Evaluation of EEG Signals by Spectral Peak Methods and Statistical Correlation for Mental State Discrimination Induced by Arithmetic Tasks
Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic para...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 24; no. 11; p. 3316 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
01.06.2024
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s24113316 |
Cover
| Abstract | Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic parameters of EEG signals in the time, frequency, and statistical domains. This paper explores the results of an experiment that aimed to highlight arithmetic mental tasks contained in the PhysioNet database, performed on a group of 36 subjects. The majority of publications on this topic deal with machine learning (ML)-based classification methods with supervised learning support vector machine (SVM) algorithms, K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Decision Trees (DTs). Also, there are frequent approaches based on the analysis of EEG data as time series and their classification with Recurrent Neural Networks (RNNs), as well as with improved algorithms such as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BLSTM), and Gated Recurrent Units (GRUs). In the present work, we evaluate the classification method based on the comparison of domain limits for two specific characteristics of EEG signals: the statistical correlation of pairs of signals and the size of the spectral peak detected in theta, alpha, and beta bands. This study provides some interpretations regarding the electrical activity of the brain, consolidating and complementing the results of similar research. The classification method used is simple and easy to apply and interpret. The analysis of EEG data showed that the theta and beta frequency bands were the only discriminators between the relaxation and arithmetic calculation states. Notably, the F7 signal, which used the spectral peak criterion, achieved the best classification accuracy (100%) in both theta and beta bands for the subjects with the best results in performing calculations. Also, our study found the Fz signal to be a good sensor in the theta band for mental task discrimination for all subjects in the group with 90% accuracy. |
|---|---|
| AbstractList | Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic parameters of EEG signals in the time, frequency, and statistical domains. This paper explores the results of an experiment that aimed to highlight arithmetic mental tasks contained in the PhysioNet database, performed on a group of 36 subjects. The majority of publications on this topic deal with machine learning (ML)-based classification methods with supervised learning support vector machine (SVM) algorithms, K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Decision Trees (DTs). Also, there are frequent approaches based on the analysis of EEG data as time series and their classification with Recurrent Neural Networks (RNNs), as well as with improved algorithms such as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BLSTM), and Gated Recurrent Units (GRUs). In the present work, we evaluate the classification method based on the comparison of domain limits for two specific characteristics of EEG signals: the statistical correlation of pairs of signals and the size of the spectral peak detected in theta, alpha, and beta bands. This study provides some interpretations regarding the electrical activity of the brain, consolidating and complementing the results of similar research. The classification method used is simple and easy to apply and interpret. The analysis of EEG data showed that the theta and beta frequency bands were the only discriminators between the relaxation and arithmetic calculation states. Notably, the F7 signal, which used the spectral peak criterion, achieved the best classification accuracy (100%) in both theta and beta bands for the subjects with the best results in performing calculations. Also, our study found the Fz signal to be a good sensor in the theta band for mental task discrimination for all subjects in the group with 90% accuracy. Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic parameters of EEG signals in the time, frequency, and statistical domains. This paper explores the results of an experiment that aimed to highlight arithmetic mental tasks contained in the PhysioNet database, performed on a group of 36 subjects. The majority of publications on this topic deal with machine learning (ML)-based classification methods with supervised learning support vector machine (SVM) algorithms, K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Decision Trees (DTs). Also, there are frequent approaches based on the analysis of EEG data as time series and their classification with Recurrent Neural Networks (RNNs), as well as with improved algorithms such as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BLSTM), and Gated Recurrent Units (GRUs). In the present work, we evaluate the classification method based on the comparison of domain limits for two specific characteristics of EEG signals: the statistical correlation of pairs of signals and the size of the spectral peak detected in theta, alpha, and beta bands. This study provides some interpretations regarding the electrical activity of the brain, consolidating and complementing the results of similar research. The classification method used is simple and easy to apply and interpret. The analysis of EEG data showed that the theta and beta frequency bands were the only discriminators between the relaxation and arithmetic calculation states. Notably, the F7 signal, which used the spectral peak criterion, achieved the best classification accuracy (100%) in both theta and beta bands for the subjects with the best results in performing calculations. Also, our study found the Fz signal to be a good sensor in the theta band for mental task discrimination for all subjects in the group with 90% accuracy.Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic parameters of EEG signals in the time, frequency, and statistical domains. This paper explores the results of an experiment that aimed to highlight arithmetic mental tasks contained in the PhysioNet database, performed on a group of 36 subjects. The majority of publications on this topic deal with machine learning (ML)-based classification methods with supervised learning support vector machine (SVM) algorithms, K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Decision Trees (DTs). Also, there are frequent approaches based on the analysis of EEG data as time series and their classification with Recurrent Neural Networks (RNNs), as well as with improved algorithms such as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BLSTM), and Gated Recurrent Units (GRUs). In the present work, we evaluate the classification method based on the comparison of domain limits for two specific characteristics of EEG signals: the statistical correlation of pairs of signals and the size of the spectral peak detected in theta, alpha, and beta bands. This study provides some interpretations regarding the electrical activity of the brain, consolidating and complementing the results of similar research. The classification method used is simple and easy to apply and interpret. The analysis of EEG data showed that the theta and beta frequency bands were the only discriminators between the relaxation and arithmetic calculation states. Notably, the F7 signal, which used the spectral peak criterion, achieved the best classification accuracy (100%) in both theta and beta bands for the subjects with the best results in performing calculations. Also, our study found the Fz signal to be a good sensor in the theta band for mental task discrimination for all subjects in the group with 90% accuracy. |
| Audience | Academic |
| Author | Coman, Daniela Andreea Ionita, Silviu Lita, Ioan |
| AuthorAffiliation | 1 Department of Electronics, Computers and Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 110040 Pitesti, Romania; ioan.lita@upb.ro 2 Regional Research and Development Center for Innovative Materials, Processes, and Products for the Automotive Industry (CRC&D-Auto), 110440 Pitesti, Romania |
| AuthorAffiliation_xml | – name: 1 Department of Electronics, Computers and Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 110040 Pitesti, Romania; ioan.lita@upb.ro – name: 2 Regional Research and Development Center for Innovative Materials, Processes, and Products for the Automotive Industry (CRC&D-Auto), 110440 Pitesti, Romania |
| Author_xml | – sequence: 1 givenname: Daniela Andreea orcidid: 0009-0006-9309-8642 surname: Coman fullname: Coman, Daniela Andreea – sequence: 2 givenname: Silviu surname: Ionita fullname: Ionita, Silviu – sequence: 3 givenname: Ioan surname: Lita fullname: Lita, Ioan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38894108$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kltv0zAUxyM0xC7wwBdAkXgBpG6-NbGfUFXKqDQEUsezdWI7rbvULnYy1K_Ap8ZZRlmnCeXB0Tm_8z_X0-zIeWey7DVG55QKdBEJw5hSXDzLTjAjbMQJQUcP_o-z0xjXCBFKKX-RHVPOBcOIn2S_Z7fQdNBa73Jf57PZZb6wSwdNzKtdvtga1QZo8u8GbvKvpl15HXNwOl-0KSa2ViXn1IdgmkGj9iFxrk3mHjH5JxtVsBvrBv_c6U4Z3YtPgm1XG5M08muIN_Fl9rxOec2r-_cs-_F5dj39Mrr6djmfTq5GakzLdkQIKU0x1sZwbRTXfAyI4pIwUaEaAVUKRMk1sEqgglIitKoZoUoISipmBD3L5oOu9rCW21QchJ30YOWdwYelhJCqaoxUoiiAE4SMpmzMAIAaxgktMSsxKXjS-jBodW4Lu1_QNHtBjGS_HLlfToI_DvC2qzZGqzSmNNuDCg49zq7k0t9KjHHJOO7TvbtXCP5nZ2IrN2m8pmnAGd9FSVGJOCIC9V2-fYSufRf6xSaqKBkVQhT_qCWkdq2rfUqselE5KUUpUDqSPu35E1T6tNlYlW6xtsl-EPDmYaf7Fv_eXQLeD4AKPsZg6v-O7eIRq2x7d02pCts8EfEHu4j0tQ |
| CitedBy_id | crossref_primary_10_1016_j_bbe_2025_02_002 |
| Cites_doi | 10.3390/electronics10091079 10.3390/data4010014 10.20944/preprints202107.0255.v1 10.1109/ICCSCE.2011.6190573 10.1109/ECAI54874.2022.9847429 10.3390/diagnostics10050292 10.1002/hbm.10035 10.1016/j.tics.2008.02.004 10.3389/fnana.2019.00021 10.1109/ICCSP48568.2020.9182149 10.1016/j.biopsych.2013.06.018 10.1088/1361-6579/acd51b 10.1162/jocn_a_01319 10.1002/hbm.25683 10.1016/j.neuropsychologia.2008.10.013 10.1109/ISCE.2014.6884536 10.1007/978-3-030-04573-9 10.1016/j.brainres.2012.02.017 10.1109/ICE.2017.8280071 10.3389/fneur.2017.00696 10.1177/1073858412440596 10.1371/journal.pone.0165168 10.32598/bcn.2021.2034.1 10.1073/pnas.0135058100 10.3389/fpsyg.2017.01417 10.1002/brb3.2476 10.3389/fnhum.2019.00270 10.1093/oxfordhb/9780199642342.001.0001 10.1523/JNEUROSCI.0216-15.2015 10.3389/frai.2022.1072801 10.1186/s12883-015-0521-z 10.1109/TNSRE.2012.2236576 10.1007/978-3-030-23580-2 10.1109/ISITIA49792.2020.9163760 10.1109/VLSIDCS47293.2020.9179949 10.1101/2022.11.15.516568 10.1002/brb3.2775 10.1371/journal.pone.0174949 10.1080/02643290244000239 10.1016/j.neuroimage.2010.10.009 10.1186/s12938-022-00980-1 10.1109/ICCCNT49239.2020.9225647 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s24113316 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_c966a8200ed3454aaa3e482371471268 10.3390/s24113316 PMC11174818 A797901088 38894108 10_3390_s24113316 |
| Genre | Journal Article |
| GeographicLocations | New York |
| GeographicLocations_xml | – name: New York |
| GrantInformation_xml | – fundername: National University of Science and Technology POLITEHNICA Bucharest (UNSTPB) grantid: research funds – fundername: National University of Science and Technology POLITEHNICA Bucharest |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c537t-2227e65dee8dec8d85a0317249b0f0a3cca978da4b9063329dcf423c9932b4e93 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:36:52 EDT 2025 Sun Oct 26 04:16:35 EDT 2025 Tue Sep 30 17:08:49 EDT 2025 Thu Oct 02 11:53:30 EDT 2025 Tue Oct 07 07:09:11 EDT 2025 Mon Oct 20 22:53:47 EDT 2025 Mon Oct 20 16:59:21 EDT 2025 Mon Jul 21 05:49:49 EDT 2025 Thu Oct 16 04:27:23 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | mental states discrimination power spectral density statistical correlation EEG signal processing |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-2227e65dee8dec8d85a0317249b0f0a3cca978da4b9063329dcf423c9932b4e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0006-9309-8642 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24113316 |
| PMID | 38894108 |
| PQID | 3067439996 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c966a8200ed3454aaa3e482371471268 unpaywall_primary_10_3390_s24113316 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11174818 proquest_miscellaneous_3070802909 proquest_journals_3067439996 gale_infotracmisc_A797901088 gale_infotracacademiconefile_A797901088 pubmed_primary_38894108 crossref_primary_10_3390_s24113316 crossref_citationtrail_10_3390_s24113316 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Dragoi (ref_53) 2023; 85 ref_13 ref_11 ref_10 Dehaene (ref_37) 2003; 20 ref_51 ref_19 ref_18 ref_17 (ref_7) 2024; 5 ref_16 Scrivener (ref_24) 2022; 12 Seghier (ref_35) 2013; 19 Menon (ref_23) 2002; 16 Maghsoudi (ref_14) 2021; 12 Chang (ref_21) 2022; 12 Evans (ref_40) 2015; 35 Murphy (ref_52) 2017; 8 ref_25 ref_20 Insausti (ref_32) 2019; 13 Daitch (ref_39) 2018; 30 Cao (ref_43) 2022; 43 ref_27 Grabner (ref_36) 2009; 47 Wang (ref_12) 2013; 21 Chu (ref_50) 2022; 21 Mukaka (ref_42) 2012; 24 ref_33 ref_31 ref_30 Iuculano (ref_41) 2014; 75 Menon (ref_26) 2003; 100 Saini (ref_9) 2023; 44 ref_38 Seleznov (ref_8) 2019; 13 Badre (ref_29) 2008; 12 ref_47 ref_46 ref_45 ref_44 Wong (ref_34) 2012; 1449 ref_1 ref_3 ref_2 Yang (ref_28) 2017; 8 Singh (ref_15) 2023; 5 ref_49 ref_48 Arsalidou (ref_22) 2011; 54 ref_5 ref_4 ref_6 |
| References_xml | – ident: ref_6 doi: 10.3390/electronics10091079 – ident: ref_20 doi: 10.3390/data4010014 – ident: ref_17 doi: 10.20944/preprints202107.0255.v1 – ident: ref_49 doi: 10.1109/ICCSCE.2011.6190573 – ident: ref_47 doi: 10.1109/ECAI54874.2022.9847429 – ident: ref_4 doi: 10.3390/diagnostics10050292 – volume: 16 start-page: 119 year: 2002 ident: ref_23 article-title: Prefrontal Cortex Involvement in Processing Incorrect Arithmetic Equations: Evidence from Event-related fMRI publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10035 – volume: 12 start-page: 193 year: 2008 ident: ref_29 article-title: Cognitive Control, Hierarchy, and the Rostro–Caudal Organization of the Frontal Lobes publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2008.02.004 – volume: 13 start-page: 21 year: 2019 ident: ref_32 article-title: Cytoarchitectonic Areas of the Gyrus Ambiens in the Human Brain publication-title: Front. Neuroanat. doi: 10.3389/fnana.2019.00021 – ident: ref_3 doi: 10.1109/ICCSP48568.2020.9182149 – volume: 85 start-page: 354 year: 2023 ident: ref_53 article-title: Design and Implementation of anEEG-based BCI Prosthetic Lower Limb Using Raspberry PI 4 publication-title: UPB Sci. Bull. Ser. C – volume: 75 start-page: 223 year: 2014 ident: ref_41 article-title: Brain Organization Underlying Superior Mathematical Abilities in Children with Autism publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2013.06.018 – volume: 44 start-page: 06TR01 year: 2023 ident: ref_9 article-title: State-of-the-Art Mental Tasks Classification Based on Electroencephalograms: A Review publication-title: Physiol. Meas. doi: 10.1088/1361-6579/acd51b – volume: 30 start-page: 1757 year: 2018 ident: ref_39 article-title: Brain Mechanisms of Arithmetic: A Crucial Role for Ventral Temporal Cortex publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_01319 – volume: 43 start-page: 860 year: 2022 ident: ref_43 article-title: Brain Functional and Effective Connectivity Based on Electroencephalography Recordings: A Review publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25683 – ident: ref_27 – volume: 47 start-page: 604 year: 2009 ident: ref_36 article-title: To Retrieve or to Calculate? Left Angular Gyrus Mediates the Retrieval of Arithmetic Facts during Problem Solving publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2008.10.013 – ident: ref_11 doi: 10.1109/ISCE.2014.6884536 – ident: ref_48 – ident: ref_25 doi: 10.1007/978-3-030-04573-9 – volume: 1449 start-page: 94 year: 2012 ident: ref_34 article-title: The Function of the Anterior Temporal Lobe: A Review of the Empirical Evidence publication-title: Brain Res. doi: 10.1016/j.brainres.2012.02.017 – ident: ref_13 – ident: ref_16 doi: 10.1109/ICE.2017.8280071 – volume: 8 start-page: 696 year: 2017 ident: ref_52 article-title: Electroencephalogram-Based Brain–Computer Interface and Lower-Limb Prosthesis Control: A Case Study publication-title: Front. Neurol. doi: 10.3389/fneur.2017.00696 – ident: ref_30 – volume: 19 start-page: 43 year: 2013 ident: ref_35 article-title: The Angular Gyrus: Multiple Functions and Multiple Subdivisions publication-title: Neuroscientist doi: 10.1177/1073858412440596 – ident: ref_45 doi: 10.1371/journal.pone.0165168 – volume: 12 start-page: 817 year: 2021 ident: ref_14 article-title: Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals publication-title: Basic Clin. Neurosci. J. doi: 10.32598/bcn.2021.2034.1 – volume: 100 start-page: 253 year: 2003 ident: ref_26 article-title: Functional connectivity in the resting brain:A network analysis of the defaultmode hypothesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0135058100 – volume: 8 start-page: 1417 year: 2017 ident: ref_28 article-title: Modulating the Activity of the DLPFC and OFC Has Distinct Effects on Risk and Ambiguity Decision-Making: A tDCS Study publication-title: Front. Psychol. doi: 10.3389/fpsyg.2017.01417 – volume: 12 start-page: e2476 year: 2022 ident: ref_24 article-title: Variability of EEG Electrode Positions and Their Underlying Brain Regions: Visualizing Gel Artifacts from a Simultaneous EEG-fMRI Dataset publication-title: Brain Behav. doi: 10.1002/brb3.2476 – volume: 13 start-page: 270 year: 2019 ident: ref_8 article-title: Detrended Fluctuation, Coherence, and Spectral Power Analysis of Activation Rearrangement in EEG Dynamics During Cognitive Workload publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2019.00270 – ident: ref_1 doi: 10.1093/oxfordhb/9780199642342.001.0001 – volume: 35 start-page: 11743 year: 2015 ident: ref_40 article-title: Brain Structural Integrity and Intrinsic Functional Connectivity Forecast 6 Year Longitudinal Growth in Children’s Numerical Abilities publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0216-15.2015 – volume: 5 start-page: 1072801 year: 2023 ident: ref_15 article-title: Trends in EEG Signal Feature Extraction Applications publication-title: Front. Artif. Intell. doi: 10.3389/frai.2022.1072801 – ident: ref_18 – ident: ref_44 – ident: ref_51 doi: 10.1186/s12883-015-0521-z – volume: 24 start-page: 69 year: 2012 ident: ref_42 article-title: Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research publication-title: Malawi Med. J. J. Med. Assoc. Malawi. – volume: 21 start-page: 225 year: 2013 ident: ref_12 article-title: Real-Time Mental Arithmetic Task Recognition From EEG Signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2236576 – ident: ref_31 doi: 10.1007/978-3-030-23580-2 – ident: ref_33 – ident: ref_46 doi: 10.1109/ISITIA49792.2020.9163760 – ident: ref_5 doi: 10.1109/VLSIDCS47293.2020.9179949 – ident: ref_38 doi: 10.1101/2022.11.15.516568 – volume: 12 start-page: e2775 year: 2022 ident: ref_21 article-title: Uncovering Sex/Gender Differences of Arithmetic in the Human Brain: Insights from fMRI Studies publication-title: Brain Behav. doi: 10.1002/brb3.2775 – ident: ref_10 doi: 10.1371/journal.pone.0174949 – volume: 20 start-page: 487 year: 2003 ident: ref_37 article-title: Three parietal circuits for number processing publication-title: Cogn. Neuropsychol. doi: 10.1080/02643290244000239 – ident: ref_19 – volume: 5 start-page: 109 year: 2024 ident: ref_7 article-title: Efficient Mental Arithmetic Classification Using Approximate Entropy Features and Machine Learning Classifiers publication-title: Aurum J. Health Sci. – volume: 54 start-page: 2382 year: 2011 ident: ref_22 article-title: Is 2 + 2 = 4? Meta-Analyses of Brain Areas Needed for Numbers and Calculations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.009 – volume: 21 start-page: 9 year: 2022 ident: ref_50 article-title: Optimized electroencephalogram and functional near-infrared spectroscopy-based mental workload detection method for practical applications publication-title: Biomed. Eng. OnLine doi: 10.1186/s12938-022-00980-1 – ident: ref_2 doi: 10.1109/ICCCNT49239.2020.9225647 |
| SSID | ssj0023338 |
| Score | 2.4404926 |
| Snippet | Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3316 |
| SubjectTerms | Accuracy Adult Algorithms Brain - physiology Classification Decomposition Discriminant Analysis EEG signal processing Electric properties Electroencephalography Electroencephalography - methods Entropy Female Humans Machine learning Male mental states discrimination Methods Neural networks Neural Networks, Computer power spectral density Signal Processing, Computer-Assisted statistical correlation Support Vector Machine Support vector machines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SZQkHlIcImaxk5sH5eypUIqF1qpt2hiO3TVJVs1u0L9C_xqZuxslPAQF66ZSeLHeOYbafwNY29KhKhCuDx10BSptN6ltXMqlbBfaOXLRoSqyuPP5dGp_HRWnI1afVFNWKQHjgu3ZxGPA4apzDshCwkAwktiWNlHt5qX4Zpvps02mepTLYGZV-QREpjU73UYpzAZo6bmo-gTSPp_d8WjWPRrneTNTXsJ199huRwFocO77E6PHvksjvoeu-Hb--z2iFPwAfsxH_i7-arh8_lH_mXxlViSeX3Nqd08_YSjK7zgx6F9dMehdZxQZyBtRuEBteyIRXIcQS2PRD9BxfMPC_I0VEET5NT7A9eePj67WqzPv9GtSH4C3UX3kJ0ezk8OjtK-4UJqC6HWKd2L9WXhvNfOW-10AXjmFWZoddZkIHC3Mel0IGuDyEbkxtkG4ZhFjJPX0hvxiO20q9Y_YZxo-5QCXHZp0BdDnZUa8hwa3wgFmUvYu-1GVLZnI6emGMsKsxLas2rYs4S9GlQvIwXHn5Te024OCsSaHR6gLVW9LVX_sqWEvSVbqOhs42As9FcUcErEklXNlFFUzqJRc3eiiWfSTsVba6p6n9BVlJxR9mdwsC8HMb1JdW6tX21IR9HlZ5OZhD2OxjdMSWhtJH49YXpilpM5TyXt4jwwhmNAUxKhWcJeDxb897V8-j_W8hm7lSP-i1V1u2xnfbXxzxG_resX4aj-BIMOQSY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcEG8MBS0PCS5WXe_auz4glJaUCqkRglbqzVp7123UYIc4Eepf4Fczs34Q87pmJo7XMzvzjTP7DcCrGCEq5yb0jS4iX-TW-Jkx0hd6L1LSxgV3XZXH0_joVHw8i862YNqdhaG2yi4mukBtqpzeke8StCXsnMTvFt98mhpF_652IzR0O1rBvHUUY9dgOyRmrBFs70-mnz73JRjHiqzhF-JY7O_WmL-wSKNh5xtZyZH3_xmiN3LU7_2T19flQl991_P5RnI6vA23WlTJxo0b3IEtW96Fmxtcg_fgx6Tn9WZVwSaTD-zL7JzYk1l2xWgMPf0IwxB5yY7dWOma6dIwQqOOzBmFBzTKo2meYwh2WUMA5FQsez-jCESdNU5OM0HQJnTx8XK2uvhKpyXZia4v6_twejg5OTjy20EMfh5xufLpvKyNI2OtMjZXRkUaY4HEyi0LikBz9AIsRo0WWYKIh4eJyQuEaTlinzATNuEPYFRWpX0EjOj8pNT42EWCMVpnQax0GOrCFlzqwHjwpjNEmrcs5TQsY55itUI2S3ubefCiV1001Bx_U9ona_YKxKbtPqiW52m7OdMcaz6NUCiwhotIaK25FcTis4epO4yVB6_JF1La83gzuW6PLuCSiD0rHctEUpuLQs2dgSbu1Xwo7rwpbWNFnf7ybA-e92L6JvW_lbZak46kQ9FJkHjwsHG-fklcqUTg1T1QA7ccrHkoKWcXjkkcE50UCNk8eNl78L-f5eP_3_0TuBEi4mv66HZgtFqu7VNEbKvsWbsNfwLuO0C3 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4lGchUJALSHBJycZO7ByXsqVCaoVEVyqnyLEdutolWzVZVeUn8KuZSbJhUx7iGk8iP8Yz3ygz3wC8ihGicm5D3-o88oVx1s-slb7Qw0hJF-e8zqo8Oo4PJ-LjaXS6AburWpi1__ccw_G3JXoYDKOG8Q3YjCOE2wPYnBx_Gn2pq4ZC4aODCxrGoL58z8_UdPy_G901r3M9I_LmsjjXV5d6Pl9zNwd3fhXtNFkms71lle2Z79c4HP-5kruw1YJNNmq04x5suOI-3F6jIHwAP8Yd3Tdb5Gw8_sA-T78SqTLLrhh1p6eZMrScM3ZUd5sumS4sI5Baczzj4D51-Ghy6hhiYNbwAtUijr2fkmGihJt6nFqF4FHRx0cX0-rsGxVRshNdzsqHMDkYn-wf-m1_Bt9EXFY-ldG6OLLOKeuMsirSaCIkBnRZkAeao3JgjGq1yBIEQjxMrMkRvRmERGEmXMK3YVAsCvcYGLH8Salxh0SCpltnQax0GOrc5VzqwHrwZnWaqWnJy6mHxjzFIIa2N-2214MXneh5w9jxJ6F3pBKdAJFs1w_wxNL2zqYGQ0GNCClwlotIaK25E0TuM0SPHsbKg9ekUCmZApyM0W1FAy6JSLXSkUwkZb8olNzpSeIVNv3hlUqmrQkpU4rlKFhMcLK73TC9SWlxhVssSUZSrXQSJB48ajS4WxJXKhH4dQ9UT7d7a-6PFNOzmmAc_Z8UiOQ8eNldg7_v5ZP_knoKt0LEg02W3Q4Mqoule4Z4rsqetzf6J-eNRWA priority: 102 providerName: Unpaywall |
| Title | Evaluation of EEG Signals by Spectral Peak Methods and Statistical Correlation for Mental State Discrimination Induced by Arithmetic Tasks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38894108 https://www.proquest.com/docview/3067439996 https://www.proquest.com/docview/3070802909 https://pubmed.ncbi.nlm.nih.gov/PMC11174818 https://doi.org/10.3390/s24113316 https://doaj.org/article/c966a8200ed3454aaa3e482371471268 |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: Geneva Foundation for Medical Education and Research Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: Geneva Foundation for Medical Education and Research Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (WRLC) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cQAOiDeBpTIPCS6BNHZi-4BQd0l3hdRqBVupnCIndnarLenSh6B_gV_NjJNGDSwSlx7iSRp7xjPftONvCHkVA0RlzIS-0UXk89waPzNG-Fx3IylsXDBXVTkYxicj_mkcjXfIpsdmvYCLa1M77Cc1mk_f_vy-_gAb_j1mnJCyv1tAFIJUqxvvkn0IUAo7OAx482dCyJhraI1nunyIh0FFMNS-tRWWHHv_3z56K0j9WUB5Y1Ve6fUPPZ1uRaf-HXK7hpW0V9nBXbJjy3vk1hbZ4H3yK2mIvemsoElyTL9MznEZaLam2Icev4SCj7ykA9dXekF1aSjCUcfmDINH2Mujqp6jgHZpxQDkRCz9OEEXhKU1bhybgoBS8OG9-WR58Q2PS9IzvbhcPCCjfnJ2dOLXnRj8PGJi6eOBWRtHxlppbC6NjDQ4AwGpWxYUgWZgBpCNGs0zBZCHhcrkBeC0HMBPmHGr2EOyV85K-5hQ5PMTQsOycwVOWmdBLHUY6sIWTOjAeOTNRhFpXtOUY7eMaQrpCuosbXTmkReN6FXFzXGd0CFqsxFAOm13YTY_T-vdmeaQ9GnAQoE1jEdca80sRxqfLsTuMJYeeY22kKIZwsvkuj67AFNC-qy0J5TAOhcJkgctSdiseXt4Y03pxtZTzNowLVTwss-bYbwTC-BKO1uhjMBT0SpQHnlUGV8zJSal4vB0j8iWWbbm3B4pJxeOShwineCA2TzysrHgf6_lk_9Z8KfkZgjAryqnOyB7y_nKPgPgtsw6ZFeMBXzK_nGH7B8mw9PPHfcjSMdtWLg2Gp72vv4GbYVEvw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEB5F6SHtoUrfNGm7fam9oBB2YeFQVW7i1GniXOpIvpGFXRIrLrjGVuS_0B_T39gZwMT0dcvVM8YsMzvzDZ79BuCNjxCVc-3aWqWeLRKj7VhraQu16wXS-Ckvuyr7J37vVHwZesM1-Lk8C0NtlcuYWAZqnSf0jnyHoC1h59D_OPlu09Qo-nd1OUKjcosjs7jCkq34cLiP9n3rugfdwV7PrqcK2InH5cymw5_G97QxgTZJoANPoWNLLENiJ3UUxyVhZaWViENM39wNdZIi5kgwkbuxMES-hCH_luAYS3D_yOF1gcex3qvYizgPnZ0CsyOWgDRKfSXnlaMB_kwAKxnw9-7MjXk2UYsrNR6vpL6DTbhbY1bWqZzsHqyZ7D7cWWEyfAA_ug1rOMtT1u1-Zl9H58TNzOIFoyH39CMMA_Al65dDqwumMs0I65ZU0Sjco0EhVWseQyjNKnqhUsWw_RHFN-rbKeU0cQQtThfvTEezi290FpMNVHFZPITTGzHII1jP8sw8AUZkgVIqfOwixAygYscPlOuq1KRcKkdb8H5piCipOdBpFMc4wlqIbBY1NrPgVaM6qYg__qb0iazZKBBXd_lBPj2P6q0fJVhRKgRajtFceEIpxY0gjqBdBAauH1jwjnwhooiCN5Oo-mAELom4uaKODCU10QSoud3SxEiQtMVLb4rqSFRE1_vGgpeNmL5J3XWZyeekI-nIdeiEFjyunK9ZEg-CUODVLQhabtlac1uSjS5KnnJMo1IgILTgdePB_36WT_9_9y9gozfoH0fHhydHW3DbRWxZdextw_psOjfPEBvO4uflhmRwdtMR4Bdlnnbi |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VReJxQLxxKbC8RC9WXO_aax8QCk1CS2mFRCvlZtbedRs1tUOcqMpf4Cfx65jxqwmvW6-ZieP1zM5848x-A_DaR4jKuXZtrVLPFonRdqy1tIXa9gJp_JSXXZUHh_7usfg09IZr8LM5C0NtlU1MLAO1zhN6R94haEvYOfQ7ad0W8aU3eD_5btMEKfqntRmnUbnIvllcYPlWvNvroa3fuO6gf7Sza9cTBuzE43Jm00FQ43vamECbJNCBp9DJJZYksZM6iuPysMrSSsQhpnLuhjpJEX8kmNTdWBgiYsLwfw1XG1I7oRxeFnsca7-KyQiFTqfATInlII1VX8p_5ZiAP5PBUjb8vVPzxjybqMWFGo-X0uDgDtyu8SvrVg53F9ZMdg9uLbEa3ocf_ZZBnOUp6_c_sq-jE-JpZvGC0cB7-hGGwfiMHZQDrAumMs0I95a00SjcoaEhVZseQ1jNKqqhUsWw3ohiHfXwlHKaPoLWp4t3p6PZ6Tmdy2RHqjgrHsDxlRjkIaxneWYeAyPiQCkVPnYRYjZQseMHynVValIulaMt2GoMESU1HzqN5RhHWBeRzaLWZha8bFUnFQnI35Q-kDVbBeLtLj_IpydRHQaiBKtLhaDLMZoLTyiluBHEF7SNIMH1Awveki9EFF3wZhJVH5LAJRFPV9SVoaSGmgA1N1c0MSokq-LGm6I6KhXR5R6y4EUrpm9Sp11m8jnpSDp-HTqhBY8q52uXxIMgFHh1C4IVt1xZ86okG52WnOWYUqVAcGjBq9aD__0sN_5_98_hOu796PPe4f4TuOkizKya9zZhfTadm6cIE2fxs3I_Mvh21QHgFybReyU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4lGchUJALSHBJycZO7ByXsqVCaoVEVyqnyLEdutolWzVZVeUn8KuZSbJhUx7iGk8iP8Yz3ygz3wC8ihGicm5D3-o88oVx1s-slb7Qw0hJF-e8zqo8Oo4PJ-LjaXS6AburWpi1__ccw_G3JXoYDKOG8Q3YjCOE2wPYnBx_Gn2pq4ZC4aODCxrGoL58z8_UdPy_G901r3M9I_LmsjjXV5d6Pl9zNwd3fhXtNFkms71lle2Z79c4HP-5kruw1YJNNmq04x5suOI-3F6jIHwAP8Yd3Tdb5Gw8_sA-T78SqTLLrhh1p6eZMrScM3ZUd5sumS4sI5Baczzj4D51-Ghy6hhiYNbwAtUijr2fkmGihJt6nFqF4FHRx0cX0-rsGxVRshNdzsqHMDkYn-wf-m1_Bt9EXFY-ldG6OLLOKeuMsirSaCIkBnRZkAeao3JgjGq1yBIEQjxMrMkRvRmERGEmXMK3YVAsCvcYGLH8Salxh0SCpltnQax0GOrc5VzqwHrwZnWaqWnJy6mHxjzFIIa2N-2214MXneh5w9jxJ6F3pBKdAJFs1w_wxNL2zqYGQ0GNCClwlotIaK25E0TuM0SPHsbKg9ekUCmZApyM0W1FAy6JSLXSkUwkZb8olNzpSeIVNv3hlUqmrQkpU4rlKFhMcLK73TC9SWlxhVssSUZSrXQSJB48ajS4WxJXKhH4dQ9UT7d7a-6PFNOzmmAc_Z8UiOQ8eNldg7_v5ZP_knoKt0LEg02W3Q4Mqoule4Z4rsqetzf6J-eNRWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+EEG+Signals+by+Spectral+Peak+Methods+and+Statistical+Correlation+for+Mental+State+Discrimination+Induced+by+Arithmetic+Tasks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Coman%2C+Daniela+Andreea&rft.au=Ionita%2C+Silviu&rft.au=Lita%2C+Ioan&rft.date=2024-06-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=11&rft.spage=3316&rft_id=info:doi/10.3390%2Fs24113316&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24113316 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |