Prototype Learning for Medical Time Series Classification via Human–Machine Collaboration

Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are widely used in the field of time series modeling, deciphering the core principles that govern the models’ outputs remains a significant challen...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 8; p. 2655
Main Authors Xie, Jia, Wang, Zhu, Yu, Zhiwen, Ding, Yasan, Guo, Bin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2024
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s24082655

Cover

Abstract Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are widely used in the field of time series modeling, deciphering the core principles that govern the models’ outputs remains a significant challenge. This is crucial for fostering the development of trusted models and facilitating domain expert validation, thereby empowering users and domain experts to utilize them confidently in high-risk decision-making contexts (e.g., decision-support systems in healthcare). In this work, we put forward a deep prototype learning model that supports interpretable and manipulable modeling and classification of medical time series (i.e., ECG signal). Specifically, we first optimize the representation of single heartbeat data by employing a bidirectional long short-term memory and attention mechanism, and then construct prototypes during the training phase. The final classification outcomes (i.e., normal sinus rhythm, atrial fibrillation, and other rhythm) are determined by comparing the input with the obtained prototypes. Moreover, the proposed model presents a human–machine collaboration mechanism, allowing domain experts to refine the prototypes by integrating their expertise to further enhance the model’s performance (contrary to the human-in-the-loop paradigm, where humans primarily act as supervisors or correctors, intervening when required, our approach focuses on a human–machine collaboration, wherein both parties engage as partners, enabling more fluid and integrated interactions). The experimental outcomes presented herein delineate that, within the realm of binary classification tasks—specifically distinguishing between normal sinus rhythm and atrial fibrillation—our proposed model, albeit registering marginally lower performance in comparison to certain established baseline models such as Convolutional Neural Networks (CNNs) and bidirectional long short-term memory with attention mechanisms (Bi-LSTMAttns), evidently surpasses other contemporary state-of-the-art prototype baseline models. Moreover, it demonstrates significantly enhanced performance relative to these prototype baseline models in the context of triple classification tasks, which encompass normal sinus rhythm, atrial fibrillation, and other rhythm classifications. The proposed model manifests a commendable prediction accuracy of 0.8414, coupled with macro precision, recall, and F1-score metrics of 0.8449, 0.8224, and 0.8235, respectively, achieving both high classification accuracy as well as good interpretability.
AbstractList Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are widely used in the field of time series modeling, deciphering the core principles that govern the models' outputs remains a significant challenge. This is crucial for fostering the development of trusted models and facilitating domain expert validation, thereby empowering users and domain experts to utilize them confidently in high-risk decision-making contexts (e.g., decision-support systems in healthcare). In this work, we put forward a deep prototype learning model that supports interpretable and manipulable modeling and classification of medical time series (i.e., ECG signal). Specifically, we first optimize the representation of single heartbeat data by employing a bidirectional long short-term memory and attention mechanism, and then construct prototypes during the training phase. The final classification outcomes (i.e., normal sinus rhythm, atrial fibrillation, and other rhythm) are determined by comparing the input with the obtained prototypes. Moreover, the proposed model presents a human-machine collaboration mechanism, allowing domain experts to refine the prototypes by integrating their expertise to further enhance the model's performance (contrary to the human-in-the-loop paradigm, where humans primarily act as supervisors or correctors, intervening when required, our approach focuses on a human-machine collaboration, wherein both parties engage as partners, enabling more fluid and integrated interactions). The experimental outcomes presented herein delineate that, within the realm of binary classification tasks-specifically distinguishing between normal sinus rhythm and atrial fibrillation-our proposed model, albeit registering marginally lower performance in comparison to certain established baseline models such as Convolutional Neural Networks (CNNs) and bidirectional long short-term memory with attention mechanisms (Bi-LSTMAttns), evidently surpasses other contemporary state-of-the-art prototype baseline models. Moreover, it demonstrates significantly enhanced performance relative to these prototype baseline models in the context of triple classification tasks, which encompass normal sinus rhythm, atrial fibrillation, and other rhythm classifications. The proposed model manifests a commendable prediction accuracy of 0.8414, coupled with macro precision, recall, and F1-score metrics of 0.8449, 0.8224, and 0.8235, respectively, achieving both high classification accuracy as well as good interpretability.Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are widely used in the field of time series modeling, deciphering the core principles that govern the models' outputs remains a significant challenge. This is crucial for fostering the development of trusted models and facilitating domain expert validation, thereby empowering users and domain experts to utilize them confidently in high-risk decision-making contexts (e.g., decision-support systems in healthcare). In this work, we put forward a deep prototype learning model that supports interpretable and manipulable modeling and classification of medical time series (i.e., ECG signal). Specifically, we first optimize the representation of single heartbeat data by employing a bidirectional long short-term memory and attention mechanism, and then construct prototypes during the training phase. The final classification outcomes (i.e., normal sinus rhythm, atrial fibrillation, and other rhythm) are determined by comparing the input with the obtained prototypes. Moreover, the proposed model presents a human-machine collaboration mechanism, allowing domain experts to refine the prototypes by integrating their expertise to further enhance the model's performance (contrary to the human-in-the-loop paradigm, where humans primarily act as supervisors or correctors, intervening when required, our approach focuses on a human-machine collaboration, wherein both parties engage as partners, enabling more fluid and integrated interactions). The experimental outcomes presented herein delineate that, within the realm of binary classification tasks-specifically distinguishing between normal sinus rhythm and atrial fibrillation-our proposed model, albeit registering marginally lower performance in comparison to certain established baseline models such as Convolutional Neural Networks (CNNs) and bidirectional long short-term memory with attention mechanisms (Bi-LSTMAttns), evidently surpasses other contemporary state-of-the-art prototype baseline models. Moreover, it demonstrates significantly enhanced performance relative to these prototype baseline models in the context of triple classification tasks, which encompass normal sinus rhythm, atrial fibrillation, and other rhythm classifications. The proposed model manifests a commendable prediction accuracy of 0.8414, coupled with macro precision, recall, and F1-score metrics of 0.8449, 0.8224, and 0.8235, respectively, achieving both high classification accuracy as well as good interpretability.
Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are widely used in the field of time series modeling, deciphering the core principles that govern the models’ outputs remains a significant challenge. This is crucial for fostering the development of trusted models and facilitating domain expert validation, thereby empowering users and domain experts to utilize them confidently in high-risk decision-making contexts (e.g., decision-support systems in healthcare). In this work, we put forward a deep prototype learning model that supports interpretable and manipulable modeling and classification of medical time series (i.e., ECG signal). Specifically, we first optimize the representation of single heartbeat data by employing a bidirectional long short-term memory and attention mechanism, and then construct prototypes during the training phase. The final classification outcomes (i.e., normal sinus rhythm, atrial fibrillation, and other rhythm) are determined by comparing the input with the obtained prototypes. Moreover, the proposed model presents a human–machine collaboration mechanism, allowing domain experts to refine the prototypes by integrating their expertise to further enhance the model’s performance (contrary to the human-in-the-loop paradigm, where humans primarily act as supervisors or correctors, intervening when required, our approach focuses on a human–machine collaboration, wherein both parties engage as partners, enabling more fluid and integrated interactions). The experimental outcomes presented herein delineate that, within the realm of binary classification tasks—specifically distinguishing between normal sinus rhythm and atrial fibrillation—our proposed model, albeit registering marginally lower performance in comparison to certain established baseline models such as Convolutional Neural Networks (CNNs) and bidirectional long short-term memory with attention mechanisms (Bi-LSTMAttns), evidently surpasses other contemporary state-of-the-art prototype baseline models. Moreover, it demonstrates significantly enhanced performance relative to these prototype baseline models in the context of triple classification tasks, which encompass normal sinus rhythm, atrial fibrillation, and other rhythm classifications. The proposed model manifests a commendable prediction accuracy of 0.8414, coupled with macro precision, recall, and F1-score metrics of 0.8449, 0.8224, and 0.8235, respectively, achieving both high classification accuracy as well as good interpretability.
Audience Academic
Author Xie, Jia
Wang, Zhu
Guo, Bin
Yu, Zhiwen
Ding, Yasan
AuthorAffiliation School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; xiejia@mail.nwpu.edu.cn (J.X.); zhiwenyu@nwpu.edu.cn (Z.Y.); dingyasan@163.com (Y.D.); guob@nwpu.edu.cn (B.G.)
AuthorAffiliation_xml – name: School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; xiejia@mail.nwpu.edu.cn (J.X.); zhiwenyu@nwpu.edu.cn (Z.Y.); dingyasan@163.com (Y.D.); guob@nwpu.edu.cn (B.G.)
Author_xml – sequence: 1
  givenname: Jia
  surname: Xie
  fullname: Xie, Jia
– sequence: 2
  givenname: Zhu
  surname: Wang
  fullname: Wang, Zhu
– sequence: 3
  givenname: Zhiwen
  surname: Yu
  fullname: Yu, Zhiwen
– sequence: 4
  givenname: Yasan
  surname: Ding
  fullname: Ding, Yasan
– sequence: 5
  givenname: Bin
  surname: Guo
  fullname: Guo, Bin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38676273$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1uEzEUhUeoiP7AghdAI7GhSGntsT32rFAVAa2UCiTKioV145_U0Yyd2jNF2fUdeEOeBCcpoamKvBjrzudzfI_vYbHngzdF8RqjE0IadJoqikRVM_asOMC0oiNRVWjvwX6_OExpjlBFCBEvin0ial5XnBwUP77G0Id-uTDlxED0zs9KG2J5abRT0JZXrjPlNxOdSeW4hZSczfXeBV_eOijPhw7877tfl6CunTflOLQtTENcEy-L5xbaZF7df4-K758-Xo3PR5Mvny_GZ5ORYoT3I6o4KES1qIRlTFtmcMNAw9RYrDXHNVM1IUCgoUog3HBoVjvbKM6E4oIcFRcbXR1gLhfRdRCXMoCT60KIMwmxd6o1MltwrDRDShPKVQOWGFRnX1FnU26y1vuN1uAXsPwJbbsVxEiu0pbbtDP8YQMvhmlntDK-j9Du3GD3j3fXchZuJcaI0WyYFd7dK8RwM5jUy84lZXKI3oQhSYIob2h-LJLRt4_QeRiiz8GuKcSwoOIfNYPcrvM2ZGO1EpVnvCGM8QqvtE6eoPLSpnMqD5d1ub5z4M3DTrct_h2kDJxuABVDStFYqVy_noKs7Nonwzt-dOL_Qf8Bhwvl-A
CitedBy_id crossref_primary_10_1038_s41598_024_63378_0
crossref_primary_10_3390_s24196388
Cites_doi 10.1609/aaai.v32i1.11501
10.18653/v1/D19-1002
10.1016/j.cmpb.2021.106006
10.1109/BIBM49941.2020.9313406
10.1038/s41598-021-92997-0
10.1109/DSAA.2015.7344872
10.1109/TIE.2018.2864702
10.1016/j.bspc.2011.10.001
10.1007/978-3-030-59410-7_50
10.1016/j.patcog.2022.109170
10.1109/CVPR46437.2021.01517
10.1155/2021/9915315
10.1016/S2213-2600(18)30300-X
10.1145/3359786
10.1145/3307339.3342159
10.1016/j.dsp.2017.10.011
10.24963/ijcai.2019/932
10.1145/3394486.3403230
10.1155/2022/9475162
10.1109/TPAMI.2013.72
10.1609/aaai.v31i1.11114
10.1016/j.jbi.2016.11.006
10.1016/j.engappai.2014.08.011
10.1109/ACCESS.2022.3212120
10.3390/diagnostics13010087
10.3390/s21041059
10.1109/ICHI.2018.00092
10.1016/j.artmed.2020.101856
10.1145/3447548.3467346
10.1016/j.bspc.2020.102194
10.2196/18418
10.1007/s11704-015-4478-2
10.1016/j.knosys.2020.105907
10.1109/BigData.2017.8258216
10.1016/j.patcog.2017.09.020
10.1038/s42256-019-0048-x
10.1016/j.chaos.2020.109864
10.1111/anzs.12222
10.20944/preprints202209.0404.v1
10.1136/hrt.2006.110791
10.1145/3531146.3533153
10.1016/j.jsr.2015.06.007
10.1109/MCI.2021.3129957
10.1016/j.jacc.2014.02.555
10.1145/3292500.3330908
10.1007/978-3-662-55608-5_2
10.1609/aaai.v34i02.5496
10.1016/j.measurement.2018.07.094
10.1007/s10618-016-0483-9
10.1007/s10489-021-02696-6
10.1145/3132847.3132980
10.1145/1557019.1557122
10.3390/s20041020
10.3390/electronics8080876
10.1007/s00521-022-06949-4
10.1609/aaai.v34i04.6165
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s24082655
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals - DOAJ (NTUSG)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_28f71cd50cd347c9af3e068f5861957e
10.3390/s24082655
PMC11054195
A793557213
38676273
10_3390_s24082655
Genre Journal Article
GrantInformation_xml – fundername: Key Research and Development Program of Shandong Province
  grantid: 2022CXGC020510
– fundername: National Natural Science Foundation of China
  grantid: 61960206008, 62032018, 62072375, 62102322
– fundername: Natural Science Basic Research Plan in Shaanxi Province of China
  grantid: 2022JQ-175
– fundername: Scientific Research Plan of Shaanxi Education Department
  grantid: 22JK0303
– fundername: National Natural Science Foundation of China
  grantid: 61960206008; 62032018; 62072375; 62102322
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c537t-4c7ac04d828f55df5e195adabef1dd7165c633a3a94c80197a994c8f9c758c783
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Oct 14 19:04:44 EDT 2025
Sun Oct 26 04:04:26 EDT 2025
Tue Sep 30 17:09:15 EDT 2025
Fri Sep 05 10:57:28 EDT 2025
Tue Oct 07 07:19:08 EDT 2025
Mon Oct 20 22:55:31 EDT 2025
Mon Oct 20 17:00:59 EDT 2025
Mon Jul 21 05:45:50 EDT 2025
Thu Oct 16 04:42:52 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords ECG
prototype learning
human–machine collaboration
attention mechanisms
time series classification
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-4c7ac04d828f55df5e195adabef1dd7165c633a3a94c80197a994c8f9c758c783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24082655
PMID 38676273
PQID 3047051848
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_28f71cd50cd347c9af3e068f5861957e
unpaywall_primary_10_3390_s24082655
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11054195
proquest_miscellaneous_3047946763
proquest_journals_3047051848
gale_infotracmisc_A793557213
gale_infotracacademiconefile_A793557213
pubmed_primary_38676273
crossref_citationtrail_10_3390_s24082655
crossref_primary_10_3390_s24082655
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zheng (ref_17) 2016; 10
Li (ref_37) 2020; 197
ref_14
Kim (ref_28) 2020; 22
ref_58
ref_56
ref_11
ref_53
Wan (ref_36) 2021; 2021
ref_19
Nattel (ref_68) 2014; 63
ref_16
Arik (ref_32) 2020; 21
ref_15
ref_59
Wieczorek (ref_51) 2022; 34
ref_61
ref_60
Che (ref_4) 2016; 2016
Jeong (ref_54) 2021; 11
ref_25
ref_24
Dissanayake (ref_44) 2021; 2021
ref_66
ref_21
ref_65
ref_20
ref_64
ref_63
ref_62
Han (ref_12) 2015; 37
ref_29
ref_27
ref_26
Jovic (ref_45) 2012; 7
Li (ref_10) 2015; 54
Du (ref_30) 2019; 63
ref_71
Montavon (ref_22) 2018; 73
Rai (ref_55) 2022; 52
ref_35
ref_34
ref_33
Zhao (ref_39) 2018; 74
Meyer (ref_5) 2018; 6
Chimmula (ref_50) 2020; 135
ref_38
Lip (ref_69) 2007; 93
Soni (ref_43) 2011; 17
Bowden (ref_2) 2017; 59
Liu (ref_6) 2018; 130
Ullah (ref_52) 2022; 2022
ref_47
Liu (ref_18) 2018; 66
Zhang (ref_57) 2020; 106
Bagnall (ref_13) 2017; 31
Ghods (ref_31) 2022; 17
Rudin (ref_23) 2019; 1
ref_41
ref_40
Tripathi (ref_46) 2022; 10
Bordignon (ref_70) 2012; 5
ref_1
Baydogan (ref_42) 2013; 35
ref_49
Huang (ref_67) 2023; 135
ref_48
ref_9
ref_8
Zhao (ref_3) 2017; 65
ref_7
References_xml – ident: ref_21
  doi: 10.1609/aaai.v32i1.11501
– ident: ref_26
  doi: 10.18653/v1/D19-1002
– ident: ref_58
  doi: 10.1016/j.cmpb.2021.106006
– ident: ref_9
  doi: 10.1109/BIBM49941.2020.9313406
– volume: 11
  start-page: 13539
  year: 2021
  ident: ref_54
  article-title: Combined deep CNN–LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92997-0
– ident: ref_16
  doi: 10.1109/DSAA.2015.7344872
– ident: ref_65
– volume: 66
  start-page: 4788
  year: 2018
  ident: ref_18
  article-title: Time series classification with multivariate convolutional neural network
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2864702
– volume: 7
  start-page: 245
  year: 2012
  ident: ref_45
  article-title: Evaluating and comparing performance of feature combinations of heart rate variability measures for cardiac rhythm classification
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2011.10.001
– ident: ref_1
– ident: ref_41
  doi: 10.1007/978-3-030-59410-7_50
– volume: 135
  start-page: 109170
  year: 2023
  ident: ref_67
  article-title: Sapenet: Self-attention based prototype enhancement network for few-shot learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109170
– ident: ref_66
  doi: 10.1109/CVPR46437.2021.01517
– volume: 2021
  start-page: 9915315
  year: 2021
  ident: ref_36
  article-title: Multivariate Time Series Data Clustering Method Based on Dynamic Time Warping and Affinity Propagation
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2021/9915315
– volume: 6
  start-page: 905
  year: 2018
  ident: ref_5
  article-title: Machine learning for real-time prediction of complications in critical care: A retrospective study
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(18)30300-X
– volume: 63
  start-page: 68
  year: 2019
  ident: ref_30
  article-title: Techniques for interpretable machine learning
  publication-title: Commun. ACM
  doi: 10.1145/3359786
– ident: ref_60
  doi: 10.1145/3307339.3342159
– volume: 73
  start-page: 1
  year: 2018
  ident: ref_22
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2017.10.011
– ident: ref_20
  doi: 10.24963/ijcai.2019/932
– ident: ref_27
– ident: ref_63
  doi: 10.1145/3394486.3403230
– volume: 2022
  start-page: 9475162
  year: 2022
  ident: ref_52
  article-title: An end-to-end cardiac arrhythmia recognition method with an effective densenet model on imbalanced datasets using ecg signal
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/9475162
– volume: 35
  start-page: 2796
  year: 2013
  ident: ref_42
  article-title: A bag-of-features framework to classify time series
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.72
– ident: ref_40
  doi: 10.1609/aaai.v31i1.11114
– ident: ref_62
– volume: 65
  start-page: 105
  year: 2017
  ident: ref_3
  article-title: Learning from heterogeneous temporal data in electronic health records
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2016.11.006
– volume: 37
  start-page: 250
  year: 2015
  ident: ref_12
  article-title: Joint mutual information-based input variable selection for multivariate time series modeling
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.08.011
– volume: 10
  start-page: 108710
  year: 2022
  ident: ref_46
  article-title: Ensemble computational intelligent for insomnia sleep stage detection via the sleep ECG signal
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3212120
– volume: 2021
  start-page: 5581806
  year: 2021
  ident: ref_44
  article-title: Comparative study on heart disease prediction using feature selection techniques on classification algorithms
  publication-title: Appl. Comput. Intell. Soft Comput.
– ident: ref_53
  doi: 10.3390/diagnostics13010087
– ident: ref_14
  doi: 10.3390/s21041059
– ident: ref_71
  doi: 10.1109/ICHI.2018.00092
– volume: 106
  start-page: 101856
  year: 2020
  ident: ref_57
  article-title: ECG-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101856
– ident: ref_61
  doi: 10.1145/3447548.3467346
– ident: ref_56
  doi: 10.1016/j.bspc.2020.102194
– ident: ref_24
– volume: 22
  start-page: e18418
  year: 2020
  ident: ref_28
  article-title: Limitations of deep learning attention mechanisms in clinical research: Empirical case study based on the Korean diabetic disease setting
  publication-title: J. Med. Internet Res.
  doi: 10.2196/18418
– ident: ref_34
– ident: ref_47
– volume: 10
  start-page: 96
  year: 2016
  ident: ref_17
  article-title: Exploiting multi-channels deep convolutional neural networks for multivariate time series classification
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-015-4478-2
– volume: 197
  start-page: 105907
  year: 2020
  ident: ref_37
  article-title: Fuzzy clustering based on feature weights for multivariate time series
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105907
– ident: ref_11
  doi: 10.1109/BigData.2017.8258216
– volume: 74
  start-page: 171
  year: 2018
  ident: ref_39
  article-title: shapedtw: Shape dynamic time warping
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.020
– volume: 1
  start-page: 206
  year: 2019
  ident: ref_23
  article-title: Stop explaining black box machine learning models for high stakes decisions and use inter pretable models instead
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0048-x
– volume: 135
  start-page: 109864
  year: 2020
  ident: ref_50
  article-title: Time series forecasting of COVID-19 transmission in Canada using LSTM networks
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109864
– volume: 59
  start-page: 413
  year: 2017
  ident: ref_2
  article-title: Using multivariate time series methods to estimate location and climate change effects on temperature readings employed in electricity demand simulation
  publication-title: Aust. N. Z. J. Stat.
  doi: 10.1111/anzs.12222
– ident: ref_48
  doi: 10.20944/preprints202209.0404.v1
– volume: 93
  start-page: 542
  year: 2007
  ident: ref_69
  article-title: Atrial fibrillation—the growing epidemic
  publication-title: Heart
  doi: 10.1136/hrt.2006.110791
– ident: ref_29
  doi: 10.1145/3531146.3533153
– volume: 2016
  start-page: 371
  year: 2016
  ident: ref_4
  article-title: Interpretable deep models for ICU outcome prediction
  publication-title: AMIA Annu. Symp. Proc.
– volume: 17
  start-page: 43
  year: 2011
  ident: ref_43
  article-title: Predictive data mining for medical diagnosis: An overview of heart disease prediction
  publication-title: Int. J. Comput. Appl.
– volume: 54
  start-page: 61.e29
  year: 2015
  ident: ref_10
  article-title: Drunk driving detection based on classification of multivariate time series
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2015.06.007
– volume: 17
  start-page: 34
  year: 2022
  ident: ref_31
  article-title: PIP: Pictorial interpretable prototype learning for time series classification
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2021.3129957
– volume: 63
  start-page: 2335
  year: 2014
  ident: ref_68
  article-title: Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2014.02.555
– ident: ref_19
  doi: 10.1145/3292500.3330908
– ident: ref_7
  doi: 10.1007/978-3-662-55608-5_2
– ident: ref_49
  doi: 10.1609/aaai.v34i02.5496
– volume: 130
  start-page: 290
  year: 2018
  ident: ref_6
  article-title: Scale-varying dynamic time warping based on hesitant fuzzy sets for multivariate time series classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.07.094
– volume: 31
  start-page: 606
  year: 2017
  ident: ref_13
  article-title: The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-016-0483-9
– ident: ref_25
– ident: ref_33
– volume: 52
  start-page: 5366
  year: 2022
  ident: ref_55
  article-title: Hybrid CNN-LSTM deep learning model and ensemble technique for automatic detection of myocardial infarction using big ECG data
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02696-6
– ident: ref_35
  doi: 10.1145/3132847.3132980
– ident: ref_38
  doi: 10.1145/1557019.1557122
– ident: ref_15
– ident: ref_59
  doi: 10.3390/s20041020
– volume: 5
  start-page: 467
  year: 2012
  ident: ref_70
  article-title: Atrial fibrillation associated with heart failure, stroke and mortality
  publication-title: J. Atr. Fibrillation
– ident: ref_8
  doi: 10.3390/electronics8080876
– volume: 34
  start-page: 13305
  year: 2022
  ident: ref_51
  article-title: Recurrent neural network model for high-speed train vibration prediction from time series
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-06949-4
– ident: ref_64
  doi: 10.1609/aaai.v34i04.6165
– volume: 21
  start-page: 8691
  year: 2020
  ident: ref_32
  article-title: Protoattend: Attention-based prototypical learning
  publication-title: J. Mach. Learn. Res.
SSID ssj0023338
Score 2.4463387
Snippet Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2655
SubjectTerms Accuracy
Algorithms
Atrial fibrillation
Atrial Fibrillation - diagnosis
Atrial Fibrillation - physiopathology
attention mechanisms
Classification
Collaboration
Decision making
Deep Learning
ECG
Electrocardiogram
Electrocardiography
Electrocardiography - methods
Electronic health records
Heart Rate - physiology
Humans
human–machine collaboration
Methods
Neural networks
Neural Networks, Computer
prototype learning
Prototypes
Signal Processing, Computer-Assisted
Subject specialists
Time series
time series classification
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - DOAJ (NTUSG)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXoADojxTSmUeElyiZmM7do5tRVUhFXGgUiUOluPYUGmVrbq7IG78B_4hv6QzjjdKeIgLtyieRPHM2DOfM_4M8NKLwhYNWgBza5sLV8m8aVSb18oGTDekK-LSxem76uRMvD2X56OjvqgmrKcH7hW3X-qgZq6VhWu5UK62gfui0kFqTP2l8jT7FrregKkEtTgir55HiCOo318SkVdZ0X6-UfSJJP2_T8WjWPRrneTNdXdpv3218_koCB3fhTspe2QH_Vdvww3f3YPbI07B-_Dx_dVitaCVVZa4Uz8xTExZ-iPDaM8HozUxv2TxREyqFYrmYV8uLIuL-j-__ziNRZaeHY395AGcHb_5cHSSpxMUcie5WqHulXWFaBFWBSnbID3qzLa28WHWtgiVpKs4t9zWwmGoQgPVdBVqhzDCKc0fwla36PxjYDM0QklPlpUVTcNRxFsbPE7cms9EmcHrjWaNS_TidMrF3CDMICOYwQgZPB9EL3tOjT8JHZJ5BgGiwY430DlMcg7zL-fI4BUZ19BgxY9xNu05wC4R7ZU5UEQvjyCYZ7A7kcRB5qbNG_cwaZAvDf2xxDlNC53Bs6GZnqTCtc4v1r1MjcGowlc86r1p6BLXeB_Txwz0xM8mfZ62dBefIwU4Jm1SYBczeDG45N91ufM_dPkEbpWY0PVVS7uwtbpa-6eYkK2avTj2rgHFlzS8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IN4ECjIPCS5Rk9jO44BQW7WqkLqqEJUqcYgc2ymVVsmyDxA3_gP_kF_CjOOELK_bKp6sPJkZe2Y8_gbghRWRiiqUAPrWKhQ6lWFVZSYsMlWjuyF15FIXJ9P0-Ey8PZfnWzDt78JQWWW_JrqF2rSacuS7dDyECpSL_M38U0hdo-h0tW-hoXxrBfPaQYxdge2EkLEmsL1_OD19N4RgHCOyDl-IY7C_uySArySle36jXcmB9_-5RI_2qN_rJ6-um7n6-kXNZqPN6egm3PBeJdvr1OAWbNnmNlwfYQ3egQ-ni3bVUsaVeUzVC4YOK_MnNYzugjDKldklc50yqYbIiY19vlTMJft_fPt-4oovLTsY689dODs6fH9wHPrOCqGWPFuhTDKlI2Ew3KqlNLW0cSGVUZWtY2MwhJI65VxxVQiNWxgKrqBfdaExvNBZzu_BpGkb-wBYHGuT0JtJqkRVcSSxStUWF_ScxyIJ4FX_ZUvtYcep-8WsxPCDhFAOQgjg2UA677A2_ka0T-IZCAge2z1oFxelt7YS2cpwXjLShotMF6rmNkqR1xzjRZnZAF6ScEsyYpyMVv4uArJEcFjlXkaw8xgc8wB2NijR-PTmcK8epTf-ZflLVQN4OgzTm1TQ1th23dEUuEml-Bf3O20aWOI5Pke3MoB8Q882eN4caS4_OmhwdOakQBYDeD6o5L-_5cP_z_4RXEvQhevqlHZgslqs7WN0wVbVE29XPwFRejLZ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAcyrM0UJB5SHBJ87AdJye0VFQVUqseWKmIQ3Acp6xYJavdbBGc-A_8Q34JY8cbbQpISNyieBxlPON52OPPAM81C2VYoAQwtpY-Uwn3i0KUfiZkheEGV6Fdujg-SY4m7O0ZP3P3nC5dWSWm4lNrpM0pLB89WBjELEiDOOE8mJfVqwu3lBQJi5eHefNV2Eo4BuMj2JqcnI7f2zNFrnOHJ0QxuQ-WBtDLfGbghSxY_-8mecMnXa6XvLaq5_LrFzmbbTijw5vwcc1GV4PyeX_VFvvq2yWEx__g8xZsu0CVjDvNug1XdH0HbmzAF96FD6eLpm3MIi5xMK3nBGNg4jZ_iDleQszym14Se_mmKUuymkAuppLY_YOf338c23pOTQ42VfIeTA7fvDs48t1lDb7iVLQoZiFVyErM4CrOy4rrKOOylIWuorLErIyrhFJJZcYUekXUhcw8VZnCjEWJlO7AqG5qvQskilQZm55xIllRUCTRUlYafURKcaw8eLkWXq4ckrm5UGOWY0Zj5Jz3cvbgaU867-A7_kT02mhAT2AQt-2LZnGeuwmcI1sC_4uHqqRMqExWVIcJ8ppiCsqF9uCF0Z_c2AX8GSXd8QZkySBs5WNhkOwx36Ye7A0ocT6rYfNaA3NnT5a52RxF85my1IMnfbPpaWrkat2sOpoM_V6Cn7jfKWzPEk3xPUaqHqQDVR7wPGypp58s2jjGh5whix4867X-72P54J-oHsL1GIPDrgJqD0btYqUfYXDXFo_dBP4Fo9xKMQ
  priority: 102
  providerName: Unpaywall
Title Prototype Learning for Medical Time Series Classification via Human–Machine Collaboration
URI https://www.ncbi.nlm.nih.gov/pubmed/38676273
https://www.proquest.com/docview/3047051848
https://www.proquest.com/docview/3047946763
https://pubmed.ncbi.nlm.nih.gov/PMC11054195
https://www.mdpi.com/1424-8220/24/8/2655/pdf?version=1713779198
https://doaj.org/article/28f71cd50cd347c9af3e068f5861957e
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wAcEG8CS2UeElwCaWzHyQGh7mrLCqlVhahUxCFyHGdZqUqWPoC98R_4h_wSZpw0amCRuESRPY4ynrFnxo9vAJ5ZEeggQwmgb619YSLpZ5nK_UTpAt0NaQK3dDEaRydT8W4mZzuwybHZdODy0tCO8klNF_OX379cvMEB_5oiTgzZXy0JpiuMpNyFfXxNKIPDSLSbCSHnLqE13eny0R4GNcBQt2nHLDn0_r_n6C0j9ecByivr8lxffNPz-ZZ1Gt6A641byQa1HtyEHVvegmtbYIO34dNkUa0qWnJlDajqKUOPlTVbNYwugzBaLLNL5lJl0iEiJzf29Uwzt9r_68fPkTt9adnRtgLdgenw-MPRid-kVvCN5GqFQlHaBCLHeKuQMi-k7SdS5zqzRT_PMYaSJuJcc50IgzYMJZfQW5EYjC-Mivld2Cur0t4H1u-bPKSWYaRFlnEksVoXFmf0mGOfe_Bi07OpaXDHKf3FPMX4g4SQtkLw4ElLel6DbVxGdEjiaQkIH9sVVIvTtBluKbKl8L9kYHIulEl0wW0QIa8xBoxSWQ-ek3BT0iv8GaObywjIEuFhpQNFuPMYHXMPDjqUOPpMt3qjHulGeVPaysTJLhaxB4_bampJJ9pKW61rmgStVISfuFdrU8sSj7Ec_UoP4o6edXju1pRnnx02OHpzUiCLHjxtVfLfffngfzr8IVwN0ZOrjysdwN5qsbaP0BNbZT3YVTOFz3j4tgf7h8fjyfueW9XouRGIZdPxZPDxN6fsNxc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUwcFTKoXBA7AQKmE1wiZrEdpYDQqVQvdK-ikMrPakH4zhOqfSUPN5C1Rv_wH_wUXwJM9max3brLYonkcez2-MZgOdWeNpLkQLoW2tXmFC6aRplbhLpHN0Nabxq62K4Hw4OxYeRHK3Aj_YuDKVVtjqxUtRZaWiPfIOOh5CBYhG_mXxxqWsUna62LTRqtti1Z6cYss1e77xD-r4Igu33B1sDt-kq4BrJoznOJ9LGExmGGrmUWS6tn0id6dTmfpZh-CBNyLnmOhEG1TdOOqGnPDHoWpso5vjfS3BZcNQlKD_R6DzA4xjv1dWLOE-8jRmVDwtCukXYs3lVa4A_DUDPAv6enbm2KCb67FSPxz3Tt30drjU-K9usmewGrNjiJlztVTK8BUcfp-W8pP1c1lRsPWboDrPmHIjRTRNGO3F2xqo-nJShVDEF-3qiWXWU8PPb92GV2mnZVp87b8PhhazwHVgtysLeA-b7JgvoyyDUIk05glitc4vmIua-CBx41a6sMk1Rc-qtMVYY3BARVEcEB552oJO6ksffgN4SeToAKr5dvSinx6qRZYVoRTgv6ZmMi8gkOufWCxHXGKNRGVkHXhJxFakInIzRzU0HRImKbanNiIraY-jNHVhfgkTRNsvDLXuoRrXM1LkgOPCkG6YvKV2usOWihknQBIb4i7s1N3Uo8Rjfo9PqQLzEZ0s4L48UJ5-rwuPoKkqBKDrwrGPJf6_l_f_P_jGsDQ6Ge2pvZ3_3AVwJ0FmsM6LWYXU-XdiH6OzN00eVhDH4dNEi_Qskh2mU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUwcFSKxHJA7AQKmE1wiV5eHMfJAaHS8tRSWvVApSf1YBzHKZWeksdbqHrjH_gbPocvYSZbE7Zbb1E8iTye3R7PADy3gae9BCmAvrV2AxMKN0lk6sZSZ-huCOOVWxe7e-HWQfB-LMYr8KO5C0NplY1OLBV1WhjaIx_Q8RAyUBREg6xOi9jfHL2ZfnGpgxSdtDbtNCoW2bGnJxi-zV9vbyKtX_j-6N3HjS237jDgGsHlAucmtfGCFMOOTIg0E3YYC53qxGbDNMVQQpiQc811HBhU5YhATE9ZbNDNNjLi-N8LcFFyHlM6oRyfBXscY7-qkhEOeoM5lRLzQ7pR2LF_ZZuAP41Bxxr-nql5eZlP9emJnkw6ZnB0Ha7V_itbrxjuBqzY_CZc7VQ1vAWH-7NiUdDeLqurtx4xdI1ZfSbE6NYJo105O2dlT07KVioZhH091qw8Vvj57ftumeZp2UaXU2_Dwbms8B1YzYvc3gM2HJrUpy_9UAdJwhHEap1ZNB0RHwa-A6-alVWmLnBOfTYmCgMdIoJqieDA0xZ0WlX1-BvQWyJPC0CFuMsXxexI1XKtEC2J8xKeSXkgTawzbr0QcY0wMhXSOvCSiKtIXeBkjK5vPSBKVHhLrUsqcI9hOHdgrQeJYm76ww17qFrNzNWZUDjwpB2mLyl1LrfFsoKJ0RyG-Iu7FTe1KPEI36MD60DU47Mezv2R_PhzWYQc3UYRIIoOPGtZ8t9ref__s38Ml1CY1YftvZ0HcMVHv7FKjlqD1cVsaR-i37dIHpUCxuDTeUv0LxS2bdc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAcyrM0UJB5SHBJ87AdJye0VFQVUqseWKmIQ3Acp6xYJavdbBGc-A_8Q34JY8cbbQpISNyieBxlPON52OPPAM81C2VYoAQwtpY-Uwn3i0KUfiZkheEGV6Fdujg-SY4m7O0ZP3P3nC5dWSWm4lNrpM0pLB89WBjELEiDOOE8mJfVqwu3lBQJi5eHefNV2Eo4BuMj2JqcnI7f2zNFrnOHJ0QxuQ-WBtDLfGbghSxY_-8mecMnXa6XvLaq5_LrFzmbbTijw5vwcc1GV4PyeX_VFvvq2yWEx__g8xZsu0CVjDvNug1XdH0HbmzAF96FD6eLpm3MIi5xMK3nBGNg4jZ_iDleQszym14Se_mmKUuymkAuppLY_YOf338c23pOTQ42VfIeTA7fvDs48t1lDb7iVLQoZiFVyErM4CrOy4rrKOOylIWuorLErIyrhFJJZcYUekXUhcw8VZnCjEWJlO7AqG5qvQskilQZm55xIllRUCTRUlYafURKcaw8eLkWXq4ckrm5UGOWY0Zj5Jz3cvbgaU867-A7_kT02mhAT2AQt-2LZnGeuwmcI1sC_4uHqqRMqExWVIcJ8ppiCsqF9uCF0Z_c2AX8GSXd8QZkySBs5WNhkOwx36Ye7A0ocT6rYfNaA3NnT5a52RxF85my1IMnfbPpaWrkat2sOpoM_V6Cn7jfKWzPEk3xPUaqHqQDVR7wPGypp58s2jjGh5whix4867X-72P54J-oHsL1GIPDrgJqD0btYqUfYXDXFo_dBP4Fo9xKMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prototype+Learning+for+Medical+Time+Series+Classification+via+Human%E2%80%93Machine+Collaboration&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xie%2C+Jia&rft.au=Wang%2C+Zhu&rft.au=Yu%2C+Zhiwen&rft.au=Ding%2C+Yasan&rft.date=2024-04-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=8&rft.spage=2655&rft_id=info:doi/10.3390%2Fs24082655&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24082655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon