An Augmented Modulated Deep Learning Based Intelligent Predictive Model for Brain Tumor Detection Using GAN Ensemble
Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML)...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 15; p. 6930 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s23156930 |
Cover
Abstract | Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML) for the effective diagnosis of patients, these models still provide less accuracy and take immense time for patient screening during the diagnosis process. Hence, there is still a need to develop a more precise model for more accurate screening of patients to detect brain tumors in the beginning stages and aid clinicians in diagnosis, making the brain tumor assessment more reliable. In this research, a performance analysis of the impact of different generative adversarial networks (GAN) on the early detection of brain tumors is presented. Based on it, a novel hybrid enhanced predictive convolution neural network (CNN) model using a hybrid GAN ensemble is proposed. Brain tumor image data is augmented using a GAN ensemble, which is fed for classification using a hybrid modulated CNN technique. The outcome is generated through a soft voting approach where the final prediction is based on the GAN, which computes the highest value for different performance metrics. This analysis demonstrated that evaluation with a progressive-growing generative adversarial network (PGGAN) architecture produced the best result. In the analysis, PGGAN outperformed others, computing the accuracy, precision, recall, F1-score, and negative predictive value (NPV) to be 98.85, 98.45%, 97.2%, 98.11%, and 98.09%, respectively. Additionally, a very low latency of 3.4 s is determined with PGGAN. The PGGAN model enhanced the overall performance of the identification of brain cell tissues in real time. Therefore, it may be inferred to suggest that brain tumor detection in patients using PGGAN augmentation with the proposed modulated CNN technique generates the optimum performance using the soft voting approach. |
---|---|
AbstractList | Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML) for the effective diagnosis of patients, these models still provide less accuracy and take immense time for patient screening during the diagnosis process. Hence, there is still a need to develop a more precise model for more accurate screening of patients to detect brain tumors in the beginning stages and aid clinicians in diagnosis, making the brain tumor assessment more reliable. In this research, a performance analysis of the impact of different generative adversarial networks (GAN) on the early detection of brain tumors is presented. Based on it, a novel hybrid enhanced predictive convolution neural network (CNN) model using a hybrid GAN ensemble is proposed. Brain tumor image data is augmented using a GAN ensemble, which is fed for classification using a hybrid modulated CNN technique. The outcome is generated through a soft voting approach where the final prediction is based on the GAN, which computes the highest value for different performance metrics. This analysis demonstrated that evaluation with a progressive-growing generative adversarial network (PGGAN) architecture produced the best result. In the analysis, PGGAN outperformed others, computing the accuracy, precision, recall, F1-score, and negative predictive value (NPV) to be 98.85, 98.45%, 97.2%, 98.11%, and 98.09%, respectively. Additionally, a very low latency of 3.4 s is determined with PGGAN. The PGGAN model enhanced the overall performance of the identification of brain cell tissues in real time. Therefore, it may be inferred to suggest that brain tumor detection in patients using PGGAN augmentation with the proposed modulated CNN technique generates the optimum performance using the soft voting approach. Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML) for the effective diagnosis of patients, these models still provide less accuracy and take immense time for patient screening during the diagnosis process. Hence, there is still a need to develop a more precise model for more accurate screening of patients to detect brain tumors in the beginning stages and aid clinicians in diagnosis, making the brain tumor assessment more reliable. In this research, a performance analysis of the impact of different generative adversarial networks (GAN) on the early detection of brain tumors is presented. Based on it, a novel hybrid enhanced predictive convolution neural network (CNN) model using a hybrid GAN ensemble is proposed. Brain tumor image data is augmented using a GAN ensemble, which is fed for classification using a hybrid modulated CNN technique. The outcome is generated through a soft voting approach where the final prediction is based on the GAN, which computes the highest value for different performance metrics. This analysis demonstrated that evaluation with a progressive-growing generative adversarial network (PGGAN) architecture produced the best result. In the analysis, PGGAN outperformed others, computing the accuracy, precision, recall, F1-score, and negative predictive value (NPV) to be 98.85, 98.45%, 97.2%, 98.11%, and 98.09%, respectively. Additionally, a very low latency of 3.4 s is determined with PGGAN. The PGGAN model enhanced the overall performance of the identification of brain cell tissues in real time. Therefore, it may be inferred to suggest that brain tumor detection in patients using PGGAN augmentation with the proposed modulated CNN technique generates the optimum performance using the soft voting approach.Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML) for the effective diagnosis of patients, these models still provide less accuracy and take immense time for patient screening during the diagnosis process. Hence, there is still a need to develop a more precise model for more accurate screening of patients to detect brain tumors in the beginning stages and aid clinicians in diagnosis, making the brain tumor assessment more reliable. In this research, a performance analysis of the impact of different generative adversarial networks (GAN) on the early detection of brain tumors is presented. Based on it, a novel hybrid enhanced predictive convolution neural network (CNN) model using a hybrid GAN ensemble is proposed. Brain tumor image data is augmented using a GAN ensemble, which is fed for classification using a hybrid modulated CNN technique. The outcome is generated through a soft voting approach where the final prediction is based on the GAN, which computes the highest value for different performance metrics. This analysis demonstrated that evaluation with a progressive-growing generative adversarial network (PGGAN) architecture produced the best result. In the analysis, PGGAN outperformed others, computing the accuracy, precision, recall, F1-score, and negative predictive value (NPV) to be 98.85, 98.45%, 97.2%, 98.11%, and 98.09%, respectively. Additionally, a very low latency of 3.4 s is determined with PGGAN. The PGGAN model enhanced the overall performance of the identification of brain cell tissues in real time. Therefore, it may be inferred to suggest that brain tumor detection in patients using PGGAN augmentation with the proposed modulated CNN technique generates the optimum performance using the soft voting approach. |
Audience | Academic |
Author | Mishra, Sushruta Bhoi, Akash Kumar Panda, Baidyanath Barsocchi, Paolo Sahoo, Saswati |
AuthorAffiliation | 4 KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India 1 School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar 751024, India; sushruta.mishrafcs@kiit.ac.in 5 Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy 2 LTIMindtree, 1 American Row, 3rd Floor, Hartford, CT 06103, USA; baidyanathpanda@gmail.com 3 Directorate of Research, Sikkim Manipal University, Gangtok 737102, India; akashkrbhoi@gmail.com |
AuthorAffiliation_xml | – name: 5 Institute of Information Science and Technologies, National Research Council, 56124 Pisa, Italy – name: 4 KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India – name: 2 LTIMindtree, 1 American Row, 3rd Floor, Hartford, CT 06103, USA; baidyanathpanda@gmail.com – name: 1 School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar 751024, India; sushruta.mishrafcs@kiit.ac.in – name: 3 Directorate of Research, Sikkim Manipal University, Gangtok 737102, India; akashkrbhoi@gmail.com |
Author_xml | – sequence: 1 givenname: Saswati surname: Sahoo fullname: Sahoo, Saswati – sequence: 2 givenname: Sushruta orcidid: 0000-0003-3929-1100 surname: Mishra fullname: Mishra, Sushruta – sequence: 3 givenname: Baidyanath surname: Panda fullname: Panda, Baidyanath – sequence: 4 givenname: Akash Kumar orcidid: 0000-0003-2759-3224 surname: Bhoi fullname: Bhoi, Akash Kumar – sequence: 5 givenname: Paolo orcidid: 0000-0002-6862-7593 surname: Barsocchi fullname: Barsocchi, Paolo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37571713$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstu2zAQRYkiRZO4XfQHCgHdtAsnfEmUVoXzrAH3sUjWBEUNVRoS6ZBSgP59qTg17CDggoOZM5ecwT1FR847QOgjwWeMVfg8UkbyomL4DTohnPJ5SSk-2ouP0WmMa4wpY6x8h46ZyAURhJ2gYeGyxdj24AZosh--GTs1RVcAm2wFKjjr2uxCxZRbJqbrbJvY7HeAxurBPsLUBF1mfMgugrIuuxv7FF_BAKnuXXYfJ4nbxc_s2kXo6w7eo7dGdRE-PN8zdH9zfXf5fb76dbu8XKzmOmdimHNoWME1YADcVBUQLUDUpOSNqGjOBYCqqdGsxtQ0hSqNrgnnRZq6ykVTFGyGllvdxqu13ATbq_BXemXlU8KHVqowWN2BFFyBKYQuc2E4ZnVZUm5qgEponjNDk9a3rdZmrHtodFpCUN2B6GHF2T-y9Y-SYE4p4zwpfHlWCP5hhDjI3kadNqoc-DFKWuaYEcZxmdDPL9C1H4NLu0oUrwgrcblHtSpNYJ3x6WE9icqFKHBBiiqhM3T2CpVOA73VyUjGpvxBw6f9SXcj_jdNAr5uAR18jAHMDiFYToaUO0Mm9vwFq-2gJl-kX9julY5_4ZXfeg |
CitedBy_id | crossref_primary_10_1097_QMH_0000000000000497 crossref_primary_10_1371_journal_pone_0310748 crossref_primary_10_3389_fneur_2024_1445882 crossref_primary_10_3390_a17060221 crossref_primary_10_1080_0954898X_2024_2389248 crossref_primary_10_59324_ejtas_2024_2_6__77 crossref_primary_10_1007_s11042_024_19553_6 crossref_primary_10_1007_s44196_024_00574_w crossref_primary_10_1007_s11831_025_10238_3 |
Cites_doi | 10.1109/ACCESS.2020.3016319 10.1109/SMC42975.2020.9282987 10.3390/s21062222 10.1016/j.eswa.2022.119087 10.1002/ima.22288 10.1016/j.asoc.2021.107666 10.1038/s41598-022-19465-1 10.13005/bpj/1511 10.1016/j.measen.2022.100412 10.1016/j.advengsoft.2022.103221 10.1007/s00521-019-04679-8 10.35940/ijitee.I1179.0789S219 10.1109/ICACCS48705.2020.9074213 10.1016/j.ijrobp.2019.06.2186 10.22214/ijraset.2022.40710 10.1007/s00034-019-01246-3 10.3389/fonc.2021.690244 10.17485/ijst/2016/v9i29/91042 10.9790/3021-03912631 10.3389/fncom.2022.1005617 10.1109/ACCESS.2020.2978629 10.1155/2023/1224619 10.1166/jctn.2020.8468 10.1007/978-981-16-5304-9_1 10.1016/j.compeleceng.2022.108105 10.1007/s40747-021-00563-y 10.1109/CONIT51480.2021.9498384 10.1155/2022/2858845 10.1088/1757-899X/1055/1/012115 10.1016/j.bspc.2021.103440 10.3390/s22010372 10.1109/ICAIS50930.2021.9395823 10.1007/978-3-319-75238-9_37 10.1109/ICCUBEA47591.2019.9129512 10.1155/2022/8330833 10.1016/j.jocs.2018.12.003 10.18383/j.tom.2019.00026 10.1016/j.bbe.2020.01.006 10.24018/ejers.2020.5.4.1902 10.1007/s40031-022-00721-x 10.3390/a16040176 10.1016/j.measen.2022.100440 10.1016/j.cmpb.2020.105797 10.1109/ROBIO49542.2019.8961610 10.1186/s12911-023-02114-6 10.1117/12.2512557 10.1007/s11042-021-11098-2 10.3390/jimaging8080205 10.1002/ima.22255 10.1002/ima.22331 10.3390/app12147282 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s23156930 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_74aef67c857f403b8824fbee97c453f2 PMC10422344 A760616991 37571713 10_3390_s23156930 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c537t-4ed364ce0ee0d99e1c7e7b184d792547eeab2fc3b02fd6a8fcb1446142957d663 |
IEDL.DBID | BENPR |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:27:40 EDT 2025 Thu Aug 21 18:40:53 EDT 2025 Fri Sep 05 06:39:46 EDT 2025 Fri Jul 25 08:31:44 EDT 2025 Tue Jun 17 21:08:02 EDT 2025 Tue Jun 10 21:22:11 EDT 2025 Thu Apr 03 07:06:25 EDT 2025 Tue Jul 01 01:20:17 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | generative adversarial network deep learning brain tumor soft voting machine learning PGGAN |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c537t-4ed364ce0ee0d99e1c7e7b184d792547eeab2fc3b02fd6a8fcb1446142957d663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6862-7593 0000-0003-2759-3224 0000-0003-3929-1100 |
OpenAccessLink | https://www.proquest.com/docview/2849138088?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 37571713 |
PQID | 2849138088 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_74aef67c857f403b8824fbee97c453f2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10422344 proquest_miscellaneous_2850313408 proquest_journals_2849138088 gale_infotracmisc_A760616991 gale_infotracacademiconefile_A760616991 pubmed_primary_37571713 crossref_primary_10_3390_s23156930 crossref_citationtrail_10_3390_s23156930 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Seetha (ref_64) 2018; 11 Mehnatkesh (ref_16) 2023; 213 ref_14 Qasem (ref_34) 2019; 59 ref_11 ref_53 Suganya (ref_45) 2019; 8 Brindha (ref_42) 2021; 1055 ref_17 Lamrani (ref_67) 2022; 13 ref_15 Islam (ref_20) 2021; 5 Seere (ref_32) 2020; 5 ref_59 Kumar (ref_4) 2022; 73 Suganthe (ref_55) 2020; 7 Sethy (ref_66) 2021; 80 Kharat (ref_33) 2012; 1 ref_60 Huang (ref_54) 2021; 11 Shivdikar (ref_57) 2022; 10 ref_24 Anitha (ref_29) 2018; 28 ref_65 ref_62 Rajagopal (ref_39) 2019; 29 Sarkar (ref_13) 2023; 2023 ref_26 Gajula (ref_22) 2022; 3 Keerthana (ref_12) 2021; 1937 Selvy (ref_46) 2019; 169 Shelatkar (ref_10) 2022; 2022 Alsubai (ref_58) 2022; 16 Jia (ref_44) 2020; 2 Kumar (ref_47) 2020; 17 Yogananda (ref_51) 2020; 6 Noreen (ref_52) 2020; 8 ref_31 Mishra (ref_3) 2018; 10 ref_30 Biradar (ref_36) 2013; 3 Felefly (ref_25) 2019; 105 Ma (ref_6) 2022; 111 Anantharajan (ref_38) 2021; 74 ref_37 Ramtekkar (ref_8) 2023; 2 Sajjad (ref_50) 2019; 30 Saba (ref_23) 2020; 9 Selvapandian (ref_35) 2018; 28 Shinde (ref_18) 2022; 173 Raja (ref_61) 2020; 40 Vankdothu (ref_63) 2022; 24 Haq (ref_9) 2022; 12 Bathe (ref_48) 2021; 4 ref_40 Kulkarni (ref_43) 2020; 11 ref_1 Kiranmayee (ref_27) 2016; 9 Senan (ref_7) 2022; 2022 Vankdothu (ref_21) 2022; 24 Amin (ref_2) 2021; 8 Aamir (ref_49) 2022; 101 Sharif (ref_28) 2020; 32 Chen (ref_19) 2020; 200 ref_5 Aswathy (ref_41) 2022; 103 Rehman (ref_56) 2020; 39 |
References_xml | – volume: 10 start-page: 526 year: 2018 ident: ref_3 article-title: Implementation of re-sampling technique to handle skewed data in tumor prediction publication-title: J. Adv. Res. Dyn. Control Syst. – volume: 2 start-page: 1 year: 2020 ident: ref_44 article-title: Brain Tumor Identification and Classification of MRI images using deep learning techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016319 – ident: ref_31 doi: 10.1109/SMC42975.2020.9282987 – ident: ref_1 doi: 10.3390/s21062222 – volume: 213 start-page: 119087 year: 2023 ident: ref_16 article-title: An intelligent driven deep residual learning framework for brain tumor classification using MRI images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119087 – volume: 28 start-page: 295 year: 2018 ident: ref_35 article-title: Performance analysis of meningioma brain tumor classifications based on gradient boosting classifier publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22288 – volume: 111 start-page: 107666 year: 2022 ident: ref_6 article-title: End-to-end predictive intelligence diagnosis in brain tumor using lightweight neural network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107666 – volume: 12 start-page: 15331 year: 2022 ident: ref_9 article-title: DACBT: Deep learning approach for classification of brain tumors using MRI data in IoT healthcare environment publication-title: Sci. Rep. doi: 10.1038/s41598-022-19465-1 – volume: 1937 start-page: 012008 year: 2021 ident: ref_12 article-title: Brain Tumour Detection Using Machine Learning Algorithm publication-title: J. Physics: Conf. Ser. – volume: 11 start-page: 1457 year: 2018 ident: ref_64 article-title: Brain Tumor Classification Using Convolutional Neural Networks publication-title: Biomed. Pharmacol. J. doi: 10.13005/bpj/1511 – volume: 24 start-page: 100412 year: 2022 ident: ref_63 article-title: Brain tumor MRI images identification and classification based on the recurrent convolutional neural network publication-title: Meas. Sensors doi: 10.1016/j.measen.2022.100412 – volume: 173 start-page: 103221 year: 2022 ident: ref_18 article-title: Performance analysis of machine learning algorithm of detection and classification of brain tumor using computer vision publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103221 – volume: 32 start-page: 15975 year: 2020 ident: ref_28 article-title: Brain tumor detection based on extreme learning publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04679-8 – volume: 8 start-page: 867 year: 2019 ident: ref_45 article-title: Deep learning technique for brain tumor detection using medical image fusion publication-title: Int. J. Innov. Technol. Explor. Eng. doi: 10.35940/ijitee.I1179.0789S219 – ident: ref_40 doi: 10.1109/ICACCS48705.2020.9074213 – volume: 1 start-page: 2231 year: 2012 ident: ref_33 article-title: Brain Tumor Classification Using Neural Network Based Methods publication-title: Int. J. Comput. Sci. Informatics – volume: 105 start-page: E141 year: 2019 ident: ref_25 article-title: A Machine-Learning Model using MRI-based Radiomic Features to Predict Primary Site for Brain Metastases publication-title: Int. J. Radiat. Oncol. doi: 10.1016/j.ijrobp.2019.06.2186 – volume: 10 start-page: 621 year: 2022 ident: ref_57 article-title: Brain Tumor Detection using Deep Learning publication-title: Int. J. Res. Appl. Sci. Eng. Technol. doi: 10.22214/ijraset.2022.40710 – volume: 4 start-page: 1 year: 2021 ident: ref_48 article-title: Brain Tumor Detection Using Deep Learning Techniques publication-title: SSRN Electron. J. – volume: 39 start-page: 757 year: 2020 ident: ref_56 article-title: A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-019-01246-3 – volume: 11 start-page: 690244 year: 2021 ident: ref_54 article-title: A Deep Multi-Task Learning Framework for Brain Tumor Segmentation publication-title: Front. Oncol. doi: 10.3389/fonc.2021.690244 – volume: 9 start-page: 1 year: 2016 ident: ref_27 article-title: Enhancement of SVM based MRI Brain Image Classification using Pre-Processing Techniques publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2016/v9i29/91042 – volume: 3 start-page: 26 year: 2013 ident: ref_36 article-title: Measurement based Human Brain Tumor Recognition by Adapting Support Vector Machine publication-title: IOSR J. Eng. doi: 10.9790/3021-03912631 – volume: 16 start-page: 1005617 year: 2022 ident: ref_58 article-title: Ensemble deep learning for brain tumor detection publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2022.1005617 – volume: 8 start-page: 55135 year: 2020 ident: ref_52 article-title: A Deep Learning Model Based on Concatenation Approach for the Diagnosis of Brain Tumor publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2978629 – volume: 5 start-page: 100044 year: 2021 ident: ref_20 article-title: Brain tumor detection in MR image using superpixels, principal component analysis and template based K-means clustering algorithm publication-title: Mach. Learn. Appl. – volume: 59 start-page: 713 year: 2019 ident: ref_34 article-title: A Learning Based Brain Tumor Detection System publication-title: Comput. Mater. Contin. – volume: 2023 start-page: 1224619 year: 2023 ident: ref_13 article-title: An Effective and Novel Approach for Brain Tumor Classification Using AlexNet CNN Feature Extractor and Multiple Eminent Machine Learning Classifiers in MRIs publication-title: J. Sensors doi: 10.1155/2023/1224619 – volume: 17 start-page: 1925 year: 2020 ident: ref_47 article-title: A Study on Brain Tumor Detection and Segmentation Using Deep Learning Techniques publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2020.8468 – ident: ref_5 doi: 10.1007/978-981-16-5304-9_1 – volume: 3 start-page: 1 year: 2022 ident: ref_22 article-title: An MRI brain tumour detection using logistic regression-based machine learning model publication-title: Int. J. Syst. Assur. Eng. Manag. – volume: 101 start-page: 108105 year: 2022 ident: ref_49 article-title: A deep learning approach for brain tumor classification using MRI images publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.108105 – volume: 8 start-page: 3161 year: 2021 ident: ref_2 article-title: Brain tumor detection and classification using machine learning: A comprehensive survey publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00563-y – ident: ref_53 doi: 10.1109/CONIT51480.2021.9498384 – volume: 2022 start-page: 2858845 year: 2022 ident: ref_10 article-title: Diagnosis of Brain Tumor Using Light Weight Deep Learning Model with Fine-Tuning Approach publication-title: Comput. Math. Methods Med. doi: 10.1155/2022/2858845 – volume: 1055 start-page: 012115 year: 2021 ident: ref_42 article-title: Brain tumor detection from MRI images using deep learning techniques publication-title: IOP Conf. Series: Mater. Sci. Eng. doi: 10.1088/1757-899X/1055/1/012115 – volume: 9 start-page: 7076 year: 2020 ident: ref_23 article-title: Logistic regression machine learning algorithm on MRI brain image for fast and accurate diagnosis publication-title: Int. J. Sci. Technol. Res. – volume: 73 start-page: 103440 year: 2022 ident: ref_4 article-title: An approach for brain tumor detection using optimal feature selection and optimized deep belief network publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2021.103440 – ident: ref_59 doi: 10.3390/s22010372 – ident: ref_17 doi: 10.1109/ICAIS50930.2021.9395823 – ident: ref_24 doi: 10.1007/978-3-319-75238-9_37 – ident: ref_30 doi: 10.1109/ICCUBEA47591.2019.9129512 – volume: 2022 start-page: 8330833 year: 2022 ident: ref_7 article-title: Early Diagnosis of Brain Tumour MRI Images Using Hybrid Techniques between Deep and Machine Learning publication-title: Comput. Math. Methods Med. doi: 10.1155/2022/8330833 – volume: 30 start-page: 174 year: 2019 ident: ref_50 article-title: Multi-grade brain tumor classification using deep CNN with extensive data augmentation publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.12.003 – volume: 2 start-page: 1 year: 2023 ident: ref_8 article-title: Accurate detection of brain tumor using optimized feature selection based on deep learning techniques publication-title: Multimedia Tools Appl. – volume: 6 start-page: 186 year: 2020 ident: ref_51 article-title: A Fully Automated Deep Learning Network for Brain Tumor Segmentation publication-title: Tomography doi: 10.18383/j.tom.2019.00026 – volume: 40 start-page: 440 year: 2020 ident: ref_61 article-title: Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.01.006 – volume: 5 start-page: 516 year: 2020 ident: ref_32 article-title: Threshold Segmentation and Watershed Segmentation Algorithm for Brain Tumor Detection using Support Vector Machine publication-title: Eur. J. Eng. Res. Sci. doi: 10.24018/ejers.2020.5.4.1902 – volume: 103 start-page: 1097 year: 2022 ident: ref_41 article-title: Detection of Brain Tumor Abnormality from MRI FLAIR Images using Machine Learning Techniques publication-title: J. Inst. Eng. (India) Ser. B doi: 10.1007/s40031-022-00721-x – volume: 7 start-page: 347 year: 2020 ident: ref_55 article-title: Deep learning based brain tumor classification using magnetic resonance imaging publication-title: J. Crit. Rev. – ident: ref_37 – ident: ref_15 doi: 10.3390/a16040176 – volume: 24 start-page: 100440 year: 2022 ident: ref_21 article-title: Brain tumor segmentation of MR images using SVM and fuzzy classifier in machine learning publication-title: Meas. Sensors doi: 10.1016/j.measen.2022.100440 – volume: 200 start-page: 105797 year: 2020 ident: ref_19 article-title: A novel extended Kalman filter with support vector machine based method for the automatic diagnosis and segmentation of brain tumors publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105797 – ident: ref_62 doi: 10.1109/ROBIO49542.2019.8961610 – ident: ref_11 doi: 10.1186/s12911-023-02114-6 – ident: ref_26 doi: 10.1117/12.2512557 – volume: 80 start-page: 28745 year: 2021 ident: ref_66 article-title: A data constrained approach for brain tumour detection using fused deep features and SVM publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-021-11098-2 – volume: 11 start-page: 374 year: 2020 ident: ref_43 article-title: A Framework for Brain Tumor Segmentation and Classification using Deep Learning Algorithm publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_14 doi: 10.3390/jimaging8080205 – volume: 28 start-page: 48 year: 2018 ident: ref_29 article-title: Development of computer-aided approach for brain tumor detection using random forest classifier publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22255 – volume: 74 start-page: 260 year: 2021 ident: ref_38 article-title: Detection and Classification of MRI Brain Tumour Using GLCM and Enhanced K-NN publication-title: Comptes Rendus Acad. Bulg. Des Sci. – volume: 13 start-page: 452 year: 2022 ident: ref_67 article-title: Brain Tumor Detection using MRI Images and Convolutional Neural Network publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 29 start-page: 353 year: 2019 ident: ref_39 article-title: Glioma brain tumor detection and segmentation using weighting random forest classifier with optimized ant colony features publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22331 – ident: ref_60 – ident: ref_65 doi: 10.3390/app12147282 – volume: 169 start-page: 175 year: 2019 ident: ref_46 article-title: Brain Tumour Detection Using Deep Learning Techniques publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. |
SSID | ssj0023338 |
Score | 2.536039 |
Snippet | Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6930 |
SubjectTerms | Accuracy Artificial intelligence Benchmarking Brain - diagnostic imaging Brain cancer Brain Neoplasms - diagnostic imaging Brain research brain tumor Brain tumors Datasets Deep Learning generative adversarial network Humans Identification Intelligence Liquors Machine learning Neural networks Patients PGGAN soft voting Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEF-kJz2I1q9oK6sIeglNsl_JMc-2VqHFQwu9hf2YrYXXvNKX9_87k-SFFxS8eAvZCWR3Z3Z-PzL5DWOfoo1Ra-9TAGNTaUWeWkS6qUI0Wmrlle27lpxf6LMr-eNaXe-0-qKasEEeeFi4IyMtRG18qUyUmXCICGV0AJXxUonYn75ZlW3J1Ei1BDKvQUdIIKk_WiOKUdT0b5Z9epH-P4_inVw0r5PcSTynz9jTETHyenjT5-wRtPvsyY6O4AvW1S2vNze9vmbg56tAPbnw6hjgno8Kqjd8gQkr8O-TBmfHfz7QZxo68OghWHJEsHxBTSP45eYOr4-h60u1Wt6XFvBv9QU_addw55bwkl2dnlx-PUvHdgqpV8J0qYQgtPSQAWShqiD3BoxDhhdMhTTRAFhXRC9cVsSgbRm9I7KYY8ZSJiAyecX22lULbxgXGlGlFMbYPMhQFs7jmZk5VVmd-8oWCfuyXebGj1rj1PJi2SDnoB1pph1J2MfJ9H4Q2Pib0YL2ajIgTez-BnpKM3pK8y9PSdhn2umGIhdfxtvxBwScEmlgNbVBMpdrBMwJO5hZYsT5-fDWV5ox4tcNpvkqFyUe2gn7MA3Tk1TF1sJqQzaKpDJlhjavB9eapiSMQmadi4SVM6ebzXk-0t7-6vXAc9JxE1K-_R-r9I49LjB-hhrHA7bXPWzgEHFX5973IfYb0eQrJw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKucAB8W6gIIOQ4BJI4ldyQChLWwpSKw5dqbfIsccL0jZbdrMS_HtmstloIypuUTyRbM-MZz558g1jb4INQWvnYgBjY2lFGlvMdGOF2WiulVO261pydq5Pp_LbpbrcY9sem_0Grm6EdtRParqcv__9688ndPiPhDgRsn9YYY6iqKXfLXa7uyaiCj45XCZkAmHYhlRoLD4KRR1j_7_n8k5gGhdN7kShk_vsXp8-8nKj7wdsD5qH7O4OqeAj1pYNL9ezjmzT87OFpwZd-HQEcM17OtUZn2D08vzrQMjZ8u9LurOh048-gjnHdJZPqIMEv1hf4fMRtF3dVsO7OgP-pTznx80Kruo5PGbTk-OLz6dx31shdkqYNpbghZYOEoDEFwWkzoCpEe55UyBmNAC2zoITdZIFr20eXE3IMcXwpYzHNOUJ228WDRwwLjSmmFIYY1MvfZ7VDg_QpFaF1akrbBaxd9ttrlxPPE79L-YVAhDSSDVoJGKvB9HrDdvGTUIT0tUgQATZ3YvFclb1_lYZaSFo43JlgkxEjUBChhqgME4qEXBSb0nTFRkWTsbZ_m8EXBIRYlWlQWSXasyeI3Y4kkT3c-Phra1UW-utMOYXqcjxBI_Yq2GYvqSStgYWa5JRxJspE5R5ujGtYUnCKITZqYhYPjK60ZrHI83PHx05eEqkbkLKZ_-f13N2J0PP2JQyHrL9drmGF5hetfXLznn-AuJ7I88 priority: 102 providerName: Scholars Portal |
Title | An Augmented Modulated Deep Learning Based Intelligent Predictive Model for Brain Tumor Detection Using GAN Ensemble |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37571713 https://www.proquest.com/docview/2849138088 https://www.proquest.com/docview/2850313408 https://pubmed.ncbi.nlm.nih.gov/PMC10422344 https://doaj.org/article/74aef67c857f403b8824fbee97c453f2 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdt-rI9jH03bRe0MdheTO1IsuyHMZw1aTdIKKOFvBlZOmeD1MkS5__fnWN7MRt7McY6g-TTffzs8-8Ye5-bPA9Daz0AbTxpROAZzHQ9hdloFCqrTNW1ZDoLb-7lt7maH7FZ8y8MlVU2PrFy1G5l6R35JbrROBARGsXn9S-PukbR19WmhYapWyu4TxXF2DE7QZes_B47GY1nt99bCCYQke35hQSC_cstZjeKmgF2olJF3v-3iz6IUd36yYOANHnKntSZJE_2qn_GjqB4zh4f8Au-YGVS8GS3qHg3HZ-uHPXqwrMrgDWvmVUXfISBzPGvLTdnyW839PmGHCHdBEuOmS0fUTMJfrd7wPMrKKsSroJXJQf8OpnxcbGFh2wJL9n9ZHz35car2yx4VgldehKcCKUFH8B3cQyB1aAzRH5OxwgfNYDJhrkVmT_MXWii3GYEIgOMZEo7zFhesV6xKuCUcRFitimF1iZw0kXDzKIv9TMVmzCwsRn22cfmMae25iCnVhjLFLEIaSRtNdJn71rR9Z54419CI9JVK0Bc2dWF1WaR1qaXamkgD7WNlM6lLzLEFDLPAGJtpRI5TuoDaToli8bJWFP_mIBLIm6sNNEI8oIQE-k-u-hIoiXa7nCzV9LaE2zTP_u2z962w3QnVbcVsNqRjCIKTemjzOv91mqXJLRCxB2IPos6m66z5u5I8fNHxRMeEL-bkPLs__M6Z4-GaBn7qsYL1is3O3iDmVaZDdixnms8RpPrQW1Kg-qtBR6nMvoNXOMsnA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEG8CBRYEgotV27vrtQ8VSkhKQpuoQqnUm7tejwNS6oTEEeLP8duYcRwTC8StNys7jnY9O4_Pnv2GsTeZybIgsNYB0MaRRniOwUzXUZiNhoGyypRdS0bjYHAuP1-oiz32a3sWhsoqtz6xdNTp3NI78kN0o5EnQjSKD4vvDnWNoq-r2xYapmqtkB6VFGPVwY4T-PkDIdzqaNhDfb_1_eP-5OPAqboMOFYJXTgSUhFICy6Am0YReFaDThD4pDpC9KQBTOJnViSun6WBCTObEIby0JErnWLAxv-9wfYlvUBpsf1uf3z2pYZ8AhHghs9IiMg9XGE2paj5YCMKls0C_g4JOzGxWa-5EwCP77I7VebKO5utdo_tQX6f3d7hM3zAik7OO-tpyfOZ8tE8pd5geNUDWPCKyXXKuxg4Uz6suUALfrakz0XkeOkmmHHMpHmXmlfwyfoKr3tQlCVjOS9LHPinzpj38xVcJTN4yM6v5YE_Yq18nsMTxkWA2a0UWhsvlWnoJxZ9t5uoyASejYzfZu-3jzm2Fec5td6YxYh9SCNxrZE2e12LLjZEH_8S6pKuagHi5i5_mC-ncWXqsZYGskDbUOlMuiJBDCOzBCDSViqR4aTekaZj8iA4GWuqgxC4JOLiijsaQaUXYOLeZgcNSbR82xze7pW48jyr-I-dtNmrepjupGq6HOZrklFE2SldlHm82Vr1koRWiPA90WZhY9M11twcyb99LXnJPeKTE1I-_f-8XrKbg8noND4djk-esVs-WsmmovKAtYrlGp5jllckLypT4uzyuq33Nx9tZo0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nj5NAFJ-sa2L0YPwWXXU0Gr2QAjPDwMGY1m7dum6zh92kNxyGRzXp0trSGP81_zrfA8qWaLztjTAPMsOb9wWP34-x17nJ8zC01gXQxpVG-K7BTNdVmI1GobLKVKwlJ5Pw6Fx-nqrpHvu9_ReG2iq3PrFy1NnC0jvyHrrR2BcRGkUvb9oiToejD8sfLjFI0ZfWLZ1GvUWO4ddPLN_W78dD1PWbIBgdnn08chuGAdcqoUtXQiZCacED8LI4Bt9q0CkWPZmOsXLSACYNcitSL8iz0ES5Tal-8tGJK51hsMb7XmPXtZCSaCP09LLYE1j71UhGQsReb415lCLawU78q2gC_g4GO9Gw26m5E_pGd9jtJmfl_XqT3WV7UNxjt3aQDO-zsl_w_mZWIXxm_GSRESsYHg0BlrzBcJ3xAYbMjI9bFNCSn67oQxG5XLoI5hxzaD4g2gp-trnA4yGUVbNYwavmBv6pP-GHxRou0jk8YOdX8rgfsv1iUcBjxkWIea0UWhs_k1kUpBa9tpeq2IS-jU3gsHfbx5zYBu2cSDfmCVY9pJGk1YjDXrWiyxri419CA9JVK0Co3NWJxWqWNEaeaGkgD7WNlM6lJ1KsXmSeAsTaSiVynNRb0nRCvgMnY03zCwQuiVC4kr7GctIPMWV32EFHEm3edoe3eyVpfM46ubQQh71sh-lK6qMrYLEhGUVgndJDmUf11mqXJLTC2t4XDos6m66z5u5I8f1bhUjuE5IcGsGT_8_rBbuBNpt8GU-On7KbARpJ3Up5wPbL1QaeYXpXps8rO-Ls61Ub7h9cXmQp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Augmented+Modulated+Deep+Learning+Based+Intelligent+Predictive+Model+for+Brain+Tumor+Detection+Using+GAN+Ensemble&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sahoo%2C+Saswati&rft.au=Mishra%2C+Sushruta&rft.au=Panda%2C+Baidyanath&rft.au=Bhoi%2C+Akash+Kumar&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=15&rft.spage=6930&rft_id=info:doi/10.3390%2Fs23156930&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |