Prototype Learning for Medical Time Series Classification via Human–Machine Collaboration
Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are widely used in the field of time series modeling, deciphering the core principles that govern the models’ outputs remains a significant challen...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 24; no. 8; p. 2655 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
01.04.2024
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s24082655 |
Cover
| Abstract | Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are widely used in the field of time series modeling, deciphering the core principles that govern the models’ outputs remains a significant challenge. This is crucial for fostering the development of trusted models and facilitating domain expert validation, thereby empowering users and domain experts to utilize them confidently in high-risk decision-making contexts (e.g., decision-support systems in healthcare). In this work, we put forward a deep prototype learning model that supports interpretable and manipulable modeling and classification of medical time series (i.e., ECG signal). Specifically, we first optimize the representation of single heartbeat data by employing a bidirectional long short-term memory and attention mechanism, and then construct prototypes during the training phase. The final classification outcomes (i.e., normal sinus rhythm, atrial fibrillation, and other rhythm) are determined by comparing the input with the obtained prototypes. Moreover, the proposed model presents a human–machine collaboration mechanism, allowing domain experts to refine the prototypes by integrating their expertise to further enhance the model’s performance (contrary to the human-in-the-loop paradigm, where humans primarily act as supervisors or correctors, intervening when required, our approach focuses on a human–machine collaboration, wherein both parties engage as partners, enabling more fluid and integrated interactions). The experimental outcomes presented herein delineate that, within the realm of binary classification tasks—specifically distinguishing between normal sinus rhythm and atrial fibrillation—our proposed model, albeit registering marginally lower performance in comparison to certain established baseline models such as Convolutional Neural Networks (CNNs) and bidirectional long short-term memory with attention mechanisms (Bi-LSTMAttns), evidently surpasses other contemporary state-of-the-art prototype baseline models. Moreover, it demonstrates significantly enhanced performance relative to these prototype baseline models in the context of triple classification tasks, which encompass normal sinus rhythm, atrial fibrillation, and other rhythm classifications. The proposed model manifests a commendable prediction accuracy of 0.8414, coupled with macro precision, recall, and F1-score metrics of 0.8449, 0.8224, and 0.8235, respectively, achieving both high classification accuracy as well as good interpretability. |
|---|---|
| AbstractList | Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are widely used in the field of time series modeling, deciphering the core principles that govern the models' outputs remains a significant challenge. This is crucial for fostering the development of trusted models and facilitating domain expert validation, thereby empowering users and domain experts to utilize them confidently in high-risk decision-making contexts (e.g., decision-support systems in healthcare). In this work, we put forward a deep prototype learning model that supports interpretable and manipulable modeling and classification of medical time series (i.e., ECG signal). Specifically, we first optimize the representation of single heartbeat data by employing a bidirectional long short-term memory and attention mechanism, and then construct prototypes during the training phase. The final classification outcomes (i.e., normal sinus rhythm, atrial fibrillation, and other rhythm) are determined by comparing the input with the obtained prototypes. Moreover, the proposed model presents a human-machine collaboration mechanism, allowing domain experts to refine the prototypes by integrating their expertise to further enhance the model's performance (contrary to the human-in-the-loop paradigm, where humans primarily act as supervisors or correctors, intervening when required, our approach focuses on a human-machine collaboration, wherein both parties engage as partners, enabling more fluid and integrated interactions). The experimental outcomes presented herein delineate that, within the realm of binary classification tasks-specifically distinguishing between normal sinus rhythm and atrial fibrillation-our proposed model, albeit registering marginally lower performance in comparison to certain established baseline models such as Convolutional Neural Networks (CNNs) and bidirectional long short-term memory with attention mechanisms (Bi-LSTMAttns), evidently surpasses other contemporary state-of-the-art prototype baseline models. Moreover, it demonstrates significantly enhanced performance relative to these prototype baseline models in the context of triple classification tasks, which encompass normal sinus rhythm, atrial fibrillation, and other rhythm classifications. The proposed model manifests a commendable prediction accuracy of 0.8414, coupled with macro precision, recall, and F1-score metrics of 0.8449, 0.8224, and 0.8235, respectively, achieving both high classification accuracy as well as good interpretability.Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are widely used in the field of time series modeling, deciphering the core principles that govern the models' outputs remains a significant challenge. This is crucial for fostering the development of trusted models and facilitating domain expert validation, thereby empowering users and domain experts to utilize them confidently in high-risk decision-making contexts (e.g., decision-support systems in healthcare). In this work, we put forward a deep prototype learning model that supports interpretable and manipulable modeling and classification of medical time series (i.e., ECG signal). Specifically, we first optimize the representation of single heartbeat data by employing a bidirectional long short-term memory and attention mechanism, and then construct prototypes during the training phase. The final classification outcomes (i.e., normal sinus rhythm, atrial fibrillation, and other rhythm) are determined by comparing the input with the obtained prototypes. Moreover, the proposed model presents a human-machine collaboration mechanism, allowing domain experts to refine the prototypes by integrating their expertise to further enhance the model's performance (contrary to the human-in-the-loop paradigm, where humans primarily act as supervisors or correctors, intervening when required, our approach focuses on a human-machine collaboration, wherein both parties engage as partners, enabling more fluid and integrated interactions). The experimental outcomes presented herein delineate that, within the realm of binary classification tasks-specifically distinguishing between normal sinus rhythm and atrial fibrillation-our proposed model, albeit registering marginally lower performance in comparison to certain established baseline models such as Convolutional Neural Networks (CNNs) and bidirectional long short-term memory with attention mechanisms (Bi-LSTMAttns), evidently surpasses other contemporary state-of-the-art prototype baseline models. Moreover, it demonstrates significantly enhanced performance relative to these prototype baseline models in the context of triple classification tasks, which encompass normal sinus rhythm, atrial fibrillation, and other rhythm classifications. The proposed model manifests a commendable prediction accuracy of 0.8414, coupled with macro precision, recall, and F1-score metrics of 0.8449, 0.8224, and 0.8235, respectively, achieving both high classification accuracy as well as good interpretability. Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are widely used in the field of time series modeling, deciphering the core principles that govern the models’ outputs remains a significant challenge. This is crucial for fostering the development of trusted models and facilitating domain expert validation, thereby empowering users and domain experts to utilize them confidently in high-risk decision-making contexts (e.g., decision-support systems in healthcare). In this work, we put forward a deep prototype learning model that supports interpretable and manipulable modeling and classification of medical time series (i.e., ECG signal). Specifically, we first optimize the representation of single heartbeat data by employing a bidirectional long short-term memory and attention mechanism, and then construct prototypes during the training phase. The final classification outcomes (i.e., normal sinus rhythm, atrial fibrillation, and other rhythm) are determined by comparing the input with the obtained prototypes. Moreover, the proposed model presents a human–machine collaboration mechanism, allowing domain experts to refine the prototypes by integrating their expertise to further enhance the model’s performance (contrary to the human-in-the-loop paradigm, where humans primarily act as supervisors or correctors, intervening when required, our approach focuses on a human–machine collaboration, wherein both parties engage as partners, enabling more fluid and integrated interactions). The experimental outcomes presented herein delineate that, within the realm of binary classification tasks—specifically distinguishing between normal sinus rhythm and atrial fibrillation—our proposed model, albeit registering marginally lower performance in comparison to certain established baseline models such as Convolutional Neural Networks (CNNs) and bidirectional long short-term memory with attention mechanisms (Bi-LSTMAttns), evidently surpasses other contemporary state-of-the-art prototype baseline models. Moreover, it demonstrates significantly enhanced performance relative to these prototype baseline models in the context of triple classification tasks, which encompass normal sinus rhythm, atrial fibrillation, and other rhythm classifications. The proposed model manifests a commendable prediction accuracy of 0.8414, coupled with macro precision, recall, and F1-score metrics of 0.8449, 0.8224, and 0.8235, respectively, achieving both high classification accuracy as well as good interpretability. |
| Audience | Academic |
| Author | Xie, Jia Wang, Zhu Guo, Bin Yu, Zhiwen Ding, Yasan |
| AuthorAffiliation | School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; xiejia@mail.nwpu.edu.cn (J.X.); zhiwenyu@nwpu.edu.cn (Z.Y.); dingyasan@163.com (Y.D.); guob@nwpu.edu.cn (B.G.) |
| AuthorAffiliation_xml | – name: School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; xiejia@mail.nwpu.edu.cn (J.X.); zhiwenyu@nwpu.edu.cn (Z.Y.); dingyasan@163.com (Y.D.); guob@nwpu.edu.cn (B.G.) |
| Author_xml | – sequence: 1 givenname: Jia surname: Xie fullname: Xie, Jia – sequence: 2 givenname: Zhu surname: Wang fullname: Wang, Zhu – sequence: 3 givenname: Zhiwen surname: Yu fullname: Yu, Zhiwen – sequence: 4 givenname: Yasan surname: Ding fullname: Ding, Yasan – sequence: 5 givenname: Bin surname: Guo fullname: Guo, Bin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38676273$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1uEzEUhUeoiP7AghdAI7GhSGntsT32rFAVAa2UCiTKioV145_U0Yyd2jNF2fUdeEOeBCcpoamKvBjrzudzfI_vYbHngzdF8RqjE0IadJoqikRVM_asOMC0oiNRVWjvwX6_OExpjlBFCBEvin0ial5XnBwUP77G0Id-uTDlxED0zs9KG2J5abRT0JZXrjPlNxOdSeW4hZSczfXeBV_eOijPhw7877tfl6CunTflOLQtTENcEy-L5xbaZF7df4-K758-Xo3PR5Mvny_GZ5ORYoT3I6o4KES1qIRlTFtmcMNAw9RYrDXHNVM1IUCgoUog3HBoVjvbKM6E4oIcFRcbXR1gLhfRdRCXMoCT60KIMwmxd6o1MltwrDRDShPKVQOWGFRnX1FnU26y1vuN1uAXsPwJbbsVxEiu0pbbtDP8YQMvhmlntDK-j9Du3GD3j3fXchZuJcaI0WyYFd7dK8RwM5jUy84lZXKI3oQhSYIob2h-LJLRt4_QeRiiz8GuKcSwoOIfNYPcrvM2ZGO1EpVnvCGM8QqvtE6eoPLSpnMqD5d1ub5z4M3DTrct_h2kDJxuABVDStFYqVy_noKs7Nonwzt-dOL_Qf8Bhwvl-A |
| CitedBy_id | crossref_primary_10_1038_s41598_024_63378_0 crossref_primary_10_3390_s24196388 |
| Cites_doi | 10.1609/aaai.v32i1.11501 10.18653/v1/D19-1002 10.1016/j.cmpb.2021.106006 10.1109/BIBM49941.2020.9313406 10.1038/s41598-021-92997-0 10.1109/DSAA.2015.7344872 10.1109/TIE.2018.2864702 10.1016/j.bspc.2011.10.001 10.1007/978-3-030-59410-7_50 10.1016/j.patcog.2022.109170 10.1109/CVPR46437.2021.01517 10.1155/2021/9915315 10.1016/S2213-2600(18)30300-X 10.1145/3359786 10.1145/3307339.3342159 10.1016/j.dsp.2017.10.011 10.24963/ijcai.2019/932 10.1145/3394486.3403230 10.1155/2022/9475162 10.1109/TPAMI.2013.72 10.1609/aaai.v31i1.11114 10.1016/j.jbi.2016.11.006 10.1016/j.engappai.2014.08.011 10.1109/ACCESS.2022.3212120 10.3390/diagnostics13010087 10.3390/s21041059 10.1109/ICHI.2018.00092 10.1016/j.artmed.2020.101856 10.1145/3447548.3467346 10.1016/j.bspc.2020.102194 10.2196/18418 10.1007/s11704-015-4478-2 10.1016/j.knosys.2020.105907 10.1109/BigData.2017.8258216 10.1016/j.patcog.2017.09.020 10.1038/s42256-019-0048-x 10.1016/j.chaos.2020.109864 10.1111/anzs.12222 10.20944/preprints202209.0404.v1 10.1136/hrt.2006.110791 10.1145/3531146.3533153 10.1016/j.jsr.2015.06.007 10.1109/MCI.2021.3129957 10.1016/j.jacc.2014.02.555 10.1145/3292500.3330908 10.1007/978-3-662-55608-5_2 10.1609/aaai.v34i02.5496 10.1016/j.measurement.2018.07.094 10.1007/s10618-016-0483-9 10.1007/s10489-021-02696-6 10.1145/3132847.3132980 10.1145/1557019.1557122 10.3390/s20041020 10.3390/electronics8080876 10.1007/s00521-022-06949-4 10.1609/aaai.v34i04.6165 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s24082655 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) ProQuest Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals - DOAJ (NTUSG) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_28f71cd50cd347c9af3e068f5861957e 10.3390/s24082655 PMC11054195 A793557213 38676273 10_3390_s24082655 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Key Research and Development Program of Shandong Province grantid: 2022CXGC020510 – fundername: National Natural Science Foundation of China grantid: 61960206008, 62032018, 62072375, 62102322 – fundername: Natural Science Basic Research Plan in Shaanxi Province of China grantid: 2022JQ-175 – fundername: Scientific Research Plan of Shaanxi Education Department grantid: 22JK0303 – fundername: National Natural Science Foundation of China grantid: 61960206008; 62032018; 62072375; 62102322 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c537t-4c7ac04d828f55df5e195adabef1dd7165c633a3a94c80197a994c8f9c758c783 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:04:44 EDT 2025 Sun Oct 26 04:04:26 EDT 2025 Tue Sep 30 17:09:15 EDT 2025 Fri Sep 05 10:57:28 EDT 2025 Tue Oct 07 07:19:08 EDT 2025 Mon Oct 20 22:55:31 EDT 2025 Mon Oct 20 17:00:59 EDT 2025 Mon Jul 21 05:45:50 EDT 2025 Thu Oct 16 04:42:52 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | ECG prototype learning human–machine collaboration attention mechanisms time series classification |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-4c7ac04d828f55df5e195adabef1dd7165c633a3a94c80197a994c8f9c758c783 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24082655 |
| PMID | 38676273 |
| PQID | 3047051848 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_28f71cd50cd347c9af3e068f5861957e unpaywall_primary_10_3390_s24082655 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11054195 proquest_miscellaneous_3047946763 proquest_journals_3047051848 gale_infotracmisc_A793557213 gale_infotracacademiconefile_A793557213 pubmed_primary_38676273 crossref_citationtrail_10_3390_s24082655 crossref_primary_10_3390_s24082655 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zheng (ref_17) 2016; 10 Li (ref_37) 2020; 197 ref_14 Kim (ref_28) 2020; 22 ref_58 ref_56 ref_11 ref_53 Wan (ref_36) 2021; 2021 ref_19 Nattel (ref_68) 2014; 63 ref_16 Arik (ref_32) 2020; 21 ref_15 ref_59 Wieczorek (ref_51) 2022; 34 ref_61 ref_60 Che (ref_4) 2016; 2016 Jeong (ref_54) 2021; 11 ref_25 ref_24 Dissanayake (ref_44) 2021; 2021 ref_66 ref_21 ref_65 ref_20 ref_64 ref_63 ref_62 Han (ref_12) 2015; 37 ref_29 ref_27 ref_26 Jovic (ref_45) 2012; 7 Li (ref_10) 2015; 54 Du (ref_30) 2019; 63 ref_71 Montavon (ref_22) 2018; 73 Rai (ref_55) 2022; 52 ref_35 ref_34 ref_33 Zhao (ref_39) 2018; 74 Meyer (ref_5) 2018; 6 Chimmula (ref_50) 2020; 135 ref_38 Lip (ref_69) 2007; 93 Soni (ref_43) 2011; 17 Bowden (ref_2) 2017; 59 Liu (ref_6) 2018; 130 Ullah (ref_52) 2022; 2022 ref_47 Liu (ref_18) 2018; 66 Zhang (ref_57) 2020; 106 Bagnall (ref_13) 2017; 31 Ghods (ref_31) 2022; 17 Rudin (ref_23) 2019; 1 ref_41 ref_40 Tripathi (ref_46) 2022; 10 Bordignon (ref_70) 2012; 5 ref_1 Baydogan (ref_42) 2013; 35 ref_49 Huang (ref_67) 2023; 135 ref_48 ref_9 ref_8 Zhao (ref_3) 2017; 65 ref_7 |
| References_xml | – ident: ref_21 doi: 10.1609/aaai.v32i1.11501 – ident: ref_26 doi: 10.18653/v1/D19-1002 – ident: ref_58 doi: 10.1016/j.cmpb.2021.106006 – ident: ref_9 doi: 10.1109/BIBM49941.2020.9313406 – volume: 11 start-page: 13539 year: 2021 ident: ref_54 article-title: Combined deep CNN–LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features publication-title: Sci. Rep. doi: 10.1038/s41598-021-92997-0 – ident: ref_16 doi: 10.1109/DSAA.2015.7344872 – ident: ref_65 – volume: 66 start-page: 4788 year: 2018 ident: ref_18 article-title: Time series classification with multivariate convolutional neural network publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2864702 – volume: 7 start-page: 245 year: 2012 ident: ref_45 article-title: Evaluating and comparing performance of feature combinations of heart rate variability measures for cardiac rhythm classification publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2011.10.001 – ident: ref_1 – ident: ref_41 doi: 10.1007/978-3-030-59410-7_50 – volume: 135 start-page: 109170 year: 2023 ident: ref_67 article-title: Sapenet: Self-attention based prototype enhancement network for few-shot learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109170 – ident: ref_66 doi: 10.1109/CVPR46437.2021.01517 – volume: 2021 start-page: 9915315 year: 2021 ident: ref_36 article-title: Multivariate Time Series Data Clustering Method Based on Dynamic Time Warping and Affinity Propagation publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2021/9915315 – volume: 6 start-page: 905 year: 2018 ident: ref_5 article-title: Machine learning for real-time prediction of complications in critical care: A retrospective study publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(18)30300-X – volume: 63 start-page: 68 year: 2019 ident: ref_30 article-title: Techniques for interpretable machine learning publication-title: Commun. ACM doi: 10.1145/3359786 – ident: ref_60 doi: 10.1145/3307339.3342159 – volume: 73 start-page: 1 year: 2018 ident: ref_22 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2017.10.011 – ident: ref_20 doi: 10.24963/ijcai.2019/932 – ident: ref_27 – ident: ref_63 doi: 10.1145/3394486.3403230 – volume: 2022 start-page: 9475162 year: 2022 ident: ref_52 article-title: An end-to-end cardiac arrhythmia recognition method with an effective densenet model on imbalanced datasets using ecg signal publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/9475162 – volume: 35 start-page: 2796 year: 2013 ident: ref_42 article-title: A bag-of-features framework to classify time series publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.72 – ident: ref_40 doi: 10.1609/aaai.v31i1.11114 – ident: ref_62 – volume: 65 start-page: 105 year: 2017 ident: ref_3 article-title: Learning from heterogeneous temporal data in electronic health records publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2016.11.006 – volume: 37 start-page: 250 year: 2015 ident: ref_12 article-title: Joint mutual information-based input variable selection for multivariate time series modeling publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.08.011 – volume: 10 start-page: 108710 year: 2022 ident: ref_46 article-title: Ensemble computational intelligent for insomnia sleep stage detection via the sleep ECG signal publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3212120 – volume: 2021 start-page: 5581806 year: 2021 ident: ref_44 article-title: Comparative study on heart disease prediction using feature selection techniques on classification algorithms publication-title: Appl. Comput. Intell. Soft Comput. – ident: ref_53 doi: 10.3390/diagnostics13010087 – ident: ref_14 doi: 10.3390/s21041059 – ident: ref_71 doi: 10.1109/ICHI.2018.00092 – volume: 106 start-page: 101856 year: 2020 ident: ref_57 article-title: ECG-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101856 – ident: ref_61 doi: 10.1145/3447548.3467346 – ident: ref_56 doi: 10.1016/j.bspc.2020.102194 – ident: ref_24 – volume: 22 start-page: e18418 year: 2020 ident: ref_28 article-title: Limitations of deep learning attention mechanisms in clinical research: Empirical case study based on the Korean diabetic disease setting publication-title: J. Med. Internet Res. doi: 10.2196/18418 – ident: ref_34 – ident: ref_47 – volume: 10 start-page: 96 year: 2016 ident: ref_17 article-title: Exploiting multi-channels deep convolutional neural networks for multivariate time series classification publication-title: Front. Comput. Sci. doi: 10.1007/s11704-015-4478-2 – volume: 197 start-page: 105907 year: 2020 ident: ref_37 article-title: Fuzzy clustering based on feature weights for multivariate time series publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105907 – ident: ref_11 doi: 10.1109/BigData.2017.8258216 – volume: 74 start-page: 171 year: 2018 ident: ref_39 article-title: shapedtw: Shape dynamic time warping publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.09.020 – volume: 1 start-page: 206 year: 2019 ident: ref_23 article-title: Stop explaining black box machine learning models for high stakes decisions and use inter pretable models instead publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0048-x – volume: 135 start-page: 109864 year: 2020 ident: ref_50 article-title: Time series forecasting of COVID-19 transmission in Canada using LSTM networks publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109864 – volume: 59 start-page: 413 year: 2017 ident: ref_2 article-title: Using multivariate time series methods to estimate location and climate change effects on temperature readings employed in electricity demand simulation publication-title: Aust. N. Z. J. Stat. doi: 10.1111/anzs.12222 – ident: ref_48 doi: 10.20944/preprints202209.0404.v1 – volume: 93 start-page: 542 year: 2007 ident: ref_69 article-title: Atrial fibrillation—the growing epidemic publication-title: Heart doi: 10.1136/hrt.2006.110791 – ident: ref_29 doi: 10.1145/3531146.3533153 – volume: 2016 start-page: 371 year: 2016 ident: ref_4 article-title: Interpretable deep models for ICU outcome prediction publication-title: AMIA Annu. Symp. Proc. – volume: 17 start-page: 43 year: 2011 ident: ref_43 article-title: Predictive data mining for medical diagnosis: An overview of heart disease prediction publication-title: Int. J. Comput. Appl. – volume: 54 start-page: 61.e29 year: 2015 ident: ref_10 article-title: Drunk driving detection based on classification of multivariate time series publication-title: J. Saf. Res. doi: 10.1016/j.jsr.2015.06.007 – volume: 17 start-page: 34 year: 2022 ident: ref_31 article-title: PIP: Pictorial interpretable prototype learning for time series classification publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2021.3129957 – volume: 63 start-page: 2335 year: 2014 ident: ref_68 article-title: Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2014.02.555 – ident: ref_19 doi: 10.1145/3292500.3330908 – ident: ref_7 doi: 10.1007/978-3-662-55608-5_2 – ident: ref_49 doi: 10.1609/aaai.v34i02.5496 – volume: 130 start-page: 290 year: 2018 ident: ref_6 article-title: Scale-varying dynamic time warping based on hesitant fuzzy sets for multivariate time series classification publication-title: Measurement doi: 10.1016/j.measurement.2018.07.094 – volume: 31 start-page: 606 year: 2017 ident: ref_13 article-title: The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-016-0483-9 – ident: ref_25 – ident: ref_33 – volume: 52 start-page: 5366 year: 2022 ident: ref_55 article-title: Hybrid CNN-LSTM deep learning model and ensemble technique for automatic detection of myocardial infarction using big ECG data publication-title: Appl. Intell. doi: 10.1007/s10489-021-02696-6 – ident: ref_35 doi: 10.1145/3132847.3132980 – ident: ref_38 doi: 10.1145/1557019.1557122 – ident: ref_15 – ident: ref_59 doi: 10.3390/s20041020 – volume: 5 start-page: 467 year: 2012 ident: ref_70 article-title: Atrial fibrillation associated with heart failure, stroke and mortality publication-title: J. Atr. Fibrillation – ident: ref_8 doi: 10.3390/electronics8080876 – volume: 34 start-page: 13305 year: 2022 ident: ref_51 article-title: Recurrent neural network model for high-speed train vibration prediction from time series publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-06949-4 – ident: ref_64 doi: 10.1609/aaai.v34i04.6165 – volume: 21 start-page: 8691 year: 2020 ident: ref_32 article-title: Protoattend: Attention-based prototypical learning publication-title: J. Mach. Learn. Res. |
| SSID | ssj0023338 |
| Score | 2.4463387 |
| Snippet | Deep neural networks must address the dual challenge of delivering high-accuracy predictions and providing user-friendly explanations. While deep models are... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2655 |
| SubjectTerms | Accuracy Algorithms Atrial fibrillation Atrial Fibrillation - diagnosis Atrial Fibrillation - physiopathology attention mechanisms Classification Collaboration Decision making Deep Learning ECG Electrocardiogram Electrocardiography Electrocardiography - methods Electronic health records Heart Rate - physiology Humans human–machine collaboration Methods Neural networks Neural Networks, Computer prototype learning Prototypes Signal Processing, Computer-Assisted Subject specialists Time series time series classification |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - DOAJ (NTUSG) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXoADojxTSmUeElyiZmM7do5tRVUhFXGgUiUOluPYUGmVrbq7IG78B_4hv6QzjjdKeIgLtyieRPHM2DOfM_4M8NKLwhYNWgBza5sLV8m8aVSb18oGTDekK-LSxem76uRMvD2X56OjvqgmrKcH7hW3X-qgZq6VhWu5UK62gfui0kFqTP2l8jT7FrregKkEtTgir55HiCOo318SkVdZ0X6-UfSJJP2_T8WjWPRrneTNdXdpv3218_koCB3fhTspe2QH_Vdvww3f3YPbI07B-_Dx_dVitaCVVZa4Uz8xTExZ-iPDaM8HozUxv2TxREyqFYrmYV8uLIuL-j-__ziNRZaeHY395AGcHb_5cHSSpxMUcie5WqHulXWFaBFWBSnbID3qzLa28WHWtgiVpKs4t9zWwmGoQgPVdBVqhzDCKc0fwla36PxjYDM0QklPlpUVTcNRxFsbPE7cms9EmcHrjWaNS_TidMrF3CDMICOYwQgZPB9EL3tOjT8JHZJ5BgGiwY430DlMcg7zL-fI4BUZ19BgxY9xNu05wC4R7ZU5UEQvjyCYZ7A7kcRB5qbNG_cwaZAvDf2xxDlNC53Bs6GZnqTCtc4v1r1MjcGowlc86r1p6BLXeB_Txwz0xM8mfZ62dBefIwU4Jm1SYBczeDG45N91ufM_dPkEbpWY0PVVS7uwtbpa-6eYkK2avTj2rgHFlzS8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IN4ECjIPCS5Rk9jO44BQW7WqkLqqEJUqcYgc2ymVVsmyDxA3_gP_kF_CjOOELK_bKp6sPJkZe2Y8_gbghRWRiiqUAPrWKhQ6lWFVZSYsMlWjuyF15FIXJ9P0-Ey8PZfnWzDt78JQWWW_JrqF2rSacuS7dDyECpSL_M38U0hdo-h0tW-hoXxrBfPaQYxdge2EkLEmsL1_OD19N4RgHCOyDl-IY7C_uySArySle36jXcmB9_-5RI_2qN_rJ6-um7n6-kXNZqPN6egm3PBeJdvr1OAWbNnmNlwfYQ3egQ-ni3bVUsaVeUzVC4YOK_MnNYzugjDKldklc50yqYbIiY19vlTMJft_fPt-4oovLTsY689dODs6fH9wHPrOCqGWPFuhTDKlI2Ew3KqlNLW0cSGVUZWtY2MwhJI65VxxVQiNWxgKrqBfdaExvNBZzu_BpGkb-wBYHGuT0JtJqkRVcSSxStUWF_ScxyIJ4FX_ZUvtYcep-8WsxPCDhFAOQgjg2UA677A2_ka0T-IZCAge2z1oFxelt7YS2cpwXjLShotMF6rmNkqR1xzjRZnZAF6ScEsyYpyMVv4uArJEcFjlXkaw8xgc8wB2NijR-PTmcK8epTf-ZflLVQN4OgzTm1TQ1th23dEUuEml-Bf3O20aWOI5Pke3MoB8Q882eN4caS4_OmhwdOakQBYDeD6o5L-_5cP_z_4RXEvQhevqlHZgslqs7WN0wVbVE29XPwFRejLZ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAcyrM0UJB5SHBJ87AdJye0VFQVUqseWKmIQ3Acp6xYJavdbBGc-A_8Q34JY8cbbQpISNyieBxlPON52OPPAM81C2VYoAQwtpY-Uwn3i0KUfiZkheEGV6Fdujg-SY4m7O0ZP3P3nC5dWSWm4lNrpM0pLB89WBjELEiDOOE8mJfVqwu3lBQJi5eHefNV2Eo4BuMj2JqcnI7f2zNFrnOHJ0QxuQ-WBtDLfGbghSxY_-8mecMnXa6XvLaq5_LrFzmbbTijw5vwcc1GV4PyeX_VFvvq2yWEx__g8xZsu0CVjDvNug1XdH0HbmzAF96FD6eLpm3MIi5xMK3nBGNg4jZ_iDleQszym14Se_mmKUuymkAuppLY_YOf338c23pOTQ42VfIeTA7fvDs48t1lDb7iVLQoZiFVyErM4CrOy4rrKOOylIWuorLErIyrhFJJZcYUekXUhcw8VZnCjEWJlO7AqG5qvQskilQZm55xIllRUCTRUlYafURKcaw8eLkWXq4ckrm5UGOWY0Zj5Jz3cvbgaU867-A7_kT02mhAT2AQt-2LZnGeuwmcI1sC_4uHqqRMqExWVIcJ8ppiCsqF9uCF0Z_c2AX8GSXd8QZkySBs5WNhkOwx36Ye7A0ocT6rYfNaA3NnT5a52RxF85my1IMnfbPpaWrkat2sOpoM_V6Cn7jfKWzPEk3xPUaqHqQDVR7wPGypp58s2jjGh5whix4867X-72P54J-oHsL1GIPDrgJqD0btYqUfYXDXFo_dBP4Fo9xKMQ priority: 102 providerName: Unpaywall |
| Title | Prototype Learning for Medical Time Series Classification via Human–Machine Collaboration |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38676273 https://www.proquest.com/docview/3047051848 https://www.proquest.com/docview/3047946763 https://pubmed.ncbi.nlm.nih.gov/PMC11054195 https://www.mdpi.com/1424-8220/24/8/2655/pdf?version=1713779198 https://doaj.org/article/28f71cd50cd347c9af3e068f5861957e |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wAcEG8CS2UeElwCaWzHyQGh7mrLCqlVhahUxCFyHGdZqUqWPoC98R_4h_wSZpw0amCRuESRPY4ynrFnxo9vAJ5ZEeggQwmgb619YSLpZ5nK_UTpAt0NaQK3dDEaRydT8W4mZzuwybHZdODy0tCO8klNF_OX379cvMEB_5oiTgzZXy0JpiuMpNyFfXxNKIPDSLSbCSHnLqE13eny0R4GNcBQt2nHLDn0_r_n6C0j9ecByivr8lxffNPz-ZZ1Gt6A641byQa1HtyEHVvegmtbYIO34dNkUa0qWnJlDajqKUOPlTVbNYwugzBaLLNL5lJl0iEiJzf29Uwzt9r_68fPkTt9adnRtgLdgenw-MPRid-kVvCN5GqFQlHaBCLHeKuQMi-k7SdS5zqzRT_PMYaSJuJcc50IgzYMJZfQW5EYjC-Mivld2Cur0t4H1u-bPKSWYaRFlnEksVoXFmf0mGOfe_Bi07OpaXDHKf3FPMX4g4SQtkLw4ElLel6DbVxGdEjiaQkIH9sVVIvTtBluKbKl8L9kYHIulEl0wW0QIa8xBoxSWQ-ek3BT0iv8GaObywjIEuFhpQNFuPMYHXMPDjqUOPpMt3qjHulGeVPaysTJLhaxB4_bampJJ9pKW61rmgStVISfuFdrU8sSj7Ec_UoP4o6edXju1pRnnx02OHpzUiCLHjxtVfLfffngfzr8IVwN0ZOrjysdwN5qsbaP0BNbZT3YVTOFz3j4tgf7h8fjyfueW9XouRGIZdPxZPDxN6fsNxc |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUwcFTKoXBA7AQKmE1wiZrEdpYDQqVQvdK-ikMrPakH4zhOqfSUPN5C1Rv_wH_wUXwJM9max3brLYonkcez2-MZgOdWeNpLkQLoW2tXmFC6aRplbhLpHN0Nabxq62K4Hw4OxYeRHK3Aj_YuDKVVtjqxUtRZaWiPfIOOh5CBYhG_mXxxqWsUna62LTRqtti1Z6cYss1e77xD-r4Igu33B1sDt-kq4BrJoznOJ9LGExmGGrmUWS6tn0id6dTmfpZh-CBNyLnmOhEG1TdOOqGnPDHoWpso5vjfS3BZcNQlKD_R6DzA4xjv1dWLOE-8jRmVDwtCukXYs3lVa4A_DUDPAv6enbm2KCb67FSPxz3Tt30drjU-K9usmewGrNjiJlztVTK8BUcfp-W8pP1c1lRsPWboDrPmHIjRTRNGO3F2xqo-nJShVDEF-3qiWXWU8PPb92GV2mnZVp87b8PhhazwHVgtysLeA-b7JgvoyyDUIk05glitc4vmIua-CBx41a6sMk1Rc-qtMVYY3BARVEcEB552oJO6ksffgN4SeToAKr5dvSinx6qRZYVoRTgv6ZmMi8gkOufWCxHXGKNRGVkHXhJxFakInIzRzU0HRImKbanNiIraY-jNHVhfgkTRNsvDLXuoRrXM1LkgOPCkG6YvKV2usOWihknQBIb4i7s1N3Uo8Rjfo9PqQLzEZ0s4L48UJ5-rwuPoKkqBKDrwrGPJf6_l_f_P_jGsDQ6Ge2pvZ3_3AVwJ0FmsM6LWYXU-XdiH6OzN00eVhDH4dNEi_Qskh2mU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUwcFSKxHJA7AQKmE1wiV5eHMfJAaHS8tRSWvVApSf1YBzHKZWeksdbqHrjH_gbPocvYSZbE7Zbb1E8iTye3R7PADy3gae9BCmAvrV2AxMKN0lk6sZSZ-huCOOVWxe7e-HWQfB-LMYr8KO5C0NplY1OLBV1WhjaIx_Q8RAyUBREg6xOi9jfHL2ZfnGpgxSdtDbtNCoW2bGnJxi-zV9vbyKtX_j-6N3HjS237jDgGsHlAucmtfGCFMOOTIg0E3YYC53qxGbDNMVQQpiQc811HBhU5YhATE9ZbNDNNjLi-N8LcFFyHlM6oRyfBXscY7-qkhEOeoM5lRLzQ7pR2LF_ZZuAP41Bxxr-nql5eZlP9emJnkw6ZnB0Ha7V_itbrxjuBqzY_CZc7VQ1vAWH-7NiUdDeLqurtx4xdI1ZfSbE6NYJo105O2dlT07KVioZhH091qw8Vvj57ftumeZp2UaXU2_Dwbms8B1YzYvc3gM2HJrUpy_9UAdJwhHEap1ZNB0RHwa-A6-alVWmLnBOfTYmCgMdIoJqieDA0xZ0WlX1-BvQWyJPC0CFuMsXxexI1XKtEC2J8xKeSXkgTawzbr0QcY0wMhXSOvCSiKtIXeBkjK5vPSBKVHhLrUsqcI9hOHdgrQeJYm76ww17qFrNzNWZUDjwpB2mLyl1LrfFsoKJ0RyG-Iu7FTe1KPEI36MD60DU47Mezv2R_PhzWYQc3UYRIIoOPGtZ8t9ref__s38Ml1CY1YftvZ0HcMVHv7FKjlqD1cVsaR-i37dIHpUCxuDTeUv0LxS2bdc |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gAcyrM0UJB5SHBJ87AdJye0VFQVUqseWKmIQ3Acp6xYJavdbBGc-A_8Q34JY8cbbQpISNyieBxlPON52OPPAM81C2VYoAQwtpY-Uwn3i0KUfiZkheEGV6Fdujg-SY4m7O0ZP3P3nC5dWSWm4lNrpM0pLB89WBjELEiDOOE8mJfVqwu3lBQJi5eHefNV2Eo4BuMj2JqcnI7f2zNFrnOHJ0QxuQ-WBtDLfGbghSxY_-8mecMnXa6XvLaq5_LrFzmbbTijw5vwcc1GV4PyeX_VFvvq2yWEx__g8xZsu0CVjDvNug1XdH0HbmzAF96FD6eLpm3MIi5xMK3nBGNg4jZ_iDleQszym14Se_mmKUuymkAuppLY_YOf338c23pOTQ42VfIeTA7fvDs48t1lDb7iVLQoZiFVyErM4CrOy4rrKOOylIWuorLErIyrhFJJZcYUekXUhcw8VZnCjEWJlO7AqG5qvQskilQZm55xIllRUCTRUlYafURKcaw8eLkWXq4ckrm5UGOWY0Zj5Jz3cvbgaU867-A7_kT02mhAT2AQt-2LZnGeuwmcI1sC_4uHqqRMqExWVIcJ8ppiCsqF9uCF0Z_c2AX8GSXd8QZkySBs5WNhkOwx36Ye7A0ocT6rYfNaA3NnT5a52RxF85my1IMnfbPpaWrkat2sOpoM_V6Cn7jfKWzPEk3xPUaqHqQDVR7wPGypp58s2jjGh5whix4867X-72P54J-oHsL1GIPDrgJqD0btYqUfYXDXFo_dBP4Fo9xKMQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prototype+Learning+for+Medical+Time+Series+Classification+via+Human%E2%80%93Machine+Collaboration&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xie%2C+Jia&rft.au=Wang%2C+Zhu&rft.au=Yu%2C+Zhiwen&rft.au=Ding%2C+Yasan&rft.date=2024-04-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=8&rft.spage=2655&rft_id=info:doi/10.3390%2Fs24082655&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24082655 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |