with Eyes Open versus Eyes Closed
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.060
– ident: ref_30
  doi: 10.3390/e23060694
– volume: Volume 13352
  start-page: 188
  year: 2022
  ident: ref_5
  article-title: Analysis of Parameters Distribution of EEG Signals for Five Epileptic Seizure Phases Modeled by Duffing Van Der Pol Oscillator
  publication-title: Proceedings of the Computational Science—ICCS 2022
  doi: 10.1007/978-3-031-08757-8_18
– ident: ref_26
  doi: 10.3390/e25050806
– volume: 9
  start-page: 81
  year: 2015
  ident: ref_20
  article-title: Directionality of Large-Scale Resting-State Brain Networks during Eyes Open and Eyes Closed Conditions
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00081
– ident: ref_2
  doi: 10.1109/ICARCV50220.2020.9305339
– volume: 30
  start-page: 8
  year: 2007
  ident: ref_18
  article-title: Normative Values for the Unipedal Stance Test with Eyes Open and Closed
  publication-title: J. Geriatr. Phys. Ther.
  doi: 10.1519/00139143-200704000-00003
– volume: 21
  start-page: 1818
  year: 2004
  ident: ref_19
  article-title: Eyes Open and Eyes Closed as Rest Conditions: Impact on Brain Activation Patterns
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2003.12.026
– ident: ref_24
  doi: 10.3390/e24081113
– volume: 120
  start-page: 1806
  year: 2009
  ident: ref_12
  article-title: EEG Differences in Children between Eyes-Closed and Eyes-Open Resting Conditions
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.08.006
– volume: 26
  start-page: 347
  year: 2008
  ident: ref_34
  article-title: Fisher Information Metric and Poisson Kernels
  publication-title: Differ. Geom. Its Appl.
  doi: 10.1016/j.difgeo.2007.11.027
– volume: 17
  start-page: 315
  year: 1931
  ident: ref_38
  article-title: Hamiltonian Systems and Transformation in Hilbert Space
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.17.5.315
– volume: 10
  start-page: 16342
  year: 2020
  ident: ref_3
  article-title: Collective Almost Synchronization-Based Model to Extract and Predict Features of EEG Signals
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73346-z
SSID ssj0023216
Score 2.3574703
Snippet In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 213
SubjectTerms Advertising executives
Alzheimer's disease
Biomarkers
Brain
causal information rate
causality
Data processing
Distribution (Probability theory)
Electroencephalography
Entropy
Geometry
information geometry
information length
Information processing
information rate
Information theory
Nervous system diseases
Neurological diseases
Neurological disorders
Neurophysiology
Nonlinearity
Optimization techniques
Oscillators
Physiology
Probability density functions
Simulation
stochastic oscillators
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll_RSWtKH2ySoD2gvJpYlW9YxCZuEQnppArkJaVZuAxtvyO5S0l-fGUtr1n3QS4-2Zo01-sYz36L5xNgH7aAAhE5elh5yZZzLPWapXJW-roQLulDUjXz-pT67VJ-vqquNo75oT1iUB46OOwjCKwNV27hWKVNUHrCknwIiTToNbc_Wi8asyVSiWrIUddQRkkjqDwJW7RKzmRxln16k__dP8UYu-nWf5Paqu3X3P9xstpGETp6yJ6l65IfxrZ-xR6HbYYvUUkQu5qdhfhOWd_f8Yt2hyM_j34ALjlb8eBBo_olJi5M2Bz5w8wmpdYBGqfeEf72-oSO-wpRPJqd49Y0Ul5-zy5PJxfFZns5SyKGSeplrX0AA0Rag6wDKVaCEaJvgnainSEbbUBq8rTSWHAKrQNBgNCZvzOCNn9ZGvmBb3bwLrxhvSyBRQd04r1QFxkmM6VDU4J0soNYZ-7T2sYUkNE7nXcwsEg5aDjssR8beDaa3UV3jT0ZHtFCDAQli9zcQJjbBxP4LJhn7SMtsKWzxZcCl7gOcEglg2UONVIOk9k3GdkeWGG4wHl4DxaZwX1gZJU9NU2bs7TBMv6QtbF2Yr8gGuWxRI-HO2MuIq2FKEosmdDe6rhkhbjTn8Uh3_b0XAxfIQQ2S8Iy9H8D5d1--_h--fMMel1jaxcb-Xba1vFuFPSzNln6_j8IHV6o3XQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QEuPMQrpSAXkOCS4sSOHR-XatsKqRUSXamcInvWgYpttupmVbW_nvEmGzblIY6JJ1E8nvHMxP4-A7zVFjmS6cRp6jCWxtrYUZSKZepUllivuQxo5KNjdTiWn06z0w3YWWFh1tbvBZXjHzzl24LikLgDmyqjdHsAm-Pjz8Ovy1VMY2IpOG8Yg_ryvTizpOP_fdJdizq3d0TeXVQX9vrKTqdr4Wb_wS_QTrPL5Mfuona7eHOLw_GfPXkI99tkkw0b63gEG756DPMWgRRGhB342bmvL6_ZyQrQyI6av4ZzRlJsr-NzvqEYxwKVB71w_Q0t0iC0BqgK-3J2Hk4E8xM2Gh3Q1bdA0PwExvujk73DuD16IcZM6DrWjqPHpOSolUdpM5RJUube2URNqHYtfWrottSUoSSUNKJGoynWU8DP3UQZ8RQG1azyz4GVKQYOQp1bJ2WGxgqaAjxX6KzgqHQE71cDVWDLSx6Ox5gWVJ8EzRWd5iJ43YleNGQcfxL6GEa7Ewj82csbNBhF646FT5w0mJW5LaU0PHNIheIEaf4SVmPJI3gXbKUIXk4fg7YFK1CXAl9WMdRUmQRmfhPBdk-SvBP7zStrK9rZYV6IhiHV5GkEO11zeDLseKv8bBFkqPTliurzCJ41xtl1SVCOReom1eU9s-31ud9SnX1fcoeTzyhDNXsEbzoL_7sut_5L6gXcSynVa4D-2zCoLxf-JaVqtXvVOutP3jQ5cQ
  priority: 102
  providerName: Unpaywall
Title Information Geometry Theoretic Measures for Characterizing Neural Information Processing from Simulated EEG Signals
URI https://www.ncbi.nlm.nih.gov/pubmed/38539727
https://www.proquest.com/docview/3001175982
https://www.proquest.com/docview/3014006211
https://pubmed.ncbi.nlm.nih.gov/PMC10969156
https://doi.org/10.3390/e26030213
https://doaj.org/article/e1b49c5f8af44905bc495dc2573a7cf0
UnpaywallVersion publishedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEF4S56F9KSm91KRGPaB9EdFqV1rpoRQn2A6FmNDG4D6J3dEqDTiy64OS_vrO6KrV68Xg3bHQzs653vmGsTdKgw8oOl4QGPBkorVn0Et5MjBRyLVVvqRq5ItJdD6VH2fhbI9NmloYulbZ2MTSUGcLoDPyE1GhSiZx8GH5zaOuUfTvatNCQ9etFbL3JcTYPjsICBmrxw5Oh5PLT20KJgIeVfhCApP9E4vRvEAvJzpeqQTv_9NE7_io3-9P3tsWS333Xc_nO85pdMge1FGlO6jE4CHbs8Ujtq5LjYj17tgubu1mdedeNZWL7kV1PLh2kco9a4Gbf6AzcwmzAx-4-4S6pIBmqSbF_XxzS62_bOYOh2P8dk1IzI_ZdDS8Ojv36h4LHoRCbTxlfLDAcx9UZEHqECTneWyN5lGGSWpugwSHpcJQhGN0CAoShU4dPXtssigRT1ivWBT2GXPzAAhsUMXaSBlCogXquvUjMFr4ECmHvWt4nEINQE59MOYpJiK0HWm7HQ571ZIuK9SNvxGd0ka1BASUXQ4sVtdprXep5UYmEOaxzqVM_NAAZoQZoKESWkHuO-wtbXNK6owvA7quSsAlETBWOlCYghAEf-Kw4w4lqiF0pxtBSWszsE5_Ca3DXrbT9Eu62lbYxZZoMMf1I0zEHfa0kqt2SQKDKWQ3si7uSFxnzd2Z4uZrCRLOMTdNMDl32OtWOP_Ny-f_f_sjdj_AYK4q5T9mvc1qa19gMLYxfbYfj8b9Ws_65ZEGfo5nHMemk8vBl59NxTlK
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFcEIiXocDyElys2t6113uoUFvSprSJEKRSb-56vC6VUifkoSr8OH4bM_GDmNetx3gnlndmdmY_e-cbxl4rAx6g67hBkIIrtTFuilnKlUEahb6xypNUjdzrR91T-fEsPFtjP-paGDpWWcfEZaDORkDvyLdFySqp4-D9-JtLXaPo62rdQsNUrRWynSXFWFXYcWwX1wjhpjtHH9Deb4LgoDPY77pVlwEXQqFmrko9sODnHqjIgjQhSN_PY5saP8oQpuU20HhZKkzGPu6PQIFWmNYwt8VpFhEZE6aADSmkRvC3sdfpf_rcQD4R-FHJZySE9rYtogeBWVW0suCyWcCfKWElJ_5-XnNzXozN4toMhyvJ8OAOu13tYvlu6XZ32Zot7rFpVdpEpuaHdnRlZ5MFH9SVkrxXvo6ccpTi-w1R9HdMnpw4QvCGq3eoShholGpg-JfLK2o1ZjPe6Rzirwtifr7PTm9E2w_YejEq7CPG8wCI3FDFJpUyBG0ExhbrRZAa4UGkHPau1nECFeE59d0YJgh8yBxJYw6HvWxExyXLx9-E9shQjQARcy8vjCYXSbXOE-unUkOYxyaXUnthCohAM8DAKIyC3HPYWzJzQuEDHwZMVQWBUyIirmRXIeQhyn_tsK2WJC57aA_XjpJUYWea_FokDnvRDNM_6ShdYUdzkkFM7UUI_B32sPSrZkoCN2-oblRd3PK41pzbI8Xl1yUpuY9YWPth5LBXjXP-W5eP___0z9lmd9A7SU6O-sdP2K0AN5IljcAWW59N5vYpbgRn6bNqtXF2ftML_CeE13Ee
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5VrQS8oCIuQ4HlErxYsb1rr_2AUGmTtJRWSLRS39zd8bpUSu2QQ1X4afw6ZuKDmOutj_FOLO_cY-98w9grpcEDVB03CAy4MtHaNRilXBmYKPS1VZ6kbuTDo2jvRH48DU_X2I-mF4aOVTY-cemosxLoHXlPVKiSSRz08vpYxOfdwfvxN5cmSNGX1macRqUiB3ZxheXb9N3-Lsr6dRAM-sc7e249YcCFUKiZq4wHFvzcAxVZkDoE6ft5bI32owxLtNwGCV6WCgOxj7kRKEgUhjSMa7HJIgJiQve_oQjFnbrUB8O22BOBH1VIRkIkXs9i3SAwnopO_FuOCfgzGKxEw99Pat6cF2O9uNKj0UoYHGyy23X-yrcrhbvD1mxxl03rpiYSMh_a8tLOJgt-3PRI8sPqReSUIxXfaSGiv2PY5IQOgjdcvUPdvECr1P3Cv1xc0pAxm_F-f4i_zgnz-R47uRZe32frRVnYh4znARCsoYq1kTKERAv0KtaLwGjhQaQc9rbhcQo11DlN3BilWPKQONJWHA570ZKOK3yPvxF9IEG1BATJvbxQTs7T2sJT6xuZQJjHOpcy8UIDWHtmgC5RaAW557A3JOaUHAc-DOi6_wG3RBBc6bbCYofA_hOHbXUo0eChu9woSlo7nGn6yzwc9rxdpn_SIbrClnOiwWrai7Dkd9iDSq_aLQlM25DdyLq4o3GdPXdXiouvSzhyH6vgxA8jh71slfPfvHz0_6d_xm6gWaef9o8OHrNbAWaQFX7AFlufTeb2CWaAM_N0aWqcnV23bf8EcG5uuA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QEuPMQrpSAXkOCS4sSOHR-XatsKqRUSXamcInvWgYpttupmVbW_nvEmGzblIY6JJ1E8nvHMxP4-A7zVFjmS6cRp6jCWxtrYUZSKZepUllivuQxo5KNjdTiWn06z0w3YWWFh1tbvBZXjHzzl24LikLgDmyqjdHsAm-Pjz8Ovy1VMY2IpOG8Yg_ryvTizpOP_fdJdizq3d0TeXVQX9vrKTqdr4Wb_wS_QTrPL5Mfuona7eHOLw_GfPXkI99tkkw0b63gEG756DPMWgRRGhB342bmvL6_ZyQrQyI6av4ZzRlJsr-NzvqEYxwKVB71w_Q0t0iC0BqgK-3J2Hk4E8xM2Gh3Q1bdA0PwExvujk73DuD16IcZM6DrWjqPHpOSolUdpM5RJUube2URNqHYtfWrottSUoSSUNKJGoynWU8DP3UQZ8RQG1azyz4GVKQYOQp1bJ2WGxgqaAjxX6KzgqHQE71cDVWDLSx6Ox5gWVJ8EzRWd5iJ43YleNGQcfxL6GEa7Ewj82csbNBhF646FT5w0mJW5LaU0PHNIheIEaf4SVmPJI3gXbKUIXk4fg7YFK1CXAl9WMdRUmQRmfhPBdk-SvBP7zStrK9rZYV6IhiHV5GkEO11zeDLseKv8bBFkqPTliurzCJ41xtl1SVCOReom1eU9s-31ud9SnX1fcoeTzyhDNXsEbzoL_7sut_5L6gXcSynVa4D-2zCoLxf-JaVqtXvVOutP3jQ5cQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+Geometry+Theoretic+Measures+for+Characterizing+Neural+Information+Processing+from+Simulated+EEG+Signals&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Hua%2C+Jia-Chen&rft.au=Kim%2C+Eun-jin&rft.au=He%2C+Fei&rft.date=2024-02-28&rft.pub=MDPI+AG&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=26&rft.issue=3&rft_id=info:doi/10.3390%2Fe26030213&rft.externalDocID=A788246649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon