An Augmented Modulated Deep Learning Based Intelligent Predictive Model for Brain Tumor Detection Using GAN Ensemble

Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML)...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 15; p. 6930
Main Authors Sahoo, Saswati, Mishra, Sushruta, Panda, Baidyanath, Bhoi, Akash Kumar, Barsocchi, Paolo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.08.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23156930

Cover

Abstract Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML) for the effective diagnosis of patients, these models still provide less accuracy and take immense time for patient screening during the diagnosis process. Hence, there is still a need to develop a more precise model for more accurate screening of patients to detect brain tumors in the beginning stages and aid clinicians in diagnosis, making the brain tumor assessment more reliable. In this research, a performance analysis of the impact of different generative adversarial networks (GAN) on the early detection of brain tumors is presented. Based on it, a novel hybrid enhanced predictive convolution neural network (CNN) model using a hybrid GAN ensemble is proposed. Brain tumor image data is augmented using a GAN ensemble, which is fed for classification using a hybrid modulated CNN technique. The outcome is generated through a soft voting approach where the final prediction is based on the GAN, which computes the highest value for different performance metrics. This analysis demonstrated that evaluation with a progressive-growing generative adversarial network (PGGAN) architecture produced the best result. In the analysis, PGGAN outperformed others, computing the accuracy, precision, recall, F1-score, and negative predictive value (NPV) to be 98.85, 98.45%, 97.2%, 98.11%, and 98.09%, respectively. Additionally, a very low latency of 3.4 s is determined with PGGAN. The PGGAN model enhanced the overall performance of the identification of brain cell tissues in real time. Therefore, it may be inferred to suggest that brain tumor detection in patients using PGGAN augmentation with the proposed modulated CNN technique generates the optimum performance using the soft voting approach.
AbstractList Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML) for the effective diagnosis of patients, these models still provide less accuracy and take immense time for patient screening during the diagnosis process. Hence, there is still a need to develop a more precise model for more accurate screening of patients to detect brain tumors in the beginning stages and aid clinicians in diagnosis, making the brain tumor assessment more reliable. In this research, a performance analysis of the impact of different generative adversarial networks (GAN) on the early detection of brain tumors is presented. Based on it, a novel hybrid enhanced predictive convolution neural network (CNN) model using a hybrid GAN ensemble is proposed. Brain tumor image data is augmented using a GAN ensemble, which is fed for classification using a hybrid modulated CNN technique. The outcome is generated through a soft voting approach where the final prediction is based on the GAN, which computes the highest value for different performance metrics. This analysis demonstrated that evaluation with a progressive-growing generative adversarial network (PGGAN) architecture produced the best result. In the analysis, PGGAN outperformed others, computing the accuracy, precision, recall, F1-score, and negative predictive value (NPV) to be 98.85, 98.45%, 97.2%, 98.11%, and 98.09%, respectively. Additionally, a very low latency of 3.4 s is determined with PGGAN. The PGGAN model enhanced the overall performance of the identification of brain cell tissues in real time. Therefore, it may be inferred to suggest that brain tumor detection in patients using PGGAN augmentation with the proposed modulated CNN technique generates the optimum performance using the soft voting approach.
Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML) for the effective diagnosis of patients, these models still provide less accuracy and take immense time for patient screening during the diagnosis process. Hence, there is still a need to develop a more precise model for more accurate screening of patients to detect brain tumors in the beginning stages and aid clinicians in diagnosis, making the brain tumor assessment more reliable. In this research, a performance analysis of the impact of different generative adversarial networks (GAN) on the early detection of brain tumors is presented. Based on it, a novel hybrid enhanced predictive convolution neural network (CNN) model using a hybrid GAN ensemble is proposed. Brain tumor image data is augmented using a GAN ensemble, which is fed for classification using a hybrid modulated CNN technique. The outcome is generated through a soft voting approach where the final prediction is based on the GAN, which computes the highest value for different performance metrics. This analysis demonstrated that evaluation with a progressive-growing generative adversarial network (PGGAN) architecture produced the best result. In the analysis, PGGAN outperformed others, computing the accuracy, precision, recall, F1-score, and negative predictive value (NPV) to be 98.85, 98.45%, 97.2%, 98.11%, and 98.09%, respectively. Additionally, a very low latency of 3.4 s is determined with PGGAN. The PGGAN model enhanced the overall performance of the identification of brain cell tissues in real time. Therefore, it may be inferred to suggest that brain tumor detection in patients using PGGAN augmentation with the proposed modulated CNN technique generates the optimum performance using the soft voting approach.Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML) for the effective diagnosis of patients, these models still provide less accuracy and take immense time for patient screening during the diagnosis process. Hence, there is still a need to develop a more precise model for more accurate screening of patients to detect brain tumors in the beginning stages and aid clinicians in diagnosis, making the brain tumor assessment more reliable. In this research, a performance analysis of the impact of different generative adversarial networks (GAN) on the early detection of brain tumors is presented. Based on it, a novel hybrid enhanced predictive convolution neural network (CNN) model using a hybrid GAN ensemble is proposed. Brain tumor image data is augmented using a GAN ensemble, which is fed for classification using a hybrid modulated CNN technique. The outcome is generated through a soft voting approach where the final prediction is based on the GAN, which computes the highest value for different performance metrics. This analysis demonstrated that evaluation with a progressive-growing generative adversarial network (PGGAN) architecture produced the best result. In the analysis, PGGAN outperformed others, computing the accuracy, precision, recall, F1-score, and negative predictive value (NPV) to be 98.85, 98.45%, 97.2%, 98.11%, and 98.09%, respectively. Additionally, a very low latency of 3.4 s is determined with PGGAN. The PGGAN model enhanced the overall performance of the identification of brain cell tissues in real time. Therefore, it may be inferred to suggest that brain tumor detection in patients using PGGAN augmentation with the proposed modulated CNN technique generates the optimum performance using the soft voting approach.
Audience Academic
Author Mishra, Sushruta
Bhoi, Akash Kumar
Panda, Baidyanath
Barsocchi, Paolo
Sahoo, Saswati
AuthorAffiliation 4 KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India
1 School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar 751024, India; sushruta.mishrafcs@kiit.ac.in
5 Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy
2 LTIMindtree, 1 American Row, 3rd Floor, Hartford, CT 06103, USA; baidyanathpanda@gmail.com
3 Directorate of Research, Sikkim Manipal University, Gangtok 737102, India; akashkrbhoi@gmail.com
AuthorAffiliation_xml – name: 5 Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy
– name: 4 KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India
– name: 2 LTIMindtree, 1 American Row, 3rd Floor, Hartford, CT 06103, USA; baidyanathpanda@gmail.com
– name: 1 School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar 751024, India; sushruta.mishrafcs@kiit.ac.in
– name: 3 Directorate of Research, Sikkim Manipal University, Gangtok 737102, India; akashkrbhoi@gmail.com
Author_xml – sequence: 1
  givenname: Saswati
  surname: Sahoo
  fullname: Sahoo, Saswati
– sequence: 2
  givenname: Sushruta
  orcidid: 0000-0003-3929-1100
  surname: Mishra
  fullname: Mishra, Sushruta
– sequence: 3
  givenname: Baidyanath
  surname: Panda
  fullname: Panda, Baidyanath
– sequence: 4
  givenname: Akash Kumar
  orcidid: 0000-0003-2759-3224
  surname: Bhoi
  fullname: Bhoi, Akash Kumar
– sequence: 5
  givenname: Paolo
  orcidid: 0000-0002-6862-7593
  surname: Barsocchi
  fullname: Barsocchi, Paolo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37571713$$D View this record in MEDLINE/PubMed
BookMark eNptkstu2zAQRYkiRZO4XfQHCgHdtAsnfEmUVoXzrAH3sUjWBEUNVRoS6ZBSgP59qTg17CDggoOZM5ecwT1FR847QOgjwWeMVfg8UkbyomL4DTohnPJ5SSk-2ouP0WmMa4wpY6x8h46ZyAURhJ2gYeGyxdj24AZosh--GTs1RVcAm2wFKjjr2uxCxZRbJqbrbJvY7HeAxurBPsLUBF1mfMgugrIuuxv7FF_BAKnuXXYfJ4nbxc_s2kXo6w7eo7dGdRE-PN8zdH9zfXf5fb76dbu8XKzmOmdimHNoWME1YADcVBUQLUDUpOSNqGjOBYCqqdGsxtQ0hSqNrgnnRZq6ykVTFGyGllvdxqu13ATbq_BXemXlU8KHVqowWN2BFFyBKYQuc2E4ZnVZUm5qgEponjNDk9a3rdZmrHtodFpCUN2B6GHF2T-y9Y-SYE4p4zwpfHlWCP5hhDjI3kadNqoc-DFKWuaYEcZxmdDPL9C1H4NLu0oUrwgrcblHtSpNYJ3x6WE9icqFKHBBiiqhM3T2CpVOA73VyUjGpvxBw6f9SXcj_jdNAr5uAR18jAHMDiFYToaUO0Mm9vwFq-2gJl-kX9julY5_4ZXfeg
CitedBy_id crossref_primary_10_1097_QMH_0000000000000497
crossref_primary_10_1371_journal_pone_0310748
crossref_primary_10_3389_fneur_2024_1445882
crossref_primary_10_3390_a17060221
crossref_primary_10_1080_0954898X_2024_2389248
crossref_primary_10_59324_ejtas_2024_2_6__77
crossref_primary_10_1007_s11042_024_19553_6
crossref_primary_10_1007_s44196_024_00574_w
crossref_primary_10_1007_s11831_025_10238_3
Cites_doi 10.1109/ACCESS.2020.3016319
10.1109/SMC42975.2020.9282987
10.3390/s21062222
10.1016/j.eswa.2022.119087
10.1002/ima.22288
10.1016/j.asoc.2021.107666
10.1038/s41598-022-19465-1
10.13005/bpj/1511
10.1016/j.measen.2022.100412
10.1016/j.advengsoft.2022.103221
10.1007/s00521-019-04679-8
10.35940/ijitee.I1179.0789S219
10.1109/ICACCS48705.2020.9074213
10.1016/j.ijrobp.2019.06.2186
10.22214/ijraset.2022.40710
10.1007/s00034-019-01246-3
10.3389/fonc.2021.690244
10.17485/ijst/2016/v9i29/91042
10.9790/3021-03912631
10.3389/fncom.2022.1005617
10.1109/ACCESS.2020.2978629
10.1155/2023/1224619
10.1166/jctn.2020.8468
10.1007/978-981-16-5304-9_1
10.1016/j.compeleceng.2022.108105
10.1007/s40747-021-00563-y
10.1109/CONIT51480.2021.9498384
10.1155/2022/2858845
10.1088/1757-899X/1055/1/012115
10.1016/j.bspc.2021.103440
10.3390/s22010372
10.1109/ICAIS50930.2021.9395823
10.1007/978-3-319-75238-9_37
10.1109/ICCUBEA47591.2019.9129512
10.1155/2022/8330833
10.1016/j.jocs.2018.12.003
10.18383/j.tom.2019.00026
10.1016/j.bbe.2020.01.006
10.24018/ejers.2020.5.4.1902
10.1007/s40031-022-00721-x
10.3390/a16040176
10.1016/j.measen.2022.100440
10.1016/j.cmpb.2020.105797
10.1109/ROBIO49542.2019.8961610
10.1186/s12911-023-02114-6
10.1117/12.2512557
10.1007/s11042-021-11098-2
10.3390/jimaging8080205
10.1002/ima.22255
10.1002/ima.22331
10.3390/app12147282
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23156930
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_74aef67c857f403b8824fbee97c453f2
PMC10422344
A760616991
37571713
10_3390_s23156930
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c537t-4ed364ce0ee0d99e1c7e7b184d792547eeab2fc3b02fd6a8fcb1446142957d663
IEDL.DBID BENPR
ISSN 1424-8220
IngestDate Wed Aug 27 01:27:40 EDT 2025
Thu Aug 21 18:40:53 EDT 2025
Fri Sep 05 06:39:46 EDT 2025
Fri Jul 25 08:31:44 EDT 2025
Tue Jun 17 21:08:02 EDT 2025
Tue Jun 10 21:22:11 EDT 2025
Thu Apr 03 07:06:25 EDT 2025
Tue Jul 01 01:20:17 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords generative adversarial network
deep learning
brain tumor
soft voting
machine learning
PGGAN
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-4ed364ce0ee0d99e1c7e7b184d792547eeab2fc3b02fd6a8fcb1446142957d663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6862-7593
0000-0003-2759-3224
0000-0003-3929-1100
OpenAccessLink https://www.proquest.com/docview/2849138088?pq-origsite=%requestingapplication%&accountid=15518
PMID 37571713
PQID 2849138088
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_74aef67c857f403b8824fbee97c453f2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10422344
proquest_miscellaneous_2850313408
proquest_journals_2849138088
gale_infotracmisc_A760616991
gale_infotracacademiconefile_A760616991
pubmed_primary_37571713
crossref_primary_10_3390_s23156930
crossref_citationtrail_10_3390_s23156930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Seetha (ref_64) 2018; 11
Mehnatkesh (ref_16) 2023; 213
ref_14
Qasem (ref_34) 2019; 59
ref_11
ref_53
Suganya (ref_45) 2019; 8
Brindha (ref_42) 2021; 1055
ref_17
Lamrani (ref_67) 2022; 13
ref_15
Islam (ref_20) 2021; 5
Seere (ref_32) 2020; 5
ref_59
Kumar (ref_4) 2022; 73
Suganthe (ref_55) 2020; 7
Sethy (ref_66) 2021; 80
Kharat (ref_33) 2012; 1
ref_60
Huang (ref_54) 2021; 11
Shivdikar (ref_57) 2022; 10
ref_24
Anitha (ref_29) 2018; 28
ref_65
ref_62
Rajagopal (ref_39) 2019; 29
Sarkar (ref_13) 2023; 2023
ref_26
Gajula (ref_22) 2022; 3
Keerthana (ref_12) 2021; 1937
Selvy (ref_46) 2019; 169
Shelatkar (ref_10) 2022; 2022
Alsubai (ref_58) 2022; 16
Jia (ref_44) 2020; 2
Kumar (ref_47) 2020; 17
Yogananda (ref_51) 2020; 6
Noreen (ref_52) 2020; 8
ref_31
Mishra (ref_3) 2018; 10
ref_30
Biradar (ref_36) 2013; 3
Felefly (ref_25) 2019; 105
Ma (ref_6) 2022; 111
Anantharajan (ref_38) 2021; 74
ref_37
Ramtekkar (ref_8) 2023; 2
Sajjad (ref_50) 2019; 30
Saba (ref_23) 2020; 9
Selvapandian (ref_35) 2018; 28
Shinde (ref_18) 2022; 173
Raja (ref_61) 2020; 40
Vankdothu (ref_63) 2022; 24
Haq (ref_9) 2022; 12
Bathe (ref_48) 2021; 4
ref_40
Kulkarni (ref_43) 2020; 11
ref_1
Kiranmayee (ref_27) 2016; 9
Senan (ref_7) 2022; 2022
Vankdothu (ref_21) 2022; 24
Amin (ref_2) 2021; 8
Aamir (ref_49) 2022; 101
Sharif (ref_28) 2020; 32
Chen (ref_19) 2020; 200
ref_5
Aswathy (ref_41) 2022; 103
Rehman (ref_56) 2020; 39
References_xml – volume: 10
  start-page: 526
  year: 2018
  ident: ref_3
  article-title: Implementation of re-sampling technique to handle skewed data in tumor prediction
  publication-title: J. Adv. Res. Dyn. Control Syst.
– volume: 2
  start-page: 1
  year: 2020
  ident: ref_44
  article-title: Brain Tumor Identification and Classification of MRI images using deep learning techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016319
– ident: ref_31
  doi: 10.1109/SMC42975.2020.9282987
– ident: ref_1
  doi: 10.3390/s21062222
– volume: 213
  start-page: 119087
  year: 2023
  ident: ref_16
  article-title: An intelligent driven deep residual learning framework for brain tumor classification using MRI images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119087
– volume: 28
  start-page: 295
  year: 2018
  ident: ref_35
  article-title: Performance analysis of meningioma brain tumor classifications based on gradient boosting classifier
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22288
– volume: 111
  start-page: 107666
  year: 2022
  ident: ref_6
  article-title: End-to-end predictive intelligence diagnosis in brain tumor using lightweight neural network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107666
– volume: 12
  start-page: 15331
  year: 2022
  ident: ref_9
  article-title: DACBT: Deep learning approach for classification of brain tumors using MRI data in IoT healthcare environment
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19465-1
– volume: 1937
  start-page: 012008
  year: 2021
  ident: ref_12
  article-title: Brain Tumour Detection Using Machine Learning Algorithm
  publication-title: J. Physics: Conf. Ser.
– volume: 11
  start-page: 1457
  year: 2018
  ident: ref_64
  article-title: Brain Tumor Classification Using Convolutional Neural Networks
  publication-title: Biomed. Pharmacol. J.
  doi: 10.13005/bpj/1511
– volume: 24
  start-page: 100412
  year: 2022
  ident: ref_63
  article-title: Brain tumor MRI images identification and classification based on the recurrent convolutional neural network
  publication-title: Meas. Sensors
  doi: 10.1016/j.measen.2022.100412
– volume: 173
  start-page: 103221
  year: 2022
  ident: ref_18
  article-title: Performance analysis of machine learning algorithm of detection and classification of brain tumor using computer vision
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103221
– volume: 32
  start-page: 15975
  year: 2020
  ident: ref_28
  article-title: Brain tumor detection based on extreme learning
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04679-8
– volume: 8
  start-page: 867
  year: 2019
  ident: ref_45
  article-title: Deep learning technique for brain tumor detection using medical image fusion
  publication-title: Int. J. Innov. Technol. Explor. Eng.
  doi: 10.35940/ijitee.I1179.0789S219
– ident: ref_40
  doi: 10.1109/ICACCS48705.2020.9074213
– volume: 1
  start-page: 2231
  year: 2012
  ident: ref_33
  article-title: Brain Tumor Classification Using Neural Network Based Methods
  publication-title: Int. J. Comput. Sci. Informatics
– volume: 105
  start-page: E141
  year: 2019
  ident: ref_25
  article-title: A Machine-Learning Model using MRI-based Radiomic Features to Predict Primary Site for Brain Metastases
  publication-title: Int. J. Radiat. Oncol.
  doi: 10.1016/j.ijrobp.2019.06.2186
– volume: 10
  start-page: 621
  year: 2022
  ident: ref_57
  article-title: Brain Tumor Detection using Deep Learning
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol.
  doi: 10.22214/ijraset.2022.40710
– volume: 4
  start-page: 1
  year: 2021
  ident: ref_48
  article-title: Brain Tumor Detection Using Deep Learning Techniques
  publication-title: SSRN Electron. J.
– volume: 39
  start-page: 757
  year: 2020
  ident: ref_56
  article-title: A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-019-01246-3
– volume: 11
  start-page: 690244
  year: 2021
  ident: ref_54
  article-title: A Deep Multi-Task Learning Framework for Brain Tumor Segmentation
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.690244
– volume: 9
  start-page: 1
  year: 2016
  ident: ref_27
  article-title: Enhancement of SVM based MRI Brain Image Classification using Pre-Processing Techniques
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2016/v9i29/91042
– volume: 3
  start-page: 26
  year: 2013
  ident: ref_36
  article-title: Measurement based Human Brain Tumor Recognition by Adapting Support Vector Machine
  publication-title: IOSR J. Eng.
  doi: 10.9790/3021-03912631
– volume: 16
  start-page: 1005617
  year: 2022
  ident: ref_58
  article-title: Ensemble deep learning for brain tumor detection
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2022.1005617
– volume: 8
  start-page: 55135
  year: 2020
  ident: ref_52
  article-title: A Deep Learning Model Based on Concatenation Approach for the Diagnosis of Brain Tumor
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2978629
– volume: 5
  start-page: 100044
  year: 2021
  ident: ref_20
  article-title: Brain tumor detection in MR image using superpixels, principal component analysis and template based K-means clustering algorithm
  publication-title: Mach. Learn. Appl.
– volume: 59
  start-page: 713
  year: 2019
  ident: ref_34
  article-title: A Learning Based Brain Tumor Detection System
  publication-title: Comput. Mater. Contin.
– volume: 2023
  start-page: 1224619
  year: 2023
  ident: ref_13
  article-title: An Effective and Novel Approach for Brain Tumor Classification Using AlexNet CNN Feature Extractor and Multiple Eminent Machine Learning Classifiers in MRIs
  publication-title: J. Sensors
  doi: 10.1155/2023/1224619
– volume: 17
  start-page: 1925
  year: 2020
  ident: ref_47
  article-title: A Study on Brain Tumor Detection and Segmentation Using Deep Learning Techniques
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2020.8468
– ident: ref_5
  doi: 10.1007/978-981-16-5304-9_1
– volume: 3
  start-page: 1
  year: 2022
  ident: ref_22
  article-title: An MRI brain tumour detection using logistic regression-based machine learning model
  publication-title: Int. J. Syst. Assur. Eng. Manag.
– volume: 101
  start-page: 108105
  year: 2022
  ident: ref_49
  article-title: A deep learning approach for brain tumor classification using MRI images
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108105
– volume: 8
  start-page: 3161
  year: 2021
  ident: ref_2
  article-title: Brain tumor detection and classification using machine learning: A comprehensive survey
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00563-y
– ident: ref_53
  doi: 10.1109/CONIT51480.2021.9498384
– volume: 2022
  start-page: 2858845
  year: 2022
  ident: ref_10
  article-title: Diagnosis of Brain Tumor Using Light Weight Deep Learning Model with Fine-Tuning Approach
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2022/2858845
– volume: 1055
  start-page: 012115
  year: 2021
  ident: ref_42
  article-title: Brain tumor detection from MRI images using deep learning techniques
  publication-title: IOP Conf. Series: Mater. Sci. Eng.
  doi: 10.1088/1757-899X/1055/1/012115
– volume: 9
  start-page: 7076
  year: 2020
  ident: ref_23
  article-title: Logistic regression machine learning algorithm on MRI brain image for fast and accurate diagnosis
  publication-title: Int. J. Sci. Technol. Res.
– volume: 73
  start-page: 103440
  year: 2022
  ident: ref_4
  article-title: An approach for brain tumor detection using optimal feature selection and optimized deep belief network
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2021.103440
– ident: ref_59
  doi: 10.3390/s22010372
– ident: ref_17
  doi: 10.1109/ICAIS50930.2021.9395823
– ident: ref_24
  doi: 10.1007/978-3-319-75238-9_37
– ident: ref_30
  doi: 10.1109/ICCUBEA47591.2019.9129512
– volume: 2022
  start-page: 8330833
  year: 2022
  ident: ref_7
  article-title: Early Diagnosis of Brain Tumour MRI Images Using Hybrid Techniques between Deep and Machine Learning
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2022/8330833
– volume: 30
  start-page: 174
  year: 2019
  ident: ref_50
  article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.12.003
– volume: 2
  start-page: 1
  year: 2023
  ident: ref_8
  article-title: Accurate detection of brain tumor using optimized feature selection based on deep learning techniques
  publication-title: Multimedia Tools Appl.
– volume: 6
  start-page: 186
  year: 2020
  ident: ref_51
  article-title: A Fully Automated Deep Learning Network for Brain Tumor Segmentation
  publication-title: Tomography
  doi: 10.18383/j.tom.2019.00026
– volume: 40
  start-page: 440
  year: 2020
  ident: ref_61
  article-title: Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.01.006
– volume: 5
  start-page: 516
  year: 2020
  ident: ref_32
  article-title: Threshold Segmentation and Watershed Segmentation Algorithm for Brain Tumor Detection using Support Vector Machine
  publication-title: Eur. J. Eng. Res. Sci.
  doi: 10.24018/ejers.2020.5.4.1902
– volume: 103
  start-page: 1097
  year: 2022
  ident: ref_41
  article-title: Detection of Brain Tumor Abnormality from MRI FLAIR Images using Machine Learning Techniques
  publication-title: J. Inst. Eng. (India) Ser. B
  doi: 10.1007/s40031-022-00721-x
– volume: 7
  start-page: 347
  year: 2020
  ident: ref_55
  article-title: Deep learning based brain tumor classification using magnetic resonance imaging
  publication-title: J. Crit. Rev.
– ident: ref_37
– ident: ref_15
  doi: 10.3390/a16040176
– volume: 24
  start-page: 100440
  year: 2022
  ident: ref_21
  article-title: Brain tumor segmentation of MR images using SVM and fuzzy classifier in machine learning
  publication-title: Meas. Sensors
  doi: 10.1016/j.measen.2022.100440
– volume: 200
  start-page: 105797
  year: 2020
  ident: ref_19
  article-title: A novel extended Kalman filter with support vector machine based method for the automatic diagnosis and segmentation of brain tumors
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105797
– ident: ref_62
  doi: 10.1109/ROBIO49542.2019.8961610
– ident: ref_11
  doi: 10.1186/s12911-023-02114-6
– ident: ref_26
  doi: 10.1117/12.2512557
– volume: 80
  start-page: 28745
  year: 2021
  ident: ref_66
  article-title: A data constrained approach for brain tumour detection using fused deep features and SVM
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-11098-2
– volume: 11
  start-page: 374
  year: 2020
  ident: ref_43
  article-title: A Framework for Brain Tumor Segmentation and Classification using Deep Learning Algorithm
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_14
  doi: 10.3390/jimaging8080205
– volume: 28
  start-page: 48
  year: 2018
  ident: ref_29
  article-title: Development of computer-aided approach for brain tumor detection using random forest classifier
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22255
– volume: 74
  start-page: 260
  year: 2021
  ident: ref_38
  article-title: Detection and Classification of MRI Brain Tumour Using GLCM and Enhanced K-NN
  publication-title: Comptes Rendus Acad. Bulg. Des Sci.
– volume: 13
  start-page: 452
  year: 2022
  ident: ref_67
  article-title: Brain Tumor Detection using MRI Images and Convolutional Neural Network
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 29
  start-page: 353
  year: 2019
  ident: ref_39
  article-title: Glioma brain tumor detection and segmentation using weighting random forest classifier with optimized ant colony features
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22331
– ident: ref_60
– ident: ref_65
  doi: 10.3390/app12147282
– volume: 169
  start-page: 175
  year: 2019
  ident: ref_46
  article-title: Brain Tumour Detection Using Deep Learning Techniques
  publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.
SSID ssj0023338
Score 2.536039
Snippet Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6930
SubjectTerms Accuracy
Artificial intelligence
Benchmarking
Brain - diagnostic imaging
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain research
brain tumor
Brain tumors
Datasets
Deep Learning
generative adversarial network
Humans
Identification
Intelligence
Liquors
Machine learning
Neural networks
Patients
PGGAN
soft voting
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kJz2I1q9oK6sIeglNsl_JMc-2VqHFQwu9hf2YrYXXvNKX9_87k-SFFxS8eAvZCWR3Z3Z-PzL5DWOfoo1Ra-9TAGNTaUWeWkS6qUI0Wmrlle27lpxf6LMr-eNaXe-0-qKasEEeeFi4IyMtRG18qUyUmXCICGV0AJXxUonYn75ZlW3J1Ei1BDKvQUdIIKk_WiOKUdT0b5Z9epH-P4_inVw0r5PcSTynz9jTETHyenjT5-wRtPvsyY6O4AvW1S2vNze9vmbg56tAPbnw6hjgno8Kqjd8gQkr8O-TBmfHfz7QZxo68OghWHJEsHxBTSP45eYOr4-h60u1Wt6XFvBv9QU_addw55bwkl2dnlx-PUvHdgqpV8J0qYQgtPSQAWShqiD3BoxDhhdMhTTRAFhXRC9cVsSgbRm9I7KYY8ZSJiAyecX22lULbxgXGlGlFMbYPMhQFs7jmZk5VVmd-8oWCfuyXebGj1rj1PJi2SDnoB1pph1J2MfJ9H4Q2Pib0YL2ajIgTez-BnpKM3pK8y9PSdhn2umGIhdfxtvxBwScEmlgNbVBMpdrBMwJO5hZYsT5-fDWV5ox4tcNpvkqFyUe2gn7MA3Tk1TF1sJqQzaKpDJlhjavB9eapiSMQmadi4SVM6ebzXk-0t7-6vXAc9JxE1K-_R-r9I49LjB-hhrHA7bXPWzgEHFX5973IfYb0eQrJw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKucAB8W6gIIOQ4BJI4ldyQChLWwpSKw5dqbfIsccL0jZbdrMS_HtmstloIypuUTyRbM-MZz558g1jb4INQWvnYgBjY2lFGlvMdGOF2WiulVO261pydq5Pp_LbpbrcY9sem_0Grm6EdtRParqcv__9688ndPiPhDgRsn9YYY6iqKXfLXa7uyaiCj45XCZkAmHYhlRoLD4KRR1j_7_n8k5gGhdN7kShk_vsXp8-8nKj7wdsD5qH7O4OqeAj1pYNL9ezjmzT87OFpwZd-HQEcM17OtUZn2D08vzrQMjZ8u9LurOh048-gjnHdJZPqIMEv1hf4fMRtF3dVsO7OgP-pTznx80Kruo5PGbTk-OLz6dx31shdkqYNpbghZYOEoDEFwWkzoCpEe55UyBmNAC2zoITdZIFr20eXE3IMcXwpYzHNOUJ228WDRwwLjSmmFIYY1MvfZ7VDg_QpFaF1akrbBaxd9ttrlxPPE79L-YVAhDSSDVoJGKvB9HrDdvGTUIT0tUgQATZ3YvFclb1_lYZaSFo43JlgkxEjUBChhqgME4qEXBSb0nTFRkWTsbZ_m8EXBIRYlWlQWSXasyeI3Y4kkT3c-Phra1UW-utMOYXqcjxBI_Yq2GYvqSStgYWa5JRxJspE5R5ujGtYUnCKITZqYhYPjK60ZrHI83PHx05eEqkbkLKZ_-f13N2J0PP2JQyHrL9drmGF5hetfXLznn-AuJ7I88
  priority: 102
  providerName: Scholars Portal
Title An Augmented Modulated Deep Learning Based Intelligent Predictive Model for Brain Tumor Detection Using GAN Ensemble
URI https://www.ncbi.nlm.nih.gov/pubmed/37571713
https://www.proquest.com/docview/2849138088
https://www.proquest.com/docview/2850313408
https://pubmed.ncbi.nlm.nih.gov/PMC10422344
https://doaj.org/article/74aef67c857f403b8824fbee97c453f2
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdt-rI9jH03bRe0MdheTO1IsuyHMZw1aTdIKKOFvBlZOmeD1MkS5__fnWN7MRt7McY6g-TTffzs8-8Ye5-bPA9Daz0AbTxpROAZzHQ9hdloFCqrTNW1ZDoLb-7lt7maH7FZ8y8MlVU2PrFy1G5l6R35JbrROBARGsXn9S-PukbR19WmhYapWyu4TxXF2DE7QZes_B47GY1nt99bCCYQke35hQSC_cstZjeKmgF2olJF3v-3iz6IUd36yYOANHnKntSZJE_2qn_GjqB4zh4f8Au-YGVS8GS3qHg3HZ-uHPXqwrMrgDWvmVUXfISBzPGvLTdnyW839PmGHCHdBEuOmS0fUTMJfrd7wPMrKKsSroJXJQf8OpnxcbGFh2wJL9n9ZHz35car2yx4VgldehKcCKUFH8B3cQyB1aAzRH5OxwgfNYDJhrkVmT_MXWii3GYEIgOMZEo7zFhesV6xKuCUcRFitimF1iZw0kXDzKIv9TMVmzCwsRn22cfmMae25iCnVhjLFLEIaSRtNdJn71rR9Z54419CI9JVK0Bc2dWF1WaR1qaXamkgD7WNlM6lLzLEFDLPAGJtpRI5TuoDaToli8bJWFP_mIBLIm6sNNEI8oIQE-k-u-hIoiXa7nCzV9LaE2zTP_u2z962w3QnVbcVsNqRjCIKTemjzOv91mqXJLRCxB2IPos6m66z5u5I8fNHxRMeEL-bkPLs__M6Z4-GaBn7qsYL1is3O3iDmVaZDdixnms8RpPrQW1Kg-qtBR6nMvoNXOMsnA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEG8CBRYEgotV27vrtQ8VSkhKQpuoQqnUm7tejwNS6oTEEeLP8duYcRwTC8StNys7jnY9O4_Pnv2GsTeZybIgsNYB0MaRRniOwUzXUZiNhoGyypRdS0bjYHAuP1-oiz32a3sWhsoqtz6xdNTp3NI78kN0o5EnQjSKD4vvDnWNoq-r2xYapmqtkB6VFGPVwY4T-PkDIdzqaNhDfb_1_eP-5OPAqboMOFYJXTgSUhFICy6Am0YReFaDThD4pDpC9KQBTOJnViSun6WBCTObEIby0JErnWLAxv-9wfYlvUBpsf1uf3z2pYZ8AhHghs9IiMg9XGE2paj5YCMKls0C_g4JOzGxWa-5EwCP77I7VebKO5utdo_tQX6f3d7hM3zAik7OO-tpyfOZ8tE8pd5geNUDWPCKyXXKuxg4Uz6suUALfrakz0XkeOkmmHHMpHmXmlfwyfoKr3tQlCVjOS9LHPinzpj38xVcJTN4yM6v5YE_Yq18nsMTxkWA2a0UWhsvlWnoJxZ9t5uoyASejYzfZu-3jzm2Fec5td6YxYh9SCNxrZE2e12LLjZEH_8S6pKuagHi5i5_mC-ncWXqsZYGskDbUOlMuiJBDCOzBCDSViqR4aTekaZj8iA4GWuqgxC4JOLiijsaQaUXYOLeZgcNSbR82xze7pW48jyr-I-dtNmrepjupGq6HOZrklFE2SldlHm82Vr1koRWiPA90WZhY9M11twcyb99LXnJPeKTE1I-_f-8XrKbg8noND4djk-esVs-WsmmovKAtYrlGp5jllckLypT4uzyuq33Nx9tZo0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nj5NAFJ-sa2L0YPwWXXU0Gr2QAjPDwMGY1m7dum6zh92kNxyGRzXp0trSGP81_zrfA8qWaLztjTAPMsOb9wWP34-x17nJ8zC01gXQxpVG-K7BTNdVmI1GobLKVKwlJ5Pw6Fx-nqrpHvu9_ReG2iq3PrFy1NnC0jvyHrrR2BcRGkUvb9oiToejD8sfLjFI0ZfWLZ1GvUWO4ddPLN_W78dD1PWbIBgdnn08chuGAdcqoUtXQiZCacED8LI4Bt9q0CkWPZmOsXLSACYNcitSL8iz0ES5Tal-8tGJK51hsMb7XmPXtZCSaCP09LLYE1j71UhGQsReb415lCLawU78q2gC_g4GO9Gw26m5E_pGd9jtJmfl_XqT3WV7UNxjt3aQDO-zsl_w_mZWIXxm_GSRESsYHg0BlrzBcJ3xAYbMjI9bFNCSn67oQxG5XLoI5hxzaD4g2gp-trnA4yGUVbNYwavmBv6pP-GHxRou0jk8YOdX8rgfsv1iUcBjxkWIea0UWhs_k1kUpBa9tpeq2IS-jU3gsHfbx5zYBu2cSDfmCVY9pJGk1YjDXrWiyxri419CA9JVK0Co3NWJxWqWNEaeaGkgD7WNlM6lJ1KsXmSeAsTaSiVynNRb0nRCvgMnY03zCwQuiVC4kr7GctIPMWV32EFHEm3edoe3eyVpfM46ubQQh71sh-lK6qMrYLEhGUVgndJDmUf11mqXJLTC2t4XDos6m66z5u5I8f1bhUjuE5IcGsGT_8_rBbuBNpt8GU-On7KbARpJ3Up5wPbL1QaeYXpXps8rO-Ls61Ub7h9cXmQp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Augmented+Modulated+Deep+Learning+Based+Intelligent+Predictive+Model+for+Brain+Tumor+Detection+Using+GAN+Ensemble&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sahoo%2C+Saswati&rft.au=Mishra%2C+Sushruta&rft.au=Panda%2C+Baidyanath&rft.au=Bhoi%2C+Akash+Kumar&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=15&rft.spage=6930&rft_id=info:doi/10.3390%2Fs23156930&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon