Diagnostic accuracy of administrative data algorithms in the diagnosis of osteoarthritis: a systematic review

Background Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a chronic condition with significant disease burden affecting over 27 million adults in the US. There are few studies examining the pe...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 16; no. 1; p. 82
Main Authors Shrestha, Swastina, Dave, Amish J., Losina, Elena, Katz, Jeffrey N.
Format Journal Article
LanguageEnglish
Published London BioMed Central 07.07.2016
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-016-0319-y

Cover

Abstract Background Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a chronic condition with significant disease burden affecting over 27 million adults in the US. There are few studies examining the performance of administrative data algorithms to diagnose OA. The purpose of this study is to perform a systematic review of administrative data algorithms for OA diagnosis; and, to evaluate the diagnostic characteristics of algorithms based on restrictiveness and reference standards. Methods Two reviewers independently screened English-language articles published in Medline, Embase, PubMed, and Cochrane databases that used administrative data to identify OA cases. Each algorithm was classified as restrictive or less restrictive based on number and type of administrative codes required to satisfy the case definition. We recorded sensitivity and specificity of algorithms and calculated positive likelihood ratio (LR+) and positive predictive value (PPV) based on assumed OA prevalence of 0.1, 0.25, and 0.50. Results The search identified 7 studies that used 13 algorithms. Of these 13 algorithms, 5 were classified as restrictive and 8 as less restrictive. Restrictive algorithms had lower median sensitivity and higher median specificity compared to less restrictive algorithms when reference standards were self-report and American college of Rheumatology (ACR) criteria. The algorithms compared to reference standard of physician diagnosis had higher sensitivity and specificity than those compared to self-reported diagnosis or ACR criteria. Conclusions Restrictive algorithms are more specific for OA diagnosis and can be used to identify cases when false positives have higher costs e.g. interventional studies. Less restrictive algorithms are more sensitive and suited for studies that attempt to identify all cases e.g. screening programs.
AbstractList Background Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a chronic condition with significant disease burden affecting over 27 million adults in the US. There are few studies examining the performance of administrative data algorithms to diagnose OA. The purpose of this study is to perform a systematic review of administrative data algorithms for OA diagnosis; and, to evaluate the diagnostic characteristics of algorithms based on restrictiveness and reference standards. Methods Two reviewers independently screened English-language articles published in Medline, Embase, PubMed, and Cochrane databases that used administrative data to identify OA cases. Each algorithm was classified as restrictive or less restrictive based on number and type of administrative codes required to satisfy the case definition. We recorded sensitivity and specificity of algorithms and calculated positive likelihood ratio (LR+) and positive predictive value (PPV) based on assumed OA prevalence of 0.1, 0.25, and 0.50. Results The search identified 7 studies that used 13 algorithms. Of these 13 algorithms, 5 were classified as restrictive and 8 as less restrictive. Restrictive algorithms had lower median sensitivity and higher median specificity compared to less restrictive algorithms when reference standards were self-report and American college of Rheumatology (ACR) criteria. The algorithms compared to reference standard of physician diagnosis had higher sensitivity and specificity than those compared to self-reported diagnosis or ACR criteria. Conclusions Restrictive algorithms are more specific for OA diagnosis and can be used to identify cases when false positives have higher costs e.g. interventional studies. Less restrictive algorithms are more sensitive and suited for studies that attempt to identify all cases e.g. screening programs. Keywords: Osteoarthritis, Diagnostic accuracy, Administrative data, Systematic review
Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a chronic condition with significant disease burden affecting over 27 million adults in the US. There are few studies examining the performance of administrative data algorithms to diagnose OA. The purpose of this study is to perform a systematic review of administrative data algorithms for OA diagnosis; and, to evaluate the diagnostic characteristics of algorithms based on restrictiveness and reference standards. Two reviewers independently screened English-language articles published in Medline, Embase, PubMed, and Cochrane databases that used administrative data to identify OA cases. Each algorithm was classified as restrictive or less restrictive based on number and type of administrative codes required to satisfy the case definition. We recorded sensitivity and specificity of algorithms and calculated positive likelihood ratio (LR+) and positive predictive value (PPV) based on assumed OA prevalence of 0.1, 0.25, and 0.50. The search identified 7 studies that used 13 algorithms. Of these 13 algorithms, 5 were classified as restrictive and 8 as less restrictive. Restrictive algorithms had lower median sensitivity and higher median specificity compared to less restrictive algorithms when reference standards were self-report and American college of Rheumatology (ACR) criteria. The algorithms compared to reference standard of physician diagnosis had higher sensitivity and specificity than those compared to self-reported diagnosis or ACR criteria. Restrictive algorithms are more specific for OA diagnosis and can be used to identify cases when false positives have higher costs e.g. interventional studies. Less restrictive algorithms are more sensitive and suited for studies that attempt to identify all cases e.g. screening programs.
Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a chronic condition with significant disease burden affecting over 27 million adults in the US. There are few studies examining the performance of administrative data algorithms to diagnose OA. The purpose of this study is to perform a systematic review of administrative data algorithms for OA diagnosis; and, to evaluate the diagnostic characteristics of algorithms based on restrictiveness and reference standards. Two reviewers independently screened English-language articles published in Medline, Embase, PubMed, and Cochrane databases that used administrative data to identify OA cases. Each algorithm was classified as restrictive or less restrictive based on number and type of administrative codes required to satisfy the case definition. We recorded sensitivity and specificity of algorithms and calculated positive likelihood ratio (LR+) and positive predictive value (PPV) based on assumed OA prevalence of 0.1, 0.25, and 0.50. The search identified 7 studies that used 13 algorithms. Of these 13 algorithms, 5 were classified as restrictive and 8 as less restrictive. Restrictive algorithms had lower median sensitivity and higher median specificity compared to less restrictive algorithms when reference standards were self-report and American college of Rheumatology (ACR) criteria. The algorithms compared to reference standard of physician diagnosis had higher sensitivity and specificity than those compared to self-reported diagnosis or ACR criteria. Restrictive algorithms are more specific for OA diagnosis and can be used to identify cases when false positives have higher costs e.g. interventional studies. Less restrictive algorithms are more sensitive and suited for studies that attempt to identify all cases e.g. screening programs.
Background Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a chronic condition with significant disease burden affecting over 27 million adults in the US. There are few studies examining the performance of administrative data algorithms to diagnose OA. The purpose of this study is to perform a systematic review of administrative data algorithms for OA diagnosis; and, to evaluate the diagnostic characteristics of algorithms based on restrictiveness and reference standards. Methods Two reviewers independently screened English-language articles published in Medline, Embase, PubMed, and Cochrane databases that used administrative data to identify OA cases. Each algorithm was classified as restrictive or less restrictive based on number and type of administrative codes required to satisfy the case definition. We recorded sensitivity and specificity of algorithms and calculated positive likelihood ratio (LR+) and positive predictive value (PPV) based on assumed OA prevalence of 0.1, 0.25, and 0.50. Results The search identified 7 studies that used 13 algorithms. Of these 13 algorithms, 5 were classified as restrictive and 8 as less restrictive. Restrictive algorithms had lower median sensitivity and higher median specificity compared to less restrictive algorithms when reference standards were self-report and American college of Rheumatology (ACR) criteria. The algorithms compared to reference standard of physician diagnosis had higher sensitivity and specificity than those compared to self-reported diagnosis or ACR criteria. Conclusions Restrictive algorithms are more specific for OA diagnosis and can be used to identify cases when false positives have higher costs e.g. interventional studies. Less restrictive algorithms are more sensitive and suited for studies that attempt to identify all cases e.g. screening programs.
Background Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a chronic condition with significant disease burden affecting over 27 million adults in the US. There are few studies examining the performance of administrative data algorithms to diagnose OA. The purpose of this study is to perform a systematic review of administrative data algorithms for OA diagnosis; and, to evaluate the diagnostic characteristics of algorithms based on restrictiveness and reference standards. Methods Two reviewers independently screened English-language articles published in Medline, Embase, PubMed, and Cochrane databases that used administrative data to identify OA cases. Each algorithm was classified as restrictive or less restrictive based on number and type of administrative codes required to satisfy the case definition. We recorded sensitivity and specificity of algorithms and calculated positive likelihood ratio (LR+) and positive predictive value (PPV) based on assumed OA prevalence of 0.1, 0.25, and 0.50. Results The search identified 7 studies that used 13 algorithms. Of these 13 algorithms, 5 were classified as restrictive and 8 as less restrictive. Restrictive algorithms had lower median sensitivity and higher median specificity compared to less restrictive algorithms when reference standards were self-report and American college of Rheumatology (ACR) criteria. The algorithms compared to reference standard of physician diagnosis had higher sensitivity and specificity than those compared to self-reported diagnosis or ACR criteria. Conclusions Restrictive algorithms are more specific for OA diagnosis and can be used to identify cases when false positives have higher costs e.g. interventional studies. Less restrictive algorithms are more sensitive and suited for studies that attempt to identify all cases e.g. screening programs.
BACKGROUNDAdministrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a chronic condition with significant disease burden affecting over 27 million adults in the US. There are few studies examining the performance of administrative data algorithms to diagnose OA. The purpose of this study is to perform a systematic review of administrative data algorithms for OA diagnosis; and, to evaluate the diagnostic characteristics of algorithms based on restrictiveness and reference standards.METHODSTwo reviewers independently screened English-language articles published in Medline, Embase, PubMed, and Cochrane databases that used administrative data to identify OA cases. Each algorithm was classified as restrictive or less restrictive based on number and type of administrative codes required to satisfy the case definition. We recorded sensitivity and specificity of algorithms and calculated positive likelihood ratio (LR+) and positive predictive value (PPV) based on assumed OA prevalence of 0.1, 0.25, and 0.50.RESULTSThe search identified 7 studies that used 13 algorithms. Of these 13 algorithms, 5 were classified as restrictive and 8 as less restrictive. Restrictive algorithms had lower median sensitivity and higher median specificity compared to less restrictive algorithms when reference standards were self-report and American college of Rheumatology (ACR) criteria. The algorithms compared to reference standard of physician diagnosis had higher sensitivity and specificity than those compared to self-reported diagnosis or ACR criteria.CONCLUSIONSRestrictive algorithms are more specific for OA diagnosis and can be used to identify cases when false positives have higher costs e.g. interventional studies. Less restrictive algorithms are more sensitive and suited for studies that attempt to identify all cases e.g. screening programs.
ArticleNumber 82
Audience Academic
Author Shrestha, Swastina
Katz, Jeffrey N.
Dave, Amish J.
Losina, Elena
Author_xml – sequence: 1
  givenname: Swastina
  surname: Shrestha
  fullname: Shrestha, Swastina
  organization: Department of Orthopedic Surgery, Orthopaedic and Arthritis Center for Outcomes Research, Brigham and Women’s Hospital
– sequence: 2
  givenname: Amish J.
  surname: Dave
  fullname: Dave, Amish J.
  organization: Department of Orthopedic Surgery, Orthopaedic and Arthritis Center for Outcomes Research, Brigham and Women’s Hospital, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital
– sequence: 3
  givenname: Elena
  surname: Losina
  fullname: Losina, Elena
  organization: Department of Orthopedic Surgery, Orthopaedic and Arthritis Center for Outcomes Research, Brigham and Women’s Hospital, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Department of Biostatistics, Boston University School of Public Health
– sequence: 4
  givenname: Jeffrey N.
  surname: Katz
  fullname: Katz, Jeffrey N.
  email: jnkatz@partners.org
  organization: Department of Orthopedic Surgery, Orthopaedic and Arthritis Center for Outcomes Research, Brigham and Women’s Hospital, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Department of Epidemiology, Harvard School of Public Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27387323$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB_wA9igSGy6SfEjYzsskKoCBakSG1hbN7Yz4yqxBzuZKv8eRxnaaQUIeWHr-jvn6h77FB354C1Crwm-IETyd4nQmpASE15iRupyeoZOSCVoyetKHB2cj9FpSrcYEyHZ6gU6poJJwSg7Qf1HB2sf0uB0AVqPEfRUhLYA0zvv0hBhcDtbGBiggG4dohs2fSqcL4ZNLi9il2ZJNrEB4rDJjEvvCyjSlEs9zN7R7py9e4met9Al-2q_n6Efnz99v_pS3ny7_np1eVPqFRNDSTkBIaQhrGZU6oYLzE0rTYttpbmUVcMYp6YGrKXVhpOq4gazppG8bkwL7AzRxXf0W5juoOvUNroe4qQIVnN2aslO5ezUnJ2asujDItqOTW-Ntj5P_yAM4NTjG-82ah12qqoZx0Rmg_O9QQw_R5sG1bukbdeBt2FMikjMRE0x5hl9-wS9DWP0OZOZEnJVcUIfqDV0VjnfhtxXz6bqsso5ZIyRTF38gcrL2N7p_GNal-uPBG8OB72f8PevyABZAB1DStG2_5WeeKLRbshPH-asXPdP5f6xUu7i1zYeZPFX0S9ctOyo
CitedBy_id crossref_primary_10_1016_j_joca_2022_03_001
crossref_primary_10_1136_ard_2022_223640
crossref_primary_10_1177_11769351231165161
crossref_primary_10_1136_bmjopen_2022_067211
crossref_primary_10_1016_j_ridd_2017_07_019
crossref_primary_10_1016_j_jhsa_2021_03_001
crossref_primary_10_1007_s10067_019_04712_0
crossref_primary_10_1016_j_clml_2024_07_017
crossref_primary_10_1080_14779072_2024_2311696
crossref_primary_10_4055_cios22238
crossref_primary_10_1016_j_ocarto_2020_100115
crossref_primary_10_3390_ijerph18010155
crossref_primary_10_3346_jkms_2025_40_e113
crossref_primary_10_1186_s12877_022_03579_2
crossref_primary_10_3346_jkms_2022_37_e249
crossref_primary_10_1002_acr_24861
crossref_primary_10_1111_jep_14045
crossref_primary_10_3390_healthcare10091724
crossref_primary_10_1002_acr_24043
crossref_primary_10_1007_s40266_024_01108_x
crossref_primary_10_2106_JBJS_22_00565
crossref_primary_10_1093_rheumatology_kex270
crossref_primary_10_2147_CLEP_S337323
crossref_primary_10_1016_j_joca_2023_12_011
crossref_primary_10_1016_j_bonr_2019_100219
crossref_primary_10_3389_fpain_2022_1014793
crossref_primary_10_1016_j_jaci_2020_08_025
crossref_primary_10_1186_s12911_020_01175_1
crossref_primary_10_1111_1756_185X_13470
crossref_primary_10_1002_jcp_28826
Cites_doi 10.3899/jrheum.120835
10.1136/bmj.h5983
10.1016/j.jclinepi.2010.10.006
10.1186/1471-2474-9-116
10.1001/jama.1988.03410150088036
10.1016/j.jclinepi.2009.06.005
10.1186/s12875-015-0223-z
10.1016/j.jclinepi.2011.08.002
10.7326/0003-4819-127-8_Part_2-199710151-00048
10.1136/bmj.308.6943.1552
10.1002/(SICI)1097-0258(19970515)16:9<981::AID-SIM510>3.0.CO;2-N
10.3122/jabfm.2009.04.090081
10.1002/acr.21993
10.1002/art.23176
10.1371/journal.pone.0075256
10.1016/0021-9681(67)90009-4
10.1002/art.21697
10.1370/afm.1644
10.1016/0895-4356(91)90128-V
10.1002/art.23827
10.1186/1472-6963-6-77
10.2106/00004623-200111000-00002
10.1097/MLR.0b013e31819c95aa
10.1002/1529-0131(200008)43:8<1881::AID-ANR26>3.0.CO;2-#
10.1002/pds.2323
10.2106/00004623-200409000-00008
10.3122/jabfm.2013.02.120183
10.1002/pds.2313
10.1002/pds.2321
ContentType Journal Article
Copyright The Author(s). 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright BioMed Central 2016
Copyright_xml – notice: The Author(s). 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
– notice: Copyright BioMed Central 2016
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12911-016-0319-y
DatabaseName Springer Nature Open Access Journals (LUT & LAB)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 82
ExternalDocumentID 10.1186/s12911-016-0319-y
PMC4936018
4133614251
A468885431
27387323
10_1186_s12911_016_0319_y
Genre Systematic Review
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Brigham and Women's Hospital
  grantid: NA
  funderid: http://dx.doi.org/10.13039/100005292
– fundername: ;
  grantid: NA
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0T
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c537t-261a778d139328cb6706df8df0e4c6884b3362d9a0c8ecd61446d03bb869bdfa3
IEDL.DBID M48
ISSN 1472-6947
IngestDate Sun Oct 26 04:13:20 EDT 2025
Tue Sep 30 16:26:38 EDT 2025
Wed Oct 01 13:53:01 EDT 2025
Tue Oct 07 05:24:37 EDT 2025
Mon Oct 20 22:37:01 EDT 2025
Mon Oct 20 16:23:17 EDT 2025
Mon Jul 21 06:07:44 EDT 2025
Wed Oct 01 01:55:07 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Sat Sep 06 07:30:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Administrative data
Systematic review
Osteoarthritis
Diagnostic accuracy
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-261a778d139328cb6706df8df0e4c6884b3362d9a0c8ecd61446d03bb869bdfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Undefined-4
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12911-016-0319-y
PMID 27387323
PQID 1807854612
PQPubID 42572
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_s12911_016_0319_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4936018
proquest_miscellaneous_1803792006
proquest_journals_1807854612
gale_infotracmisc_A468885431
gale_infotracacademiconefile_A468885431
pubmed_primary_27387323
crossref_primary_10_1186_s12911_016_0319_y
crossref_citationtrail_10_1186_s12911_016_0319_y
springer_journals_10_1186_s12911_016_0319_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-07
PublicationDateYYYYMMDD 2016-07-07
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-07
  day: 07
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC medical informatics and decision making
PublicationTitleAbbrev BMC Med Inform Decis Mak
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References A Kadhim-Saleh (319_CR24) 2013; 26
C Walraven van (319_CR31) 2012; 65
LR Harrold (319_CR25) 2000; 43
A Leong (319_CR18) 2013; 8
LR Harrold (319_CR12) 2002; 29
L Lix (319_CR28) 2006
DG Altman (319_CR19) 1994; 308
JS Saczynski (319_CR5) 2012; 21
D Moher (319_CR17) 2009; 62
J Widdifield (319_CR16) 2013; 65
N Coleman (319_CR27) 2015; 16
JB Fowles (319_CR23) 1995; 16
RM Carnahan (319_CR7) 2012; 21
DL Simel (319_CR20) 1991; 44
JN Katz (319_CR14) 2004; 86-A
J Bedson (319_CR35) 2008; 9
R Birtwhistle (319_CR30) 2009; 22
DH Solomon (319_CR11) 2006; 55
LI Iezzoni (319_CR1) 1997; 127
C Coster De (319_CR6) 2006; 6
RC Lawrence (319_CR9) 2008; 58
MT Hannan (319_CR34) 2000; 27
SF Jencks (319_CR32) 1988; 260
C Kim (319_CR33) 2015; 351
World Health Organization (319_CR10) 2008
M Nguyen (319_CR8) 2012; 21
JN Katz (319_CR15) 2001; 83-A
WM Mikkelsen (319_CR22) 1967; 20
M Rahman JA (319_CR29) 2014; 14
JA Kopec (319_CR13) 2008; 59
EI Benchimol (319_CR3) 2011; 64
T Williamson (319_CR26) 2014; 12
S Bernatsky (319_CR4) 2013; 40
GF Riley (319_CR2) 2009; 47
H Brenner (319_CR21) 1997; 16
References_xml – volume: 29
  start-page: 1931
  issue: 9
  year: 2002
  ident: 319_CR12
  publication-title: J Rheumatol
– volume: 40
  start-page: 66
  issue: 1
  year: 2013
  ident: 319_CR4
  publication-title: J Rheumatol
  doi: 10.3899/jrheum.120835
– volume: 351
  start-page: h5983
  year: 2015
  ident: 319_CR33
  publication-title: BMJ
  doi: 10.1136/bmj.h5983
– volume: 64
  start-page: 821
  issue: 8
  year: 2011
  ident: 319_CR3
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2010.10.006
– volume: 9
  start-page: 116
  year: 2008
  ident: 319_CR35
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/1471-2474-9-116
– volume: 260
  start-page: 2240
  issue: 15
  year: 1988
  ident: 319_CR32
  publication-title: JAMA
  doi: 10.1001/jama.1988.03410150088036
– volume: 62
  start-page: 1006
  issue: 10
  year: 2009
  ident: 319_CR17
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2009.06.005
– volume: 16
  start-page: 11
  year: 2015
  ident: 319_CR27
  publication-title: BMC Fam Pract
  doi: 10.1186/s12875-015-0223-z
– volume: 65
  start-page: 126
  issue: 2
  year: 2012
  ident: 319_CR31
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2011.08.002
– volume: 127
  start-page: 666
  issue: 8
  year: 1997
  ident: 319_CR1
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-127-8_Part_2-199710151-00048
– volume: 308
  start-page: 1552
  issue: 6943
  year: 1994
  ident: 319_CR19
  publication-title: BMJ
  doi: 10.1136/bmj.308.6943.1552
– volume: 16
  start-page: 981
  issue: 9
  year: 1997
  ident: 319_CR21
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19970515)16:9<981::AID-SIM510>3.0.CO;2-N
– volume: 22
  start-page: 412
  issue: 4
  year: 2009
  ident: 319_CR30
  publication-title: J Am Board Fam Med
  doi: 10.3122/jabfm.2009.04.090081
– volume: 65
  start-page: 1490
  issue: 9
  year: 2013
  ident: 319_CR16
  publication-title: Arthritis Care Res (Hoboken)
  doi: 10.1002/acr.21993
– volume: 58
  start-page: 26
  issue: 1
  year: 2008
  ident: 319_CR9
  publication-title: Part II Arthritis Rheum
  doi: 10.1002/art.23176
– volume-title: Defining and Validating Chronic Diseases: An Administrative Data Approach
  year: 2006
  ident: 319_CR28
– volume: 16
  start-page: 189
  issue: 4
  year: 1995
  ident: 319_CR23
  publication-title: Health Care Financ Rev
– volume: 8
  start-page: e75256
  issue: 10
  year: 2013
  ident: 319_CR18
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0075256
– volume: 14
  start-page: S150
  issue: Supplement 4
  year: 2014
  ident: 319_CR29
  publication-title: Osteoarthritis Cartilage
– volume: 27
  start-page: 1513
  issue: 6
  year: 2000
  ident: 319_CR34
  publication-title: J Rheumatol
– volume: 20
  start-page: 351
  issue: 6
  year: 1967
  ident: 319_CR22
  publication-title: J Chronic Dis
  doi: 10.1016/0021-9681(67)90009-4
– volume: 55
  start-page: 35
  issue: 1
  year: 2006
  ident: 319_CR11
  publication-title: Arthritis Rheum
  doi: 10.1002/art.21697
– volume-title: The global burden of disease: 2004 update
  year: 2008
  ident: 319_CR10
– volume: 12
  start-page: 367
  issue: 4
  year: 2014
  ident: 319_CR26
  publication-title: Ann Fam Med
  doi: 10.1370/afm.1644
– volume: 44
  start-page: 763
  issue: 8
  year: 1991
  ident: 319_CR20
  publication-title: J Clin Epidemiol
  doi: 10.1016/0895-4356(91)90128-V
– volume: 59
  start-page: 929
  issue: 7
  year: 2008
  ident: 319_CR13
  publication-title: Arthritis Rheum
  doi: 10.1002/art.23827
– volume: 6
  start-page: 77
  year: 2006
  ident: 319_CR6
  publication-title: BMC Health Serv Res
  doi: 10.1186/1472-6963-6-77
– volume: 83-A
  start-page: 1622
  issue: 11
  year: 2001
  ident: 319_CR15
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-200111000-00002
– volume: 47
  start-page: S51
  issue: 7 Suppl 1
  year: 2009
  ident: 319_CR2
  publication-title: Med Care
  doi: 10.1097/MLR.0b013e31819c95aa
– volume: 43
  start-page: 1881
  issue: 8
  year: 2000
  ident: 319_CR25
  publication-title: Arthritis Rheum
  doi: 10.1002/1529-0131(200008)43:8<1881::AID-ANR26>3.0.CO;2-#
– volume: 21
  start-page: 291
  issue: Suppl 1
  year: 2012
  ident: 319_CR8
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.2323
– volume: 86-A
  start-page: 1909
  issue: 9
  year: 2004
  ident: 319_CR14
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-200409000-00008
– volume: 26
  start-page: 159
  issue: 2
  year: 2013
  ident: 319_CR24
  publication-title: J Am Board Fam Med
  doi: 10.3122/jabfm.2013.02.120183
– volume: 21
  start-page: 129
  issue: Suppl 1
  year: 2012
  ident: 319_CR5
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.2313
– volume: 21
  start-page: 82
  issue: Suppl 1
  year: 2012
  ident: 319_CR7
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.2321
SSID ssj0017835
Score 2.2549596
SecondaryResourceType review_article
Snippet Background Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA)....
Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a...
Background Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA)....
BACKGROUNDAdministrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA)....
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 82
SubjectTerms Algorithms
Care and treatment
Clinical decision-making
Diagnosis
Health Informatics
Health maintenance organizations
HMOs
Humans
Information Systems and Communication Service
knowledge support systems
Management of Computing and Information Systems
Medicine
Medicine & Public Health
Osteoarthritis
Osteoarthritis - diagnosis
Practice Guidelines as Topic - standards
Primary care
Research Article
Studies
theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEB_qFbR-EF-10SorCIIlNMluNhtBpGpLEXqIWOi3sNnNegfX5OzdKfffO5NXLwXr532wj5mdmZ2Z3wC8sTx02gSp76Ig9kXkjJ8aW_gmd6GN0CYKYkpOPhvL03Px9SK-2IJxlwtDYZXdm1g_1LYy9Ed-GBIweixQIH-c__KpahR5V7sSGrotrWA_1BBjd2A7ImSsEWx_Oh5_-977Feifo_VthkoeLlDa1XllaFVTNs96IJ1uvtEbQupmAGXvRb0P91blXK__6NlsQ1CdPIQHrYbJjhqSeARbRfkY7p61PvQncPmlia7DZoYbWl1ps2aVY3oDRvd3wSh0lOnZTzyD5eRywaYlQ12R2WbwdEFDKEGkQtqb1MhI75lm18DQrEmKeQrnJ8c_Pp_6bdEF38Q8WfpoUekkURY1Qx4pk8skkNYp64JCGKmUyDnKPJvqwKjC2NqetAHPcyXT3DrNd2FUVmWxByyRNlS5y3kqpHBOqNS6SCiJOkRkpBMeBN1hZ6ZFJKfCGLOstkyUzJr7ySgKje4nW3vwrh8yb-A4buv8lm4wI1bFeY1uMw5wdQR6lR0J3I8iMAAP9gc9kcXMsLmjgaxl8UV2TZAevO6baSSFrZVFtar78CSlXxsPnjUk0y-bcqISHnEPkgEx9R0I-HvYUk4nNQC4SDna0cqDg47sNpb179M46Cnz_2f3_PYtv4CdqOYa-ufeh9HyalW8RO1smb9qWe4vj_k5UQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Open Access Journals (LUT & LAB)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB50BS8P4t3qKhEEwaVs26Rp6tuyuizC-uTCvpVcGs-Bs-1yLsr5986kPbVdvOBzMiVNZjozmfm-Arx1PPXaJmXssySPReZtXFpXx9b41GWYEyU5gZPPvsjTc_H5Ir_oyaIJCzOu36dKHq7QHwXkF-a9hLfZ3oRb6KNkqMvK46FgQBcYfdHyt2ITt3P94zvyPtc7I4fy6D24s2mu9PaHXixGHujkAdzvQ0d21J31Q7hRN4_g9llfHH8Mlx-7tjkcZtrazVLbLWs90yN-3O81o55Qphff2uV8PbtcsXnDMAhkrhOer0iEkB8tKtUsUB59YJr9YnxmHdrlCZyffPp6fBr3f1OIbc6LdYypki4K5TDk45myRhaJdF45n9TCSqWE4ejMXKkTq2rrQqLoEm6MkqVxXvOnsNe0Tf0cWCFdqow3vBRSeC9U6XwmlMTgILPSiwiS3WZXtqcapz9eLKqQcihZdedTUXsZnU-1jeD9IHLV8Wz8bfI7OsGKbBCfa3UPJcDVEZtVdSTwfRSh_CPYn8xE27HT4Z0OVL3trqqUKPhzgaFfBG-GYZKkfrSmbjdhDi9Kuo6J4FmnMsOyCexU8IxHUEyUaZhAjN7TkWY-C8zeouSYIKsIDnZqN1rWn3fjYNDMf-_di_969ku4mwUjovvsfdhbLzf1K4zC1uZ1sL-fUOAruw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ri9NAEB_OHvj44Nu76CkrCIJHeml2s9n4rajHIdwhYuH8FPaRtaVtUq6tUv96d_IyLT4Q_BbYnbCZnd2Zyc7vtwAvDB1YqYPEt2EQ-Sy02k-0yXyt7MCELicKIgQnn1_wsxF7fxld7sHHBguj5hoPlUsojsFbZuZy2u8i0Wfl9u0e9PRkYWy16gU_WTrHVULEXIKMwJzNNdjnkYvPe7A_uvgw_FzCjOLQ5wmL6-PNX8ptOajdbbrjp3ZrKNuD1FtwY50v5OabnM06vur0Diybr6xKVKb99Ur19fcdAsj_q4a7cLsObcmwssV7sJfl9-H6eX14_wDmb6uyPtdMpNZr99YNKSyRHf7erxnBmlUiZ1-Kq8lqPF-SSU5ckEpMJTxZoggiUwpn9OOSkuk1keQnIzWp0DgPYXT67tObM7--7cHXEY1XvkvlZBwL40JSGgqteBxwY4WxQcY0F4Ip6pytSWSgRaZNmciagColeKKMlfQR9PIizw6BxNwMhLKKJowza5lIjA2Z4C54CTW3zIOgmeJU11ToeCPHLC1TIsHTSo0plr-hGtONB69akUXFA_Knzi_RblKcP5wiWUMd3OiQbSsdMvc9AlkIPDja6unWtt5ubiwvrfeWZTrAKwIi5kJTD563zSiJ9XJ5VqzLPjRO8HeRBweVobbDRjBWTEPqQbxlwm0HZBzfbskn45J5nCXUJfDCg-PG2DvD-r02jtv18HfdPf6n3k_gZljaOv5vP4Le6mqdPXVR4ko9q5f9D36RZNI
  priority: 102
  providerName: Unpaywall
Title Diagnostic accuracy of administrative data algorithms in the diagnosis of osteoarthritis: a systematic review
URI https://link.springer.com/article/10.1186/s12911-016-0319-y
https://www.ncbi.nlm.nih.gov/pubmed/27387323
https://www.proquest.com/docview/1807854612
https://www.proquest.com/docview/1803792006
https://pubmed.ncbi.nlm.nih.gov/PMC4936018
https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-016-0319-y
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M48
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rixMxEB_uAT4-iG9XzxJBEDxWt5s0yQoivXrnIbQch4V6X5ZssrGF3vbsQ-1_7yS73WuPU_HLQplkyU5mOjPJzG8AXhratEpHSWjjqBWy2Oow0SYPdWabJsaYKGq54uRujx_32edBa7AFq_ZWFQNn14Z2rp9Ufzp-8-v78gMq_Huv8JK_naHN8tVhGBu7mpzlNuyioUpcJ4cuu7xUcIccvthIxCFPmKguOa99xYaZuvpnvWatrmZS1tept-HmorhQy59qPF6zWEd34U7lapJ2KRv3YCsv7sONbnWZ_gDOP5ZpdkgmSuvFVOklmVii1vB0f-TE5ZASNf42mY7mw_MZGRUEnUZiysmjmZviKkUmKIRDD5H0jihyiRBNyuqYh9A_OvzSOQ6r7guhblExDzG0UkJIgy4ijaXOuIi4sdLYKGeaS8kyisbPJCrSMtfGB5YmolkmeZIZq-gj2CkmRf4EiOCmKTOb0YRxZi2TibExkxydiVhzywKIVsxOdQVN7jpkjFMfokielvuTunQ0tz_pMoDX9ZSLEpfjb4NfuR1MnRThe7WqSg9wdQ79Km0z_B7pUAEC2NsYibqmN8krGUhXopo2HWR_i6GrGMCLmuxmuvy1Ip8s_BgqEnd8E8DjUmTqZbviKEFjGoDYEKZ6gEMA36QUo6FHAmcJxYBaBrC_Eru1Zf2ZG_u1ZP6bd0__h9HP4Fbsdcgdf-_Bzny6yJ-j0zbPGrAtBgKf8uhTA3YPDnsnp_irwzsNfwzS8KqKz9ODM6T3eyftr78B-8pDtA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VItFyQLy7UMBIICSqVXfXjteLhFBFqVLa9NRKuS1ee00ipZvQJFT5U_xGZvbVpBLl1LMfssfztGc-A7yzPHTaBInvoqDji8gZPzE2903mQhthTBR0qDi5dyK7Z-J7v9Nfgz9NLQylVTY6sVTUdmzojnw3JGD0jkCD_GXyy6dfo-h1tflCo2KLo3xxiSHb9PPhPp7v-yg6-Hb6tevXvwr4psPjmY8hg45jZdH14ZEymYwDaZ2yLsiFkUqJjKNSt4kOjMqNLQMmG_AsUzLJrNMc570DdwVHXYLyE_fbAC-kW5T65TRUcneKtrSsWsOYnWqFFiu277oFWDKB19Mz2zfa-7AxLyZ6calHoyUzePAQHtT-K9urGO4RrOXFY7jXq1_on8D5fpW7h81MGzO_0GbBxo7pJZDe3zmjxFSmRz-RwrPB-ZQNC4aeKLPV4OGUhlD5yRg5e1DiLn1iml3BTrOq5OYpnN0K8Z_BejEu8i1gsbShylzGEyGFc0Il1kVCSfRQIiOd8CBoiJ2aGu-cvt0YpWXco2RanU9KOW50PunCg4_tkEkF9nFT5w90gikpApzX6LqeAVdHkFrpnsD9KIIa8GB7pScKsFltbnggrRXINL1idw_ets00kpLiinw8L_vwOKE7IQ-eVyzTLpsqrmIecQ_iFWZqOxCs-GpLMRyU8OIi4RilKw92GrZbWta_qbHTcub_affi5i2_gY3uae84PT48OXoJm1EpQXSjvg3rs4t5_gr9wFn2uhQ-Bj9uW9r_AsL8b4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-2Drr1oey7XrtNg8FgxdSxZFnuW0kXuo-WPazQNyFL1hJI7RA7G_nvp_NX47IP9iydUaS73J3ufj8BvDV0ZJUOEt-GQeSz0Go_0SbzdWpHJnQ5URAhOPn8gp9dsk9X0VX7zmnZdbt3JckG04AsTXl1tDC2MXHBj0rnpWo8mMuGEYWzvgv3mHNu-ITBmI_7MgJea7SlzN-KDZzR7b_kDZ90u1-yL5ruwP1VvlDrn2o-3_BLk4ew2waU5KTRgEdwJ8sfw_Z5WzJ_AtenTTOdGyZK69VS6TUpLFEbrLk_MoKdokTNvxfLWTW9LsksJy40JKYRnpUogniQwqnatCZCOiaK3PBAkwYD8xQuJx--jc_89o0FX0c0rnyXQKk4FsYFgjQUOuVxwI0VxgYZ01wIllLn4kyiAi0yber00QQ0TQVPUmMVfQZbeZFne0BibkYitSlNGGfWMpEYGzLBXcgQam6ZB0G32VK3BOT4DsZc1omI4LI5H4lNZ3g-cu3B-15k0bBv_G3yOzxBiZbpvqtVCzBwq0OOK3nC3O8RiP334GAw01mUHg53OiBbiy7lCIn5I-YCQg_e9MMoiV1qeVas6jk0TvCSxoPnjcr0y0YIVExD6kE8UKZ-AvJ8D0fy2bTm-2YJdWmz8OCwU7uNZf15Nw57zfz33r34r2-_hu2vpxP55ePF5314ENb2hBfeB7BVLVfZSxemVemr2hR_AVSYNvE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ri9NAEB_OHvj44Nu76CkrCIJHeml2s9n4rajHIdwhYuH8FPaRtaVtUq6tUv96d_IyLT4Q_BbYnbCZnd2Zyc7vtwAvDB1YqYPEt2EQ-Sy02k-0yXyt7MCELicKIgQnn1_wsxF7fxld7sHHBguj5hoPlUsojsFbZuZy2u8i0Wfl9u0e9PRkYWy16gU_WTrHVULEXIKMwJzNNdjnkYvPe7A_uvgw_FzCjOLQ5wmL6-PNX8ptOajdbbrjp3ZrKNuD1FtwY50v5OabnM06vur0Diybr6xKVKb99Ur19fcdAsj_q4a7cLsObcmwssV7sJfl9-H6eX14_wDmb6uyPtdMpNZr99YNKSyRHf7erxnBmlUiZ1-Kq8lqPF-SSU5ckEpMJTxZoggiUwpn9OOSkuk1keQnIzWp0DgPYXT67tObM7--7cHXEY1XvkvlZBwL40JSGgqteBxwY4WxQcY0F4Ip6pytSWSgRaZNmciagColeKKMlfQR9PIizw6BxNwMhLKKJowza5lIjA2Z4C54CTW3zIOgmeJU11ToeCPHLC1TIsHTSo0plr-hGtONB69akUXFA_Knzi_RblKcP5wiWUMd3OiQbSsdMvc9AlkIPDja6unWtt5ubiwvrfeWZTrAKwIi5kJTD563zSiJ9XJ5VqzLPjRO8HeRBweVobbDRjBWTEPqQbxlwm0HZBzfbskn45J5nCXUJfDCg-PG2DvD-r02jtv18HfdPf6n3k_gZljaOv5vP4Le6mqdPXVR4ko9q5f9D36RZNI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+accuracy+of+administrative+data+algorithms+in+the+diagnosis+of+osteoarthritis%3A+a+systematic+review&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Shrestha%2C+Swastina&rft.au=Dave%2C+Amish+J.&rft.au=Losina%2C+Elena&rft.au=Katz%2C+Jeffrey+N.&rft.date=2016-07-07&rft.issn=1472-6947&rft.eissn=1472-6947&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12911-016-0319-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12911_016_0319_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon