MetageneCluster: a Python package for filtering conflicting signal trends in metagene plots

Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 25; no. 1; pp. 21 - 9
Main Authors Carter, Clayton, Saporito, Aaron, Douglass, Stephen M.
Format Journal Article
LanguageEnglish
Published London BioMed Central 12.01.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-024-05647-3

Cover

Abstract Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends. Results We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data. Conclusions Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data.
AbstractList Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends. We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data. Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data.
Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends. Results We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data. Conclusions Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data. Keywords: Metagene plot, Sequencing data, k-means clustering, Visualization
Abstract Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends. Results We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data. Conclusions Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data.
BackgroundMetagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends.ResultsWe present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data.ConclusionsOverall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data.
Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends. We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data. Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data.
Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends.BACKGROUNDMetagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends.We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data.RESULTSWe present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data.Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data.CONCLUSIONSOverall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data.
Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends. Results We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data. Conclusions Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data.
ArticleNumber 21
Audience Academic
Author Douglass, Stephen M.
Carter, Clayton
Saporito, Aaron
Author_xml – sequence: 1
  givenname: Clayton
  surname: Carter
  fullname: Carter, Clayton
  organization: Connecticut College
– sequence: 2
  givenname: Aaron
  surname: Saporito
  fullname: Saporito, Aaron
  organization: Connecticut College
– sequence: 3
  givenname: Stephen M.
  surname: Douglass
  fullname: Douglass, Stephen M.
  email: sdouglass@conncoll.edu
  organization: Connecticut College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38216886$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wB1igSGxgkWI7foVdNeIxUhGIx4qF5Tg3wSVjB9sRzL_H6QwtgxBCXtiyv3N077k-LY6cd1AUDzE6x1jyZxETyZoKEVohxqmo6jvFCaYCVwQjdvTb-bg4jfEKISwkYveK41oSzKXkJ8XnN5D0AA5W4xwThOelLt9t0xfvykmbr_mp7H0oezvmR-uG0njXj9ak5Rzt4PRYpgCui6V15WZvVk6jT_F-cbfXY4QH-_2s-PTyxcfV6-ry7av16uKyMqwWqWItNzVDumHccCk6ptuOYAKYG2NkX5tOUG4EZR2RDW80Ea3hUJOWaCRlT-uzYr3z7by-UlOwGx22ymurri98GJQOyZoRVCMoBWYgt48oyE63tG0Ix6YnnDYtyl71zmt2k95-1-N4Y4iRWmJXu9hVjl1dx67qrHqyU03Bf5shJrWx0cA4agd-joo0mBJGMF6KffwHeuXnkGPcU0Iwjm6pQeeqret9CtospupC5OE1FKOFOv8LlVcHG5sHBXlscCh4eiDITIIfadBzjGr94f0h-2hf6NxuoLuJ4dffyQDZASb4GAP0_5fUPt84Ld8Jwm37_1D9BNbq4eY
Cites_doi 10.1093/bioinformatics/btx002
10.1038/75556
10.1002/pro.4218
10.1016/j.celrep.2019.05.100
10.1109/ACCESS.2018.2855437
10.1093/bioinformatics/btx633
10.1093/genetics/iyad031
10.1186/s12859-019-3223-5
10.1093/bioinformatics/btu775
10.1109/MCSE.2007.55
10.1137/1.9780898718348
10.1038/s41598-021-98889-7
10.1093/bioinformatics/18.suppl_2.S75
10.1038/s41467-022-28468-5
10.4137/BBI.S38316
10.1038/s41586-020-2649-2
10.1186/s40529-022-00366-5
10.1371/journal.pcbi.1004751
10.3390/ijms24010603
10.1186/s12859-020-03670-8
10.1186/gb-2002-3-12-research0087
10.1093/bioadv/vbac083
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-024-05647-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale in Context : Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
Consulter via DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



Publicly Available Content Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 9
ExternalDocumentID oai_doaj_org_article_9744e5ce21604e8dab4b9261cf2649b0
10.1186/s12859-024-05647-3
A782194100
38216886
10_1186_s12859_024_05647_3
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c537t-5b6c350a956c687d5abd212e16ccc8f3cd746c745d28969a27bc6e32b2a088f43
IEDL.DBID M48
ISSN 1471-2105
IngestDate Tue Oct 14 19:01:44 EDT 2025
Sun Oct 26 03:59:05 EDT 2025
Fri Sep 05 10:58:52 EDT 2025
Tue Oct 07 05:20:21 EDT 2025
Mon Oct 20 22:59:40 EDT 2025
Mon Oct 20 17:08:01 EDT 2025
Thu Oct 16 16:14:07 EDT 2025
Thu Apr 03 07:00:31 EDT 2025
Wed Oct 01 04:15:44 EDT 2025
Sat Sep 06 07:27:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Visualization
k-means clustering
Sequencing data
Metagene plot
Language English
License 2024. The Author(s).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-5b6c350a956c687d5abd212e16ccc8f3cd746c745d28969a27bc6e32b2a088f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-024-05647-3
PMID 38216886
PQID 2914277560
PQPubID 44065
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_9744e5ce21604e8dab4b9261cf2649b0
unpaywall_primary_10_1186_s12859_024_05647_3
proquest_miscellaneous_2914252114
proquest_journals_2914277560
gale_infotracmisc_A782194100
gale_infotracacademiconefile_A782194100
gale_incontextgauss_ISR_A782194100
pubmed_primary_38216886
crossref_primary_10_1186_s12859_024_05647_3
springer_journals_10_1186_s12859_024_05647_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-12
PublicationDateYYYYMMDD 2024-01-12
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References C Vahlensieck (5647_CR23) 2022; 24
A Akalin (5647_CR8) 2014
X Huang (5647_CR1) 2018; 34
E Min (5647_CR10) 2018; 6
M Ashburner (5647_CR16) 2000; 25
TK To (5647_CR20) 2022; 13
SA Aleksander (5647_CR21) 2023; 224
5647_CR12
5647_CR11
S Degroeve (5647_CR15) 2002; 18
RJ Lu (5647_CR6) 2023; 64
CR Harris (5647_CR17) 2020; 585
R Mawhorter (5647_CR13) 2019; 20
F Li (5647_CR4) 2020; 21
W Ohler (5647_CR14) 2002; 3
HL Her (5647_CR7) 2022; 2
E Blanco (5647_CR9) 2021; 11
PD Thomas (5647_CR22) 2021; 31
CJ Beauparlant (5647_CR2) 2016; 12
E Blanco (5647_CR3) 2021; 11
JD Hunter (5647_CR18) 2007; 9
AO Olarerin-George (5647_CR5) 2017; 33
CS Leung (5647_CR19) 2019; 27
References_xml – volume: 33
  start-page: 1563
  issue: 10
  year: 2017
  ident: 5647_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx002
– volume: 25
  start-page: 25
  year: 2000
  ident: 5647_CR16
  publication-title: Nat Genet
  doi: 10.1038/75556
– volume: 31
  start-page: 8
  issue: 1
  year: 2021
  ident: 5647_CR22
  publication-title: Protein Sci
  doi: 10.1002/pro.4218
– volume: 27
  start-page: 3760
  issue: 13
  year: 2019
  ident: 5647_CR19
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.05.100
– volume: 6
  start-page: 39501
  year: 2018
  ident: 5647_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2855437
– volume: 34
  start-page: 708
  issue: 4
  year: 2018
  ident: 5647_CR1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx633
– volume: 224
  start-page: iyad031
  issue: 1
  year: 2023
  ident: 5647_CR21
  publication-title: Genetics
  doi: 10.1093/genetics/iyad031
– volume: 20
  start-page: 612
  year: 2019
  ident: 5647_CR13
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-019-3223-5
– year: 2014
  ident: 5647_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu775
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 5647_CR18
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2007.55
– ident: 5647_CR11
  doi: 10.1137/1.9780898718348
– volume: 11
  start-page: 19545
  issue: 1
  year: 2021
  ident: 5647_CR9
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-98889-7
– volume: 18
  start-page: S75
  year: 2002
  ident: 5647_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_2.S75
– volume: 13
  start-page: 861
  issue: 1
  year: 2022
  ident: 5647_CR20
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28468-5
– ident: 5647_CR12
  doi: 10.4137/BBI.S38316
– volume: 585
  start-page: 357
  year: 2020
  ident: 5647_CR17
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 11
  start-page: 19545
  year: 2021
  ident: 5647_CR3
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-98889-7
– volume: 64
  start-page: 1
  issue: 1
  year: 2023
  ident: 5647_CR6
  publication-title: Bot Stud
  doi: 10.1186/s40529-022-00366-5
– volume: 12
  start-page: e1004751
  year: 2016
  ident: 5647_CR2
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004751
– volume: 24
  start-page: 603
  issue: 1
  year: 2022
  ident: 5647_CR23
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms24010603
– volume: 21
  start-page: 340
  year: 2020
  ident: 5647_CR4
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-020-03670-8
– volume: 3
  start-page: RESEARCH0087
  year: 2002
  ident: 5647_CR14
  publication-title: Genome Biol
  doi: 10.1186/gb-2002-3-12-research0087
– volume: 2
  start-page: 083
  issue: 1
  year: 2022
  ident: 5647_CR7
  publication-title: Bioinform Adv
  doi: 10.1093/bioadv/vbac083
SSID ssj0017805
Score 2.4350507
Snippet Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of...
Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental...
Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of...
BackgroundMetagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of...
Abstract Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 21
SubjectTerms Algorithms
Annotations
Arrays
Bioinformatics
Biomedical and Life Sciences
Cluster analysis
Clustering
Clustering (Computers)
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data mining
Datasets
DNA methylation
Gene expression
Gene loci
Genomics
k-means clustering
Life Sciences
Metagene plot
Methods
Microarrays
Python (Programming language)
RNA sequencing
Sequencing data
Software
Trends
Vector quantization
Visualization
SummonAdditionalLinks – databaseName: Consulter via DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIOrD4W97nhJF8MEL17Rpmvh2Hh6noIh6cOBDSKaJHK7d5doi-9876S93EdQH35bNbLb9ksl8QyZfCHmmIORpgJIhu_BMCOGZrpxgUdtJlJB6V_XVFu_l6Zl4e16cb1z1FWvCBnngAbhD5LvCF-AzLlPhVWWdcBppPwQM5dr12Xqq9JRMjfsHUal_OiKj5GHDo04bw3jEMOALdKutMNSr9f--Jm8EpXmX9Aa51tUru_5hF4uNQHRyk-yODJIeDU9-i1zx9W1ydbhTcn2HfHnnW1wjan-86KIIwktq6Yd1VAigmB5_wyaKPJWGi7hNjn9GYToYgp9jNQf23faFsvSipt_HzuhqsWybu-Ts5PXn41M23qDAoMjLlhVOQl6kFpMgkKqsCusqjFWeSwBQIYeqFBJKUVSYd0lts9KB9HnmMourTxD5PbJTL2v_gNDAfRGUFVYHJAFcOim1Bo30hRcg8iwhLyZAzWoQyjB9gqGkGeA3CL_p4Td5Ql5FzGfLKHLdf4FDb8ahN38b-oQ8jSNmooxFHetkvtquacybTx_NERIfrgVP0ej5aBSW7aUFOx47wLeKyldblvtbluhnsN08TQwz-nljMs1FVpZIGxPyZG6Ov4y1a7VfdqMNsiQuEnJ_mFDze-fYu1RKJuRgmmG_Ov8TfAfzLPwHtPf-B9oPyfWsdyDOeLZPdtrLzj9CQta6x73v_QS3Qit6
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3_a9QwFH_MG6L-IH6bVqdEEfzBhTVtmjaCyDY2puAxpoOBP4QkTcfwbM9ri9x_70uv7XYIw9-O5jXXvntfPu_y8gnA28wWcVjYlCK6cJRz7qjMDaee24mnNnQm77otpuL4jH85T843YDrshfFtlUNM7AJ1Xln_H_luJBmP0hQT9Kf5b-pPjfKrq8MRGro_WiH_2FGM3YLNyDNjTWBz_3B6cjquK3gG_2HrTCZ2a-b52yjmKYpAgKO7raWnjsX_31h9LVmNq6f34E5bzvXyj57NriWoowdwv0eWZG9lCg9hw5WP4PbqrMnlY_jx1TUYO0p3MGs9OcIHosnJ0jMHECybf-IQQfxKiku_fI5fRuywYQQ_-y4PnLvpGmjJZUl-9ZOR-axq6idwdnT4_eCY9icrUJvEaUMTI2ychBqLIyuyNE-0yVFhjglrbVbENk-5sClPcqzHhNRRaqxwcWQijVGp4PEWTMqqdM-AFMwlRaa5lgWCAyaMEFJaibCGJZbHUQDvB4Wq-YpAQ3WFRybUSv0K1a869as4gH2v81HSk193F6rFhep9SWEJxF1iXcREyF2Wa8ONxErQFojupAkDeON_MeXpLUrfP3Oh27pWn7-dqj0ERExyFqLQu16oqJqFtrrfjoBv5Rmx1iS31yTR_-z68GAYqvf_Wl1ZawCvx2F_p-9pK13V9jKInhgP4OnKoMb3jnF2kWUigJ3Bwq4mv0l9O6MV_oe2n9_86C_gbtS5BqMs2oZJs2jdS4RgjXnV-9Vf50opww
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96h3g-HOd39ZQogg9euKZN0-bezsXjFBRRDw58CMk0kcO97nJtkf3vnfTLXRTRt9JMp3SSyfyGmfxKyIsCfBp7yBmiC8eEEI6p0goWuJ1EDrGzZddt8UGenol359n5QJMTzsKs1-95IQ9rHhjWGEYShqFaoENcJ9sYpGRXmJWzqWIQuPnHQzF_fG4j8HT8_L_vwmthaKqL3iI322ppVj_MfL4Wek72yO6AGelxP8m3yTVX3SE3-r9Iru6Sr-9dg7tC5WbzNtAeHFFDP64CJwDFhPg7DlFEptRfhMI4vozCeBQEr0P_BupuutZYelHRy0EZXc4XTX2PnJ28-TI7ZcM_Exhkad6wzEpIs9hg2gOyyMvM2BKjk-MSAAqfQpkLCbnISsy0pDJJbkG6NLGJwf3Gi_Q-2aoWlXtIqOcu84URRnkM-1xaKZUChYCFZyDSJCKvRoPqZU-NobuUopC6N79G8-vO_DqNyOtg80ky0Fp3N3C29eAlGpMb4TJwCZexcEVprLAKczzwiNuUjSPyPMyYDsQVVeiM-WbautZvP3_Sxwh1uBI8RqGXg5BfNFcGzHDQAL8qcF1tSO5vSKJnwebwuDD04Nm1ThQXSZ4jUIzIs2k4PBm61Sq3aAcZxEVcRORBv6Cm705RuywKGZGDcYX9Uv438x1Mq_AfrP3o_7Q_JjtJ5yqc8WSfbDVXrXuCYKuxTzsv-wnlyhwn
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P0RGCggJB6YuzixnYS3MjENJKZpUGloD5bt2FO1LKmaRKj89ZzzUVpACCTeqvhi9c5n3--Uu58ReploGwVWxxjQhcGUUoPTTFHsuJ1orAOjsrba4ogfTumHU3a6hU6GXhh1qdWs7ElDHVHxeL0NPe-6HNwtCmaxN89st-kTvlcRx8SGIeJgCOkUNs4VtM0Z4PMR2p4eHU--tG1GMcGQ47Che-a3L25EqJbI_9fjei1erT6g3kDXmmIul19lnq_FqINbqBq060pTLsZNrcb620_Ej_9X_dvoZg9p_Unng3fQlinuoqvdJZfLe-jso6nh0CrMft44VoY3vvSPl46ywId8_QKGfPgfvp257_agoq-HThX47cpLYO66rdz1Z4V_2U_mz_Oyru6j6cG7z_uHuL_SAWsWxTVmiuuIBRKyMs2TOGNSZRA8DeFa68RGOosp1zFlGSSCPJVhrDQ3UahCCcehpdEDNCrKwjxCviWG2URSmVpAJYQrztNUp4CnCNM0Cj30elhGMe-YO0Sb8SRcdOYSYC7RmktEHnrrVnol6Vi32wfl4lz0m1hA7kUN0yYkPKAmyaSiKoUUVFuAlakKPPTC-YlwvBqFK9w5l01VifefTsQEkBhJKQlA6FUvZEtYUy37PgjQylFxbUjubEjCxtebw4M7iv7gqUSYEhrGMeBYDz1fDbs3XTFdYcqmlwHYRqiHHnZuvNI7gtl5knAP7Q5-_WPyP5lvd-X7f2Htx_8m_gRdD1vXJpiEO2hULxrzFLBgrZ71m_s7VbxUrg
  priority: 102
  providerName: Unpaywall
Title MetageneCluster: a Python package for filtering conflicting signal trends in metagene plots
URI https://link.springer.com/article/10.1186/s12859-024-05647-3
https://www.ncbi.nlm.nih.gov/pubmed/38216886
https://www.proquest.com/docview/2914277560
https://www.proquest.com/docview/2914252114
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-024-05647-3
https://doaj.org/article/9744e5ce21604e8dab4b9261cf2649b0
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed (Medline)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2IQQ8IL4JjMogJB6YIU4cO0FCqKtWRqVV1UalTjxYtuNMEyUtbSrof8_ZTbpVTGgvbRVfr8qvd767-PwzQm9SU8RhYQSB7MISxpglWa4ZcdxOTJjQ6tx3W_T50ZD1RsloCzXHHdUAzq8t7dx5UsPZ-P2fX8vP4PCfvMOn_MOcOhY2AtGGQDhn4DTbaBciVeaOcjhml6sKjr_f7zYSlECpkzSbaK7VsRGoPJ__v7P2lbC1Xke9i24vyqla_lbj8ZVQ1b2P7tU5Jm6vjOIB2rLlQ3Rrderk8hH6fmwrmEVK2xkvHE3CR6zwYOk4BDAU0D9gCEMmi4sLt5AOP4ZNs3UEPrt-D9Bd-VZafFHin7UyPB1PqvljNOwefusckfqMBWKSWFQk0dzESaigTDI8FXmidA7RzFJujEmL2OSCcSNYkkNlxjMVCW24jSMdKZifChY_QTvlpLTPEC6oTYpUMZUVAD7lmvMsMxkkODQxLI4C9K4BVE5XVBrSlyAplyv4JcAvPfwyDtCBw3wt6Wiw_YXJ7FzWXiWhGGI2MTaiPGQ2zZVmOoOa0BSQ52U6DNBr949JR3RRuk6ac7WYz-XX0xPZhtSIZoyGIPS2Fiom1UwZVW9MgLty3FgbknsbkuCJZnO4MQzZGLKMMsoiISCxDNCr9bD7putuK-1kUctAHkVZgJ6uDGp93zFo52nKA7TfWNil8v_Bt7-2whug_fzGGLxAdyLvJZTQaA_tVLOFfQl5WaVbaFuMBLym3S8ttNtu90578H5w2B-cwNUO77T8E4-Wd0oYGfYH7bO_2lg0zQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8CBQwCcaBWY8dxEiSESqHapQ8haKWVOBjbcaqKJVk2iar9U_xGxnm1K6SKS2-reDK7mczjm_V4BqGXsckCPzMRAXRhCefckiTVnLjeTjwyvtVpU21xIEZH_PMknKygP_1ZGFdW2fvExlGnhXH_kW-yhHIWRRCg389-Ezc1yu2u9iM0WrXYtYtTSNnKd-OP8H5fMbbz6XB7RLqpAsSEQVSRUAsThL6CxMCIOEpDpVPw35YKY0ycBSaNuDARD1PIRUSiWKSNsAHTTIFFZjwAvlfQVR6ALwH7iSZDgkfdfID-YE4sNkvqusMRiIIEYAYHY14Kfs2MgH8jwblQOOzN3kBrdT5Ti1M1nZ4Lfzu30M0Ot-KtVtFuoxWb30HX2kmWi7vo-76twDPldntau9YLb7HCXxauLwGGpPwnLGFAxzg7cZvz8GXY9MdR4LOrIQHeVVOei09y_KtjhmfToirvoaNLkfB9tJoXuX2IcEZtmMWKqyQD6EGFFiJJTAKgiYaGB8xDb3qBylnbnkM2aU0sZCt-CeKXjfhl4KEPTuYDpWut3Vwo5seys1QJCRa3obGMCp_bOFWa6wTyTJMBdky076EX7o1J1zwjd9U5x6ouSzn-9lVuAdyiCac-EL3uiLKimiujusMO8FSu39YS5foSJVi3WV7uFUN23qWUZ7bgoefDsrvTVczltqg7GsBmlHvoQatQw3MHwF3EsfDQRq9hZ8wvEt_GoIX_Ie1HF__0Z2htdLi_J_fGB7uP0XXWmAkllK2j1Wpe2ycA9ir9tLEwjH5ctkn_Ba4gX_I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEa8D4k2ggEFIHFqrceI4CbeysGp5VBVQqRIHy3bsqmJJVpus0P57xnmxKxCCWxRPJsrE4_lGnvkM8CIzLg6dSSmiC0s555bmhebUczvx1IRWF221xZE4OOHvTpPTtS7-ttp92JLseho8S1PZ7M0L17l4JvZq5nnXKMYXigGco5tchEsco5s_w2AiJuM-gmfsH1pl_vjcRjhqWft_X5vXgtO4W3odri7LuVr9ULPZWkCa3oQbPZIk-92vvwUXbHkbLndnS67uwNePtsG1orST2dKTIbwiihyvPFMAwTT5Gw4RxKvEnfvtcnwZMUODCF77qg7U3bQFs-S8JN97ZWQ-q5r6LpxM336ZHND-JAVqkjhtaKKFiZNQYTJkRJYWidIFxizLhDEmc7EpUi5MypMC8y-RqyjVRtg40pHCVcjx-B5slVVpHwBxzCYuU1zlDsEAE1qIPDc5whiWGB5HAewMBpXzjjBDtolGJmRnfonml635ZRzAa2_zUdKTXbc3qsWZ7H1HYsrDbWJsxETIbVYozXWOmZ9xiOZyHQbw3P8x6eksSl8vc6aWdS0PP3-S-wiAWM5ZiEIveyFXNQtlVN9-gF_lGbA2JLc3JNHfzObwMDFk7--1jHLGozRF-BjAs3HYP-lr2EpbLXsZREuMB3C_m1Djd8eoXWSZCGB3mGG_lP_NfLvjLPwHaz_8P-1P4crxm6n8cHj0_hFci1qvYZRF27DVLJb2MaKxRj9pHe4nWjgnXQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P0RGCggJB6YuzixnYS3MjENJKZpUGloD5bt2FO1LKmaRKj89ZzzUVpACCTeqvhi9c5n3--Uu58ReploGwVWxxjQhcGUUoPTTFHsuJ1orAOjsrba4ogfTumHU3a6hU6GXhh1qdWs7ElDHVHxeL0NPe-6HNwtCmaxN89st-kTvlcRx8SGIeJgCOkUNs4VtM0Z4PMR2p4eHU--tG1GMcGQ47Che-a3L25EqJbI_9fjei1erT6g3kDXmmIul19lnq_FqINbqBq060pTLsZNrcb620_Ej_9X_dvoZg9p_Unng3fQlinuoqvdJZfLe-jso6nh0CrMft44VoY3vvSPl46ywId8_QKGfPgfvp257_agoq-HThX47cpLYO66rdz1Z4V_2U_mz_Oyru6j6cG7z_uHuL_SAWsWxTVmiuuIBRKyMs2TOGNSZRA8DeFa68RGOosp1zFlGSSCPJVhrDQ3UahCCcehpdEDNCrKwjxCviWG2URSmVpAJYQrztNUp4CnCNM0Cj30elhGMe-YO0Sb8SRcdOYSYC7RmktEHnrrVnol6Vi32wfl4lz0m1hA7kUN0yYkPKAmyaSiKoUUVFuAlakKPPTC-YlwvBqFK9w5l01VifefTsQEkBhJKQlA6FUvZEtYUy37PgjQylFxbUjubEjCxtebw4M7iv7gqUSYEhrGMeBYDz1fDbs3XTFdYcqmlwHYRqiHHnZuvNI7gtl5knAP7Q5-_WPyP5lvd-X7f2Htx_8m_gRdD1vXJpiEO2hULxrzFLBgrZ71m_s7VbxUrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetageneCluster%3A+a+Python+package+for+filtering+conflicting+signal+trends+in+metagene+plots&rft.jtitle=BMC+bioinformatics&rft.au=Carter%2C+Clayton&rft.au=Saporito%2C+Aaron&rft.au=Douglass%2C+Stephen+M&rft.date=2024-01-12&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-024-05647-3&rft.externalDocID=A782194100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon