Endoplasmic Reticulum Protein Quality Control and Its Relationship to Environmental Stress Responses in Plants
The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to...
Saved in:
Published in | The Plant cell Vol. 22; no. 9; pp. 2930 - 2942 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.09.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1040-4651 1532-298X 1532-298X |
DOI | 10.1105/tpc.110.078154 |
Cover
Abstract | The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants. |
---|---|
AbstractList | The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants. The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants.The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants. |
Author | Howell, Stephen H. Liu, Jian-Xiang |
AuthorAffiliation | a State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China 200433 b Plant Sciences Institute and Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011 |
AuthorAffiliation_xml | – name: a State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China 200433 – name: b Plant Sciences Institute and Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011 |
Author_xml | – sequence: 1 givenname: Jian-Xiang surname: Liu fullname: Liu, Jian-Xiang – sequence: 2 givenname: Stephen H. surname: Howell fullname: Howell, Stephen H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20876830$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB-wZQey2MAmUz_iON4godEUKlWivCR2lsfxUI8cO9hO0fz7OpNCoRKwypXyneN7zj0GBz54A8BTjBYYI3aaBz0NC8RbzOoH4AgzSioi2q8HZUY1quqG4UNwnNIWIYQ5Fo_AIUEtb1qKjoBf-S4MTqXeavjRZKtHN_bwMoZsrIcfRuVs3sFl8DkGB5Xv4HlOhXQq2-DTlR1gDnDlr20Mvjc-Kwc_5WjSBKWhICbB4nTplM_pMXi4US6ZJ7ffE_DlbPV5-a66eP_2fPnmotKM8lyxdoO1oaQxuBNiozvFBBW4RQQzsVEdV9y0Zm0UwiWKRoR3FGPdGKMbLdaMnoDT2Xf0g9r9UM7JIdpexZ3ESE7NydLcNMi5uaJ4PSuGcd2bTpckUd2pgrLyzz_eXslv4VoS0TDGcDF4eWsQw_fRpCx7m7RxJbcJY5K8IYSXw0zLvfonieta7OOSgr64h27DGH2pbu-HKRLTy89_X_3Xzj-vXIB6BnQMKUWzkdrm_f1KEuv-Xsninuy_HT6bBduUQ7zbg3HW8prSGwhb1kk |
CitedBy_id | crossref_primary_10_1038_s41598_018_19766_4 crossref_primary_10_1074_mcp_M116_059436 crossref_primary_10_3390_ijms19123737 crossref_primary_10_4236_ajps_2015_65069 crossref_primary_10_1073_pnas_1802254115 crossref_primary_10_1007_s12298_021_01003_4 crossref_primary_10_1111_pce_12927 crossref_primary_10_1038_s41467_018_06289_9 crossref_primary_10_1371_journal_pone_0236424 crossref_primary_10_1111_mpp_12567 crossref_primary_10_1186_s12870_015_0525_2 crossref_primary_10_3390_ijms22094840 crossref_primary_10_1038_s41598_019_48664_6 crossref_primary_10_1007_s11105_014_0793_2 crossref_primary_10_1371_journal_pone_0198978 crossref_primary_10_1080_15427528_2020_1808133 crossref_primary_10_1111_plb_12267 crossref_primary_10_1007_s11816_021_00699_w crossref_primary_10_1111_tpj_12287 crossref_primary_10_3389_fpls_2024_1457587 crossref_primary_10_1007_s12042_024_09354_4 crossref_primary_10_1016_j_bbrc_2011_01_082 crossref_primary_10_1021_pr501080r crossref_primary_10_1093_pcp_pcx189 crossref_primary_10_1111_ppl_14246 crossref_primary_10_1146_annurev_arplant_050312_120053 crossref_primary_10_1093_jxb_ers031 crossref_primary_10_1016_j_envexpbot_2023_105608 crossref_primary_10_1093_pcp_pcs159 crossref_primary_10_1111_nph_15279 crossref_primary_10_1016_j_plantsci_2018_05_029 crossref_primary_10_3389_fpls_2022_930721 crossref_primary_10_3389_fmars_2022_928617 crossref_primary_10_1186_s12864_017_3596_7 crossref_primary_10_3390_biom11020240 crossref_primary_10_1111_tpj_12604 crossref_primary_10_1111_pce_12027 crossref_primary_10_1111_1755_0998_13539 crossref_primary_10_1111_j_1399_3054_2012_01704_x crossref_primary_10_1111_pce_12142 crossref_primary_10_1111_nph_16369 crossref_primary_10_1016_j_phytochem_2011_11_005 crossref_primary_10_1016_j_jbiotec_2012_10_010 crossref_primary_10_3389_fpls_2022_905674 crossref_primary_10_1016_j_bbagrm_2011_10_002 crossref_primary_10_1089_ees_2020_0044 crossref_primary_10_3390_biom10071031 crossref_primary_10_3389_fmolb_2022_817392 crossref_primary_10_1016_j_molp_2020_11_010 crossref_primary_10_1371_journal_pone_0212671 crossref_primary_10_1134_S1021443718010193 crossref_primary_10_1111_tpj_13239 crossref_primary_10_1186_s12864_021_07954_y crossref_primary_10_1186_s12864_024_11091_7 crossref_primary_10_1104_pp_112_210757 crossref_primary_10_1371_journal_pone_0071425 crossref_primary_10_1021_acs_est_8b06641 crossref_primary_10_1186_s12870_021_02854_5 crossref_primary_10_1371_journal_pgen_1005511 crossref_primary_10_3389_fpls_2019_00399 crossref_primary_10_1007_s11105_016_1015_x crossref_primary_10_3390_ijms24119408 crossref_primary_10_1016_j_celrep_2022_110941 crossref_primary_10_1007_s11103_017_0608_6 crossref_primary_10_1007_s11103_019_00928_5 crossref_primary_10_1134_S1021443724606402 crossref_primary_10_1016_j_indcrop_2023_117675 crossref_primary_10_1111_ppl_14267 crossref_primary_10_1007_s00299_014_1680_x crossref_primary_10_1111_ppl_12090 crossref_primary_10_1093_jxb_eraa320 crossref_primary_10_1007_s42994_021_00062_1 crossref_primary_10_1186_1756_0500_5_144 crossref_primary_10_1134_S0026893319020146 crossref_primary_10_1007_s13765_017_0319_3 crossref_primary_10_1016_j_plantsci_2018_05_007 crossref_primary_10_1002_biot_202300715 crossref_primary_10_1007_s00299_023_03040_7 crossref_primary_10_3390_ijms14047771 crossref_primary_10_1016_j_envexpbot_2017_06_009 crossref_primary_10_1016_j_jprot_2012_09_032 crossref_primary_10_1186_s12870_019_1798_7 crossref_primary_10_1093_aob_mcu035 crossref_primary_10_1093_mp_sss042 crossref_primary_10_1093_mp_ssr072 crossref_primary_10_3389_fpls_2021_807354 crossref_primary_10_1016_j_scienta_2017_05_012 crossref_primary_10_1080_17429145_2021_1998681 crossref_primary_10_3389_fpls_2022_911610 crossref_primary_10_1093_pcp_pcr157 crossref_primary_10_3389_fpls_2019_01032 crossref_primary_10_3389_fpls_2022_903793 crossref_primary_10_1111_jipb_12766 crossref_primary_10_1016_j_bbrc_2014_04_093 crossref_primary_10_3390_f16030485 crossref_primary_10_1371_journal_pgen_1004243 crossref_primary_10_3390_cells10061272 crossref_primary_10_1007_s11427_015_4807_6 crossref_primary_10_1111_pce_14503 crossref_primary_10_1016_j_fsi_2021_05_002 crossref_primary_10_1111_j_1365_313X_2012_04943_x crossref_primary_10_3390_agronomy14092105 crossref_primary_10_3390_cells11193121 crossref_primary_10_3390_plants9060723 crossref_primary_10_1111_nph_14676 crossref_primary_10_3390_ijms23020828 crossref_primary_10_1073_pnas_2208351120 crossref_primary_10_1080_15592324_2017_1317421 crossref_primary_10_1104_pp_114_238030 crossref_primary_10_1016_j_ympev_2019_01_014 crossref_primary_10_1093_pcp_pcy233 crossref_primary_10_3390_ijms21041354 crossref_primary_10_3389_fpls_2014_00211 crossref_primary_10_3389_fpls_2015_00669 crossref_primary_10_4161_viru_26774 crossref_primary_10_1016_j_jgg_2012_05_005 crossref_primary_10_1016_j_xplc_2021_100186 crossref_primary_10_1111_pbi_12540 crossref_primary_10_1016_j_jprot_2017_11_006 crossref_primary_10_4161_viru_26772 crossref_primary_10_3390_ijms21010151 crossref_primary_10_1042_EBC20210099 crossref_primary_10_1126_sciadv_abb7719 crossref_primary_10_1016_j_jhazmat_2022_130499 crossref_primary_10_1093_aobpla_plu062 crossref_primary_10_1111_pbi_13760 crossref_primary_10_2174_1570164618666210413105907 crossref_primary_10_1016_j_jprot_2014_03_006 crossref_primary_10_1016_j_jprot_2016_03_003 crossref_primary_10_1007_s11033_013_2643_y crossref_primary_10_1093_pcp_pcw069 crossref_primary_10_3390_plants11243410 crossref_primary_10_1371_journal_pone_0101808 crossref_primary_10_1002_agj2_20975 crossref_primary_10_1007_s00497_016_0276_8 crossref_primary_10_1111_pce_12426 crossref_primary_10_3389_fpls_2022_934877 crossref_primary_10_1104_pp_112_209718 crossref_primary_10_1016_j_jplph_2020_153218 crossref_primary_10_3390_plants12091842 crossref_primary_10_1016_j_plantsci_2023_111777 crossref_primary_10_1105_tpc_111_093062 crossref_primary_10_1111_tpj_14524 crossref_primary_10_3390_genes12010023 crossref_primary_10_1111_j_1399_3054_2011_01529_x crossref_primary_10_1016_j_plantsci_2014_10_002 crossref_primary_10_1016_j_cpb_2021_100197 crossref_primary_10_1111_jipb_12544 crossref_primary_10_3389_fpls_2016_01783 crossref_primary_10_3389_fpls_2019_00873 crossref_primary_10_1093_molbev_msw230 crossref_primary_10_1093_pcp_pcs015 crossref_primary_10_1007_s11032_023_01415_y crossref_primary_10_1186_s12870_017_1060_0 crossref_primary_10_1111_tpj_15743 crossref_primary_10_3390_biom11050756 crossref_primary_10_1093_jxb_erad075 crossref_primary_10_1186_s12864_017_4277_2 crossref_primary_10_3389_fpls_2017_00667 crossref_primary_10_3390_plants12142680 crossref_primary_10_3389_fpls_2017_01086 crossref_primary_10_3390_foods9050683 crossref_primary_10_1016_j_molp_2021_08_013 crossref_primary_10_1371_journal_pone_0112946 crossref_primary_10_1089_omi_2011_0109 crossref_primary_10_1007_s11240_024_02749_x crossref_primary_10_1111_ppl_13268 crossref_primary_10_1111_j_1365_313X_2011_04844_x crossref_primary_10_1111_tpj_13091 crossref_primary_10_1242_jcs_147447 crossref_primary_10_1007_s40502_020_00548_y crossref_primary_10_1016_j_marenvres_2017_10_011 crossref_primary_10_1002_fes3_239 crossref_primary_10_1002_ece3_11652 crossref_primary_10_1016_j_jplph_2012_11_011 crossref_primary_10_3390_ijms21072445 crossref_primary_10_1093_aobpla_plu037 crossref_primary_10_1111_jipb_13372 crossref_primary_10_3389_fpls_2017_00245 crossref_primary_10_1111_pbi_12184 crossref_primary_10_1016_j_cj_2020_01_007 crossref_primary_10_1093_plphys_kiab498 crossref_primary_10_1105_tpc_114_123588 crossref_primary_10_1111_nph_17628 crossref_primary_10_1111_nph_20224 crossref_primary_10_1111_nph_14582 crossref_primary_10_1105_tpc_111_083634 crossref_primary_10_1111_mpp_12050 crossref_primary_10_1093_pcp_pcaa157 crossref_primary_10_1100_2012_416076 crossref_primary_10_1016_j_tplants_2012_07_004 crossref_primary_10_3389_fpls_2021_661062 crossref_primary_10_1111_j_1365_313X_2012_05070_x crossref_primary_10_1002_biof_1194 crossref_primary_10_1093_pcp_pcr107 crossref_primary_10_1111_pce_13507 crossref_primary_10_1111_jac_12496 crossref_primary_10_3390_ijms22020530 crossref_primary_10_4161_psb_24297 crossref_primary_10_1002_pei3_10096 crossref_primary_10_1016_j_scitotenv_2023_165676 crossref_primary_10_1073_pnas_1609844114 crossref_primary_10_1007_s11738_022_03369_8 crossref_primary_10_1007_s11738_019_2922_x crossref_primary_10_1093_g3journal_jkae237 crossref_primary_10_1093_plphys_kiab367 crossref_primary_10_1111_nph_15436 crossref_primary_10_1111_pbi_14252 crossref_primary_10_1093_plphys_kiab126 crossref_primary_10_1093_pcp_pct097 crossref_primary_10_1371_journal_pone_0077378 crossref_primary_10_1007_s40626_018_0128_z crossref_primary_10_1016_j_plantsci_2018_03_002 crossref_primary_10_3390_ijms20235842 crossref_primary_10_1093_pcp_pcv059 crossref_primary_10_1093_jxb_erad449 crossref_primary_10_1111_tpj_16222 crossref_primary_10_1038_s41467_024_50105_6 crossref_primary_10_3389_fpls_2016_01579 crossref_primary_10_1111_jipb_12744 crossref_primary_10_3390_ijms241713105 crossref_primary_10_3389_fpls_2020_01072 crossref_primary_10_3389_fpls_2020_598552 crossref_primary_10_1007_s00425_024_04538_4 crossref_primary_10_1111_j_1365_313X_2012_05022_x crossref_primary_10_1080_15592324_2016_1171451 crossref_primary_10_1080_21645698_2019_1598215 crossref_primary_10_3389_fpls_2017_00344 crossref_primary_10_1016_j_celrep_2025_115271 crossref_primary_10_1016_j_jprot_2015_03_030 crossref_primary_10_1007_s11295_013_0661_5 crossref_primary_10_3389_fpls_2018_00348 crossref_primary_10_3389_fpls_2018_01558 crossref_primary_10_1111_pbi_13297 crossref_primary_10_3389_fpls_2014_00778 crossref_primary_10_3390_antiox11071240 crossref_primary_10_1093_aob_mcv072 crossref_primary_10_1094_PDIS_10_22_2339_RE crossref_primary_10_1002_advs_202407826 crossref_primary_10_1073_pnas_1504828112 crossref_primary_10_1007_s00709_022_01780_z crossref_primary_10_1007_s13562_017_0409_7 crossref_primary_10_1002_slct_202403028 crossref_primary_10_1104_pp_112_197483 crossref_primary_10_1093_mp_ssr115 crossref_primary_10_1007_s11240_016_1064_8 crossref_primary_10_3389_fpls_2018_00214 crossref_primary_10_1111_nph_13915 crossref_primary_10_1186_1471_2229_11_129 crossref_primary_10_3389_fmars_2020_00415 crossref_primary_10_3389_fpls_2021_799954 crossref_primary_10_1007_s00425_019_03294_0 crossref_primary_10_3390_genes15080968 crossref_primary_10_3389_fpls_2022_903272 crossref_primary_10_1111_nph_14031 crossref_primary_10_1073_pnas_1419703112 crossref_primary_10_3389_fpls_2019_01551 crossref_primary_10_3389_fpls_2022_904121 crossref_primary_10_1016_j_cj_2021_02_008 crossref_primary_10_1007_s00299_014_1658_8 crossref_primary_10_1016_j_bbrc_2019_04_015 crossref_primary_10_5423_PPJ_RW_08_2015_0150 crossref_primary_10_1186_s12870_020_2236_6 crossref_primary_10_1093_jxb_erac011 crossref_primary_10_1186_s12870_019_1670_9 crossref_primary_10_1002_jcb_29199 crossref_primary_10_3390_plants11060755 crossref_primary_10_1038_cr_2011_18 crossref_primary_10_1371_journal_pgen_1008563 crossref_primary_10_1016_j_ygeno_2021_05_002 crossref_primary_10_3390_ijms24065304 crossref_primary_10_3390_molecules23020386 crossref_primary_10_1111_febs_12092 crossref_primary_10_1111_tpj_14265 crossref_primary_10_31857_S0015330324030015 crossref_primary_10_1007_s11105_015_0900_z crossref_primary_10_1007_s11816_021_00707_z crossref_primary_10_1016_j_ymgme_2012_04_018 crossref_primary_10_3390_ijms21072655 crossref_primary_10_1002_sae2_70032 crossref_primary_10_1094_MPMI_07_13_0200_R crossref_primary_10_1105_tpc_111_093112 crossref_primary_10_1007_s11103_016_0540_1 crossref_primary_10_1016_j_aquaculture_2023_740466 crossref_primary_10_1111_nph_15915 crossref_primary_10_3390_ijms20020390 crossref_primary_10_1016_j_molp_2018_05_009 crossref_primary_10_1105_tpc_16_00574 crossref_primary_10_1111_j_1365_313X_2012_05106_x crossref_primary_10_1134_S1990519X13050027 crossref_primary_10_1105_tpc_111_089656 crossref_primary_10_4161_psb_6_11_17829 crossref_primary_10_1093_jxb_eraa098 crossref_primary_10_4161_psb_20934 crossref_primary_10_1101_gr_202200_115 crossref_primary_10_3390_ijms21249741 crossref_primary_10_1093_plphys_kiad571 crossref_primary_10_1016_j_tplants_2012_06_014 crossref_primary_10_3390_ijms241914802 crossref_primary_10_1016_j_jplph_2015_04_003 crossref_primary_10_1016_j_plaphy_2015_02_007 crossref_primary_10_1016_j_plantsci_2013_05_003 crossref_primary_10_1186_1471_2229_14_129 crossref_primary_10_1371_journal_pone_0094704 crossref_primary_10_3389_fpls_2017_00144 crossref_primary_10_1007_s10142_024_01438_4 crossref_primary_10_1038_s41588_023_01302_4 crossref_primary_10_1016_j_jplph_2018_11_003 crossref_primary_10_1155_2013_264314 crossref_primary_10_1371_journal_pone_0078471 crossref_primary_10_1371_journal_ppat_1006301 crossref_primary_10_1016_j_molp_2020_10_011 crossref_primary_10_3390_plants8020034 crossref_primary_10_1016_j_jprot_2011_05_007 crossref_primary_10_1074_jbc_M111_233494 crossref_primary_10_1016_j_xplc_2023_100726 crossref_primary_10_1104_pp_111_179697 crossref_primary_10_1007_s12374_021_09307_4 crossref_primary_10_1111_pbi_12963 crossref_primary_10_3390_ijms252413304 crossref_primary_10_1007_s40858_022_00500_5 crossref_primary_10_1093_jxb_erz402 crossref_primary_10_1093_plphys_kiac595 crossref_primary_10_1111_jipb_12139 crossref_primary_10_1016_j_jprot_2014_12_008 crossref_primary_10_1016_j_bbrc_2023_05_106 crossref_primary_10_3390_ijms221910772 crossref_primary_10_1016_j_plantsci_2018_09_019 crossref_primary_10_3390_biom5021151 crossref_primary_10_1186_1471_2229_11_163 crossref_primary_10_1093_jxb_erac262 crossref_primary_10_1111_ppl_13667 crossref_primary_10_1093_mp_sst059 crossref_primary_10_1371_journal_pone_0086661 crossref_primary_10_1371_journal_ppat_1002177 crossref_primary_10_1016_j_tplants_2020_12_007 crossref_primary_10_1007_s00709_015_0921_3 crossref_primary_10_1007_s11103_012_9891_4 crossref_primary_10_1111_mpp_12071 crossref_primary_10_1111_ppl_13663 crossref_primary_10_1007_s11103_020_01074_z crossref_primary_10_3389_fpls_2014_00627 |
Cites_doi | 10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2 10.1016/j.sbi.2007.01.008 10.1111/j.1438-8677.1998.tb00679.x 10.1093/jxb/erm369 10.1016/j.molcel.2007.05.015 10.1074/jbc.M511794200 10.1105/tpc.013862 10.1074/jbc.M110.117176 10.1017/S0033583508004654 10.1126/scisignal.2001140 10.1126/science.1108791 10.1105/tpc.11.10.1935 10.1111/j.1365-313X.2005.02392.x 10.1104/pp.126.3.1042 10.1126/science.7939687 10.1111/j.1365-3040.2008.01873.x 10.1038/35048692 10.1104/pp.107.4.1411 10.1016/j.cell.2008.11.047 10.1074/jbc.M304468200 10.1046/j.1365-313X.2003.01636.x 10.1021/bi0204701 10.1093/jxb/49.326.1473 10.1083/jcb.200411136 10.1074/jbc.M402468200 10.2307/3870510 10.1046/j.1365-313x.2000.00933.x 10.1089/152308603768295122 10.1007/s00438-008-0356-z 10.1016/j.cell.2006.05.045 10.1083/jcb.129.4.979 10.1371/journal.pone.0011342 10.1146/annurev.bi.54.070185.003215 10.1038/384432a0 10.1073/pnas.0506448103 10.1111/j.1600-0854.2008.00729.x 10.1016/j.semcdb.2007.09.003 10.1016/j.plipres.2005.05.002 10.1016/j.bbrc.2008.07.021 10.1105/tpc.013052 10.1038/nsmb.1591 10.1073/pnas.0611735104 10.1111/j.1399-3054.2009.01223.x 10.1002/j.1460-2075.1996.tb00411.x 10.1006/scdb.1999.0315 10.1038/353726a0 10.1073/pnas.251386098 10.1126/science.2756425 10.1074/jbc.M109.037234 10.1002/prot.340210302 10.1074/jbc.R700048200 10.5511/plantbiotechnology.25.271 10.1105/tpc.106.050021 10.1083/jcb.200309132 10.1006/scdb.1999.0318 10.1016/j.bbrc.2006.08.186 10.1093/jxb/49.324.1091 10.1038/nrm2199 10.1038/emboj.2009.262 10.1104/pp.104.055434 10.1016/j.tcb.2003.11.001 10.1091/mbc.e05-05-0417 10.1038/sj.emboj.7601088 10.1105/tpc.007609 10.1093/pcp/pcf063 10.1111/j.1365-313X.2008.03732.x 10.1104/pp.105.060087 10.1104/pp.121.2.353 10.1016/j.molcel.2008.11.017 10.1073/pnas.0905532106 10.1091/mbc.11.10.3425 10.1074/jbc.M704185200 10.1091/mbc.e02-05-0311 10.1073/pnas.0906144106 10.1073/pnas.92.15.6828 10.1083/jcb.200507057 10.1007/BF00039383 10.1016/S0167-4781(02)00237-3 10.1074/jbc.M802654200 10.1073/pnas.0408941102 10.1074/jbc.273.23.14194 10.1104/pp.104.4.1359 10.1105/tpc.109.072173 10.1111/j.1365-313X.1992.00443.x 10.1016/j.cell.2006.05.043 10.1074/jbc.M304951200 10.1016/j.cell.2007.10.025 10.1074/jbc.M706659200 10.1105/tpc.3.11.1251 10.1074/jbc.270.44.26677 10.1016/S1097-2765(00)80034-9 10.1146/annurev.cb.05.110189.001425 10.1105/tpc.104.026625 10.1073/pnas.0912670107 10.1126/science.1146361 10.1073/pnas.91.3.913 10.1083/jcb.138.6.1229 10.1126/science.1523409 10.1111/j.1742-4658.2007.05664.x 10.1073/pnas.0808463105 10.1093/emboj/21.5.898 10.1111/j.1365-313X.2007.03195.x 10.1046/j.1365-313X.2002.01483.x 10.1104/pp.011742 10.1016/j.semcdb.2007.09.007 10.1074/jbc.M709316200 10.1105/tpc.108.061150 10.1016/S1097-2765(00)80198-7 10.1105/tpc.108.061002 10.1016/j.mrfmmm.2004.06.056 10.1016/j.bbrc.2007.09.124 10.1016/j.ceb.2004.06.012 10.1146/annurev.bi.50.070181.003011 10.1111/j.1600-0854.2008.00780.x 10.1105/tpc.12.5.739 10.1038/ncb1445 10.1111/j.1742-4658.2005.04770.x 10.1038/35081184 10.1242/jcs.03225 10.1016/j.ceb.2009.04.006 10.1093/emboj/16.15.4540 10.1083/jcb.200809198 10.1046/j.1365-313X.1997.11061325.x 10.1016/j.coi.2007.11.003 10.1104/pp.010636 10.1016/j.sbi.2006.08.005 10.1093/jxb/ern296 10.1146/annurev.biochem.73.011303.073752 10.1093/jxb/50.331.157 10.1038/86236 10.1111/j.1365-313X.2006.02904.x 10.1146/annurev.cellbio.21.122303.120200 |
ContentType | Journal Article |
Copyright | 2010 American Society of Plant Biologists Copyright American Society of Plant Biologists Sep 2010 2010 American Society of Plant Biologists 2010 |
Copyright_xml | – notice: 2010 American Society of Plant Biologists – notice: Copyright American Society of Plant Biologists Sep 2010 – notice: 2010 American Society of Plant Biologists 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 4T- 7QO 7TM 7X2 7X7 7XB 88A 88E 88I 8AF 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M2P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 S0X 7S9 L.6 7X8 5PM ADTOC UNPAY |
DOI | 10.1105/tpc.110.078154 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc Biotechnology Research Abstracts Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts SIRS Editorial AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Docstoc Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 2942 |
ExternalDocumentID | 10.1105/tpc.110.078154 PMC2965551 2179158131 20876830 10_1105_tpc_110_078154 25758743 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2FS 2WC 2~F 4.4 5VS 5WD 7X2 7X7 85S 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN AAYJJ ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABUWG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGFO ACGOD ACHIC ACIPB ACIWK ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADXHL ADYHW AEEJZ AENEX AEUPB AEUYN AFAZZ AFFNX AFFZL AFGWE AFKRA AFRAH AGCDD AGORE AGUYK AHMBA AHXOZ AICQM AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM AS~ ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BEYMZ BHPHI BPHCQ BTFSW BVXVI CBGCD CCPQU CS3 D1J DATOO DIK DU5 DWQXO E3Z EBS ECGQY EJD F5P F8P F9R FLUFQ FOEOM FYUFA GNUQQ GTFYD GX1 H13 HCIFZ HMCUK HTVGU H~9 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN LK8 M0K M1P M2P M2Q M7P MV1 N9A NEJ NOMLY NU- OBOKY OJZSN OK1 OWPYF P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RHI ROX RPB RWL RXW S0X SA0 TAE TN5 TR2 U5U UKHRP W8F WH7 WOQ XSW YBU YR2 YSK ZCA ZCN ~KM AAYXX CITATION PJZUB PPXIY PQGLB PUEGO 53G AAWDT ABIME ABPIB ABZEO ACFRR ACUTJ ACVCV ACZBC ADYWZ AFYAG AGMDO AJDVS ANFBD APJGH AQDSO C1A CGR CUY CVF ECM EIF FRP HGD MVM NPM P0- TCN UBC UKR WHG XOL Y6R ZCG 3V. 4T- 7QO 7TM 7XB 88A 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7S9 L.6 7X8 5PM ADTOC AHGBF AJBYB UNPAY |
ID | FETCH-LOGICAL-c537t-58f1ce326e1d99fcda59391802159fad7a7e8ebea01208c027d311c6eec6c9b53 |
IEDL.DBID | 7X7 |
ISSN | 1040-4651 1532-298X |
IngestDate | Wed Oct 01 15:26:55 EDT 2025 Tue Sep 30 16:57:03 EDT 2025 Sun Sep 28 12:47:39 EDT 2025 Sun Sep 28 00:12:21 EDT 2025 Fri Aug 15 19:09:44 EDT 2025 Thu Apr 03 04:55:12 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Wed Oct 01 03:31:57 EDT 2025 Fri Jun 20 02:31:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-58f1ce326e1d99fcda59391802159fad7a7e8ebea01208c027d311c6eec6c9b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Review-3 www.plantcell.org/cgi/doi/10.1105/tpc.110.078154 |
OpenAccessLink | https://academic.oup.com/plcell/article-pdf/22/9/2930/36932159/plcell_v22_9_2930.pdf |
PMID | 20876830 |
PQID | 762213091 |
PQPubID | 37014 |
PageCount | 13 |
ParticipantIDs | unpaywall_primary_10_1105_tpc_110_078154 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2965551 proquest_miscellaneous_762272985 proquest_miscellaneous_1449939182 proquest_journals_762213091 pubmed_primary_20876830 crossref_citationtrail_10_1105_tpc_110_078154 crossref_primary_10_1105_tpc_110_078154 jstor_primary_25758743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-01 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Rockville |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2010 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Caramelo (2021040622022267900_b12) 2008; 283 Ruddock (2021040622022267900_b105) 2006; 119 Koizumi (2021040622022267900_b71) 1999; 121 Hammond (2021040622022267900_b45) 1994; 266 Martínez (2021040622022267900_b86) 2003; 15 Malhotra (2021040622022267900_b84) 2007; 18 Boston (2021040622022267900_b6) 1991; 3 Di Cola (2021040622022267900_b26) 2005; 137 Wei (2021040622022267900_b129) 1995; 270 Williams (2021040622022267900_b131) 2010; 107 Meunier (2021040622022267900_b88) 2002; 13 Englander (2021040622022267900_b29) 2007; 40 Hwang (2021040622022267900_b53) 1992; 257 Pilon (2021040622022267900_b101) 1997; 16 Flynn (2021040622022267900_b32) 1991; 353 Lindberg (2021040622022267900_b77) 2007; 17 Gross (2021040622022267900_b43) 2006; 103 Okushima (2021040622022267900_b97) 2002; 43 Wang (2021040622022267900_b126) 2007; 104 Ceriotti (2021040622022267900_b14) 1998; 49 Jia (2021040622022267900_b58) 2009; 136 Schott (2021040622022267900_b110) 2010; 285 Iwata (2021040622022267900_b56) 2005; 102 Watanabe (2021040622022267900_b128) 2008; 283 Holst (2021040622022267900_b49) 1997; 138 Ruiz-Canada (2021040622022267900_b106) 2009; 136 Cheetham (2021040622022267900_b16) 1998; 3 Marshall (2021040622022267900_b85) 2008; 283 Che (2021040622022267900_b15) 2010 Anderson (2021040622022267900_b1) 1994; 104 Kleizen (2021040622022267900_b67) 2004; 16 Quan (2021040622022267900_b102) 2008; 32 Sevier (2021040622022267900_b112) 2006; 17 Oda (2021040622022267900_b96) 2006; 172 Wang (2021040622022267900_b127) 2005; 308 Jelitto-Van Dooren (2021040622022267900_b57) 1999; 11 Rancour (2021040622022267900_b103) 2002; 130 Yang (2021040622022267900_b134) 2009; 57 Kornfeld (2021040622022267900_b72) 1985; 54 Lam (2021040622022267900_b73) 2001; 411 D’Amico (2021040622022267900_b21) 1992; 2 Boston (2021040622022267900_b7) 1996; 32 Figueiredo (2021040622022267900_b30) 1997; 9 Lupattelli (2021040622022267900_b83) 1997; 9 Gauss (2021040622022267900_b41) 2006; 25 Gething (2021040622022267900_b42) 1999; 10 Urade (2021040622022267900_b119) 2007; 274 Swiezewska (2021040622022267900_b116) 2005; 44 Müller (2021040622022267900_b90) 2005; 17 Vitale (2021040622022267900_b124) 2008; 9 Ishiguro (2021040622022267900_b54) 2002; 21 Hartl (2021040622022267900_b46) 2009; 16 Brodsky (2021040622022267900_b9) 2009; 21 Nardi (2021040622022267900_b92) 1998; 111 Valente (2021040622022267900_b120) 2009; 60 2021040622022267900_b108 Danon (2021040622022267900_b22) 2004; 279 Alvim (2021040622022267900_b2) 2001; 126 Denic (2021040622022267900_b24) 2006; 126 Helenius (2021040622022267900_b48) 2004; 73 Frigerio (2021040622022267900_b37) 1998; 273 Doukhanina (2021040622022267900_b28) 2006; 281 Nekrasov (2021040622022267900_b94) 2009; 28 Flynn (2021040622022267900_b31) 1989; 245 Fujita (2021040622022267900_b34) 2007; 364 Schröder (2021040622022267900_b111) 2005; 569 Foresti (2021040622022267900_b33) 2003; 15 Knop (2021040622022267900_b68) 1996; 15 Frigerio (2021040622022267900_b36) 1998; 49 Wiseman (2021040622022267900_b132) 2007; 131 Navazio (2021040622022267900_b93) 2002; 41 Sparvoli (2021040622022267900_b113) 2000; 24 Vitale (2021040622022267900_b125) 1999; 11 Zhang (2021040622022267900_b135) 2008; 20 Rutkowski (2021040622022267900_b107) 2004; 14 Dixon (2021040622022267900_b27) 2003; 5 Koiwa (2021040622022267900_b69) 2003; 15 Vashist (2021040622022267900_b121) 2004; 165 Bass (2021040622022267900_b4) 2004; 279 Tajima (2021040622022267900_b118) 2008; 25 Stevens (2021040622022267900_b115) 1999; 10 Hurtley (2021040622022267900_b51) 1989; 5 Iwata (2021040622022267900_b55) 2008; 20 Vitale (2021040622022267900_b123) 1995; 107 Koizumi (2021040622022267900_b70) 2001; 127 Noh (2021040622022267900_b95) 2002; 1575 Wiertz (2021040622022267900_b130) 1996; 384 Di Cola (2021040622022267900_b25) 2001; 98 Arabidopsis Genome Initiative (2021040622022267900_b3) 2000; 408 Olivari (2021040622022267900_b98) 2006; 349 Hubbard (2021040622022267900_b50) 1981; 50 Verma (2021040622022267900_b122) 2000; 11 Pagny (2021040622022267900_b99) 2000; 12 Frand (2021040622022267900_b35) 1999; 4 Liu (2021040622022267900_b79) 2007; 19 Klein (2021040622022267900_b66) 2006; 48 Nakatsukasa (2021040622022267900_b91) 2008; 9 Moremen (2021040622022267900_b89) 2006; 16 Bryngelson (2021040622022267900_b10) 1995; 21 Costa (2021040622022267900_b20) 2008; 283 Ron (2021040622022267900_b104) 2007; 8 Zipfel (2021040622022267900_b136) 2008; 20 Lu (2021040622022267900_b82) 2008; 280 Spear (2021040622022267900_b114) 2005; 169 Lin (2021040622022267900_b76) 2007; 318 Bernales (2021040622022267900_b5) 2006; 22 Jin (2021040622022267900_b61) 2007; 26 Gao (2021040622022267900_b39) 2008; 105 Lerouxel (2021040622022267900_b74) 2005; 42 Burn (2021040622022267900_b11) 2002; 32 Jia (2021040622022267900_b59) 2008; 59 Briknarová (2021040622022267900_b8) 2001; 8 Huyer (2021040622022267900_b52) 2004; 279 Carvalho (2021040622022267900_b13) 2006; 126 Kanehara (2021040622022267900_b63) 2007; 18 Liu (2021040622022267900_b78) 2010; 22 Jin (2021040622022267900_b60) 2009; 106 Clerc (2021040622022267900_b18) 2009; 184 Pagny (2021040622022267900_b100) 1999; 50 Schlenstedt (2021040622022267900_b109) 1995; 129 Coleman (2021040622022267900_b19) 1995; 92 Hammond (2021040622022267900_b44) 1994; 91 Denecke (2021040622022267900_b23) 1991; 3 Liu (2021040622022267900_b80) 2007; 51 Liu (2021040622022267900_b81) 2008; 31 Gauss (2021040622022267900_b40) 2006; 8 He (2021040622022267900_b47) 2008; 283 Xu (2021040622022267900_b133) 1998; 1 Kirst (2021040622022267900_b65) 2005; 138 Tajima (2021040622022267900_b117) 2008; 374 Kamauchi (2021040622022267900_b62) 2005; 272 Kawai-Yamada (2021040622022267900_b64) 2009; 284 Matsushima (2021040622022267900_b87) 2003; 33 Gallois (2021040622022267900_b38) 1997; 11 Li (2021040622022267900_b75) 2009; 106 Christensen (2021040622022267900_b17) 2010; 5 17662035 - Plant J. 2007 Sep;51(5):897-909 12040100 - Plant Cell Physiol. 2002 May;43(5):532-9 18490446 - J Biol Chem. 2008 Jul 18;283(29):20209-19 18980646 - Plant J. 2009 Mar;57(5):870-82 17360436 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3817-22 18039663 - J Biol Chem. 2008 Feb 8;283(6):3200-10 1344885 - Plant J. 1992 Jul;2(4):443-55 15860005 - Plant J. 2005 May;42(4):455-68 10213782 - Plant Cell. 1999 Apr;11(4):615-28 19453510 - Physiol Plant. 2009 Jun;136(2):127-38 19763086 - EMBO J. 2009 Nov 4;28(21):3428-38 15781873 - Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5280-5 16407158 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):299-304 18612099 - Plant Cell. 2008 Jul;20(7):1879-98 17074831 - J Cell Sci. 2006 Nov 1;119(Pt 21):4373-80 18303019 - J Biol Chem. 2008 Apr 18;283(16):10221-5 7592894 - J Biol Chem. 1995 Nov 3;270(44):26677-82 17937930 - Biochem Biophys Res Commun. 2007 Dec 14;364(2):250-7 9603921 - J Biol Chem. 1998 Jun 5;273(23):14194-9 12020828 - Biochim Biophys Acta. 2002 May 3;1575(1-3):130-4 16619026 - EMBO J. 2006 May 3;25(9):1827-35 8631297 - EMBO J. 1996 Feb 15;15(4):753-63 7784423 - Proteins. 1995 Mar;21(3):167-95 12228444 - Plant Physiol. 1995 Apr;107(4):1411-1418 12492837 - Plant J. 2002 Dec;32(6):949-60 19717464 - Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15973-8 11276257 - Nat Struct Biol. 2001 Apr;8(4):349-52 12237365 - Plant Cell. 1997 Apr;9(4):597-609 1523409 - Science. 1992 Sep 11;257(5076):1496-502 11734657 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14726-31 15890886 - Science. 2005 May 13;308(5724):1036-40 12566592 - Plant Cell. 2003 Feb;15(2):561-76 18574595 - Mol Genet Genomics. 2008 Sep;280(3):199-210 10810147 - Plant Cell. 2000 May;12(5):739-56 11459068 - Nature. 2001 Jun 14;411(6839):848-53 11457955 - Plant Physiol. 2001 Jul;126(3):1042-54 10521523 - Plant Cell. 1999 Oct;11(10):1935-44 18315532 - Traffic. 2008 Jun;9(6):861-70 18849477 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16398-403 17059403 - Plant J. 2006 Dec;48(5):657-73 19124653 - J Cell Biol. 2009 Jan 12;184(1):159-72 11029046 - Mol Biol Cell. 2000 Oct;11(10):3425-39 12581307 - Plant J. 2003 Feb;33(3):493-502 9303298 - EMBO J. 1997 Aug 1;16(15):4540-8 1822990 - Plant Cell. 1991 Sep;3(9):1025-35 20231441 - Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6088-93 10517826 - Plant Physiol. 1999 Oct;121(2):353-61 18023214 - Semin Cell Dev Biol. 2007 Dec;18(6):716-31 8945469 - Nature. 1996 Dec 5;384(6608):432-8 9660918 - Mol Cell. 1998 Feb;1(3):337-46 18206360 - Curr Opin Immunol. 2008 Feb;20(1):10-6 9225471 - Plant J. 1997 Jun;11(6):1325-31 20596537 - PLoS One. 2010;5(6):e11342 10549279 - Mol Cell. 1999 Oct;4(4):469-77 18721266 - Plant Cell Environ. 2008 Dec;31(12):1735-43 14508011 - Plant Cell. 2003 Oct;15(10):2464-75 12450377 - Biochemistry. 2002 Dec 3;41(48):14141-9 1840924 - Plant Cell. 1991 May;3(5):497-505 12972670 - Plant Cell. 2003 Oct;15(10):2273-84 19597144 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13612-7 19443192 - Curr Opin Cell Biol. 2009 Aug;21(4):516-21 18634751 - Biochem Biophys Res Commun. 2008 Sep 19;374(2):242-7 15978049 - FEBS J. 2005 Jul;272(13):3461-76 1834945 - Nature. 1991 Oct 24;353(6346):726-30 19167329 - Cell. 2009 Jan 23;136(2):272-83 15603751 - Mutat Res. 2005 Jan 6;569(1-2):29-63 14729177 - Trends Cell Biol. 2004 Jan;14(1):20-8 15252059 - J Biol Chem. 2004 Sep 10;279(37):38369-78 17588517 - Mol Cell. 2007 Jun 22;26(6):821-30 18405419 - Q Rev Biophys. 2007 Nov;40(4):287-326 7023366 - Annu Rev Biochem. 1981;50:555-83 7624327 - Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6828-31 11867518 - EMBO J. 2002 Mar 1;21(5):898-908 11706177 - Plant Physiol. 2001 Nov;127(3):949-62 8980480 - Plant Mol Biol. 1996 Oct;32(1-2):191-222 19111666 - Mol Cell. 2008 Dec 26;32(6):870-7 16938451 - Curr Opin Struct Biol. 2006 Oct;16(5):592-9 16873066 - Cell. 2006 Jul 28;126(2):361-73 18420588 - J Biol Chem. 2008 Jun 6;283(23):15869-77 18557840 - Traffic. 2008 Sep;9(10):1581-8 17565364 - Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-29 15598804 - Plant Cell. 2005 Jan;17(1):149-63 7939687 - Science. 1994 Oct 21;266(5184):456-8 3896128 - Annu Rev Biochem. 1985;54:631-64 8302866 - Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):913-7 20876872 - Sci Signal. 2010;3(141):ra69 14573611 - J Biol Chem. 2004 Jan 2;279(1):779-87 17251003 - Curr Opin Struct Biol. 2007 Feb;17(1):21-9 18156219 - Plant Cell. 2007 Dec;19(12):4111-9 7744969 - J Cell Biol. 1995 May;129(4):979-88 16019076 - Prog Lipid Res. 2005 Jul;44(4):235-58 16873065 - Cell. 2006 Jul 28;126(2):349-59 19491934 - Nat Struct Mol Biol. 2009 Jun;16(6):574-81 17257164 - FEBS J. 2007 Mar;274(5):1152-71 15261665 - Curr Opin Cell Biol. 2004 Aug;16(4):343-9 10597629 - Semin Cell Dev Biol. 1999 Oct;10(5):465-72 19017746 - Plant Cell. 2008 Nov;20(11):3107-21 19052255 - J Exp Bot. 2009;60(2):533-46 18022373 - Cell. 2007 Nov 16;131(4):809-21 17998208 - J Biol Chem. 2008 Jan 11;283(2):774-83 18349049 - J Exp Bot. 2008;59(4):739-51 10597627 - Semin Cell Dev Biol. 1999 Oct;10(5):443-54 16845381 - Nat Cell Biol. 2006 Aug;8(8):849-54 15809311 - J Cell Biol. 2005 Apr 11;169(1):73-82 17945519 - Semin Cell Dev Biol. 2007 Dec;18(6):743-50 15189166 - Annu Rev Biochem. 2004;73:1019-49 20207753 - Plant Cell. 2010 Mar;22(3):782-96 11130711 - Nature. 2000 Dec 14;408(6814):796-815 8016266 - Plant Physiol. 1994 Apr;104(4):1359-70 16822172 - Annu Rev Cell Dev Biol. 2006;22:487-508 19674971 - J Biol Chem. 2009 Oct 9;284(41):27998-8003 2756425 - Science. 1989 Jul 28;245(4916):385-90 20378538 - J Biol Chem. 2010 Jun 4;285(23):18113-21 11135116 - Plant J. 2000 Dec;24(6):825-36 12427991 - Plant Physiol. 2002 Nov;130(3):1241-53 9298979 - J Cell Biol. 1997 Sep 22;138(6):1229-38 9585179 - Cell Stress Chaperones. 1998 Mar;3(1):28-36 15078901 - J Cell Biol. 2004 Apr12;165(1):41-52 16449189 - J Cell Biol. 2006 Jan 30;172(3):383-93 16636050 - J Biol Chem. 2006 Jul 7;281(27):18793-801 15849299 - Plant Physiol. 2005 May;138(1):218-31 12475965 - Mol Biol Cell. 2002 Dec;13(12):4456-69 17991856 - Science. 2007 Nov 9;318(5852):944-9 16987498 - Biochem Biophys Res Commun. 2006 Nov 3;349(4):1278-84 13678526 - Antioxid Redox Signal. 2003 Aug;5(4):389-96 14630926 - J Biol Chem. 2004 Feb 13;279(7):5257-62 2688707 - Annu Rev Cell Biol. 1989;5:277-307 15618412 - Plant Physiol. 2005 Jan;137(1):287-96 16495342 - Mol Biol Cell. 2006 May;17(5):2256-66 |
References_xml | – volume: 3 start-page: 28 year: 1998 ident: 2021040622022267900_b16 article-title: Structure, function and evolution of DnaJ: Conservation and adaptation of chaperone function publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2 – volume: 17 start-page: 21 year: 2007 ident: 2021040622022267900_b77 article-title: Malleability of protein folding pathways: A simple reason for complex behaviour publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2007.01.008 – volume: 111 start-page: 66 year: 1998 ident: 2021040622022267900_b92 article-title: Ginkgo biloba express calreticulin, the major calcium-binding reticuloplasmin in eucaryotic cells publication-title: Bot. Acta doi: 10.1111/j.1438-8677.1998.tb00679.x – volume: 11 start-page: 615 year: 1999 ident: 2021040622022267900_b125 article-title: The endoplasmic reticulum-gateway of the secretory pathway publication-title: Plant Cell – volume: 59 start-page: 739 year: 2008 ident: 2021040622022267900_b59 article-title: Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm369 – volume: 26 start-page: 821 year: 2007 ident: 2021040622022267900_b61 article-title: Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.05.015 – volume: 281 start-page: 18793 year: 2006 ident: 2021040622022267900_b28 article-title: Identification and functional characterization of the BAG protein family in Arabidopsis thaliana publication-title: J. Biol. Chem. doi: 10.1074/jbc.M511794200 – volume: 15 start-page: 2273 year: 2003 ident: 2021040622022267900_b69 article-title: The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress publication-title: Plant Cell doi: 10.1105/tpc.013862 – volume: 285 start-page: 18113 year: 2010 ident: 2021040622022267900_b110 article-title: Arabidopsis stromal-derived Factor2 (SDF2) is a crucial target of the unfolded protein response in the endoplasmic reticulum publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.117176 – volume: 40 start-page: 287 year: 2007 ident: 2021040622022267900_b29 article-title: Protein folding and misfolding: Mechanism and principles publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583508004654 – year: 2010 ident: 2021040622022267900_b15 article-title: Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis publication-title: Sci. Signal. doi: 10.1126/scisignal.2001140 – volume: 308 start-page: 1036 year: 2005 ident: 2021040622022267900_b127 article-title: Induction of protein secretory pathway is required for systemic acquired resistance publication-title: Science doi: 10.1126/science.1108791 – volume: 11 start-page: 1935 year: 1999 ident: 2021040622022267900_b57 article-title: Anticipating endoplasmic reticulum stress. A novel early response before pathogenesis-related gene induction publication-title: Plant Cell doi: 10.1105/tpc.11.10.1935 – volume: 42 start-page: 455 year: 2005 ident: 2021040622022267900_b74 article-title: Mutants in DEFECTIVE GLYCOSYLATION, an Arabidopsis homolog of an oligosaccharyltransferase complex subunit, show protein underglycosylation and defects in cell differentiation and growth publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02392.x – volume: 126 start-page: 1042 year: 2001 ident: 2021040622022267900_b2 article-title: Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress publication-title: Plant Physiol. doi: 10.1104/pp.126.3.1042 – volume: 266 start-page: 456 year: 1994 ident: 2021040622022267900_b45 article-title: Folding of VSV G protein: Sequential interaction with BiP and calnexin publication-title: Science doi: 10.1126/science.7939687 – volume: 31 start-page: 1735 year: 2008 ident: 2021040622022267900_b81 article-title: Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2008.01873.x – volume: 408 start-page: 796 year: 2000 ident: 2021040622022267900_b3 article-title: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana publication-title: Nature doi: 10.1038/35048692 – volume: 107 start-page: 1411 year: 1995 ident: 2021040622022267900_b123 article-title: The binding protein associates with monomeric phaseolin publication-title: Plant Physiol. doi: 10.1104/pp.107.4.1411 – volume: 136 start-page: 272 year: 2009 ident: 2021040622022267900_b106 article-title: Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms publication-title: Cell doi: 10.1016/j.cell.2008.11.047 – volume: 279 start-page: 779 year: 2004 ident: 2021040622022267900_b22 article-title: Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and Defender against Apoptotic Death publication-title: J. Biol. Chem. doi: 10.1074/jbc.M304468200 – volume: 33 start-page: 493 year: 2003 ident: 2021040622022267900_b87 article-title: A novel ER-derived compartment, the ER body, selectively accumulates a beta-glucosidase with an ER-retention signal in Arabidopsis publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01636.x – volume: 41 start-page: 14141 year: 2002 ident: 2021040622022267900_b93 article-title: Monitoring endoplasmic reticulum-to-Golgi traffic of a plant calreticulin by protein glycosylation analysis publication-title: Biochemistry doi: 10.1021/bi0204701 – volume: 49 start-page: 1473 year: 1998 ident: 2021040622022267900_b36 article-title: The enemy within: Ricin and plant cells publication-title: J. Exp. Bot. doi: 10.1093/jxb/49.326.1473 – volume: 169 start-page: 73 year: 2005 ident: 2021040622022267900_b114 article-title: Single, context-specific glycans can target misfolded glycoproteins for ER-associated degradation publication-title: J. Cell Biol. doi: 10.1083/jcb.200411136 – volume: 279 start-page: 38369 year: 2004 ident: 2021040622022267900_b52 article-title: Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M402468200 – volume: 9 start-page: 597 year: 1997 ident: 2021040622022267900_b83 article-title: The rate of phaseolin assembly is controlled by the glucosylation state of its N-linked oligosaccharide chains publication-title: Plant Cell doi: 10.2307/3870510 – ident: 2021040622022267900_b108 – volume: 24 start-page: 825 year: 2000 ident: 2021040622022267900_b113 article-title: Misfolding and aggregation of vacuolar glycoproteins in plant cells publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00933.x – volume: 5 start-page: 389 year: 2003 ident: 2021040622022267900_b27 article-title: Cloning and initial characterization of the Arabidopsis thaliana endoplasmic reticulum oxidoreductins publication-title: Antioxid. Redox Signal. doi: 10.1089/152308603768295122 – volume: 280 start-page: 199 year: 2008 ident: 2021040622022267900_b82 article-title: Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana publication-title: Mol. Genet. Genomics doi: 10.1007/s00438-008-0356-z – volume: 126 start-page: 349 year: 2006 ident: 2021040622022267900_b24 article-title: A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation publication-title: Cell doi: 10.1016/j.cell.2006.05.045 – volume: 129 start-page: 979 year: 1995 ident: 2021040622022267900_b109 article-title: A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with Hsp70s publication-title: J. Cell Biol. doi: 10.1083/jcb.129.4.979 – volume: 5 start-page: e11342 year: 2010 ident: 2021040622022267900_b17 article-title: Higher plant calreticulins have acquired specialized functions in Arabidopsis publication-title: PLoS ONE doi: 10.1371/journal.pone.0011342 – volume: 54 start-page: 631 year: 1985 ident: 2021040622022267900_b72 article-title: Assembly of asparagine-linked oligosaccharides publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.54.070185.003215 – volume: 384 start-page: 432 year: 1996 ident: 2021040622022267900_b130 article-title: Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction publication-title: Nature doi: 10.1038/384432a0 – volume: 103 start-page: 299 year: 2006 ident: 2021040622022267900_b43 article-title: Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506448103 – volume: 9 start-page: 861 year: 2008 ident: 2021040622022267900_b91 article-title: The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum publication-title: Traffic doi: 10.1111/j.1600-0854.2008.00729.x – volume: 18 start-page: 716 year: 2007 ident: 2021040622022267900_b84 article-title: The endoplasmic reticulum and the unfolded protein response publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2007.09.003 – volume: 44 start-page: 235 year: 2005 ident: 2021040622022267900_b116 article-title: Polyisoprenoids: Structure, biosynthesis and function publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2005.05.002 – volume: 374 start-page: 242 year: 2008 ident: 2021040622022267900_b117 article-title: Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.07.021 – volume: 15 start-page: 2464 year: 2003 ident: 2021040622022267900_b33 article-title: A phaseolin domain involved directly in trimer assembly is a determinant for binding by the chaperone BiP publication-title: Plant Cell doi: 10.1105/tpc.013052 – volume: 16 start-page: 574 year: 2009 ident: 2021040622022267900_b46 article-title: Converging concepts of protein folding in vitro and in vivo publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1591 – volume: 104 start-page: 3817 year: 2007 ident: 2021040622022267900_b126 article-title: Heterotrimeric G protein signaling in the Arabidopsis unfolded protein response publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0611735104 – volume: 136 start-page: 127 year: 2009 ident: 2021040622022267900_b58 article-title: Calreticulin: Conserved protein and diverse functions in plants publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2009.01223.x – volume: 15 start-page: 753 year: 1996 ident: 2021040622022267900_b68 article-title: Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00411.x – volume: 10 start-page: 443 year: 1999 ident: 2021040622022267900_b115 article-title: Protein folding in the ER publication-title: Semin. Cell Dev. Biol. doi: 10.1006/scdb.1999.0315 – volume: 353 start-page: 726 year: 1991 ident: 2021040622022267900_b32 article-title: Peptide-binding specificity of the molecular chaperone BiP publication-title: Nature doi: 10.1038/353726a0 – volume: 98 start-page: 14726 year: 2001 ident: 2021040622022267900_b25 article-title: Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in plant cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.251386098 – volume: 245 start-page: 385 year: 1989 ident: 2021040622022267900_b31 article-title: Peptide binding and release by proteins implicated as catalysts of protein assembly publication-title: Science doi: 10.1126/science.2756425 – volume: 284 start-page: 27998 year: 2009 ident: 2021040622022267900_b64 article-title: Loss of calmodulin binding to Bax inhibitor-1 affects Pseudomonas-mediated hypersensitive response-associated cell death in Arabidopsis thaliana publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.037234 – volume: 21 start-page: 167 year: 1995 ident: 2021040622022267900_b10 article-title: Funnels, pathways, and the energy landscape of protein folding: a synthesis publication-title: Proteins doi: 10.1002/prot.340210302 – volume: 283 start-page: 10221 year: 2008 ident: 2021040622022267900_b12 article-title: Getting in and out from calnexin/calreticulin cycles publication-title: J. Biol. Chem. doi: 10.1074/jbc.R700048200 – volume: 25 start-page: 271 year: 2008 ident: 2021040622022267900_b118 article-title: Endoplasmic reticulum stress response and regulated intramembrane proteolysis in plants publication-title: Plant Biotechnol. doi: 10.5511/plantbiotechnology.25.271 – volume: 19 start-page: 4111 year: 2007 ident: 2021040622022267900_b79 article-title: An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28 publication-title: Plant Cell doi: 10.1105/tpc.106.050021 – volume: 165 start-page: 41 year: 2004 ident: 2021040622022267900_b121 article-title: Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control publication-title: J. Cell Biol. doi: 10.1083/jcb.200309132 – volume: 10 start-page: 465 year: 1999 ident: 2021040622022267900_b42 article-title: Role and regulation of the ER chaperone BiP publication-title: Semin. Cell Dev. Biol. doi: 10.1006/scdb.1999.0318 – volume: 349 start-page: 1278 year: 2006 ident: 2021040622022267900_b98 article-title: EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2006.08.186 – volume: 49 start-page: 1091 year: 1998 ident: 2021040622022267900_b14 article-title: Effects of N-glycosylation on the folding and structure of plant proteins publication-title: J. Exp. Bot. doi: 10.1093/jxb/49.324.1091 – volume: 8 start-page: 519 year: 2007 ident: 2021040622022267900_b104 article-title: Signal integration in the endoplasmic reticulum unfolded protein response publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2199 – volume: 28 start-page: 3428 year: 2009 ident: 2021040622022267900_b94 article-title: Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity publication-title: EMBO J. doi: 10.1038/emboj.2009.262 – volume: 137 start-page: 287 year: 2005 ident: 2021040622022267900_b26 article-title: Endoplasmic reticulum-associated degradation of ricin A chain has unique and plant-specific features publication-title: Plant Physiol. doi: 10.1104/pp.104.055434 – volume: 14 start-page: 20 year: 2004 ident: 2021040622022267900_b107 article-title: A trip to the ER: Coping with stress publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2003.11.001 – volume: 17 start-page: 2256 year: 2006 ident: 2021040622022267900_b112 article-title: Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-05-0417 – volume: 25 start-page: 1827 year: 2006 ident: 2021040622022267900_b41 article-title: The Hrd1p ligase complex forms a linchpin between ER-lumenal substrate selection and Cdc48p recruitment publication-title: EMBO J. doi: 10.1038/sj.emboj.7601088 – volume: 15 start-page: 561 year: 2003 ident: 2021040622022267900_b86 article-title: Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes publication-title: Plant Cell doi: 10.1105/tpc.007609 – volume: 43 start-page: 532 year: 2002 ident: 2021040622022267900_b97 article-title: Isolation and characterization of a putative transducer of endoplasmic reticulum stress in Oryza sativa publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcf063 – volume: 57 start-page: 870 year: 2009 ident: 2021040622022267900_b134 article-title: A mutation in Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03732.x – volume: 138 start-page: 218 year: 2005 ident: 2021040622022267900_b65 article-title: Identification and characterization of endoplasmic reticulum-associated degradation proteins differentially affected by endoplasmic reticulum stress publication-title: Plant Physiol. doi: 10.1104/pp.105.060087 – volume: 121 start-page: 353 year: 1999 ident: 2021040622022267900_b71 article-title: Overexpression of a gene that encodes the first enzyme in the biosynthesis of asparagine-linked glycans makes plants resistant to tunicamycin and obviates the tunicamycin-induced unfolded protein response publication-title: Plant Physiol. doi: 10.1104/pp.121.2.353 – volume: 32 start-page: 870 year: 2008 ident: 2021040622022267900_b102 article-title: Defining the glycan destruction signal for endoplasmic reticulum-associated degradation publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.11.017 – volume: 106 start-page: 15973 year: 2009 ident: 2021040622022267900_b75 article-title: Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0905532106 – volume: 11 start-page: 3425 year: 2000 ident: 2021040622022267900_b122 article-title: Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes publication-title: Mol. Biol. Cell doi: 10.1091/mbc.11.10.3425 – volume: 283 start-page: 774 year: 2008 ident: 2021040622022267900_b47 article-title: Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704185200 – volume: 13 start-page: 4456 year: 2002 ident: 2021040622022267900_b88 article-title: A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-05-0311 – volume: 106 start-page: 13612 year: 2009 ident: 2021040622022267900_b60 article-title: A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0906144106 – volume: 92 start-page: 6828 year: 1995 ident: 2021040622022267900_b19 article-title: A defective signal peptide in the maize high-lysine mutant floury 2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.15.6828 – volume: 172 start-page: 383 year: 2006 ident: 2021040622022267900_b96 article-title: Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation publication-title: J. Cell Biol. doi: 10.1083/jcb.200507057 – volume: 32 start-page: 191 year: 1996 ident: 2021040622022267900_b7 article-title: Molecular chaperones and protein folding in plants publication-title: Plant Mol. Biol. doi: 10.1007/BF00039383 – volume: 1575 start-page: 130 year: 2002 ident: 2021040622022267900_b95 article-title: Characterization of two homologs of Ire1p, a kinase/endoribonuclease in yeast, in Arabidopsis thaliana publication-title: Biochim. Biophys. Acta doi: 10.1016/S0167-4781(02)00237-3 – volume: 283 start-page: 20209 year: 2008 ident: 2021040622022267900_b20 article-title: A new branch of endoplasmic reticulum stress signaling and the osmotic signal converge on plant-specific asparagine-rich proteins to promote cell death publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802654200 – volume: 102 start-page: 5280 year: 2005 ident: 2021040622022267900_b56 article-title: An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0408941102 – volume: 273 start-page: 14194 year: 1998 ident: 2021040622022267900_b37 article-title: Free ricin A chain, proricin, and native toxin have different cellular fates when expressed in tobacco protoplasts publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.23.14194 – volume: 104 start-page: 1359 year: 1994 ident: 2021040622022267900_b1 article-title: Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation publication-title: Plant Physiol. doi: 10.1104/pp.104.4.1359 – volume: 22 start-page: 782 year: 2010 ident: 2021040622022267900_b78 article-title: bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.109.072173 – volume: 2 start-page: 443 year: 1992 ident: 2021040622022267900_b21 article-title: Bean homologs of the mammalian glucose-regulated proteins: Induction by tunicamycin and interaction with newly synthesized seed storage proteins in the endoplasmic reticulum publication-title: Plant J. doi: 10.1111/j.1365-313X.1992.00443.x – volume: 126 start-page: 361 year: 2006 ident: 2021040622022267900_b13 article-title: Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins publication-title: Cell doi: 10.1016/j.cell.2006.05.043 – volume: 279 start-page: 5257 year: 2004 ident: 2021040622022267900_b4 article-title: A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M304951200 – volume: 131 start-page: 809 year: 2007 ident: 2021040622022267900_b132 article-title: An adaptable standard for protein export from the endoplasmic reticulum publication-title: Cell doi: 10.1016/j.cell.2007.10.025 – volume: 283 start-page: 3200 year: 2008 ident: 2021040622022267900_b128 article-title: BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M706659200 – volume: 3 start-page: 1025 year: 1991 ident: 2021040622022267900_b23 article-title: The tobacco luminal binding protein is encoded by a multigene family publication-title: Plant Cell doi: 10.1105/tpc.3.11.1251 – volume: 270 start-page: 26677 year: 1995 ident: 2021040622022267900_b129 article-title: In vitro dissociation of BiP-peptide complexes requires a conformational change in BiP after ATP binding but does not require ATP hydrolysis publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.44.26677 – volume: 1 start-page: 337 year: 1998 ident: 2021040622022267900_b133 article-title: Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80034-9 – volume: 5 start-page: 277 year: 1989 ident: 2021040622022267900_b51 article-title: Protein oligomerization in the endoplasmic reticulum publication-title: Annu. Rev. Cell Biol. doi: 10.1146/annurev.cb.05.110189.001425 – volume: 17 start-page: 149 year: 2005 ident: 2021040622022267900_b90 article-title: Conserved ERAD-like quality control of a plant polytopic membrane protein publication-title: Plant Cell doi: 10.1105/tpc.104.026625 – volume: 107 start-page: 6088 year: 2010 ident: 2021040622022267900_b131 article-title: AtBAG7, an Arabidopsis Bcl-2-associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0912670107 – volume: 318 start-page: 944 year: 2007 ident: 2021040622022267900_b76 article-title: IRE1 signaling affects cell fate during the unfolded protein response publication-title: Science doi: 10.1126/science.1146361 – volume: 91 start-page: 913 year: 1994 ident: 2021040622022267900_b44 article-title: Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.3.913 – volume: 138 start-page: 1229 year: 1997 ident: 2021040622022267900_b49 article-title: Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum publication-title: J. Cell Biol. doi: 10.1083/jcb.138.6.1229 – volume: 257 start-page: 1496 year: 1992 ident: 2021040622022267900_b53 article-title: Oxidized redox state of glutathione in the endoplasmic reticulum publication-title: Science doi: 10.1126/science.1523409 – volume: 274 start-page: 1152 year: 2007 ident: 2021040622022267900_b119 article-title: Cellular response to unfolded proteins in the endoplasmic reticulum of plants publication-title: FEBS J. doi: 10.1111/j.1742-4658.2007.05664.x – volume: 3 start-page: 497 year: 1991 ident: 2021040622022267900_b6 article-title: Increased expression of the maize immunoglobulin binding protein homolog b-70 in three zein regulatory mutants publication-title: Plant Cell – volume: 105 start-page: 16398 year: 2008 ident: 2021040622022267900_b39 article-title: A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0808463105 – volume: 21 start-page: 898 year: 2002 ident: 2021040622022267900_b54 article-title: SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins publication-title: EMBO J. doi: 10.1093/emboj/21.5.898 – volume: 51 start-page: 897 year: 2007 ident: 2021040622022267900_b80 article-title: Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03195.x – volume: 32 start-page: 949 year: 2002 ident: 2021040622022267900_b11 article-title: The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control publication-title: Plant J. doi: 10.1046/j.1365-313X.2002.01483.x – volume: 130 start-page: 1241 year: 2002 ident: 2021040622022267900_b103 article-title: Characterization of AtCDC48. Evidence for multiple membrane fusion mechanisms at the plane of cell division in plants publication-title: Plant Physiol. doi: 10.1104/pp.011742 – volume: 18 start-page: 743 year: 2007 ident: 2021040622022267900_b63 article-title: The EDEM and Yos9p families of lectin-like ERAD factors publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2007.09.007 – volume: 283 start-page: 15869 year: 2008 ident: 2021040622022267900_b85 article-title: The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M709316200 – volume: 20 start-page: 1879 year: 2008 ident: 2021040622022267900_b135 article-title: Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.108.061150 – volume: 4 start-page: 469 year: 1999 ident: 2021040622022267900_b35 article-title: Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80198-7 – volume: 20 start-page: 3107 year: 2008 ident: 2021040622022267900_b55 article-title: Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response publication-title: Plant Cell doi: 10.1105/tpc.108.061002 – volume: 569 start-page: 29 year: 2005 ident: 2021040622022267900_b111 article-title: ER stress and the unfolded protein response publication-title: Mutat. Res. doi: 10.1016/j.mrfmmm.2004.06.056 – volume: 364 start-page: 250 year: 2007 ident: 2021040622022267900_b34 article-title: Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.09.124 – volume: 16 start-page: 343 year: 2004 ident: 2021040622022267900_b67 article-title: Protein folding and quality control in the endoplasmic reticulum publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2004.06.012 – volume: 9 start-page: 103 year: 1997 ident: 2021040622022267900_b30 article-title: Water-stress regulation and molecular analysis of the soybean BiP gene family publication-title: Braz. J. Plant Physiol. – volume: 50 start-page: 555 year: 1981 ident: 2021040622022267900_b50 article-title: Synthesis and processing of asparagine-linked oligosaccharides publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.50.070181.003011 – volume: 9 start-page: 1581 year: 2008 ident: 2021040622022267900_b124 article-title: Endoplasmic reticulum quality control and the unfolded protein response: Insights from plants publication-title: Traffic doi: 10.1111/j.1600-0854.2008.00780.x – volume: 12 start-page: 739 year: 2000 ident: 2021040622022267900_b99 article-title: Protein recycling from the Golgi apparatus to the endoplasmic reticulum in plants and its minor contribution to calreticulin retention publication-title: Plant Cell doi: 10.1105/tpc.12.5.739 – volume: 8 start-page: 849 year: 2006 ident: 2021040622022267900_b40 article-title: A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery publication-title: Nat. Cell Biol. doi: 10.1038/ncb1445 – volume: 272 start-page: 3461 year: 2005 ident: 2021040622022267900_b62 article-title: Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana publication-title: FEBS J. doi: 10.1111/j.1742-4658.2005.04770.x – volume: 411 start-page: 848 year: 2001 ident: 2021040622022267900_b73 article-title: Programmed cell death, mitochondria and the plant hypersensitive response publication-title: Nature doi: 10.1038/35081184 – volume: 119 start-page: 4373 year: 2006 ident: 2021040622022267900_b105 article-title: N-glycan processing in ER quality control publication-title: J. Cell Sci. doi: 10.1242/jcs.03225 – volume: 21 start-page: 516 year: 2009 ident: 2021040622022267900_b9 article-title: Substrate-specific mediators of ER associated degradation (ERAD) publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.04.006 – volume: 16 start-page: 4540 year: 1997 ident: 2021040622022267900_b101 article-title: Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation publication-title: EMBO J. doi: 10.1093/emboj/16.15.4540 – volume: 184 start-page: 159 year: 2009 ident: 2021040622022267900_b18 article-title: Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum publication-title: J. Cell Biol. doi: 10.1083/jcb.200809198 – volume: 11 start-page: 1325 year: 1997 ident: 2021040622022267900_b38 article-title: An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant publication-title: Plant J. doi: 10.1046/j.1365-313X.1997.11061325.x – volume: 20 start-page: 10 year: 2008 ident: 2021040622022267900_b136 article-title: Pattern-recognition receptors in plant innate immunity publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2007.11.003 – volume: 127 start-page: 949 year: 2001 ident: 2021040622022267900_b70 article-title: Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases publication-title: Plant Physiol. doi: 10.1104/pp.010636 – volume: 16 start-page: 592 year: 2006 ident: 2021040622022267900_b89 article-title: N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2006.08.005 – volume: 60 start-page: 533 year: 2009 ident: 2021040622022267900_b120 article-title: The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco publication-title: J. Exp. Bot. doi: 10.1093/jxb/ern296 – volume: 73 start-page: 1019 year: 2004 ident: 2021040622022267900_b48 article-title: Roles of N-linked glycans in the endoplasmic reticulum publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.73.011303.073752 – volume: 50 start-page: 157 year: 1999 ident: 2021040622022267900_b100 article-title: Signals and mechanisms for protein retention in the endoplasmic reticulum publication-title: J. Exp. Bot. doi: 10.1093/jxb/50.331.157 – volume: 8 start-page: 349 year: 2001 ident: 2021040622022267900_b8 article-title: Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein publication-title: Nat. Struct. Biol. doi: 10.1038/86236 – volume: 48 start-page: 657 year: 2006 ident: 2021040622022267900_b66 article-title: Plant endoplasmin supports the protein secretory pathway and has a role in proliferating tissues publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02904.x – volume: 22 start-page: 487 year: 2006 ident: 2021040622022267900_b5 article-title: Intracellular signaling by the unfolded protein response publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.21.122303.120200 – reference: 17588517 - Mol Cell. 2007 Jun 22;26(6):821-30 – reference: 18420588 - J Biol Chem. 2008 Jun 6;283(23):15869-77 – reference: 15603751 - Mutat Res. 2005 Jan 6;569(1-2):29-63 – reference: 15860005 - Plant J. 2005 May;42(4):455-68 – reference: 7939687 - Science. 1994 Oct 21;266(5184):456-8 – reference: 10213782 - Plant Cell. 1999 Apr;11(4):615-28 – reference: 15078901 - J Cell Biol. 2004 Apr12;165(1):41-52 – reference: 17074831 - J Cell Sci. 2006 Nov 1;119(Pt 21):4373-80 – reference: 12581307 - Plant J. 2003 Feb;33(3):493-502 – reference: 18206360 - Curr Opin Immunol. 2008 Feb;20(1):10-6 – reference: 10597629 - Semin Cell Dev Biol. 1999 Oct;10(5):465-72 – reference: 18557840 - Traffic. 2008 Sep;9(10):1581-8 – reference: 20207753 - Plant Cell. 2010 Mar;22(3):782-96 – reference: 17565364 - Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-29 – reference: 20596537 - PLoS One. 2010;5(6):e11342 – reference: 17998208 - J Biol Chem. 2008 Jan 11;283(2):774-83 – reference: 10521523 - Plant Cell. 1999 Oct;11(10):1935-44 – reference: 15978049 - FEBS J. 2005 Jul;272(13):3461-76 – reference: 18490446 - J Biol Chem. 2008 Jul 18;283(29):20209-19 – reference: 20876872 - Sci Signal. 2010;3(141):ra69 – reference: 7023366 - Annu Rev Biochem. 1981;50:555-83 – reference: 1344885 - Plant J. 1992 Jul;2(4):443-55 – reference: 10517826 - Plant Physiol. 1999 Oct;121(2):353-61 – reference: 16873065 - Cell. 2006 Jul 28;126(2):349-59 – reference: 10549279 - Mol Cell. 1999 Oct;4(4):469-77 – reference: 1840924 - Plant Cell. 1991 May;3(5):497-505 – reference: 18634751 - Biochem Biophys Res Commun. 2008 Sep 19;374(2):242-7 – reference: 17257164 - FEBS J. 2007 Mar;274(5):1152-71 – reference: 12492837 - Plant J. 2002 Dec;32(6):949-60 – reference: 18156219 - Plant Cell. 2007 Dec;19(12):4111-9 – reference: 19167329 - Cell. 2009 Jan 23;136(2):272-83 – reference: 14508011 - Plant Cell. 2003 Oct;15(10):2464-75 – reference: 15849299 - Plant Physiol. 2005 May;138(1):218-31 – reference: 7784423 - Proteins. 1995 Mar;21(3):167-95 – reference: 19111666 - Mol Cell. 2008 Dec 26;32(6):870-7 – reference: 15598804 - Plant Cell. 2005 Jan;17(1):149-63 – reference: 9298979 - J Cell Biol. 1997 Sep 22;138(6):1229-38 – reference: 2688707 - Annu Rev Cell Biol. 1989;5:277-307 – reference: 15189166 - Annu Rev Biochem. 2004;73:1019-49 – reference: 12228444 - Plant Physiol. 1995 Apr;107(4):1411-1418 – reference: 15252059 - J Biol Chem. 2004 Sep 10;279(37):38369-78 – reference: 18023214 - Semin Cell Dev Biol. 2007 Dec;18(6):716-31 – reference: 14573611 - J Biol Chem. 2004 Jan 2;279(1):779-87 – reference: 18039663 - J Biol Chem. 2008 Feb 8;283(6):3200-10 – reference: 12566592 - Plant Cell. 2003 Feb;15(2):561-76 – reference: 11276257 - Nat Struct Biol. 2001 Apr;8(4):349-52 – reference: 9225471 - Plant J. 1997 Jun;11(6):1325-31 – reference: 18022373 - Cell. 2007 Nov 16;131(4):809-21 – reference: 20378538 - J Biol Chem. 2010 Jun 4;285(23):18113-21 – reference: 15809311 - J Cell Biol. 2005 Apr 11;169(1):73-82 – reference: 16938451 - Curr Opin Struct Biol. 2006 Oct;16(5):592-9 – reference: 9603921 - J Biol Chem. 1998 Jun 5;273(23):14194-9 – reference: 8631297 - EMBO J. 1996 Feb 15;15(4):753-63 – reference: 9585179 - Cell Stress Chaperones. 1998 Mar;3(1):28-36 – reference: 19453510 - Physiol Plant. 2009 Jun;136(2):127-38 – reference: 18980646 - Plant J. 2009 Mar;57(5):870-82 – reference: 17360436 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3817-22 – reference: 15890886 - Science. 2005 May 13;308(5724):1036-40 – reference: 12450377 - Biochemistry. 2002 Dec 3;41(48):14141-9 – reference: 12475965 - Mol Biol Cell. 2002 Dec;13(12):4456-69 – reference: 14630926 - J Biol Chem. 2004 Feb 13;279(7):5257-62 – reference: 16407158 - Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):299-304 – reference: 10597627 - Semin Cell Dev Biol. 1999 Oct;10(5):443-54 – reference: 11135116 - Plant J. 2000 Dec;24(6):825-36 – reference: 15781873 - Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5280-5 – reference: 9303298 - EMBO J. 1997 Aug 1;16(15):4540-8 – reference: 18849477 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16398-403 – reference: 1523409 - Science. 1992 Sep 11;257(5076):1496-502 – reference: 17991856 - Science. 2007 Nov 9;318(5852):944-9 – reference: 8302866 - Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):913-7 – reference: 16495342 - Mol Biol Cell. 2006 May;17(5):2256-66 – reference: 19491934 - Nat Struct Mol Biol. 2009 Jun;16(6):574-81 – reference: 15261665 - Curr Opin Cell Biol. 2004 Aug;16(4):343-9 – reference: 12237365 - Plant Cell. 1997 Apr;9(4):597-609 – reference: 18405419 - Q Rev Biophys. 2007 Nov;40(4):287-326 – reference: 17251003 - Curr Opin Struct Biol. 2007 Feb;17(1):21-9 – reference: 17945519 - Semin Cell Dev Biol. 2007 Dec;18(6):743-50 – reference: 19017746 - Plant Cell. 2008 Nov;20(11):3107-21 – reference: 16019076 - Prog Lipid Res. 2005 Jul;44(4):235-58 – reference: 17662035 - Plant J. 2007 Sep;51(5):897-909 – reference: 18612099 - Plant Cell. 2008 Jul;20(7):1879-98 – reference: 7592894 - J Biol Chem. 1995 Nov 3;270(44):26677-82 – reference: 16449189 - J Cell Biol. 2006 Jan 30;172(3):383-93 – reference: 19597144 - Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13612-7 – reference: 12020828 - Biochim Biophys Acta. 2002 May 3;1575(1-3):130-4 – reference: 11734657 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14726-31 – reference: 3896128 - Annu Rev Biochem. 1985;54:631-64 – reference: 16619026 - EMBO J. 2006 May 3;25(9):1827-35 – reference: 19674971 - J Biol Chem. 2009 Oct 9;284(41):27998-8003 – reference: 20231441 - Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6088-93 – reference: 8945469 - Nature. 1996 Dec 5;384(6608):432-8 – reference: 16636050 - J Biol Chem. 2006 Jul 7;281(27):18793-801 – reference: 10810147 - Plant Cell. 2000 May;12(5):739-56 – reference: 13678526 - Antioxid Redox Signal. 2003 Aug;5(4):389-96 – reference: 16987498 - Biochem Biophys Res Commun. 2006 Nov 3;349(4):1278-84 – reference: 11706177 - Plant Physiol. 2001 Nov;127(3):949-62 – reference: 19717464 - Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15973-8 – reference: 16873066 - Cell. 2006 Jul 28;126(2):361-73 – reference: 16822172 - Annu Rev Cell Dev Biol. 2006;22:487-508 – reference: 19124653 - J Cell Biol. 2009 Jan 12;184(1):159-72 – reference: 14729177 - Trends Cell Biol. 2004 Jan;14(1):20-8 – reference: 7624327 - Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6828-31 – reference: 12427991 - Plant Physiol. 2002 Nov;130(3):1241-53 – reference: 18349049 - J Exp Bot. 2008;59(4):739-51 – reference: 18303019 - J Biol Chem. 2008 Apr 18;283(16):10221-5 – reference: 12972670 - Plant Cell. 2003 Oct;15(10):2273-84 – reference: 1834945 - Nature. 1991 Oct 24;353(6346):726-30 – reference: 8980480 - Plant Mol Biol. 1996 Oct;32(1-2):191-222 – reference: 7744969 - J Cell Biol. 1995 May;129(4):979-88 – reference: 2756425 - Science. 1989 Jul 28;245(4916):385-90 – reference: 17059403 - Plant J. 2006 Dec;48(5):657-73 – reference: 8016266 - Plant Physiol. 1994 Apr;104(4):1359-70 – reference: 17937930 - Biochem Biophys Res Commun. 2007 Dec 14;364(2):250-7 – reference: 19052255 - J Exp Bot. 2009;60(2):533-46 – reference: 1822990 - Plant Cell. 1991 Sep;3(9):1025-35 – reference: 16845381 - Nat Cell Biol. 2006 Aug;8(8):849-54 – reference: 11029046 - Mol Biol Cell. 2000 Oct;11(10):3425-39 – reference: 9660918 - Mol Cell. 1998 Feb;1(3):337-46 – reference: 18315532 - Traffic. 2008 Jun;9(6):861-70 – reference: 11457955 - Plant Physiol. 2001 Jul;126(3):1042-54 – reference: 11130711 - Nature. 2000 Dec 14;408(6814):796-815 – reference: 15618412 - Plant Physiol. 2005 Jan;137(1):287-96 – reference: 12040100 - Plant Cell Physiol. 2002 May;43(5):532-9 – reference: 19443192 - Curr Opin Cell Biol. 2009 Aug;21(4):516-21 – reference: 11867518 - EMBO J. 2002 Mar 1;21(5):898-908 – reference: 18721266 - Plant Cell Environ. 2008 Dec;31(12):1735-43 – reference: 19763086 - EMBO J. 2009 Nov 4;28(21):3428-38 – reference: 11459068 - Nature. 2001 Jun 14;411(6839):848-53 – reference: 18574595 - Mol Genet Genomics. 2008 Sep;280(3):199-210 |
SSID | ssj0001719 |
Score | 2.5149279 |
SecondaryResourceType | review_article |
Snippet | The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2930 |
SubjectTerms | Apoptosis Arabidopsis thaliana cell death Endoplasmic reticulum Endoplasmic Reticulum - metabolism Environment Environmental conditions environmental factors Environmental stress gene expression Genetic mutation Glycoproteins Glycosylation metabolism Oligosaccharides Oxidation-Reduction Plant cells plant proteins plant response Plants Plants - metabolism Protein Folding Proteins Quality assurance Quality control REVIEW stress response Stress, Physiological transcription factors Unfolded Protein Response Yeasts |
Title | Endoplasmic Reticulum Protein Quality Control and Its Relationship to Environmental Stress Responses in Plants |
URI | https://www.jstor.org/stable/25758743 https://www.ncbi.nlm.nih.gov/pubmed/20876830 https://www.proquest.com/docview/762213091 https://www.proquest.com/docview/1449939182 https://www.proquest.com/docview/762272985 https://pubmed.ncbi.nlm.nih.gov/PMC2965551 https://academic.oup.com/plcell/article-pdf/22/9/2930/36932159/plcell_v22_9_2930.pdf |
UnpaywallVersion | publishedVersion |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1532-298X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001719 issn: 1532-298X databaseCode: KQ8 dateStart: 19890101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1532-298X dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0001719 issn: 1532-298X databaseCode: DIK dateStart: 19890101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1532-298X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001719 issn: 1532-298X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1532-298X dateEnd: 20120831 omitProxy: true ssIdentifier: ssj0001719 issn: 1532-298X databaseCode: 7X7 dateStart: 19981201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1532-298X dateEnd: 20120831 omitProxy: true ssIdentifier: ssj0001719 issn: 1532-298X databaseCode: BENPR dateStart: 19981201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Rb9MwED7BhrS9IBhshMFkJCR4MUuaOnGeEKs6DZCmMZjUt8ixHa1ScTKSCvXfcxenGRUM3hLl5Ci-s_Od_fk7gNfSmpEMx4aHSqQcg6LgKrER1yaJbDjSsfIE2fPk7Gr8aSZmPTen6WmV6zmxm6hNpWmN_BgH7Qjn2yx6X99wKhpFm6t9BY37sB0hUqGgTmdDvkVKMJkXIwg5lfzuNRsRURy3taaLdyR1I8Yb_yRPS_wb4PyTN7mzdLVa_VSLxW8_pdNH8LBHk-yDd_9juGfdHjw4qRDxrfZgZ7Ku5vYE3NSZqkao_H2u2aVt_bIfuyCZhrljXkpjxSaeuc6UM-xj27CBK3c9r1lbsentuTh879fuoAkadTxb2zBsiaogtc1TuDqdfpuc8b7WAtciTlsuZBlpi1jORibLSm2UyOKM5OEQ75TKpCq1Eh2u6LCt1JjMmjiKdGKtTnRWiHgftlzl7DNgqiiLArMojAFDaoISmw677d1xifDNBsDXvZ3rXoic6mEs8i4hCUWO3qGL3HsngDeDfe0lOO603O-cN5jhfCQkYqQADtfezPsx2uRDRAXwaniKXqEdE-VstWwwL8KEkLphFAC7w4aawQxFigAOfHjcvp70_mQcBpBuBM5gQNrem0_c_LrT-MbuEghmA3g7hNh_Pv75P7_xEHY974HYcS9gq_2xtC8RTrXFUTdojmD7ZHp-cYl3n7_IX-1zIXk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VBWm5ICgUQnkYCQQX07wfB4Rg2WqXlgpBK-0tOLajrrQkgWRV7Y_iPzITJykrKJx6s5SRI3vG42_s8TcAz2Kt3Nj2FbdFEHE0ioyLUDtcqtDRtis9YRJkj8Ppqf9hHsy34Gf_FobSKnuf2DpqVUo6I9_HReuiv02cN9V3TkWj6HK1r6BhrOJQr88xYqtfz96jep-77sHkZDzlXVEBLgMvangQ547UCFq0o5Ikl0oEiZcQDxpu7LlQkYh0jCMT9Ko0lhi1Kc9xZKi1DGWSUZEI9PjXfM_2iao_mg_xHTHPJIb8wOZUYrzjiEQEs99UkhqviFon8Df2QJMG-TeA-2ee5mhVVGJ9LpbL3zbBg1tws0Ov7K0xt9uwpYsduP6uRIS53oHRuK8edweKSaHKCqH5t4Vkn3VjjhnZJ6KFWBTMUHes2dhkyjNRKDZrajbk5p0tKtaUbHLxDg__-6V92IJCbV6vrhn2RFWXmvounF6JGnZhuygLfR-YyPIsw6gNbU4Re2GMXdvtdbKfI1zUFvB-tlPZEZ9T_Y1l2gZAdpCidqiRGu1Y8GKQrwzlx6WSu63yBjH0f0GMmMyCvV6baecT6nSwYAueDl9RK3RDIwpdrmqMwzAApWlwLWCXyFA3GBHFgQX3jHlc_J74BWPPtiDaMJxBgLjEN78Ui7OWUxynK0DwbMHLwcT-M_gH_xzjExhNTz4epUez48M9uGFyLigz7yFsNz9W-hFCuSZ73C4gBl-vesX-AgvFXFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endoplasmic+reticulum+protein+quality+control+and+its+relationship+to+environmental+stress+responses+in+plants&rft.jtitle=The+Plant+cell&rft.au=Liu%2C+Jian-Xiang&rft.au=Howell%2C+Stephen+H&rft.date=2010-09-01&rft.issn=1532-298X&rft.eissn=1532-298X&rft.volume=22&rft.issue=9&rft.spage=2930&rft_id=info:doi/10.1105%2Ftpc.110.078154&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |