Endoplasmic Reticulum Protein Quality Control and Its Relationship to Environmental Stress Responses in Plants

The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 22; no. 9; pp. 2930 - 2942
Main Authors Liu, Jian-Xiang, Howell, Stephen H.
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.09.2010
Subjects
Online AccessGet full text
ISSN1040-4651
1532-298X
1532-298X
DOI10.1105/tpc.110.078154

Cover

Abstract The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants.
AbstractList The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants.
The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants.The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants.
Author Howell, Stephen H.
Liu, Jian-Xiang
AuthorAffiliation a State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China 200433
b Plant Sciences Institute and Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
AuthorAffiliation_xml – name: a State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China 200433
– name: b Plant Sciences Institute and Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
Author_xml – sequence: 1
  givenname: Jian-Xiang
  surname: Liu
  fullname: Liu, Jian-Xiang
– sequence: 2
  givenname: Stephen H.
  surname: Howell
  fullname: Howell, Stephen H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20876830$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB-wZQey2MAmUz_iON4godEUKlWivCR2lsfxUI8cO9hO0fz7OpNCoRKwypXyneN7zj0GBz54A8BTjBYYI3aaBz0NC8RbzOoH4AgzSioi2q8HZUY1quqG4UNwnNIWIYQ5Fo_AIUEtb1qKjoBf-S4MTqXeavjRZKtHN_bwMoZsrIcfRuVs3sFl8DkGB5Xv4HlOhXQq2-DTlR1gDnDlr20Mvjc-Kwc_5WjSBKWhICbB4nTplM_pMXi4US6ZJ7ffE_DlbPV5-a66eP_2fPnmotKM8lyxdoO1oaQxuBNiozvFBBW4RQQzsVEdV9y0Zm0UwiWKRoR3FGPdGKMbLdaMnoDT2Xf0g9r9UM7JIdpexZ3ESE7NydLcNMi5uaJ4PSuGcd2bTpckUd2pgrLyzz_eXslv4VoS0TDGcDF4eWsQw_fRpCx7m7RxJbcJY5K8IYSXw0zLvfonieta7OOSgr64h27DGH2pbu-HKRLTy89_X_3Xzj-vXIB6BnQMKUWzkdrm_f1KEuv-Xsninuy_HT6bBduUQ7zbg3HW8prSGwhb1kk
CitedBy_id crossref_primary_10_1038_s41598_018_19766_4
crossref_primary_10_1074_mcp_M116_059436
crossref_primary_10_3390_ijms19123737
crossref_primary_10_4236_ajps_2015_65069
crossref_primary_10_1073_pnas_1802254115
crossref_primary_10_1007_s12298_021_01003_4
crossref_primary_10_1111_pce_12927
crossref_primary_10_1038_s41467_018_06289_9
crossref_primary_10_1371_journal_pone_0236424
crossref_primary_10_1111_mpp_12567
crossref_primary_10_1186_s12870_015_0525_2
crossref_primary_10_3390_ijms22094840
crossref_primary_10_1038_s41598_019_48664_6
crossref_primary_10_1007_s11105_014_0793_2
crossref_primary_10_1371_journal_pone_0198978
crossref_primary_10_1080_15427528_2020_1808133
crossref_primary_10_1111_plb_12267
crossref_primary_10_1007_s11816_021_00699_w
crossref_primary_10_1111_tpj_12287
crossref_primary_10_3389_fpls_2024_1457587
crossref_primary_10_1007_s12042_024_09354_4
crossref_primary_10_1016_j_bbrc_2011_01_082
crossref_primary_10_1021_pr501080r
crossref_primary_10_1093_pcp_pcx189
crossref_primary_10_1111_ppl_14246
crossref_primary_10_1146_annurev_arplant_050312_120053
crossref_primary_10_1093_jxb_ers031
crossref_primary_10_1016_j_envexpbot_2023_105608
crossref_primary_10_1093_pcp_pcs159
crossref_primary_10_1111_nph_15279
crossref_primary_10_1016_j_plantsci_2018_05_029
crossref_primary_10_3389_fpls_2022_930721
crossref_primary_10_3389_fmars_2022_928617
crossref_primary_10_1186_s12864_017_3596_7
crossref_primary_10_3390_biom11020240
crossref_primary_10_1111_tpj_12604
crossref_primary_10_1111_pce_12027
crossref_primary_10_1111_1755_0998_13539
crossref_primary_10_1111_j_1399_3054_2012_01704_x
crossref_primary_10_1111_pce_12142
crossref_primary_10_1111_nph_16369
crossref_primary_10_1016_j_phytochem_2011_11_005
crossref_primary_10_1016_j_jbiotec_2012_10_010
crossref_primary_10_3389_fpls_2022_905674
crossref_primary_10_1016_j_bbagrm_2011_10_002
crossref_primary_10_1089_ees_2020_0044
crossref_primary_10_3390_biom10071031
crossref_primary_10_3389_fmolb_2022_817392
crossref_primary_10_1016_j_molp_2020_11_010
crossref_primary_10_1371_journal_pone_0212671
crossref_primary_10_1134_S1021443718010193
crossref_primary_10_1111_tpj_13239
crossref_primary_10_1186_s12864_021_07954_y
crossref_primary_10_1186_s12864_024_11091_7
crossref_primary_10_1104_pp_112_210757
crossref_primary_10_1371_journal_pone_0071425
crossref_primary_10_1021_acs_est_8b06641
crossref_primary_10_1186_s12870_021_02854_5
crossref_primary_10_1371_journal_pgen_1005511
crossref_primary_10_3389_fpls_2019_00399
crossref_primary_10_1007_s11105_016_1015_x
crossref_primary_10_3390_ijms24119408
crossref_primary_10_1016_j_celrep_2022_110941
crossref_primary_10_1007_s11103_017_0608_6
crossref_primary_10_1007_s11103_019_00928_5
crossref_primary_10_1134_S1021443724606402
crossref_primary_10_1016_j_indcrop_2023_117675
crossref_primary_10_1111_ppl_14267
crossref_primary_10_1007_s00299_014_1680_x
crossref_primary_10_1111_ppl_12090
crossref_primary_10_1093_jxb_eraa320
crossref_primary_10_1007_s42994_021_00062_1
crossref_primary_10_1186_1756_0500_5_144
crossref_primary_10_1134_S0026893319020146
crossref_primary_10_1007_s13765_017_0319_3
crossref_primary_10_1016_j_plantsci_2018_05_007
crossref_primary_10_1002_biot_202300715
crossref_primary_10_1007_s00299_023_03040_7
crossref_primary_10_3390_ijms14047771
crossref_primary_10_1016_j_envexpbot_2017_06_009
crossref_primary_10_1016_j_jprot_2012_09_032
crossref_primary_10_1186_s12870_019_1798_7
crossref_primary_10_1093_aob_mcu035
crossref_primary_10_1093_mp_sss042
crossref_primary_10_1093_mp_ssr072
crossref_primary_10_3389_fpls_2021_807354
crossref_primary_10_1016_j_scienta_2017_05_012
crossref_primary_10_1080_17429145_2021_1998681
crossref_primary_10_3389_fpls_2022_911610
crossref_primary_10_1093_pcp_pcr157
crossref_primary_10_3389_fpls_2019_01032
crossref_primary_10_3389_fpls_2022_903793
crossref_primary_10_1111_jipb_12766
crossref_primary_10_1016_j_bbrc_2014_04_093
crossref_primary_10_3390_f16030485
crossref_primary_10_1371_journal_pgen_1004243
crossref_primary_10_3390_cells10061272
crossref_primary_10_1007_s11427_015_4807_6
crossref_primary_10_1111_pce_14503
crossref_primary_10_1016_j_fsi_2021_05_002
crossref_primary_10_1111_j_1365_313X_2012_04943_x
crossref_primary_10_3390_agronomy14092105
crossref_primary_10_3390_cells11193121
crossref_primary_10_3390_plants9060723
crossref_primary_10_1111_nph_14676
crossref_primary_10_3390_ijms23020828
crossref_primary_10_1073_pnas_2208351120
crossref_primary_10_1080_15592324_2017_1317421
crossref_primary_10_1104_pp_114_238030
crossref_primary_10_1016_j_ympev_2019_01_014
crossref_primary_10_1093_pcp_pcy233
crossref_primary_10_3390_ijms21041354
crossref_primary_10_3389_fpls_2014_00211
crossref_primary_10_3389_fpls_2015_00669
crossref_primary_10_4161_viru_26774
crossref_primary_10_1016_j_jgg_2012_05_005
crossref_primary_10_1016_j_xplc_2021_100186
crossref_primary_10_1111_pbi_12540
crossref_primary_10_1016_j_jprot_2017_11_006
crossref_primary_10_4161_viru_26772
crossref_primary_10_3390_ijms21010151
crossref_primary_10_1042_EBC20210099
crossref_primary_10_1126_sciadv_abb7719
crossref_primary_10_1016_j_jhazmat_2022_130499
crossref_primary_10_1093_aobpla_plu062
crossref_primary_10_1111_pbi_13760
crossref_primary_10_2174_1570164618666210413105907
crossref_primary_10_1016_j_jprot_2014_03_006
crossref_primary_10_1016_j_jprot_2016_03_003
crossref_primary_10_1007_s11033_013_2643_y
crossref_primary_10_1093_pcp_pcw069
crossref_primary_10_3390_plants11243410
crossref_primary_10_1371_journal_pone_0101808
crossref_primary_10_1002_agj2_20975
crossref_primary_10_1007_s00497_016_0276_8
crossref_primary_10_1111_pce_12426
crossref_primary_10_3389_fpls_2022_934877
crossref_primary_10_1104_pp_112_209718
crossref_primary_10_1016_j_jplph_2020_153218
crossref_primary_10_3390_plants12091842
crossref_primary_10_1016_j_plantsci_2023_111777
crossref_primary_10_1105_tpc_111_093062
crossref_primary_10_1111_tpj_14524
crossref_primary_10_3390_genes12010023
crossref_primary_10_1111_j_1399_3054_2011_01529_x
crossref_primary_10_1016_j_plantsci_2014_10_002
crossref_primary_10_1016_j_cpb_2021_100197
crossref_primary_10_1111_jipb_12544
crossref_primary_10_3389_fpls_2016_01783
crossref_primary_10_3389_fpls_2019_00873
crossref_primary_10_1093_molbev_msw230
crossref_primary_10_1093_pcp_pcs015
crossref_primary_10_1007_s11032_023_01415_y
crossref_primary_10_1186_s12870_017_1060_0
crossref_primary_10_1111_tpj_15743
crossref_primary_10_3390_biom11050756
crossref_primary_10_1093_jxb_erad075
crossref_primary_10_1186_s12864_017_4277_2
crossref_primary_10_3389_fpls_2017_00667
crossref_primary_10_3390_plants12142680
crossref_primary_10_3389_fpls_2017_01086
crossref_primary_10_3390_foods9050683
crossref_primary_10_1016_j_molp_2021_08_013
crossref_primary_10_1371_journal_pone_0112946
crossref_primary_10_1089_omi_2011_0109
crossref_primary_10_1007_s11240_024_02749_x
crossref_primary_10_1111_ppl_13268
crossref_primary_10_1111_j_1365_313X_2011_04844_x
crossref_primary_10_1111_tpj_13091
crossref_primary_10_1242_jcs_147447
crossref_primary_10_1007_s40502_020_00548_y
crossref_primary_10_1016_j_marenvres_2017_10_011
crossref_primary_10_1002_fes3_239
crossref_primary_10_1002_ece3_11652
crossref_primary_10_1016_j_jplph_2012_11_011
crossref_primary_10_3390_ijms21072445
crossref_primary_10_1093_aobpla_plu037
crossref_primary_10_1111_jipb_13372
crossref_primary_10_3389_fpls_2017_00245
crossref_primary_10_1111_pbi_12184
crossref_primary_10_1016_j_cj_2020_01_007
crossref_primary_10_1093_plphys_kiab498
crossref_primary_10_1105_tpc_114_123588
crossref_primary_10_1111_nph_17628
crossref_primary_10_1111_nph_20224
crossref_primary_10_1111_nph_14582
crossref_primary_10_1105_tpc_111_083634
crossref_primary_10_1111_mpp_12050
crossref_primary_10_1093_pcp_pcaa157
crossref_primary_10_1100_2012_416076
crossref_primary_10_1016_j_tplants_2012_07_004
crossref_primary_10_3389_fpls_2021_661062
crossref_primary_10_1111_j_1365_313X_2012_05070_x
crossref_primary_10_1002_biof_1194
crossref_primary_10_1093_pcp_pcr107
crossref_primary_10_1111_pce_13507
crossref_primary_10_1111_jac_12496
crossref_primary_10_3390_ijms22020530
crossref_primary_10_4161_psb_24297
crossref_primary_10_1002_pei3_10096
crossref_primary_10_1016_j_scitotenv_2023_165676
crossref_primary_10_1073_pnas_1609844114
crossref_primary_10_1007_s11738_022_03369_8
crossref_primary_10_1007_s11738_019_2922_x
crossref_primary_10_1093_g3journal_jkae237
crossref_primary_10_1093_plphys_kiab367
crossref_primary_10_1111_nph_15436
crossref_primary_10_1111_pbi_14252
crossref_primary_10_1093_plphys_kiab126
crossref_primary_10_1093_pcp_pct097
crossref_primary_10_1371_journal_pone_0077378
crossref_primary_10_1007_s40626_018_0128_z
crossref_primary_10_1016_j_plantsci_2018_03_002
crossref_primary_10_3390_ijms20235842
crossref_primary_10_1093_pcp_pcv059
crossref_primary_10_1093_jxb_erad449
crossref_primary_10_1111_tpj_16222
crossref_primary_10_1038_s41467_024_50105_6
crossref_primary_10_3389_fpls_2016_01579
crossref_primary_10_1111_jipb_12744
crossref_primary_10_3390_ijms241713105
crossref_primary_10_3389_fpls_2020_01072
crossref_primary_10_3389_fpls_2020_598552
crossref_primary_10_1007_s00425_024_04538_4
crossref_primary_10_1111_j_1365_313X_2012_05022_x
crossref_primary_10_1080_15592324_2016_1171451
crossref_primary_10_1080_21645698_2019_1598215
crossref_primary_10_3389_fpls_2017_00344
crossref_primary_10_1016_j_celrep_2025_115271
crossref_primary_10_1016_j_jprot_2015_03_030
crossref_primary_10_1007_s11295_013_0661_5
crossref_primary_10_3389_fpls_2018_00348
crossref_primary_10_3389_fpls_2018_01558
crossref_primary_10_1111_pbi_13297
crossref_primary_10_3389_fpls_2014_00778
crossref_primary_10_3390_antiox11071240
crossref_primary_10_1093_aob_mcv072
crossref_primary_10_1094_PDIS_10_22_2339_RE
crossref_primary_10_1002_advs_202407826
crossref_primary_10_1073_pnas_1504828112
crossref_primary_10_1007_s00709_022_01780_z
crossref_primary_10_1007_s13562_017_0409_7
crossref_primary_10_1002_slct_202403028
crossref_primary_10_1104_pp_112_197483
crossref_primary_10_1093_mp_ssr115
crossref_primary_10_1007_s11240_016_1064_8
crossref_primary_10_3389_fpls_2018_00214
crossref_primary_10_1111_nph_13915
crossref_primary_10_1186_1471_2229_11_129
crossref_primary_10_3389_fmars_2020_00415
crossref_primary_10_3389_fpls_2021_799954
crossref_primary_10_1007_s00425_019_03294_0
crossref_primary_10_3390_genes15080968
crossref_primary_10_3389_fpls_2022_903272
crossref_primary_10_1111_nph_14031
crossref_primary_10_1073_pnas_1419703112
crossref_primary_10_3389_fpls_2019_01551
crossref_primary_10_3389_fpls_2022_904121
crossref_primary_10_1016_j_cj_2021_02_008
crossref_primary_10_1007_s00299_014_1658_8
crossref_primary_10_1016_j_bbrc_2019_04_015
crossref_primary_10_5423_PPJ_RW_08_2015_0150
crossref_primary_10_1186_s12870_020_2236_6
crossref_primary_10_1093_jxb_erac011
crossref_primary_10_1186_s12870_019_1670_9
crossref_primary_10_1002_jcb_29199
crossref_primary_10_3390_plants11060755
crossref_primary_10_1038_cr_2011_18
crossref_primary_10_1371_journal_pgen_1008563
crossref_primary_10_1016_j_ygeno_2021_05_002
crossref_primary_10_3390_ijms24065304
crossref_primary_10_3390_molecules23020386
crossref_primary_10_1111_febs_12092
crossref_primary_10_1111_tpj_14265
crossref_primary_10_31857_S0015330324030015
crossref_primary_10_1007_s11105_015_0900_z
crossref_primary_10_1007_s11816_021_00707_z
crossref_primary_10_1016_j_ymgme_2012_04_018
crossref_primary_10_3390_ijms21072655
crossref_primary_10_1002_sae2_70032
crossref_primary_10_1094_MPMI_07_13_0200_R
crossref_primary_10_1105_tpc_111_093112
crossref_primary_10_1007_s11103_016_0540_1
crossref_primary_10_1016_j_aquaculture_2023_740466
crossref_primary_10_1111_nph_15915
crossref_primary_10_3390_ijms20020390
crossref_primary_10_1016_j_molp_2018_05_009
crossref_primary_10_1105_tpc_16_00574
crossref_primary_10_1111_j_1365_313X_2012_05106_x
crossref_primary_10_1134_S1990519X13050027
crossref_primary_10_1105_tpc_111_089656
crossref_primary_10_4161_psb_6_11_17829
crossref_primary_10_1093_jxb_eraa098
crossref_primary_10_4161_psb_20934
crossref_primary_10_1101_gr_202200_115
crossref_primary_10_3390_ijms21249741
crossref_primary_10_1093_plphys_kiad571
crossref_primary_10_1016_j_tplants_2012_06_014
crossref_primary_10_3390_ijms241914802
crossref_primary_10_1016_j_jplph_2015_04_003
crossref_primary_10_1016_j_plaphy_2015_02_007
crossref_primary_10_1016_j_plantsci_2013_05_003
crossref_primary_10_1186_1471_2229_14_129
crossref_primary_10_1371_journal_pone_0094704
crossref_primary_10_3389_fpls_2017_00144
crossref_primary_10_1007_s10142_024_01438_4
crossref_primary_10_1038_s41588_023_01302_4
crossref_primary_10_1016_j_jplph_2018_11_003
crossref_primary_10_1155_2013_264314
crossref_primary_10_1371_journal_pone_0078471
crossref_primary_10_1371_journal_ppat_1006301
crossref_primary_10_1016_j_molp_2020_10_011
crossref_primary_10_3390_plants8020034
crossref_primary_10_1016_j_jprot_2011_05_007
crossref_primary_10_1074_jbc_M111_233494
crossref_primary_10_1016_j_xplc_2023_100726
crossref_primary_10_1104_pp_111_179697
crossref_primary_10_1007_s12374_021_09307_4
crossref_primary_10_1111_pbi_12963
crossref_primary_10_3390_ijms252413304
crossref_primary_10_1007_s40858_022_00500_5
crossref_primary_10_1093_jxb_erz402
crossref_primary_10_1093_plphys_kiac595
crossref_primary_10_1111_jipb_12139
crossref_primary_10_1016_j_jprot_2014_12_008
crossref_primary_10_1016_j_bbrc_2023_05_106
crossref_primary_10_3390_ijms221910772
crossref_primary_10_1016_j_plantsci_2018_09_019
crossref_primary_10_3390_biom5021151
crossref_primary_10_1186_1471_2229_11_163
crossref_primary_10_1093_jxb_erac262
crossref_primary_10_1111_ppl_13667
crossref_primary_10_1093_mp_sst059
crossref_primary_10_1371_journal_pone_0086661
crossref_primary_10_1371_journal_ppat_1002177
crossref_primary_10_1016_j_tplants_2020_12_007
crossref_primary_10_1007_s00709_015_0921_3
crossref_primary_10_1007_s11103_012_9891_4
crossref_primary_10_1111_mpp_12071
crossref_primary_10_1111_ppl_13663
crossref_primary_10_1007_s11103_020_01074_z
crossref_primary_10_3389_fpls_2014_00627
Cites_doi 10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2
10.1016/j.sbi.2007.01.008
10.1111/j.1438-8677.1998.tb00679.x
10.1093/jxb/erm369
10.1016/j.molcel.2007.05.015
10.1074/jbc.M511794200
10.1105/tpc.013862
10.1074/jbc.M110.117176
10.1017/S0033583508004654
10.1126/scisignal.2001140
10.1126/science.1108791
10.1105/tpc.11.10.1935
10.1111/j.1365-313X.2005.02392.x
10.1104/pp.126.3.1042
10.1126/science.7939687
10.1111/j.1365-3040.2008.01873.x
10.1038/35048692
10.1104/pp.107.4.1411
10.1016/j.cell.2008.11.047
10.1074/jbc.M304468200
10.1046/j.1365-313X.2003.01636.x
10.1021/bi0204701
10.1093/jxb/49.326.1473
10.1083/jcb.200411136
10.1074/jbc.M402468200
10.2307/3870510
10.1046/j.1365-313x.2000.00933.x
10.1089/152308603768295122
10.1007/s00438-008-0356-z
10.1016/j.cell.2006.05.045
10.1083/jcb.129.4.979
10.1371/journal.pone.0011342
10.1146/annurev.bi.54.070185.003215
10.1038/384432a0
10.1073/pnas.0506448103
10.1111/j.1600-0854.2008.00729.x
10.1016/j.semcdb.2007.09.003
10.1016/j.plipres.2005.05.002
10.1016/j.bbrc.2008.07.021
10.1105/tpc.013052
10.1038/nsmb.1591
10.1073/pnas.0611735104
10.1111/j.1399-3054.2009.01223.x
10.1002/j.1460-2075.1996.tb00411.x
10.1006/scdb.1999.0315
10.1038/353726a0
10.1073/pnas.251386098
10.1126/science.2756425
10.1074/jbc.M109.037234
10.1002/prot.340210302
10.1074/jbc.R700048200
10.5511/plantbiotechnology.25.271
10.1105/tpc.106.050021
10.1083/jcb.200309132
10.1006/scdb.1999.0318
10.1016/j.bbrc.2006.08.186
10.1093/jxb/49.324.1091
10.1038/nrm2199
10.1038/emboj.2009.262
10.1104/pp.104.055434
10.1016/j.tcb.2003.11.001
10.1091/mbc.e05-05-0417
10.1038/sj.emboj.7601088
10.1105/tpc.007609
10.1093/pcp/pcf063
10.1111/j.1365-313X.2008.03732.x
10.1104/pp.105.060087
10.1104/pp.121.2.353
10.1016/j.molcel.2008.11.017
10.1073/pnas.0905532106
10.1091/mbc.11.10.3425
10.1074/jbc.M704185200
10.1091/mbc.e02-05-0311
10.1073/pnas.0906144106
10.1073/pnas.92.15.6828
10.1083/jcb.200507057
10.1007/BF00039383
10.1016/S0167-4781(02)00237-3
10.1074/jbc.M802654200
10.1073/pnas.0408941102
10.1074/jbc.273.23.14194
10.1104/pp.104.4.1359
10.1105/tpc.109.072173
10.1111/j.1365-313X.1992.00443.x
10.1016/j.cell.2006.05.043
10.1074/jbc.M304951200
10.1016/j.cell.2007.10.025
10.1074/jbc.M706659200
10.1105/tpc.3.11.1251
10.1074/jbc.270.44.26677
10.1016/S1097-2765(00)80034-9
10.1146/annurev.cb.05.110189.001425
10.1105/tpc.104.026625
10.1073/pnas.0912670107
10.1126/science.1146361
10.1073/pnas.91.3.913
10.1083/jcb.138.6.1229
10.1126/science.1523409
10.1111/j.1742-4658.2007.05664.x
10.1073/pnas.0808463105
10.1093/emboj/21.5.898
10.1111/j.1365-313X.2007.03195.x
10.1046/j.1365-313X.2002.01483.x
10.1104/pp.011742
10.1016/j.semcdb.2007.09.007
10.1074/jbc.M709316200
10.1105/tpc.108.061150
10.1016/S1097-2765(00)80198-7
10.1105/tpc.108.061002
10.1016/j.mrfmmm.2004.06.056
10.1016/j.bbrc.2007.09.124
10.1016/j.ceb.2004.06.012
10.1146/annurev.bi.50.070181.003011
10.1111/j.1600-0854.2008.00780.x
10.1105/tpc.12.5.739
10.1038/ncb1445
10.1111/j.1742-4658.2005.04770.x
10.1038/35081184
10.1242/jcs.03225
10.1016/j.ceb.2009.04.006
10.1093/emboj/16.15.4540
10.1083/jcb.200809198
10.1046/j.1365-313X.1997.11061325.x
10.1016/j.coi.2007.11.003
10.1104/pp.010636
10.1016/j.sbi.2006.08.005
10.1093/jxb/ern296
10.1146/annurev.biochem.73.011303.073752
10.1093/jxb/50.331.157
10.1038/86236
10.1111/j.1365-313X.2006.02904.x
10.1146/annurev.cellbio.21.122303.120200
ContentType Journal Article
Copyright 2010 American Society of Plant Biologists
Copyright American Society of Plant Biologists Sep 2010
2010 American Society of Plant Biologists 2010
Copyright_xml – notice: 2010 American Society of Plant Biologists
– notice: Copyright American Society of Plant Biologists Sep 2010
– notice: 2010 American Society of Plant Biologists 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
7QO
7TM
7X2
7X7
7XB
88A
88E
88I
8AF
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M2P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
S0X
7S9
L.6
7X8
5PM
ADTOC
UNPAY
DOI 10.1105/tpc.110.078154
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
SIRS Editorial
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Docstoc
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Agricultural Science Database

MEDLINE
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 2942
ExternalDocumentID 10.1105/tpc.110.078154
PMC2965551
2179158131
20876830
10_1105_tpc_110_078154
25758743
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
5VS
5WD
7X2
7X7
85S
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
AAYJJ
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABVGC
ABXSQ
ABXVV
ABXZS
ACBTR
ACGFO
ACGOD
ACHIC
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AEUYN
AFAZZ
AFFNX
AFFZL
AFGWE
AFKRA
AFRAH
AGCDD
AGORE
AGUYK
AHMBA
AHXOZ
AICQM
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
AS~
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
CBGCD
CCPQU
CS3
D1J
DATOO
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GX1
H13
HCIFZ
HMCUK
HTVGU
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
LK8
M0K
M1P
M2P
M2Q
M7P
MV1
N9A
NEJ
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RHI
ROX
RPB
RWL
RXW
S0X
SA0
TAE
TN5
TR2
U5U
UKHRP
W8F
WH7
WOQ
XSW
YBU
YR2
YSK
ZCA
ZCN
~KM
AAYXX
CITATION
PJZUB
PPXIY
PQGLB
PUEGO
53G
AAWDT
ABIME
ABPIB
ABZEO
ACFRR
ACUTJ
ACVCV
ACZBC
ADYWZ
AFYAG
AGMDO
AJDVS
ANFBD
APJGH
AQDSO
C1A
CGR
CUY
CVF
ECM
EIF
FRP
HGD
MVM
NPM
P0-
TCN
UBC
UKR
WHG
XOL
Y6R
ZCG
3V.
4T-
7QO
7TM
7XB
88A
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7S9
L.6
7X8
5PM
ADTOC
AHGBF
AJBYB
UNPAY
ID FETCH-LOGICAL-c537t-58f1ce326e1d99fcda59391802159fad7a7e8ebea01208c027d311c6eec6c9b53
IEDL.DBID 7X7
ISSN 1040-4651
1532-298X
IngestDate Wed Oct 01 15:26:55 EDT 2025
Tue Sep 30 16:57:03 EDT 2025
Sun Sep 28 12:47:39 EDT 2025
Sun Sep 28 00:12:21 EDT 2025
Fri Aug 15 19:09:44 EDT 2025
Thu Apr 03 04:55:12 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Wed Oct 01 03:31:57 EDT 2025
Fri Jun 20 02:31:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-58f1ce326e1d99fcda59391802159fad7a7e8ebea01208c027d311c6eec6c9b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Review-3
www.plantcell.org/cgi/doi/10.1105/tpc.110.078154
OpenAccessLink https://academic.oup.com/plcell/article-pdf/22/9/2930/36932159/plcell_v22_9_2930.pdf
PMID 20876830
PQID 762213091
PQPubID 37014
PageCount 13
ParticipantIDs unpaywall_primary_10_1105_tpc_110_078154
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2965551
proquest_miscellaneous_762272985
proquest_miscellaneous_1449939182
proquest_journals_762213091
pubmed_primary_20876830
crossref_citationtrail_10_1105_tpc_110_078154
crossref_primary_10_1105_tpc_110_078154
jstor_primary_25758743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Rockville
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2010
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Caramelo (2021040622022267900_b12) 2008; 283
Ruddock (2021040622022267900_b105) 2006; 119
Koizumi (2021040622022267900_b71) 1999; 121
Hammond (2021040622022267900_b45) 1994; 266
Martínez (2021040622022267900_b86) 2003; 15
Malhotra (2021040622022267900_b84) 2007; 18
Boston (2021040622022267900_b6) 1991; 3
Di Cola (2021040622022267900_b26) 2005; 137
Wei (2021040622022267900_b129) 1995; 270
Williams (2021040622022267900_b131) 2010; 107
Meunier (2021040622022267900_b88) 2002; 13
Englander (2021040622022267900_b29) 2007; 40
Hwang (2021040622022267900_b53) 1992; 257
Pilon (2021040622022267900_b101) 1997; 16
Flynn (2021040622022267900_b32) 1991; 353
Lindberg (2021040622022267900_b77) 2007; 17
Gross (2021040622022267900_b43) 2006; 103
Okushima (2021040622022267900_b97) 2002; 43
Wang (2021040622022267900_b126) 2007; 104
Ceriotti (2021040622022267900_b14) 1998; 49
Jia (2021040622022267900_b58) 2009; 136
Schott (2021040622022267900_b110) 2010; 285
Iwata (2021040622022267900_b56) 2005; 102
Watanabe (2021040622022267900_b128) 2008; 283
Holst (2021040622022267900_b49) 1997; 138
Ruiz-Canada (2021040622022267900_b106) 2009; 136
Cheetham (2021040622022267900_b16) 1998; 3
Marshall (2021040622022267900_b85) 2008; 283
Che (2021040622022267900_b15) 2010
Anderson (2021040622022267900_b1) 1994; 104
Kleizen (2021040622022267900_b67) 2004; 16
Quan (2021040622022267900_b102) 2008; 32
Sevier (2021040622022267900_b112) 2006; 17
Oda (2021040622022267900_b96) 2006; 172
Wang (2021040622022267900_b127) 2005; 308
Jelitto-Van Dooren (2021040622022267900_b57) 1999; 11
Rancour (2021040622022267900_b103) 2002; 130
Yang (2021040622022267900_b134) 2009; 57
Kornfeld (2021040622022267900_b72) 1985; 54
Lam (2021040622022267900_b73) 2001; 411
D’Amico (2021040622022267900_b21) 1992; 2
Boston (2021040622022267900_b7) 1996; 32
Figueiredo (2021040622022267900_b30) 1997; 9
Lupattelli (2021040622022267900_b83) 1997; 9
Gauss (2021040622022267900_b41) 2006; 25
Gething (2021040622022267900_b42) 1999; 10
Urade (2021040622022267900_b119) 2007; 274
Swiezewska (2021040622022267900_b116) 2005; 44
Müller (2021040622022267900_b90) 2005; 17
Vitale (2021040622022267900_b124) 2008; 9
Ishiguro (2021040622022267900_b54) 2002; 21
Hartl (2021040622022267900_b46) 2009; 16
Brodsky (2021040622022267900_b9) 2009; 21
Nardi (2021040622022267900_b92) 1998; 111
Valente (2021040622022267900_b120) 2009; 60
2021040622022267900_b108
Danon (2021040622022267900_b22) 2004; 279
Alvim (2021040622022267900_b2) 2001; 126
Denic (2021040622022267900_b24) 2006; 126
Helenius (2021040622022267900_b48) 2004; 73
Frigerio (2021040622022267900_b37) 1998; 273
Doukhanina (2021040622022267900_b28) 2006; 281
Nekrasov (2021040622022267900_b94) 2009; 28
Flynn (2021040622022267900_b31) 1989; 245
Fujita (2021040622022267900_b34) 2007; 364
Schröder (2021040622022267900_b111) 2005; 569
Foresti (2021040622022267900_b33) 2003; 15
Knop (2021040622022267900_b68) 1996; 15
Frigerio (2021040622022267900_b36) 1998; 49
Wiseman (2021040622022267900_b132) 2007; 131
Navazio (2021040622022267900_b93) 2002; 41
Sparvoli (2021040622022267900_b113) 2000; 24
Vitale (2021040622022267900_b125) 1999; 11
Zhang (2021040622022267900_b135) 2008; 20
Rutkowski (2021040622022267900_b107) 2004; 14
Dixon (2021040622022267900_b27) 2003; 5
Koiwa (2021040622022267900_b69) 2003; 15
Vashist (2021040622022267900_b121) 2004; 165
Bass (2021040622022267900_b4) 2004; 279
Tajima (2021040622022267900_b118) 2008; 25
Stevens (2021040622022267900_b115) 1999; 10
Hurtley (2021040622022267900_b51) 1989; 5
Iwata (2021040622022267900_b55) 2008; 20
Vitale (2021040622022267900_b123) 1995; 107
Koizumi (2021040622022267900_b70) 2001; 127
Noh (2021040622022267900_b95) 2002; 1575
Wiertz (2021040622022267900_b130) 1996; 384
Di Cola (2021040622022267900_b25) 2001; 98
Arabidopsis Genome Initiative (2021040622022267900_b3) 2000; 408
Olivari (2021040622022267900_b98) 2006; 349
Hubbard (2021040622022267900_b50) 1981; 50
Verma (2021040622022267900_b122) 2000; 11
Pagny (2021040622022267900_b99) 2000; 12
Frand (2021040622022267900_b35) 1999; 4
Liu (2021040622022267900_b79) 2007; 19
Klein (2021040622022267900_b66) 2006; 48
Nakatsukasa (2021040622022267900_b91) 2008; 9
Moremen (2021040622022267900_b89) 2006; 16
Bryngelson (2021040622022267900_b10) 1995; 21
Costa (2021040622022267900_b20) 2008; 283
Ron (2021040622022267900_b104) 2007; 8
Zipfel (2021040622022267900_b136) 2008; 20
Lu (2021040622022267900_b82) 2008; 280
Spear (2021040622022267900_b114) 2005; 169
Lin (2021040622022267900_b76) 2007; 318
Bernales (2021040622022267900_b5) 2006; 22
Jin (2021040622022267900_b61) 2007; 26
Gao (2021040622022267900_b39) 2008; 105
Lerouxel (2021040622022267900_b74) 2005; 42
Burn (2021040622022267900_b11) 2002; 32
Jia (2021040622022267900_b59) 2008; 59
Briknarová (2021040622022267900_b8) 2001; 8
Huyer (2021040622022267900_b52) 2004; 279
Carvalho (2021040622022267900_b13) 2006; 126
Kanehara (2021040622022267900_b63) 2007; 18
Liu (2021040622022267900_b78) 2010; 22
Jin (2021040622022267900_b60) 2009; 106
Clerc (2021040622022267900_b18) 2009; 184
Pagny (2021040622022267900_b100) 1999; 50
Schlenstedt (2021040622022267900_b109) 1995; 129
Coleman (2021040622022267900_b19) 1995; 92
Hammond (2021040622022267900_b44) 1994; 91
Denecke (2021040622022267900_b23) 1991; 3
Liu (2021040622022267900_b80) 2007; 51
Liu (2021040622022267900_b81) 2008; 31
Gauss (2021040622022267900_b40) 2006; 8
He (2021040622022267900_b47) 2008; 283
Xu (2021040622022267900_b133) 1998; 1
Kirst (2021040622022267900_b65) 2005; 138
Tajima (2021040622022267900_b117) 2008; 374
Kamauchi (2021040622022267900_b62) 2005; 272
Kawai-Yamada (2021040622022267900_b64) 2009; 284
Matsushima (2021040622022267900_b87) 2003; 33
Gallois (2021040622022267900_b38) 1997; 11
Li (2021040622022267900_b75) 2009; 106
Christensen (2021040622022267900_b17) 2010; 5
17662035 - Plant J. 2007 Sep;51(5):897-909
12040100 - Plant Cell Physiol. 2002 May;43(5):532-9
18490446 - J Biol Chem. 2008 Jul 18;283(29):20209-19
18980646 - Plant J. 2009 Mar;57(5):870-82
17360436 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3817-22
18039663 - J Biol Chem. 2008 Feb 8;283(6):3200-10
1344885 - Plant J. 1992 Jul;2(4):443-55
15860005 - Plant J. 2005 May;42(4):455-68
10213782 - Plant Cell. 1999 Apr;11(4):615-28
19453510 - Physiol Plant. 2009 Jun;136(2):127-38
19763086 - EMBO J. 2009 Nov 4;28(21):3428-38
15781873 - Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5280-5
16407158 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):299-304
18612099 - Plant Cell. 2008 Jul;20(7):1879-98
17074831 - J Cell Sci. 2006 Nov 1;119(Pt 21):4373-80
18303019 - J Biol Chem. 2008 Apr 18;283(16):10221-5
7592894 - J Biol Chem. 1995 Nov 3;270(44):26677-82
17937930 - Biochem Biophys Res Commun. 2007 Dec 14;364(2):250-7
9603921 - J Biol Chem. 1998 Jun 5;273(23):14194-9
12020828 - Biochim Biophys Acta. 2002 May 3;1575(1-3):130-4
16619026 - EMBO J. 2006 May 3;25(9):1827-35
8631297 - EMBO J. 1996 Feb 15;15(4):753-63
7784423 - Proteins. 1995 Mar;21(3):167-95
12228444 - Plant Physiol. 1995 Apr;107(4):1411-1418
12492837 - Plant J. 2002 Dec;32(6):949-60
19717464 - Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15973-8
11276257 - Nat Struct Biol. 2001 Apr;8(4):349-52
12237365 - Plant Cell. 1997 Apr;9(4):597-609
1523409 - Science. 1992 Sep 11;257(5076):1496-502
11734657 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14726-31
15890886 - Science. 2005 May 13;308(5724):1036-40
12566592 - Plant Cell. 2003 Feb;15(2):561-76
18574595 - Mol Genet Genomics. 2008 Sep;280(3):199-210
10810147 - Plant Cell. 2000 May;12(5):739-56
11459068 - Nature. 2001 Jun 14;411(6839):848-53
11457955 - Plant Physiol. 2001 Jul;126(3):1042-54
10521523 - Plant Cell. 1999 Oct;11(10):1935-44
18315532 - Traffic. 2008 Jun;9(6):861-70
18849477 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16398-403
17059403 - Plant J. 2006 Dec;48(5):657-73
19124653 - J Cell Biol. 2009 Jan 12;184(1):159-72
11029046 - Mol Biol Cell. 2000 Oct;11(10):3425-39
12581307 - Plant J. 2003 Feb;33(3):493-502
9303298 - EMBO J. 1997 Aug 1;16(15):4540-8
1822990 - Plant Cell. 1991 Sep;3(9):1025-35
20231441 - Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6088-93
10517826 - Plant Physiol. 1999 Oct;121(2):353-61
18023214 - Semin Cell Dev Biol. 2007 Dec;18(6):716-31
8945469 - Nature. 1996 Dec 5;384(6608):432-8
9660918 - Mol Cell. 1998 Feb;1(3):337-46
18206360 - Curr Opin Immunol. 2008 Feb;20(1):10-6
9225471 - Plant J. 1997 Jun;11(6):1325-31
20596537 - PLoS One. 2010;5(6):e11342
10549279 - Mol Cell. 1999 Oct;4(4):469-77
18721266 - Plant Cell Environ. 2008 Dec;31(12):1735-43
14508011 - Plant Cell. 2003 Oct;15(10):2464-75
12450377 - Biochemistry. 2002 Dec 3;41(48):14141-9
1840924 - Plant Cell. 1991 May;3(5):497-505
12972670 - Plant Cell. 2003 Oct;15(10):2273-84
19597144 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13612-7
19443192 - Curr Opin Cell Biol. 2009 Aug;21(4):516-21
18634751 - Biochem Biophys Res Commun. 2008 Sep 19;374(2):242-7
15978049 - FEBS J. 2005 Jul;272(13):3461-76
1834945 - Nature. 1991 Oct 24;353(6346):726-30
19167329 - Cell. 2009 Jan 23;136(2):272-83
15603751 - Mutat Res. 2005 Jan 6;569(1-2):29-63
14729177 - Trends Cell Biol. 2004 Jan;14(1):20-8
15252059 - J Biol Chem. 2004 Sep 10;279(37):38369-78
17588517 - Mol Cell. 2007 Jun 22;26(6):821-30
18405419 - Q Rev Biophys. 2007 Nov;40(4):287-326
7023366 - Annu Rev Biochem. 1981;50:555-83
7624327 - Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6828-31
11867518 - EMBO J. 2002 Mar 1;21(5):898-908
11706177 - Plant Physiol. 2001 Nov;127(3):949-62
8980480 - Plant Mol Biol. 1996 Oct;32(1-2):191-222
19111666 - Mol Cell. 2008 Dec 26;32(6):870-7
16938451 - Curr Opin Struct Biol. 2006 Oct;16(5):592-9
16873066 - Cell. 2006 Jul 28;126(2):361-73
18420588 - J Biol Chem. 2008 Jun 6;283(23):15869-77
18557840 - Traffic. 2008 Sep;9(10):1581-8
17565364 - Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-29
15598804 - Plant Cell. 2005 Jan;17(1):149-63
7939687 - Science. 1994 Oct 21;266(5184):456-8
3896128 - Annu Rev Biochem. 1985;54:631-64
8302866 - Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):913-7
20876872 - Sci Signal. 2010;3(141):ra69
14573611 - J Biol Chem. 2004 Jan 2;279(1):779-87
17251003 - Curr Opin Struct Biol. 2007 Feb;17(1):21-9
18156219 - Plant Cell. 2007 Dec;19(12):4111-9
7744969 - J Cell Biol. 1995 May;129(4):979-88
16019076 - Prog Lipid Res. 2005 Jul;44(4):235-58
16873065 - Cell. 2006 Jul 28;126(2):349-59
19491934 - Nat Struct Mol Biol. 2009 Jun;16(6):574-81
17257164 - FEBS J. 2007 Mar;274(5):1152-71
15261665 - Curr Opin Cell Biol. 2004 Aug;16(4):343-9
10597629 - Semin Cell Dev Biol. 1999 Oct;10(5):465-72
19017746 - Plant Cell. 2008 Nov;20(11):3107-21
19052255 - J Exp Bot. 2009;60(2):533-46
18022373 - Cell. 2007 Nov 16;131(4):809-21
17998208 - J Biol Chem. 2008 Jan 11;283(2):774-83
18349049 - J Exp Bot. 2008;59(4):739-51
10597627 - Semin Cell Dev Biol. 1999 Oct;10(5):443-54
16845381 - Nat Cell Biol. 2006 Aug;8(8):849-54
15809311 - J Cell Biol. 2005 Apr 11;169(1):73-82
17945519 - Semin Cell Dev Biol. 2007 Dec;18(6):743-50
15189166 - Annu Rev Biochem. 2004;73:1019-49
20207753 - Plant Cell. 2010 Mar;22(3):782-96
11130711 - Nature. 2000 Dec 14;408(6814):796-815
8016266 - Plant Physiol. 1994 Apr;104(4):1359-70
16822172 - Annu Rev Cell Dev Biol. 2006;22:487-508
19674971 - J Biol Chem. 2009 Oct 9;284(41):27998-8003
2756425 - Science. 1989 Jul 28;245(4916):385-90
20378538 - J Biol Chem. 2010 Jun 4;285(23):18113-21
11135116 - Plant J. 2000 Dec;24(6):825-36
12427991 - Plant Physiol. 2002 Nov;130(3):1241-53
9298979 - J Cell Biol. 1997 Sep 22;138(6):1229-38
9585179 - Cell Stress Chaperones. 1998 Mar;3(1):28-36
15078901 - J Cell Biol. 2004 Apr12;165(1):41-52
16449189 - J Cell Biol. 2006 Jan 30;172(3):383-93
16636050 - J Biol Chem. 2006 Jul 7;281(27):18793-801
15849299 - Plant Physiol. 2005 May;138(1):218-31
12475965 - Mol Biol Cell. 2002 Dec;13(12):4456-69
17991856 - Science. 2007 Nov 9;318(5852):944-9
16987498 - Biochem Biophys Res Commun. 2006 Nov 3;349(4):1278-84
13678526 - Antioxid Redox Signal. 2003 Aug;5(4):389-96
14630926 - J Biol Chem. 2004 Feb 13;279(7):5257-62
2688707 - Annu Rev Cell Biol. 1989;5:277-307
15618412 - Plant Physiol. 2005 Jan;137(1):287-96
16495342 - Mol Biol Cell. 2006 May;17(5):2256-66
References_xml – volume: 3
  start-page: 28
  year: 1998
  ident: 2021040622022267900_b16
  article-title: Structure, function and evolution of DnaJ: Conservation and adaptation of chaperone function
  publication-title: Cell Stress Chaperones
  doi: 10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2
– volume: 17
  start-page: 21
  year: 2007
  ident: 2021040622022267900_b77
  article-title: Malleability of protein folding pathways: A simple reason for complex behaviour
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2007.01.008
– volume: 111
  start-page: 66
  year: 1998
  ident: 2021040622022267900_b92
  article-title: Ginkgo biloba express calreticulin, the major calcium-binding reticuloplasmin in eucaryotic cells
  publication-title: Bot. Acta
  doi: 10.1111/j.1438-8677.1998.tb00679.x
– volume: 11
  start-page: 615
  year: 1999
  ident: 2021040622022267900_b125
  article-title: The endoplasmic reticulum-gateway of the secretory pathway
  publication-title: Plant Cell
– volume: 59
  start-page: 739
  year: 2008
  ident: 2021040622022267900_b59
  article-title: Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erm369
– volume: 26
  start-page: 821
  year: 2007
  ident: 2021040622022267900_b61
  article-title: Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.05.015
– volume: 281
  start-page: 18793
  year: 2006
  ident: 2021040622022267900_b28
  article-title: Identification and functional characterization of the BAG protein family in Arabidopsis thaliana
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M511794200
– volume: 15
  start-page: 2273
  year: 2003
  ident: 2021040622022267900_b69
  article-title: The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress
  publication-title: Plant Cell
  doi: 10.1105/tpc.013862
– volume: 285
  start-page: 18113
  year: 2010
  ident: 2021040622022267900_b110
  article-title: Arabidopsis stromal-derived Factor2 (SDF2) is a crucial target of the unfolded protein response in the endoplasmic reticulum
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.117176
– volume: 40
  start-page: 287
  year: 2007
  ident: 2021040622022267900_b29
  article-title: Protein folding and misfolding: Mechanism and principles
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583508004654
– year: 2010
  ident: 2021040622022267900_b15
  article-title: Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2001140
– volume: 308
  start-page: 1036
  year: 2005
  ident: 2021040622022267900_b127
  article-title: Induction of protein secretory pathway is required for systemic acquired resistance
  publication-title: Science
  doi: 10.1126/science.1108791
– volume: 11
  start-page: 1935
  year: 1999
  ident: 2021040622022267900_b57
  article-title: Anticipating endoplasmic reticulum stress. A novel early response before pathogenesis-related gene induction
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.10.1935
– volume: 42
  start-page: 455
  year: 2005
  ident: 2021040622022267900_b74
  article-title: Mutants in DEFECTIVE GLYCOSYLATION, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02392.x
– volume: 126
  start-page: 1042
  year: 2001
  ident: 2021040622022267900_b2
  article-title: Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress
  publication-title: Plant Physiol.
  doi: 10.1104/pp.126.3.1042
– volume: 266
  start-page: 456
  year: 1994
  ident: 2021040622022267900_b45
  article-title: Folding of VSV G protein: Sequential interaction with BiP and calnexin
  publication-title: Science
  doi: 10.1126/science.7939687
– volume: 31
  start-page: 1735
  year: 2008
  ident: 2021040622022267900_b81
  article-title: Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2008.01873.x
– volume: 408
  start-page: 796
  year: 2000
  ident: 2021040622022267900_b3
  article-title: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana
  publication-title: Nature
  doi: 10.1038/35048692
– volume: 107
  start-page: 1411
  year: 1995
  ident: 2021040622022267900_b123
  article-title: The binding protein associates with monomeric phaseolin
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.4.1411
– volume: 136
  start-page: 272
  year: 2009
  ident: 2021040622022267900_b106
  article-title: Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms
  publication-title: Cell
  doi: 10.1016/j.cell.2008.11.047
– volume: 279
  start-page: 779
  year: 2004
  ident: 2021040622022267900_b22
  article-title: Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and Defender against Apoptotic Death
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M304468200
– volume: 33
  start-page: 493
  year: 2003
  ident: 2021040622022267900_b87
  article-title: A novel ER-derived compartment, the ER body, selectively accumulates a beta-glucosidase with an ER-retention signal in Arabidopsis
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01636.x
– volume: 41
  start-page: 14141
  year: 2002
  ident: 2021040622022267900_b93
  article-title: Monitoring endoplasmic reticulum-to-Golgi traffic of a plant calreticulin by protein glycosylation analysis
  publication-title: Biochemistry
  doi: 10.1021/bi0204701
– volume: 49
  start-page: 1473
  year: 1998
  ident: 2021040622022267900_b36
  article-title: The enemy within: Ricin and plant cells
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/49.326.1473
– volume: 169
  start-page: 73
  year: 2005
  ident: 2021040622022267900_b114
  article-title: Single, context-specific glycans can target misfolded glycoproteins for ER-associated degradation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200411136
– volume: 279
  start-page: 38369
  year: 2004
  ident: 2021040622022267900_b52
  article-title: Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M402468200
– volume: 9
  start-page: 597
  year: 1997
  ident: 2021040622022267900_b83
  article-title: The rate of phaseolin assembly is controlled by the glucosylation state of its N-linked oligosaccharide chains
  publication-title: Plant Cell
  doi: 10.2307/3870510
– ident: 2021040622022267900_b108
– volume: 24
  start-page: 825
  year: 2000
  ident: 2021040622022267900_b113
  article-title: Misfolding and aggregation of vacuolar glycoproteins in plant cells
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.2000.00933.x
– volume: 5
  start-page: 389
  year: 2003
  ident: 2021040622022267900_b27
  article-title: Cloning and initial characterization of the Arabidopsis thaliana endoplasmic reticulum oxidoreductins
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/152308603768295122
– volume: 280
  start-page: 199
  year: 2008
  ident: 2021040622022267900_b82
  article-title: Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana
  publication-title: Mol. Genet. Genomics
  doi: 10.1007/s00438-008-0356-z
– volume: 126
  start-page: 349
  year: 2006
  ident: 2021040622022267900_b24
  article-title: A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation
  publication-title: Cell
  doi: 10.1016/j.cell.2006.05.045
– volume: 129
  start-page: 979
  year: 1995
  ident: 2021040622022267900_b109
  article-title: A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with Hsp70s
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.129.4.979
– volume: 5
  start-page: e11342
  year: 2010
  ident: 2021040622022267900_b17
  article-title: Higher plant calreticulins have acquired specialized functions in Arabidopsis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0011342
– volume: 54
  start-page: 631
  year: 1985
  ident: 2021040622022267900_b72
  article-title: Assembly of asparagine-linked oligosaccharides
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.54.070185.003215
– volume: 384
  start-page: 432
  year: 1996
  ident: 2021040622022267900_b130
  article-title: Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction
  publication-title: Nature
  doi: 10.1038/384432a0
– volume: 103
  start-page: 299
  year: 2006
  ident: 2021040622022267900_b43
  article-title: Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506448103
– volume: 9
  start-page: 861
  year: 2008
  ident: 2021040622022267900_b91
  article-title: The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2008.00729.x
– volume: 18
  start-page: 716
  year: 2007
  ident: 2021040622022267900_b84
  article-title: The endoplasmic reticulum and the unfolded protein response
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2007.09.003
– volume: 44
  start-page: 235
  year: 2005
  ident: 2021040622022267900_b116
  article-title: Polyisoprenoids: Structure, biosynthesis and function
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2005.05.002
– volume: 374
  start-page: 242
  year: 2008
  ident: 2021040622022267900_b117
  article-title: Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.07.021
– volume: 15
  start-page: 2464
  year: 2003
  ident: 2021040622022267900_b33
  article-title: A phaseolin domain involved directly in trimer assembly is a determinant for binding by the chaperone BiP
  publication-title: Plant Cell
  doi: 10.1105/tpc.013052
– volume: 16
  start-page: 574
  year: 2009
  ident: 2021040622022267900_b46
  article-title: Converging concepts of protein folding in vitro and in vivo
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1591
– volume: 104
  start-page: 3817
  year: 2007
  ident: 2021040622022267900_b126
  article-title: Heterotrimeric G protein signaling in the Arabidopsis unfolded protein response
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0611735104
– volume: 136
  start-page: 127
  year: 2009
  ident: 2021040622022267900_b58
  article-title: Calreticulin: Conserved protein and diverse functions in plants
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2009.01223.x
– volume: 15
  start-page: 753
  year: 1996
  ident: 2021040622022267900_b68
  article-title: Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00411.x
– volume: 10
  start-page: 443
  year: 1999
  ident: 2021040622022267900_b115
  article-title: Protein folding in the ER
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1006/scdb.1999.0315
– volume: 353
  start-page: 726
  year: 1991
  ident: 2021040622022267900_b32
  article-title: Peptide-binding specificity of the molecular chaperone BiP
  publication-title: Nature
  doi: 10.1038/353726a0
– volume: 98
  start-page: 14726
  year: 2001
  ident: 2021040622022267900_b25
  article-title: Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in plant cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.251386098
– volume: 245
  start-page: 385
  year: 1989
  ident: 2021040622022267900_b31
  article-title: Peptide binding and release by proteins implicated as catalysts of protein assembly
  publication-title: Science
  doi: 10.1126/science.2756425
– volume: 284
  start-page: 27998
  year: 2009
  ident: 2021040622022267900_b64
  article-title: Loss of calmodulin binding to Bax inhibitor-1 affects Pseudomonas-mediated hypersensitive response-associated cell death in Arabidopsis thaliana
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.037234
– volume: 21
  start-page: 167
  year: 1995
  ident: 2021040622022267900_b10
  article-title: Funnels, pathways, and the energy landscape of protein folding: a synthesis
  publication-title: Proteins
  doi: 10.1002/prot.340210302
– volume: 283
  start-page: 10221
  year: 2008
  ident: 2021040622022267900_b12
  article-title: Getting in and out from calnexin/calreticulin cycles
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R700048200
– volume: 25
  start-page: 271
  year: 2008
  ident: 2021040622022267900_b118
  article-title: Endoplasmic reticulum stress response and regulated intramembrane proteolysis in plants
  publication-title: Plant Biotechnol.
  doi: 10.5511/plantbiotechnology.25.271
– volume: 19
  start-page: 4111
  year: 2007
  ident: 2021040622022267900_b79
  article-title: An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.050021
– volume: 165
  start-page: 41
  year: 2004
  ident: 2021040622022267900_b121
  article-title: Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200309132
– volume: 10
  start-page: 465
  year: 1999
  ident: 2021040622022267900_b42
  article-title: Role and regulation of the ER chaperone BiP
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1006/scdb.1999.0318
– volume: 349
  start-page: 1278
  year: 2006
  ident: 2021040622022267900_b98
  article-title: EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.08.186
– volume: 49
  start-page: 1091
  year: 1998
  ident: 2021040622022267900_b14
  article-title: Effects of N-glycosylation on the folding and structure of plant proteins
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/49.324.1091
– volume: 8
  start-page: 519
  year: 2007
  ident: 2021040622022267900_b104
  article-title: Signal integration in the endoplasmic reticulum unfolded protein response
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2199
– volume: 28
  start-page: 3428
  year: 2009
  ident: 2021040622022267900_b94
  article-title: Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.262
– volume: 137
  start-page: 287
  year: 2005
  ident: 2021040622022267900_b26
  article-title: Endoplasmic reticulum-associated degradation of ricin A chain has unique and plant-specific features
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.055434
– volume: 14
  start-page: 20
  year: 2004
  ident: 2021040622022267900_b107
  article-title: A trip to the ER: Coping with stress
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2003.11.001
– volume: 17
  start-page: 2256
  year: 2006
  ident: 2021040622022267900_b112
  article-title: Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-05-0417
– volume: 25
  start-page: 1827
  year: 2006
  ident: 2021040622022267900_b41
  article-title: The Hrd1p ligase complex forms a linchpin between ER-lumenal substrate selection and Cdc48p recruitment
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601088
– volume: 15
  start-page: 561
  year: 2003
  ident: 2021040622022267900_b86
  article-title: Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes
  publication-title: Plant Cell
  doi: 10.1105/tpc.007609
– volume: 43
  start-page: 532
  year: 2002
  ident: 2021040622022267900_b97
  article-title: Isolation and characterization of a putative transducer of endoplasmic reticulum stress in Oryza sativa
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcf063
– volume: 57
  start-page: 870
  year: 2009
  ident: 2021040622022267900_b134
  article-title: A mutation in Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03732.x
– volume: 138
  start-page: 218
  year: 2005
  ident: 2021040622022267900_b65
  article-title: Identification and characterization of endoplasmic reticulum-associated degradation proteins differentially affected by endoplasmic reticulum stress
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.060087
– volume: 121
  start-page: 353
  year: 1999
  ident: 2021040622022267900_b71
  article-title: Overexpression of a gene that encodes the first enzyme in the biosynthesis of asparagine-linked glycans makes plants resistant to tunicamycin and obviates the tunicamycin-induced unfolded protein response
  publication-title: Plant Physiol.
  doi: 10.1104/pp.121.2.353
– volume: 32
  start-page: 870
  year: 2008
  ident: 2021040622022267900_b102
  article-title: Defining the glycan destruction signal for endoplasmic reticulum-associated degradation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.11.017
– volume: 106
  start-page: 15973
  year: 2009
  ident: 2021040622022267900_b75
  article-title: Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0905532106
– volume: 11
  start-page: 3425
  year: 2000
  ident: 2021040622022267900_b122
  article-title: Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.11.10.3425
– volume: 283
  start-page: 774
  year: 2008
  ident: 2021040622022267900_b47
  article-title: Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704185200
– volume: 13
  start-page: 4456
  year: 2002
  ident: 2021040622022267900_b88
  article-title: A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e02-05-0311
– volume: 106
  start-page: 13612
  year: 2009
  ident: 2021040622022267900_b60
  article-title: A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0906144106
– volume: 92
  start-page: 6828
  year: 1995
  ident: 2021040622022267900_b19
  article-title: A defective signal peptide in the maize high-lysine mutant floury 2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.15.6828
– volume: 172
  start-page: 383
  year: 2006
  ident: 2021040622022267900_b96
  article-title: Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200507057
– volume: 32
  start-page: 191
  year: 1996
  ident: 2021040622022267900_b7
  article-title: Molecular chaperones and protein folding in plants
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00039383
– volume: 1575
  start-page: 130
  year: 2002
  ident: 2021040622022267900_b95
  article-title: Characterization of two homologs of Ire1p, a kinase/endoribonuclease in yeast, in Arabidopsis thaliana
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0167-4781(02)00237-3
– volume: 283
  start-page: 20209
  year: 2008
  ident: 2021040622022267900_b20
  article-title: A new branch of endoplasmic reticulum stress signaling and the osmotic signal converge on plant-specific asparagine-rich proteins to promote cell death
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802654200
– volume: 102
  start-page: 5280
  year: 2005
  ident: 2021040622022267900_b56
  article-title: An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0408941102
– volume: 273
  start-page: 14194
  year: 1998
  ident: 2021040622022267900_b37
  article-title: Free ricin A chain, proricin, and native toxin have different cellular fates when expressed in tobacco protoplasts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.23.14194
– volume: 104
  start-page: 1359
  year: 1994
  ident: 2021040622022267900_b1
  article-title: Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.4.1359
– volume: 22
  start-page: 782
  year: 2010
  ident: 2021040622022267900_b78
  article-title: bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.072173
– volume: 2
  start-page: 443
  year: 1992
  ident: 2021040622022267900_b21
  article-title: Bean homologs of the mammalian glucose-regulated proteins: Induction by tunicamycin and interaction with newly synthesized seed storage proteins in the endoplasmic reticulum
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.1992.00443.x
– volume: 126
  start-page: 361
  year: 2006
  ident: 2021040622022267900_b13
  article-title: Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2006.05.043
– volume: 279
  start-page: 5257
  year: 2004
  ident: 2021040622022267900_b4
  article-title: A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M304951200
– volume: 131
  start-page: 809
  year: 2007
  ident: 2021040622022267900_b132
  article-title: An adaptable standard for protein export from the endoplasmic reticulum
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.025
– volume: 283
  start-page: 3200
  year: 2008
  ident: 2021040622022267900_b128
  article-title: BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706659200
– volume: 3
  start-page: 1025
  year: 1991
  ident: 2021040622022267900_b23
  article-title: The tobacco luminal binding protein is encoded by a multigene family
  publication-title: Plant Cell
  doi: 10.1105/tpc.3.11.1251
– volume: 270
  start-page: 26677
  year: 1995
  ident: 2021040622022267900_b129
  article-title: In vitro dissociation of BiP-peptide complexes requires a conformational change in BiP after ATP binding but does not require ATP hydrolysis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.44.26677
– volume: 1
  start-page: 337
  year: 1998
  ident: 2021040622022267900_b133
  article-title: Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80034-9
– volume: 5
  start-page: 277
  year: 1989
  ident: 2021040622022267900_b51
  article-title: Protein oligomerization in the endoplasmic reticulum
  publication-title: Annu. Rev. Cell Biol.
  doi: 10.1146/annurev.cb.05.110189.001425
– volume: 17
  start-page: 149
  year: 2005
  ident: 2021040622022267900_b90
  article-title: Conserved ERAD-like quality control of a plant polytopic membrane protein
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.026625
– volume: 107
  start-page: 6088
  year: 2010
  ident: 2021040622022267900_b131
  article-title: AtBAG7, an Arabidopsis Bcl-2-associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0912670107
– volume: 318
  start-page: 944
  year: 2007
  ident: 2021040622022267900_b76
  article-title: IRE1 signaling affects cell fate during the unfolded protein response
  publication-title: Science
  doi: 10.1126/science.1146361
– volume: 91
  start-page: 913
  year: 1994
  ident: 2021040622022267900_b44
  article-title: Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.3.913
– volume: 138
  start-page: 1229
  year: 1997
  ident: 2021040622022267900_b49
  article-title: Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.138.6.1229
– volume: 257
  start-page: 1496
  year: 1992
  ident: 2021040622022267900_b53
  article-title: Oxidized redox state of glutathione in the endoplasmic reticulum
  publication-title: Science
  doi: 10.1126/science.1523409
– volume: 274
  start-page: 1152
  year: 2007
  ident: 2021040622022267900_b119
  article-title: Cellular response to unfolded proteins in the endoplasmic reticulum of plants
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2007.05664.x
– volume: 3
  start-page: 497
  year: 1991
  ident: 2021040622022267900_b6
  article-title: Increased expression of the maize immunoglobulin binding protein homolog b-70 in three zein regulatory mutants
  publication-title: Plant Cell
– volume: 105
  start-page: 16398
  year: 2008
  ident: 2021040622022267900_b39
  article-title: A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0808463105
– volume: 21
  start-page: 898
  year: 2002
  ident: 2021040622022267900_b54
  article-title: SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins
  publication-title: EMBO J.
  doi: 10.1093/emboj/21.5.898
– volume: 51
  start-page: 897
  year: 2007
  ident: 2021040622022267900_b80
  article-title: Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03195.x
– volume: 32
  start-page: 949
  year: 2002
  ident: 2021040622022267900_b11
  article-title: The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2002.01483.x
– volume: 130
  start-page: 1241
  year: 2002
  ident: 2021040622022267900_b103
  article-title: Characterization of AtCDC48. Evidence for multiple membrane fusion mechanisms at the plane of cell division in plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.011742
– volume: 18
  start-page: 743
  year: 2007
  ident: 2021040622022267900_b63
  article-title: The EDEM and Yos9p families of lectin-like ERAD factors
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2007.09.007
– volume: 283
  start-page: 15869
  year: 2008
  ident: 2021040622022267900_b85
  article-title: The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M709316200
– volume: 20
  start-page: 1879
  year: 2008
  ident: 2021040622022267900_b135
  article-title: Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.061150
– volume: 4
  start-page: 469
  year: 1999
  ident: 2021040622022267900_b35
  article-title: Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80198-7
– volume: 20
  start-page: 3107
  year: 2008
  ident: 2021040622022267900_b55
  article-title: Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.061002
– volume: 569
  start-page: 29
  year: 2005
  ident: 2021040622022267900_b111
  article-title: ER stress and the unfolded protein response
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrfmmm.2004.06.056
– volume: 364
  start-page: 250
  year: 2007
  ident: 2021040622022267900_b34
  article-title: Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.09.124
– volume: 16
  start-page: 343
  year: 2004
  ident: 2021040622022267900_b67
  article-title: Protein folding and quality control in the endoplasmic reticulum
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2004.06.012
– volume: 9
  start-page: 103
  year: 1997
  ident: 2021040622022267900_b30
  article-title: Water-stress regulation and molecular analysis of the soybean BiP gene family
  publication-title: Braz. J. Plant Physiol.
– volume: 50
  start-page: 555
  year: 1981
  ident: 2021040622022267900_b50
  article-title: Synthesis and processing of asparagine-linked oligosaccharides
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.50.070181.003011
– volume: 9
  start-page: 1581
  year: 2008
  ident: 2021040622022267900_b124
  article-title: Endoplasmic reticulum quality control and the unfolded protein response: Insights from plants
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2008.00780.x
– volume: 12
  start-page: 739
  year: 2000
  ident: 2021040622022267900_b99
  article-title: Protein recycling from the Golgi apparatus to the endoplasmic reticulum in plants and its minor contribution to calreticulin retention
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.5.739
– volume: 8
  start-page: 849
  year: 2006
  ident: 2021040622022267900_b40
  article-title: A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1445
– volume: 272
  start-page: 3461
  year: 2005
  ident: 2021040622022267900_b62
  article-title: Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2005.04770.x
– volume: 411
  start-page: 848
  year: 2001
  ident: 2021040622022267900_b73
  article-title: Programmed cell death, mitochondria and the plant hypersensitive response
  publication-title: Nature
  doi: 10.1038/35081184
– volume: 119
  start-page: 4373
  year: 2006
  ident: 2021040622022267900_b105
  article-title: N-glycan processing in ER quality control
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.03225
– volume: 21
  start-page: 516
  year: 2009
  ident: 2021040622022267900_b9
  article-title: Substrate-specific mediators of ER associated degradation (ERAD)
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2009.04.006
– volume: 16
  start-page: 4540
  year: 1997
  ident: 2021040622022267900_b101
  article-title: Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation
  publication-title: EMBO J.
  doi: 10.1093/emboj/16.15.4540
– volume: 184
  start-page: 159
  year: 2009
  ident: 2021040622022267900_b18
  article-title: Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200809198
– volume: 11
  start-page: 1325
  year: 1997
  ident: 2021040622022267900_b38
  article-title: An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1997.11061325.x
– volume: 20
  start-page: 10
  year: 2008
  ident: 2021040622022267900_b136
  article-title: Pattern-recognition receptors in plant innate immunity
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2007.11.003
– volume: 127
  start-page: 949
  year: 2001
  ident: 2021040622022267900_b70
  article-title: Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010636
– volume: 16
  start-page: 592
  year: 2006
  ident: 2021040622022267900_b89
  article-title: N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2006.08.005
– volume: 60
  start-page: 533
  year: 2009
  ident: 2021040622022267900_b120
  article-title: The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ern296
– volume: 73
  start-page: 1019
  year: 2004
  ident: 2021040622022267900_b48
  article-title: Roles of N-linked glycans in the endoplasmic reticulum
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.73.011303.073752
– volume: 50
  start-page: 157
  year: 1999
  ident: 2021040622022267900_b100
  article-title: Signals and mechanisms for protein retention in the endoplasmic reticulum
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/50.331.157
– volume: 8
  start-page: 349
  year: 2001
  ident: 2021040622022267900_b8
  article-title: Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/86236
– volume: 48
  start-page: 657
  year: 2006
  ident: 2021040622022267900_b66
  article-title: Plant endoplasmin supports the protein secretory pathway and has a role in proliferating tissues
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02904.x
– volume: 22
  start-page: 487
  year: 2006
  ident: 2021040622022267900_b5
  article-title: Intracellular signaling by the unfolded protein response
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.21.122303.120200
– reference: 17588517 - Mol Cell. 2007 Jun 22;26(6):821-30
– reference: 18420588 - J Biol Chem. 2008 Jun 6;283(23):15869-77
– reference: 15603751 - Mutat Res. 2005 Jan 6;569(1-2):29-63
– reference: 15860005 - Plant J. 2005 May;42(4):455-68
– reference: 7939687 - Science. 1994 Oct 21;266(5184):456-8
– reference: 10213782 - Plant Cell. 1999 Apr;11(4):615-28
– reference: 15078901 - J Cell Biol. 2004 Apr12;165(1):41-52
– reference: 17074831 - J Cell Sci. 2006 Nov 1;119(Pt 21):4373-80
– reference: 12581307 - Plant J. 2003 Feb;33(3):493-502
– reference: 18206360 - Curr Opin Immunol. 2008 Feb;20(1):10-6
– reference: 10597629 - Semin Cell Dev Biol. 1999 Oct;10(5):465-72
– reference: 18557840 - Traffic. 2008 Sep;9(10):1581-8
– reference: 20207753 - Plant Cell. 2010 Mar;22(3):782-96
– reference: 17565364 - Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-29
– reference: 20596537 - PLoS One. 2010;5(6):e11342
– reference: 17998208 - J Biol Chem. 2008 Jan 11;283(2):774-83
– reference: 10521523 - Plant Cell. 1999 Oct;11(10):1935-44
– reference: 15978049 - FEBS J. 2005 Jul;272(13):3461-76
– reference: 18490446 - J Biol Chem. 2008 Jul 18;283(29):20209-19
– reference: 20876872 - Sci Signal. 2010;3(141):ra69
– reference: 7023366 - Annu Rev Biochem. 1981;50:555-83
– reference: 1344885 - Plant J. 1992 Jul;2(4):443-55
– reference: 10517826 - Plant Physiol. 1999 Oct;121(2):353-61
– reference: 16873065 - Cell. 2006 Jul 28;126(2):349-59
– reference: 10549279 - Mol Cell. 1999 Oct;4(4):469-77
– reference: 1840924 - Plant Cell. 1991 May;3(5):497-505
– reference: 18634751 - Biochem Biophys Res Commun. 2008 Sep 19;374(2):242-7
– reference: 17257164 - FEBS J. 2007 Mar;274(5):1152-71
– reference: 12492837 - Plant J. 2002 Dec;32(6):949-60
– reference: 18156219 - Plant Cell. 2007 Dec;19(12):4111-9
– reference: 19167329 - Cell. 2009 Jan 23;136(2):272-83
– reference: 14508011 - Plant Cell. 2003 Oct;15(10):2464-75
– reference: 15849299 - Plant Physiol. 2005 May;138(1):218-31
– reference: 7784423 - Proteins. 1995 Mar;21(3):167-95
– reference: 19111666 - Mol Cell. 2008 Dec 26;32(6):870-7
– reference: 15598804 - Plant Cell. 2005 Jan;17(1):149-63
– reference: 9298979 - J Cell Biol. 1997 Sep 22;138(6):1229-38
– reference: 2688707 - Annu Rev Cell Biol. 1989;5:277-307
– reference: 15189166 - Annu Rev Biochem. 2004;73:1019-49
– reference: 12228444 - Plant Physiol. 1995 Apr;107(4):1411-1418
– reference: 15252059 - J Biol Chem. 2004 Sep 10;279(37):38369-78
– reference: 18023214 - Semin Cell Dev Biol. 2007 Dec;18(6):716-31
– reference: 14573611 - J Biol Chem. 2004 Jan 2;279(1):779-87
– reference: 18039663 - J Biol Chem. 2008 Feb 8;283(6):3200-10
– reference: 12566592 - Plant Cell. 2003 Feb;15(2):561-76
– reference: 11276257 - Nat Struct Biol. 2001 Apr;8(4):349-52
– reference: 9225471 - Plant J. 1997 Jun;11(6):1325-31
– reference: 18022373 - Cell. 2007 Nov 16;131(4):809-21
– reference: 20378538 - J Biol Chem. 2010 Jun 4;285(23):18113-21
– reference: 15809311 - J Cell Biol. 2005 Apr 11;169(1):73-82
– reference: 16938451 - Curr Opin Struct Biol. 2006 Oct;16(5):592-9
– reference: 9603921 - J Biol Chem. 1998 Jun 5;273(23):14194-9
– reference: 8631297 - EMBO J. 1996 Feb 15;15(4):753-63
– reference: 9585179 - Cell Stress Chaperones. 1998 Mar;3(1):28-36
– reference: 19453510 - Physiol Plant. 2009 Jun;136(2):127-38
– reference: 18980646 - Plant J. 2009 Mar;57(5):870-82
– reference: 17360436 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3817-22
– reference: 15890886 - Science. 2005 May 13;308(5724):1036-40
– reference: 12450377 - Biochemistry. 2002 Dec 3;41(48):14141-9
– reference: 12475965 - Mol Biol Cell. 2002 Dec;13(12):4456-69
– reference: 14630926 - J Biol Chem. 2004 Feb 13;279(7):5257-62
– reference: 16407158 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):299-304
– reference: 10597627 - Semin Cell Dev Biol. 1999 Oct;10(5):443-54
– reference: 11135116 - Plant J. 2000 Dec;24(6):825-36
– reference: 15781873 - Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5280-5
– reference: 9303298 - EMBO J. 1997 Aug 1;16(15):4540-8
– reference: 18849477 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16398-403
– reference: 1523409 - Science. 1992 Sep 11;257(5076):1496-502
– reference: 17991856 - Science. 2007 Nov 9;318(5852):944-9
– reference: 8302866 - Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):913-7
– reference: 16495342 - Mol Biol Cell. 2006 May;17(5):2256-66
– reference: 19491934 - Nat Struct Mol Biol. 2009 Jun;16(6):574-81
– reference: 15261665 - Curr Opin Cell Biol. 2004 Aug;16(4):343-9
– reference: 12237365 - Plant Cell. 1997 Apr;9(4):597-609
– reference: 18405419 - Q Rev Biophys. 2007 Nov;40(4):287-326
– reference: 17251003 - Curr Opin Struct Biol. 2007 Feb;17(1):21-9
– reference: 17945519 - Semin Cell Dev Biol. 2007 Dec;18(6):743-50
– reference: 19017746 - Plant Cell. 2008 Nov;20(11):3107-21
– reference: 16019076 - Prog Lipid Res. 2005 Jul;44(4):235-58
– reference: 17662035 - Plant J. 2007 Sep;51(5):897-909
– reference: 18612099 - Plant Cell. 2008 Jul;20(7):1879-98
– reference: 7592894 - J Biol Chem. 1995 Nov 3;270(44):26677-82
– reference: 16449189 - J Cell Biol. 2006 Jan 30;172(3):383-93
– reference: 19597144 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13612-7
– reference: 12020828 - Biochim Biophys Acta. 2002 May 3;1575(1-3):130-4
– reference: 11734657 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14726-31
– reference: 3896128 - Annu Rev Biochem. 1985;54:631-64
– reference: 16619026 - EMBO J. 2006 May 3;25(9):1827-35
– reference: 19674971 - J Biol Chem. 2009 Oct 9;284(41):27998-8003
– reference: 20231441 - Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6088-93
– reference: 8945469 - Nature. 1996 Dec 5;384(6608):432-8
– reference: 16636050 - J Biol Chem. 2006 Jul 7;281(27):18793-801
– reference: 10810147 - Plant Cell. 2000 May;12(5):739-56
– reference: 13678526 - Antioxid Redox Signal. 2003 Aug;5(4):389-96
– reference: 16987498 - Biochem Biophys Res Commun. 2006 Nov 3;349(4):1278-84
– reference: 11706177 - Plant Physiol. 2001 Nov;127(3):949-62
– reference: 19717464 - Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15973-8
– reference: 16873066 - Cell. 2006 Jul 28;126(2):361-73
– reference: 16822172 - Annu Rev Cell Dev Biol. 2006;22:487-508
– reference: 19124653 - J Cell Biol. 2009 Jan 12;184(1):159-72
– reference: 14729177 - Trends Cell Biol. 2004 Jan;14(1):20-8
– reference: 7624327 - Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6828-31
– reference: 12427991 - Plant Physiol. 2002 Nov;130(3):1241-53
– reference: 18349049 - J Exp Bot. 2008;59(4):739-51
– reference: 18303019 - J Biol Chem. 2008 Apr 18;283(16):10221-5
– reference: 12972670 - Plant Cell. 2003 Oct;15(10):2273-84
– reference: 1834945 - Nature. 1991 Oct 24;353(6346):726-30
– reference: 8980480 - Plant Mol Biol. 1996 Oct;32(1-2):191-222
– reference: 7744969 - J Cell Biol. 1995 May;129(4):979-88
– reference: 2756425 - Science. 1989 Jul 28;245(4916):385-90
– reference: 17059403 - Plant J. 2006 Dec;48(5):657-73
– reference: 8016266 - Plant Physiol. 1994 Apr;104(4):1359-70
– reference: 17937930 - Biochem Biophys Res Commun. 2007 Dec 14;364(2):250-7
– reference: 19052255 - J Exp Bot. 2009;60(2):533-46
– reference: 1822990 - Plant Cell. 1991 Sep;3(9):1025-35
– reference: 16845381 - Nat Cell Biol. 2006 Aug;8(8):849-54
– reference: 11029046 - Mol Biol Cell. 2000 Oct;11(10):3425-39
– reference: 9660918 - Mol Cell. 1998 Feb;1(3):337-46
– reference: 18315532 - Traffic. 2008 Jun;9(6):861-70
– reference: 11457955 - Plant Physiol. 2001 Jul;126(3):1042-54
– reference: 11130711 - Nature. 2000 Dec 14;408(6814):796-815
– reference: 15618412 - Plant Physiol. 2005 Jan;137(1):287-96
– reference: 12040100 - Plant Cell Physiol. 2002 May;43(5):532-9
– reference: 19443192 - Curr Opin Cell Biol. 2009 Aug;21(4):516-21
– reference: 11867518 - EMBO J. 2002 Mar 1;21(5):898-908
– reference: 18721266 - Plant Cell Environ. 2008 Dec;31(12):1735-43
– reference: 19763086 - EMBO J. 2009 Nov 4;28(21):3428-38
– reference: 11459068 - Nature. 2001 Jun 14;411(6839):848-53
– reference: 18574595 - Mol Genet Genomics. 2008 Sep;280(3):199-210
SSID ssj0001719
Score 2.5149279
SecondaryResourceType review_article
Snippet The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2930
SubjectTerms Apoptosis
Arabidopsis thaliana
cell death
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Environment
Environmental conditions
environmental factors
Environmental stress
gene expression
Genetic mutation
Glycoproteins
Glycosylation
metabolism
Oligosaccharides
Oxidation-Reduction
Plant cells
plant proteins
plant response
Plants
Plants - metabolism
Protein Folding
Proteins
Quality assurance
Quality control
REVIEW
stress response
Stress, Physiological
transcription factors
Unfolded Protein Response
Yeasts
Title Endoplasmic Reticulum Protein Quality Control and Its Relationship to Environmental Stress Responses in Plants
URI https://www.jstor.org/stable/25758743
https://www.ncbi.nlm.nih.gov/pubmed/20876830
https://www.proquest.com/docview/762213091
https://www.proquest.com/docview/1449939182
https://www.proquest.com/docview/762272985
https://pubmed.ncbi.nlm.nih.gov/PMC2965551
https://academic.oup.com/plcell/article-pdf/22/9/2930/36932159/plcell_v22_9_2930.pdf
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1532-298X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001719
  issn: 1532-298X
  databaseCode: KQ8
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1532-298X
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0001719
  issn: 1532-298X
  databaseCode: DIK
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1532-298X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001719
  issn: 1532-298X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1532-298X
  dateEnd: 20120831
  omitProxy: true
  ssIdentifier: ssj0001719
  issn: 1532-298X
  databaseCode: 7X7
  dateStart: 19981201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1532-298X
  dateEnd: 20120831
  omitProxy: true
  ssIdentifier: ssj0001719
  issn: 1532-298X
  databaseCode: BENPR
  dateStart: 19981201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Rb9MwED7BhrS9IBhshMFkJCR4MUuaOnGeEKs6DZCmMZjUt8ixHa1ScTKSCvXfcxenGRUM3hLl5Ci-s_Od_fk7gNfSmpEMx4aHSqQcg6LgKrER1yaJbDjSsfIE2fPk7Gr8aSZmPTen6WmV6zmxm6hNpWmN_BgH7Qjn2yx6X99wKhpFm6t9BY37sB0hUqGgTmdDvkVKMJkXIwg5lfzuNRsRURy3taaLdyR1I8Yb_yRPS_wb4PyTN7mzdLVa_VSLxW8_pdNH8LBHk-yDd_9juGfdHjw4qRDxrfZgZ7Ku5vYE3NSZqkao_H2u2aVt_bIfuyCZhrljXkpjxSaeuc6UM-xj27CBK3c9r1lbsentuTh879fuoAkadTxb2zBsiaogtc1TuDqdfpuc8b7WAtciTlsuZBlpi1jORibLSm2UyOKM5OEQ75TKpCq1Eh2u6LCt1JjMmjiKdGKtTnRWiHgftlzl7DNgqiiLArMojAFDaoISmw677d1xifDNBsDXvZ3rXoic6mEs8i4hCUWO3qGL3HsngDeDfe0lOO603O-cN5jhfCQkYqQADtfezPsx2uRDRAXwaniKXqEdE-VstWwwL8KEkLphFAC7w4aawQxFigAOfHjcvp70_mQcBpBuBM5gQNrem0_c_LrT-MbuEghmA3g7hNh_Pv75P7_xEHY974HYcS9gq_2xtC8RTrXFUTdojmD7ZHp-cYl3n7_IX-1zIXk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VBWm5ICgUQnkYCQQX07wfB4Rg2WqXlgpBK-0tOLajrrQkgWRV7Y_iPzITJykrKJx6s5SRI3vG42_s8TcAz2Kt3Nj2FbdFEHE0ioyLUDtcqtDRtis9YRJkj8Ppqf9hHsy34Gf_FobSKnuf2DpqVUo6I9_HReuiv02cN9V3TkWj6HK1r6BhrOJQr88xYqtfz96jep-77sHkZDzlXVEBLgMvangQ547UCFq0o5Ikl0oEiZcQDxpu7LlQkYh0jCMT9Ko0lhi1Kc9xZKi1DGWSUZEI9PjXfM_2iao_mg_xHTHPJIb8wOZUYrzjiEQEs99UkhqviFon8Df2QJMG-TeA-2ee5mhVVGJ9LpbL3zbBg1tws0Ov7K0xt9uwpYsduP6uRIS53oHRuK8edweKSaHKCqH5t4Vkn3VjjhnZJ6KFWBTMUHes2dhkyjNRKDZrajbk5p0tKtaUbHLxDg__-6V92IJCbV6vrhn2RFWXmvounF6JGnZhuygLfR-YyPIsw6gNbU4Re2GMXdvtdbKfI1zUFvB-tlPZEZ9T_Y1l2gZAdpCidqiRGu1Y8GKQrwzlx6WSu63yBjH0f0GMmMyCvV6baecT6nSwYAueDl9RK3RDIwpdrmqMwzAApWlwLWCXyFA3GBHFgQX3jHlc_J74BWPPtiDaMJxBgLjEN78Ui7OWUxynK0DwbMHLwcT-M_gH_xzjExhNTz4epUez48M9uGFyLigz7yFsNz9W-hFCuSZ73C4gBl-vesX-AgvFXFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endoplasmic+reticulum+protein+quality+control+and+its+relationship+to+environmental+stress+responses+in+plants&rft.jtitle=The+Plant+cell&rft.au=Liu%2C+Jian-Xiang&rft.au=Howell%2C+Stephen+H&rft.date=2010-09-01&rft.issn=1532-298X&rft.eissn=1532-298X&rft.volume=22&rft.issue=9&rft.spage=2930&rft_id=info:doi/10.1105%2Ftpc.110.078154&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon