MetageneCluster: a Python package for filtering conflicting signal trends in metagene plots
Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the...
Saved in:
| Published in | BMC bioinformatics Vol. 25; no. 1; pp. 21 - 9 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
12.01.2024
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-024-05647-3 |
Cover
| Abstract | Background
Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends.
Results
We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data.
Conclusions
Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data. |
|---|---|
| AbstractList | Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends. We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data. Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data. Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends. Results We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data. Conclusions Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data. Keywords: Metagene plot, Sequencing data, k-means clustering, Visualization Abstract Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends. Results We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data. Conclusions Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data. BackgroundMetagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends.ResultsWe present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data.ConclusionsOverall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data. Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends. We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data. Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data. Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends.BACKGROUNDMetagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends.We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data.RESULTSWe present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data.Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data.CONCLUSIONSOverall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data. Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental data by aggregating genome-level data to create an average profile. The generation of metagene plots is useful for summarizing the results of many sequencing-based applications. Despite their prevalence and utility, the standard metagene plot is blind to conflicting signals within data. If multiple distinct trends occur, they can interact destructively, creating a plot that does not accurately represent any of the underlying trends. Results We present MetageneCluster, a Python tool to generate a collection of representative metagene plots based on k-means clustering of genomic regions of interest. Clustering the data by similarity allows us to identify patterns within the features of interest. We are then able to summarize each pattern present in the data, rather than averaging across the entire feature space. We show that our method performs well when used to identify conflicting signals in real-world genome-level data. Conclusions Overall, MetageneCluster is a user-friendly tool for the creation of metagene plots that capture distinct patterns in underlying sequence data. |
| ArticleNumber | 21 |
| Audience | Academic |
| Author | Douglass, Stephen M. Carter, Clayton Saporito, Aaron |
| Author_xml | – sequence: 1 givenname: Clayton surname: Carter fullname: Carter, Clayton organization: Connecticut College – sequence: 2 givenname: Aaron surname: Saporito fullname: Saporito, Aaron organization: Connecticut College – sequence: 3 givenname: Stephen M. surname: Douglass fullname: Douglass, Stephen M. email: sdouglass@conncoll.edu organization: Connecticut College |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38216886$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB_wB1igSGxgkWI7foVdNeIxUhGIx4qF5Tg3wSVjB9sRzL_H6QwtgxBCXtiyv3N077k-LY6cd1AUDzE6x1jyZxETyZoKEVohxqmo6jvFCaYCVwQjdvTb-bg4jfEKISwkYveK41oSzKXkJ8XnN5D0AA5W4xwThOelLt9t0xfvykmbr_mp7H0oezvmR-uG0njXj9ak5Rzt4PRYpgCui6V15WZvVk6jT_F-cbfXY4QH-_2s-PTyxcfV6-ry7av16uKyMqwWqWItNzVDumHccCk6ptuOYAKYG2NkX5tOUG4EZR2RDW80Ea3hUJOWaCRlT-uzYr3z7by-UlOwGx22ymurri98GJQOyZoRVCMoBWYgt48oyE63tG0Ix6YnnDYtyl71zmt2k95-1-N4Y4iRWmJXu9hVjl1dx67qrHqyU03Bf5shJrWx0cA4agd-joo0mBJGMF6KffwHeuXnkGPcU0Iwjm6pQeeqret9CtospupC5OE1FKOFOv8LlVcHG5sHBXlscCh4eiDITIIfadBzjGr94f0h-2hf6NxuoLuJ4dffyQDZASb4GAP0_5fUPt84Ld8Jwm37_1D9BNbq4eY |
| Cites_doi | 10.1093/bioinformatics/btx002 10.1038/75556 10.1002/pro.4218 10.1016/j.celrep.2019.05.100 10.1109/ACCESS.2018.2855437 10.1093/bioinformatics/btx633 10.1093/genetics/iyad031 10.1186/s12859-019-3223-5 10.1093/bioinformatics/btu775 10.1109/MCSE.2007.55 10.1137/1.9780898718348 10.1038/s41598-021-98889-7 10.1093/bioinformatics/18.suppl_2.S75 10.1038/s41467-022-28468-5 10.4137/BBI.S38316 10.1038/s41586-020-2649-2 10.1186/s40529-022-00366-5 10.1371/journal.pcbi.1004751 10.3390/ijms24010603 10.1186/s12859-020-03670-8 10.1186/gb-2002-3-12-research0087 10.1093/bioadv/vbac083 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-024-05647-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale in Context : Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall Consulter via DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_9744e5ce21604e8dab4b9261cf2649b0 10.1186/s12859-024-05647-3 A782194100 38216886 10_1186_s12859_024_05647_3 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c537t-5b6c350a956c687d5abd212e16ccc8f3cd746c745d28969a27bc6e32b2a088f43 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Tue Oct 14 19:01:44 EDT 2025 Sun Oct 26 03:59:05 EDT 2025 Fri Sep 05 10:58:52 EDT 2025 Tue Oct 07 05:20:21 EDT 2025 Mon Oct 20 22:59:40 EDT 2025 Mon Oct 20 17:08:01 EDT 2025 Thu Oct 16 16:14:07 EDT 2025 Thu Apr 03 07:00:31 EDT 2025 Wed Oct 01 04:15:44 EDT 2025 Sat Sep 06 07:27:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Visualization k-means clustering Sequencing data Metagene plot |
| Language | English |
| License | 2024. The Author(s). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-5b6c350a956c687d5abd212e16ccc8f3cd746c745d28969a27bc6e32b2a088f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-024-05647-3 |
| PMID | 38216886 |
| PQID | 2914277560 |
| PQPubID | 44065 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9744e5ce21604e8dab4b9261cf2649b0 unpaywall_primary_10_1186_s12859_024_05647_3 proquest_miscellaneous_2914252114 proquest_journals_2914277560 gale_infotracmisc_A782194100 gale_infotracacademiconefile_A782194100 gale_incontextgauss_ISR_A782194100 pubmed_primary_38216886 crossref_primary_10_1186_s12859_024_05647_3 springer_journals_10_1186_s12859_024_05647_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-12 |
| PublicationDateYYYYMMDD | 2024-01-12 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2024 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | C Vahlensieck (5647_CR23) 2022; 24 A Akalin (5647_CR8) 2014 X Huang (5647_CR1) 2018; 34 E Min (5647_CR10) 2018; 6 M Ashburner (5647_CR16) 2000; 25 TK To (5647_CR20) 2022; 13 SA Aleksander (5647_CR21) 2023; 224 5647_CR12 5647_CR11 S Degroeve (5647_CR15) 2002; 18 RJ Lu (5647_CR6) 2023; 64 CR Harris (5647_CR17) 2020; 585 R Mawhorter (5647_CR13) 2019; 20 F Li (5647_CR4) 2020; 21 W Ohler (5647_CR14) 2002; 3 HL Her (5647_CR7) 2022; 2 E Blanco (5647_CR9) 2021; 11 PD Thomas (5647_CR22) 2021; 31 CJ Beauparlant (5647_CR2) 2016; 12 E Blanco (5647_CR3) 2021; 11 JD Hunter (5647_CR18) 2007; 9 AO Olarerin-George (5647_CR5) 2017; 33 CS Leung (5647_CR19) 2019; 27 |
| References_xml | – volume: 33 start-page: 1563 issue: 10 year: 2017 ident: 5647_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx002 – volume: 25 start-page: 25 year: 2000 ident: 5647_CR16 publication-title: Nat Genet doi: 10.1038/75556 – volume: 31 start-page: 8 issue: 1 year: 2021 ident: 5647_CR22 publication-title: Protein Sci doi: 10.1002/pro.4218 – volume: 27 start-page: 3760 issue: 13 year: 2019 ident: 5647_CR19 publication-title: Cell Rep doi: 10.1016/j.celrep.2019.05.100 – volume: 6 start-page: 39501 year: 2018 ident: 5647_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2855437 – volume: 34 start-page: 708 issue: 4 year: 2018 ident: 5647_CR1 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx633 – volume: 224 start-page: iyad031 issue: 1 year: 2023 ident: 5647_CR21 publication-title: Genetics doi: 10.1093/genetics/iyad031 – volume: 20 start-page: 612 year: 2019 ident: 5647_CR13 publication-title: BMC Bioinform doi: 10.1186/s12859-019-3223-5 – year: 2014 ident: 5647_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu775 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 5647_CR18 publication-title: Comput Sci Eng doi: 10.1109/MCSE.2007.55 – ident: 5647_CR11 doi: 10.1137/1.9780898718348 – volume: 11 start-page: 19545 issue: 1 year: 2021 ident: 5647_CR9 publication-title: Sci Rep doi: 10.1038/s41598-021-98889-7 – volume: 18 start-page: S75 year: 2002 ident: 5647_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_2.S75 – volume: 13 start-page: 861 issue: 1 year: 2022 ident: 5647_CR20 publication-title: Nat Commun doi: 10.1038/s41467-022-28468-5 – ident: 5647_CR12 doi: 10.4137/BBI.S38316 – volume: 585 start-page: 357 year: 2020 ident: 5647_CR17 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 11 start-page: 19545 year: 2021 ident: 5647_CR3 publication-title: Sci Rep doi: 10.1038/s41598-021-98889-7 – volume: 64 start-page: 1 issue: 1 year: 2023 ident: 5647_CR6 publication-title: Bot Stud doi: 10.1186/s40529-022-00366-5 – volume: 12 start-page: e1004751 year: 2016 ident: 5647_CR2 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004751 – volume: 24 start-page: 603 issue: 1 year: 2022 ident: 5647_CR23 publication-title: Int J Mol Sci doi: 10.3390/ijms24010603 – volume: 21 start-page: 340 year: 2020 ident: 5647_CR4 publication-title: BMC Bioinform doi: 10.1186/s12859-020-03670-8 – volume: 3 start-page: RESEARCH0087 year: 2002 ident: 5647_CR14 publication-title: Genome Biol doi: 10.1186/gb-2002-3-12-research0087 – volume: 2 start-page: 083 issue: 1 year: 2022 ident: 5647_CR7 publication-title: Bioinform Adv doi: 10.1093/bioadv/vbac083 |
| SSID | ssj0017805 |
| Score | 2.4350507 |
| Snippet | Background
Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of... Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of experimental... Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of... BackgroundMetagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level analysis of... Abstract Background Metagene plots provide a visualization of biological signal trends over subsections of the genome and are used to perform high-level... |
| SourceID | doaj unpaywall proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 21 |
| SubjectTerms | Algorithms Annotations Arrays Bioinformatics Biomedical and Life Sciences Cluster analysis Clustering Clustering (Computers) Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data mining Datasets DNA methylation Gene expression Gene loci Genomics k-means clustering Life Sciences Metagene plot Methods Microarrays Python (Programming language) RNA sequencing Sequencing data Software Trends Vector quantization Visualization |
| SummonAdditionalLinks | – databaseName: Consulter via DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIOrD4W97nhJF8MEL17Rpmvh2Hh6noIh6cOBDSKaJHK7d5doi-9876S93EdQH35bNbLb9ksl8QyZfCHmmIORpgJIhu_BMCOGZrpxgUdtJlJB6V_XVFu_l6Zl4e16cb1z1FWvCBnngAbhD5LvCF-AzLlPhVWWdcBppPwQM5dr12Xqq9JRMjfsHUal_OiKj5GHDo04bw3jEMOALdKutMNSr9f--Jm8EpXmX9Aa51tUru_5hF4uNQHRyk-yODJIeDU9-i1zx9W1ydbhTcn2HfHnnW1wjan-86KIIwktq6Yd1VAigmB5_wyaKPJWGi7hNjn9GYToYgp9jNQf23faFsvSipt_HzuhqsWybu-Ts5PXn41M23qDAoMjLlhVOQl6kFpMgkKqsCusqjFWeSwBQIYeqFBJKUVSYd0lts9KB9HnmMourTxD5PbJTL2v_gNDAfRGUFVYHJAFcOim1Bo30hRcg8iwhLyZAzWoQyjB9gqGkGeA3CL_p4Td5Ql5FzGfLKHLdf4FDb8ahN38b-oQ8jSNmooxFHetkvtquacybTx_NERIfrgVP0ej5aBSW7aUFOx47wLeKyldblvtbluhnsN08TQwz-nljMs1FVpZIGxPyZG6Ov4y1a7VfdqMNsiQuEnJ_mFDze-fYu1RKJuRgmmG_Ov8TfAfzLPwHtPf-B9oPyfWsdyDOeLZPdtrLzj9CQta6x73v_QS3Qit6 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3_a9QwFH_MG6L-IH6bVqdEEfzBhTVtmjaCyDY2puAxpoOBP4QkTcfwbM9ri9x_70uv7XYIw9-O5jXXvntfPu_y8gnA28wWcVjYlCK6cJRz7qjMDaee24mnNnQm77otpuL4jH85T843YDrshfFtlUNM7AJ1Xln_H_luJBmP0hQT9Kf5b-pPjfKrq8MRGro_WiH_2FGM3YLNyDNjTWBz_3B6cjquK3gG_2HrTCZ2a-b52yjmKYpAgKO7raWnjsX_31h9LVmNq6f34E5bzvXyj57NriWoowdwv0eWZG9lCg9hw5WP4PbqrMnlY_jx1TUYO0p3MGs9OcIHosnJ0jMHECybf-IQQfxKiku_fI5fRuywYQQ_-y4PnLvpGmjJZUl-9ZOR-axq6idwdnT4_eCY9icrUJvEaUMTI2ychBqLIyuyNE-0yVFhjglrbVbENk-5sClPcqzHhNRRaqxwcWQijVGp4PEWTMqqdM-AFMwlRaa5lgWCAyaMEFJaibCGJZbHUQDvB4Wq-YpAQ3WFRybUSv0K1a869as4gH2v81HSk193F6rFhep9SWEJxF1iXcREyF2Wa8ONxErQFojupAkDeON_MeXpLUrfP3Oh27pWn7-dqj0ERExyFqLQu16oqJqFtrrfjoBv5Rmx1iS31yTR_-z68GAYqvf_Wl1ZawCvx2F_p-9pK13V9jKInhgP4OnKoMb3jnF2kWUigJ3Bwq4mv0l9O6MV_oe2n9_86C_gbtS5BqMs2oZJs2jdS4RgjXnV-9Vf50opww priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96h3g-HOd39ZQogg9euKZN0-bezsXjFBRRDw58CMk0kcO97nJtkf3vnfTLXRTRt9JMp3SSyfyGmfxKyIsCfBp7yBmiC8eEEI6p0goWuJ1EDrGzZddt8UGenol359n5QJMTzsKs1-95IQ9rHhjWGEYShqFaoENcJ9sYpGRXmJWzqWIQuPnHQzF_fG4j8HT8_L_vwmthaKqL3iI322ppVj_MfL4Wek72yO6AGelxP8m3yTVX3SE3-r9Iru6Sr-9dg7tC5WbzNtAeHFFDP64CJwDFhPg7DlFEptRfhMI4vozCeBQEr0P_BupuutZYelHRy0EZXc4XTX2PnJ28-TI7ZcM_Exhkad6wzEpIs9hg2gOyyMvM2BKjk-MSAAqfQpkLCbnISsy0pDJJbkG6NLGJwf3Gi_Q-2aoWlXtIqOcu84URRnkM-1xaKZUChYCFZyDSJCKvRoPqZU-NobuUopC6N79G8-vO_DqNyOtg80ky0Fp3N3C29eAlGpMb4TJwCZexcEVprLAKczzwiNuUjSPyPMyYDsQVVeiM-WbautZvP3_Sxwh1uBI8RqGXg5BfNFcGzHDQAL8qcF1tSO5vSKJnwebwuDD04Nm1ThQXSZ4jUIzIs2k4PBm61Sq3aAcZxEVcRORBv6Cm705RuywKGZGDcYX9Uv438x1Mq_AfrP3o_7Q_JjtJ5yqc8WSfbDVXrXuCYKuxTzsv-wnlyhwn priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P0RGCggJB6YuzixnYS3MjENJKZpUGloD5bt2FO1LKmaRKj89ZzzUVpACCTeqvhi9c5n3--Uu58ReploGwVWxxjQhcGUUoPTTFHsuJ1orAOjsrba4ogfTumHU3a6hU6GXhh1qdWs7ElDHVHxeL0NPe-6HNwtCmaxN89st-kTvlcRx8SGIeJgCOkUNs4VtM0Z4PMR2p4eHU--tG1GMcGQ47Che-a3L25EqJbI_9fjei1erT6g3kDXmmIul19lnq_FqINbqBq060pTLsZNrcb620_Ej_9X_dvoZg9p_Unng3fQlinuoqvdJZfLe-jso6nh0CrMft44VoY3vvSPl46ywId8_QKGfPgfvp257_agoq-HThX47cpLYO66rdz1Z4V_2U_mz_Oyru6j6cG7z_uHuL_SAWsWxTVmiuuIBRKyMs2TOGNSZRA8DeFa68RGOosp1zFlGSSCPJVhrDQ3UahCCcehpdEDNCrKwjxCviWG2URSmVpAJYQrztNUp4CnCNM0Cj30elhGMe-YO0Sb8SRcdOYSYC7RmktEHnrrVnol6Vi32wfl4lz0m1hA7kUN0yYkPKAmyaSiKoUUVFuAlakKPPTC-YlwvBqFK9w5l01VifefTsQEkBhJKQlA6FUvZEtYUy37PgjQylFxbUjubEjCxtebw4M7iv7gqUSYEhrGMeBYDz1fDbs3XTFdYcqmlwHYRqiHHnZuvNI7gtl5knAP7Q5-_WPyP5lvd-X7f2Htx_8m_gRdD1vXJpiEO2hULxrzFLBgrZ71m_s7VbxUrg priority: 102 providerName: Unpaywall |
| Title | MetageneCluster: a Python package for filtering conflicting signal trends in metagene plots |
| URI | https://link.springer.com/article/10.1186/s12859-024-05647-3 https://www.ncbi.nlm.nih.gov/pubmed/38216886 https://www.proquest.com/docview/2914277560 https://www.proquest.com/docview/2914252114 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-024-05647-3 https://doaj.org/article/9744e5ce21604e8dab4b9261cf2649b0 |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed (Medline) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2IQQ8IL4JjMogJB6YIU4cO0FCqKtWRqVV1UalTjxYtuNMEyUtbSrof8_ZTbpVTGgvbRVfr8qvd767-PwzQm9SU8RhYQSB7MISxpglWa4ZcdxOTJjQ6tx3W_T50ZD1RsloCzXHHdUAzq8t7dx5UsPZ-P2fX8vP4PCfvMOn_MOcOhY2AtGGQDhn4DTbaBciVeaOcjhml6sKjr_f7zYSlECpkzSbaK7VsRGoPJ__v7P2lbC1Xke9i24vyqla_lbj8ZVQ1b2P7tU5Jm6vjOIB2rLlQ3Rrderk8hH6fmwrmEVK2xkvHE3CR6zwYOk4BDAU0D9gCEMmi4sLt5AOP4ZNs3UEPrt-D9Bd-VZafFHin7UyPB1PqvljNOwefusckfqMBWKSWFQk0dzESaigTDI8FXmidA7RzFJujEmL2OSCcSNYkkNlxjMVCW24jSMdKZifChY_QTvlpLTPEC6oTYpUMZUVAD7lmvMsMxkkODQxLI4C9K4BVE5XVBrSlyAplyv4JcAvPfwyDtCBw3wt6Wiw_YXJ7FzWXiWhGGI2MTaiPGQ2zZVmOoOa0BSQ52U6DNBr949JR3RRuk6ac7WYz-XX0xPZhtSIZoyGIPS2Fiom1UwZVW9MgLty3FgbknsbkuCJZnO4MQzZGLKMMsoiISCxDNCr9bD7putuK-1kUctAHkVZgJ6uDGp93zFo52nKA7TfWNil8v_Bt7-2whug_fzGGLxAdyLvJZTQaA_tVLOFfQl5WaVbaFuMBLym3S8ttNtu90578H5w2B-cwNUO77T8E4-Wd0oYGfYH7bO_2lg0zQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8CBQwCcaBWY8dxEiSESqHapQ8haKWVOBjbcaqKJVk2iar9U_xGxnm1K6SKS2-reDK7mczjm_V4BqGXsckCPzMRAXRhCefckiTVnLjeTjwyvtVpU21xIEZH_PMknKygP_1ZGFdW2fvExlGnhXH_kW-yhHIWRRCg389-Ezc1yu2u9iM0WrXYtYtTSNnKd-OP8H5fMbbz6XB7RLqpAsSEQVSRUAsThL6CxMCIOEpDpVPw35YKY0ycBSaNuDARD1PIRUSiWKSNsAHTTIFFZjwAvlfQVR6ALwH7iSZDgkfdfID-YE4sNkvqusMRiIIEYAYHY14Kfs2MgH8jwblQOOzN3kBrdT5Ti1M1nZ4Lfzu30M0Ot-KtVtFuoxWb30HX2kmWi7vo-76twDPldntau9YLb7HCXxauLwGGpPwnLGFAxzg7cZvz8GXY9MdR4LOrIQHeVVOei09y_KtjhmfToirvoaNLkfB9tJoXuX2IcEZtmMWKqyQD6EGFFiJJTAKgiYaGB8xDb3qBylnbnkM2aU0sZCt-CeKXjfhl4KEPTuYDpWut3Vwo5seys1QJCRa3obGMCp_bOFWa6wTyTJMBdky076EX7o1J1zwjd9U5x6ouSzn-9lVuAdyiCac-EL3uiLKimiujusMO8FSu39YS5foSJVi3WV7uFUN23qWUZ7bgoefDsrvTVczltqg7GsBmlHvoQatQw3MHwF3EsfDQRq9hZ8wvEt_GoIX_Ie1HF__0Z2htdLi_J_fGB7uP0XXWmAkllK2j1Wpe2ycA9ir9tLEwjH5ctkn_Ba4gX_I |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEa8D4k2ggEFIHFqrceI4CbeysGp5VBVQqRIHy3bsqmJJVpus0P57xnmxKxCCWxRPJsrE4_lGnvkM8CIzLg6dSSmiC0s555bmhebUczvx1IRWF221xZE4OOHvTpPTtS7-ttp92JLseho8S1PZ7M0L17l4JvZq5nnXKMYXigGco5tchEsco5s_w2AiJuM-gmfsH1pl_vjcRjhqWft_X5vXgtO4W3odri7LuVr9ULPZWkCa3oQbPZIk-92vvwUXbHkbLndnS67uwNePtsG1orST2dKTIbwiihyvPFMAwTT5Gw4RxKvEnfvtcnwZMUODCF77qg7U3bQFs-S8JN97ZWQ-q5r6LpxM336ZHND-JAVqkjhtaKKFiZNQYTJkRJYWidIFxizLhDEmc7EpUi5MypMC8y-RqyjVRtg40pHCVcjx-B5slVVpHwBxzCYuU1zlDsEAE1qIPDc5whiWGB5HAewMBpXzjjBDtolGJmRnfonml635ZRzAa2_zUdKTXbc3qsWZ7H1HYsrDbWJsxETIbVYozXWOmZ9xiOZyHQbw3P8x6eksSl8vc6aWdS0PP3-S-wiAWM5ZiEIveyFXNQtlVN9-gF_lGbA2JLc3JNHfzObwMDFk7--1jHLGozRF-BjAs3HYP-lr2EpbLXsZREuMB3C_m1Djd8eoXWSZCGB3mGG_lP_NfLvjLPwHaz_8P-1P4crxm6n8cHj0_hFci1qvYZRF27DVLJb2MaKxRj9pHe4nWjgnXQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88P0RGCggJB6YuzixnYS3MjENJKZpUGloD5bt2FO1LKmaRKj89ZzzUVpACCTeqvhi9c5n3--Uu58ReploGwVWxxjQhcGUUoPTTFHsuJ1orAOjsrba4ogfTumHU3a6hU6GXhh1qdWs7ElDHVHxeL0NPe-6HNwtCmaxN89st-kTvlcRx8SGIeJgCOkUNs4VtM0Z4PMR2p4eHU--tG1GMcGQ47Che-a3L25EqJbI_9fjei1erT6g3kDXmmIul19lnq_FqINbqBq060pTLsZNrcb620_Ej_9X_dvoZg9p_Unng3fQlinuoqvdJZfLe-jso6nh0CrMft44VoY3vvSPl46ywId8_QKGfPgfvp257_agoq-HThX47cpLYO66rdz1Z4V_2U_mz_Oyru6j6cG7z_uHuL_SAWsWxTVmiuuIBRKyMs2TOGNSZRA8DeFa68RGOosp1zFlGSSCPJVhrDQ3UahCCcehpdEDNCrKwjxCviWG2URSmVpAJYQrztNUp4CnCNM0Cj30elhGMe-YO0Sb8SRcdOYSYC7RmktEHnrrVnol6Vi32wfl4lz0m1hA7kUN0yYkPKAmyaSiKoUUVFuAlakKPPTC-YlwvBqFK9w5l01VifefTsQEkBhJKQlA6FUvZEtYUy37PgjQylFxbUjubEjCxtebw4M7iv7gqUSYEhrGMeBYDz1fDbs3XTFdYcqmlwHYRqiHHnZuvNI7gtl5knAP7Q5-_WPyP5lvd-X7f2Htx_8m_gRdD1vXJpiEO2hULxrzFLBgrZ71m_s7VbxUrg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetageneCluster%3A+a+Python+package+for+filtering+conflicting+signal+trends+in+metagene+plots&rft.jtitle=BMC+bioinformatics&rft.au=Carter%2C+Clayton&rft.au=Saporito%2C+Aaron&rft.au=Douglass%2C+Stephen+M&rft.date=2024-01-12&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-024-05647-3&rft.externalDocID=A782194100 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |