Evaluation of EEG Signals by Spectral Peak Methods and Statistical Correlation for Mental State Discrimination Induced by Arithmetic Tasks

Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic para...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 11; p. 3316
Main Authors Coman, Daniela Andreea, Ionita, Silviu, Lita, Ioan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.06.2024
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s24113316

Cover

Abstract Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic parameters of EEG signals in the time, frequency, and statistical domains. This paper explores the results of an experiment that aimed to highlight arithmetic mental tasks contained in the PhysioNet database, performed on a group of 36 subjects. The majority of publications on this topic deal with machine learning (ML)-based classification methods with supervised learning support vector machine (SVM) algorithms, K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Decision Trees (DTs). Also, there are frequent approaches based on the analysis of EEG data as time series and their classification with Recurrent Neural Networks (RNNs), as well as with improved algorithms such as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BLSTM), and Gated Recurrent Units (GRUs). In the present work, we evaluate the classification method based on the comparison of domain limits for two specific characteristics of EEG signals: the statistical correlation of pairs of signals and the size of the spectral peak detected in theta, alpha, and beta bands. This study provides some interpretations regarding the electrical activity of the brain, consolidating and complementing the results of similar research. The classification method used is simple and easy to apply and interpret. The analysis of EEG data showed that the theta and beta frequency bands were the only discriminators between the relaxation and arithmetic calculation states. Notably, the F7 signal, which used the spectral peak criterion, achieved the best classification accuracy (100%) in both theta and beta bands for the subjects with the best results in performing calculations. Also, our study found the Fz signal to be a good sensor in the theta band for mental task discrimination for all subjects in the group with 90% accuracy.
AbstractList Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic parameters of EEG signals in the time, frequency, and statistical domains. This paper explores the results of an experiment that aimed to highlight arithmetic mental tasks contained in the PhysioNet database, performed on a group of 36 subjects. The majority of publications on this topic deal with machine learning (ML)-based classification methods with supervised learning support vector machine (SVM) algorithms, K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Decision Trees (DTs). Also, there are frequent approaches based on the analysis of EEG data as time series and their classification with Recurrent Neural Networks (RNNs), as well as with improved algorithms such as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BLSTM), and Gated Recurrent Units (GRUs). In the present work, we evaluate the classification method based on the comparison of domain limits for two specific characteristics of EEG signals: the statistical correlation of pairs of signals and the size of the spectral peak detected in theta, alpha, and beta bands. This study provides some interpretations regarding the electrical activity of the brain, consolidating and complementing the results of similar research. The classification method used is simple and easy to apply and interpret. The analysis of EEG data showed that the theta and beta frequency bands were the only discriminators between the relaxation and arithmetic calculation states. Notably, the F7 signal, which used the spectral peak criterion, achieved the best classification accuracy (100%) in both theta and beta bands for the subjects with the best results in performing calculations. Also, our study found the Fz signal to be a good sensor in the theta band for mental task discrimination for all subjects in the group with 90% accuracy.
Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic parameters of EEG signals in the time, frequency, and statistical domains. This paper explores the results of an experiment that aimed to highlight arithmetic mental tasks contained in the PhysioNet database, performed on a group of 36 subjects. The majority of publications on this topic deal with machine learning (ML)-based classification methods with supervised learning support vector machine (SVM) algorithms, K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Decision Trees (DTs). Also, there are frequent approaches based on the analysis of EEG data as time series and their classification with Recurrent Neural Networks (RNNs), as well as with improved algorithms such as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BLSTM), and Gated Recurrent Units (GRUs). In the present work, we evaluate the classification method based on the comparison of domain limits for two specific characteristics of EEG signals: the statistical correlation of pairs of signals and the size of the spectral peak detected in theta, alpha, and beta bands. This study provides some interpretations regarding the electrical activity of the brain, consolidating and complementing the results of similar research. The classification method used is simple and easy to apply and interpret. The analysis of EEG data showed that the theta and beta frequency bands were the only discriminators between the relaxation and arithmetic calculation states. Notably, the F7 signal, which used the spectral peak criterion, achieved the best classification accuracy (100%) in both theta and beta bands for the subjects with the best results in performing calculations. Also, our study found the Fz signal to be a good sensor in the theta band for mental task discrimination for all subjects in the group with 90% accuracy.Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of classifying mental states induced by arithmetic tasks can be solved through various classification methods, using diverse characteristic parameters of EEG signals in the time, frequency, and statistical domains. This paper explores the results of an experiment that aimed to highlight arithmetic mental tasks contained in the PhysioNet database, performed on a group of 36 subjects. The majority of publications on this topic deal with machine learning (ML)-based classification methods with supervised learning support vector machine (SVM) algorithms, K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Decision Trees (DTs). Also, there are frequent approaches based on the analysis of EEG data as time series and their classification with Recurrent Neural Networks (RNNs), as well as with improved algorithms such as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BLSTM), and Gated Recurrent Units (GRUs). In the present work, we evaluate the classification method based on the comparison of domain limits for two specific characteristics of EEG signals: the statistical correlation of pairs of signals and the size of the spectral peak detected in theta, alpha, and beta bands. This study provides some interpretations regarding the electrical activity of the brain, consolidating and complementing the results of similar research. The classification method used is simple and easy to apply and interpret. The analysis of EEG data showed that the theta and beta frequency bands were the only discriminators between the relaxation and arithmetic calculation states. Notably, the F7 signal, which used the spectral peak criterion, achieved the best classification accuracy (100%) in both theta and beta bands for the subjects with the best results in performing calculations. Also, our study found the Fz signal to be a good sensor in the theta band for mental task discrimination for all subjects in the group with 90% accuracy.
Audience Academic
Author Coman, Daniela Andreea
Ionita, Silviu
Lita, Ioan
AuthorAffiliation 1 Department of Electronics, Computers and Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 110040 Pitesti, Romania; ioan.lita@upb.ro
2 Regional Research and Development Center for Innovative Materials, Processes, and Products for the Automotive Industry (CRC&D-Auto), 110440 Pitesti, Romania
AuthorAffiliation_xml – name: 1 Department of Electronics, Computers and Electrical Engineering, National University of Science and Technology POLITEHNICA Bucharest, 110040 Pitesti, Romania; ioan.lita@upb.ro
– name: 2 Regional Research and Development Center for Innovative Materials, Processes, and Products for the Automotive Industry (CRC&D-Auto), 110440 Pitesti, Romania
Author_xml – sequence: 1
  givenname: Daniela Andreea
  orcidid: 0009-0006-9309-8642
  surname: Coman
  fullname: Coman, Daniela Andreea
– sequence: 2
  givenname: Silviu
  surname: Ionita
  fullname: Ionita, Silviu
– sequence: 3
  givenname: Ioan
  surname: Lita
  fullname: Lita, Ioan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38894108$$D View this record in MEDLINE/PubMed
BookMark eNp9kltv0zAUxyM0xC7wwBdAkXgBpG6-NbGfUFXKqDQEUsezdWI7rbvULnYy1K_Ap8ZZRlmnCeXB0Tm_8z_X0-zIeWey7DVG55QKdBEJw5hSXDzLTjAjbMQJQUcP_o-z0xjXCBFKKX-RHVPOBcOIn2S_Z7fQdNBa73Jf57PZZb6wSwdNzKtdvtga1QZo8u8GbvKvpl15HXNwOl-0KSa2ViXn1IdgmkGj9iFxrk3mHjH5JxtVsBvrBv_c6U4Z3YtPgm1XG5M08muIN_Fl9rxOec2r-_cs-_F5dj39Mrr6djmfTq5GakzLdkQIKU0x1sZwbRTXfAyI4pIwUaEaAVUKRMk1sEqgglIitKoZoUoISipmBD3L5oOu9rCW21QchJ30YOWdwYelhJCqaoxUoiiAE4SMpmzMAIAaxgktMSsxKXjS-jBodW4Lu1_QNHtBjGS_HLlfToI_DvC2qzZGqzSmNNuDCg49zq7k0t9KjHHJOO7TvbtXCP5nZ2IrN2m8pmnAGd9FSVGJOCIC9V2-fYSufRf6xSaqKBkVQhT_qCWkdq2rfUqselE5KUUpUDqSPu35E1T6tNlYlW6xtsl-EPDmYaf7Fv_eXQLeD4AKPsZg6v-O7eIRq2x7d02pCts8EfEHu4j0tQ
CitedBy_id crossref_primary_10_1016_j_bbe_2025_02_002
Cites_doi 10.3390/electronics10091079
10.3390/data4010014
10.20944/preprints202107.0255.v1
10.1109/ICCSCE.2011.6190573
10.1109/ECAI54874.2022.9847429
10.3390/diagnostics10050292
10.1002/hbm.10035
10.1016/j.tics.2008.02.004
10.3389/fnana.2019.00021
10.1109/ICCSP48568.2020.9182149
10.1016/j.biopsych.2013.06.018
10.1088/1361-6579/acd51b
10.1162/jocn_a_01319
10.1002/hbm.25683
10.1016/j.neuropsychologia.2008.10.013
10.1109/ISCE.2014.6884536
10.1007/978-3-030-04573-9
10.1016/j.brainres.2012.02.017
10.1109/ICE.2017.8280071
10.3389/fneur.2017.00696
10.1177/1073858412440596
10.1371/journal.pone.0165168
10.32598/bcn.2021.2034.1
10.1073/pnas.0135058100
10.3389/fpsyg.2017.01417
10.1002/brb3.2476
10.3389/fnhum.2019.00270
10.1093/oxfordhb/9780199642342.001.0001
10.1523/JNEUROSCI.0216-15.2015
10.3389/frai.2022.1072801
10.1186/s12883-015-0521-z
10.1109/TNSRE.2012.2236576
10.1007/978-3-030-23580-2
10.1109/ISITIA49792.2020.9163760
10.1109/VLSIDCS47293.2020.9179949
10.1101/2022.11.15.516568
10.1002/brb3.2775
10.1371/journal.pone.0174949
10.1080/02643290244000239
10.1016/j.neuroimage.2010.10.009
10.1186/s12938-022-00980-1
10.1109/ICCCNT49239.2020.9225647
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s24113316
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Publicly Available Content Database


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c966a8200ed3454aaa3e482371471268
10.3390/s24113316
PMC11174818
A797901088
38894108
10_3390_s24113316
Genre Journal Article
GeographicLocations New York
GeographicLocations_xml – name: New York
GrantInformation_xml – fundername: National University of Science and Technology POLITEHNICA Bucharest (UNSTPB)
  grantid: research funds
– fundername: National University of Science and Technology POLITEHNICA Bucharest
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c537t-2227e65dee8dec8d85a0317249b0f0a3cca978da4b9063329dcf423c9932b4e93
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:36:52 EDT 2025
Sun Oct 26 04:16:35 EDT 2025
Tue Sep 30 17:08:49 EDT 2025
Thu Oct 02 11:53:30 EDT 2025
Tue Oct 07 07:09:11 EDT 2025
Mon Oct 20 22:53:47 EDT 2025
Mon Oct 20 16:59:21 EDT 2025
Mon Jul 21 05:49:49 EDT 2025
Thu Oct 16 04:27:23 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords mental states discrimination
power spectral density
statistical correlation
EEG signal processing
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c537t-2227e65dee8dec8d85a0317249b0f0a3cca978da4b9063329dcf423c9932b4e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0006-9309-8642
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24113316
PMID 38894108
PQID 3067439996
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c966a8200ed3454aaa3e482371471268
unpaywall_primary_10_3390_s24113316
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11174818
proquest_miscellaneous_3070802909
proquest_journals_3067439996
gale_infotracmisc_A797901088
gale_infotracacademiconefile_A797901088
pubmed_primary_38894108
crossref_primary_10_3390_s24113316
crossref_citationtrail_10_3390_s24113316
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Dragoi (ref_53) 2023; 85
ref_13
ref_11
ref_10
Dehaene (ref_37) 2003; 20
ref_51
ref_19
ref_18
ref_17
(ref_7) 2024; 5
ref_16
Scrivener (ref_24) 2022; 12
Seghier (ref_35) 2013; 19
Menon (ref_23) 2002; 16
Maghsoudi (ref_14) 2021; 12
Chang (ref_21) 2022; 12
Evans (ref_40) 2015; 35
Murphy (ref_52) 2017; 8
ref_25
ref_20
Insausti (ref_32) 2019; 13
Daitch (ref_39) 2018; 30
Cao (ref_43) 2022; 43
ref_27
Grabner (ref_36) 2009; 47
Wang (ref_12) 2013; 21
Chu (ref_50) 2022; 21
Mukaka (ref_42) 2012; 24
ref_33
ref_31
ref_30
Iuculano (ref_41) 2014; 75
Menon (ref_26) 2003; 100
Saini (ref_9) 2023; 44
ref_38
Seleznov (ref_8) 2019; 13
Badre (ref_29) 2008; 12
ref_47
ref_46
ref_45
ref_44
Wong (ref_34) 2012; 1449
ref_1
ref_3
ref_2
Yang (ref_28) 2017; 8
Singh (ref_15) 2023; 5
ref_49
ref_48
Arsalidou (ref_22) 2011; 54
ref_5
ref_4
ref_6
References_xml – ident: ref_6
  doi: 10.3390/electronics10091079
– ident: ref_20
  doi: 10.3390/data4010014
– ident: ref_17
  doi: 10.20944/preprints202107.0255.v1
– ident: ref_49
  doi: 10.1109/ICCSCE.2011.6190573
– ident: ref_47
  doi: 10.1109/ECAI54874.2022.9847429
– ident: ref_4
  doi: 10.3390/diagnostics10050292
– volume: 16
  start-page: 119
  year: 2002
  ident: ref_23
  article-title: Prefrontal Cortex Involvement in Processing Incorrect Arithmetic Equations: Evidence from Event-related fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10035
– volume: 12
  start-page: 193
  year: 2008
  ident: ref_29
  article-title: Cognitive Control, Hierarchy, and the Rostro–Caudal Organization of the Frontal Lobes
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2008.02.004
– volume: 13
  start-page: 21
  year: 2019
  ident: ref_32
  article-title: Cytoarchitectonic Areas of the Gyrus Ambiens in the Human Brain
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2019.00021
– ident: ref_3
  doi: 10.1109/ICCSP48568.2020.9182149
– volume: 85
  start-page: 354
  year: 2023
  ident: ref_53
  article-title: Design and Implementation of anEEG-based BCI Prosthetic Lower Limb Using Raspberry PI 4
  publication-title: UPB Sci. Bull. Ser. C
– volume: 75
  start-page: 223
  year: 2014
  ident: ref_41
  article-title: Brain Organization Underlying Superior Mathematical Abilities in Children with Autism
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2013.06.018
– volume: 44
  start-page: 06TR01
  year: 2023
  ident: ref_9
  article-title: State-of-the-Art Mental Tasks Classification Based on Electroencephalograms: A Review
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/acd51b
– volume: 30
  start-page: 1757
  year: 2018
  ident: ref_39
  article-title: Brain Mechanisms of Arithmetic: A Crucial Role for Ventral Temporal Cortex
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_01319
– volume: 43
  start-page: 860
  year: 2022
  ident: ref_43
  article-title: Brain Functional and Effective Connectivity Based on Electroencephalography Recordings: A Review
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25683
– ident: ref_27
– volume: 47
  start-page: 604
  year: 2009
  ident: ref_36
  article-title: To Retrieve or to Calculate? Left Angular Gyrus Mediates the Retrieval of Arithmetic Facts during Problem Solving
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2008.10.013
– ident: ref_11
  doi: 10.1109/ISCE.2014.6884536
– ident: ref_48
– ident: ref_25
  doi: 10.1007/978-3-030-04573-9
– volume: 1449
  start-page: 94
  year: 2012
  ident: ref_34
  article-title: The Function of the Anterior Temporal Lobe: A Review of the Empirical Evidence
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2012.02.017
– ident: ref_13
– ident: ref_16
  doi: 10.1109/ICE.2017.8280071
– volume: 8
  start-page: 696
  year: 2017
  ident: ref_52
  article-title: Electroencephalogram-Based Brain–Computer Interface and Lower-Limb Prosthesis Control: A Case Study
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2017.00696
– ident: ref_30
– volume: 19
  start-page: 43
  year: 2013
  ident: ref_35
  article-title: The Angular Gyrus: Multiple Functions and Multiple Subdivisions
  publication-title: Neuroscientist
  doi: 10.1177/1073858412440596
– ident: ref_45
  doi: 10.1371/journal.pone.0165168
– volume: 12
  start-page: 817
  year: 2021
  ident: ref_14
  article-title: Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
  publication-title: Basic Clin. Neurosci. J.
  doi: 10.32598/bcn.2021.2034.1
– volume: 100
  start-page: 253
  year: 2003
  ident: ref_26
  article-title: Functional connectivity in the resting brain:A network analysis of the defaultmode hypothesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0135058100
– volume: 8
  start-page: 1417
  year: 2017
  ident: ref_28
  article-title: Modulating the Activity of the DLPFC and OFC Has Distinct Effects on Risk and Ambiguity Decision-Making: A tDCS Study
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2017.01417
– volume: 12
  start-page: e2476
  year: 2022
  ident: ref_24
  article-title: Variability of EEG Electrode Positions and Their Underlying Brain Regions: Visualizing Gel Artifacts from a Simultaneous EEG-fMRI Dataset
  publication-title: Brain Behav.
  doi: 10.1002/brb3.2476
– volume: 13
  start-page: 270
  year: 2019
  ident: ref_8
  article-title: Detrended Fluctuation, Coherence, and Spectral Power Analysis of Activation Rearrangement in EEG Dynamics During Cognitive Workload
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2019.00270
– ident: ref_1
  doi: 10.1093/oxfordhb/9780199642342.001.0001
– volume: 35
  start-page: 11743
  year: 2015
  ident: ref_40
  article-title: Brain Structural Integrity and Intrinsic Functional Connectivity Forecast 6 Year Longitudinal Growth in Children’s Numerical Abilities
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0216-15.2015
– volume: 5
  start-page: 1072801
  year: 2023
  ident: ref_15
  article-title: Trends in EEG Signal Feature Extraction Applications
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2022.1072801
– ident: ref_18
– ident: ref_44
– ident: ref_51
  doi: 10.1186/s12883-015-0521-z
– volume: 24
  start-page: 69
  year: 2012
  ident: ref_42
  article-title: Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research
  publication-title: Malawi Med. J. J. Med. Assoc. Malawi.
– volume: 21
  start-page: 225
  year: 2013
  ident: ref_12
  article-title: Real-Time Mental Arithmetic Task Recognition From EEG Signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2236576
– ident: ref_31
  doi: 10.1007/978-3-030-23580-2
– ident: ref_33
– ident: ref_46
  doi: 10.1109/ISITIA49792.2020.9163760
– ident: ref_5
  doi: 10.1109/VLSIDCS47293.2020.9179949
– ident: ref_38
  doi: 10.1101/2022.11.15.516568
– volume: 12
  start-page: e2775
  year: 2022
  ident: ref_21
  article-title: Uncovering Sex/Gender Differences of Arithmetic in the Human Brain: Insights from fMRI Studies
  publication-title: Brain Behav.
  doi: 10.1002/brb3.2775
– ident: ref_10
  doi: 10.1371/journal.pone.0174949
– volume: 20
  start-page: 487
  year: 2003
  ident: ref_37
  article-title: Three parietal circuits for number processing
  publication-title: Cogn. Neuropsychol.
  doi: 10.1080/02643290244000239
– ident: ref_19
– volume: 5
  start-page: 109
  year: 2024
  ident: ref_7
  article-title: Efficient Mental Arithmetic Classification Using Approximate Entropy Features and Machine Learning Classifiers
  publication-title: Aurum J. Health Sci.
– volume: 54
  start-page: 2382
  year: 2011
  ident: ref_22
  article-title: Is 2 + 2 = 4? Meta-Analyses of Brain Areas Needed for Numbers and Calculations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.10.009
– volume: 21
  start-page: 9
  year: 2022
  ident: ref_50
  article-title: Optimized electroencephalogram and functional near-infrared spectroscopy-based mental workload detection method for practical applications
  publication-title: Biomed. Eng. OnLine
  doi: 10.1186/s12938-022-00980-1
– ident: ref_2
  doi: 10.1109/ICCCNT49239.2020.9225647
SSID ssj0023338
Score 2.4404926
Snippet Bringing out brain activity through the interpretation of EEG signals is a challenging problem that involves combined methods of signal analysis. The issue of...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3316
SubjectTerms Accuracy
Adult
Algorithms
Brain - physiology
Classification
Decomposition
Discriminant Analysis
EEG signal processing
Electric properties
Electroencephalography
Electroencephalography - methods
Entropy
Female
Humans
Machine learning
Male
mental states discrimination
Methods
Neural networks
Neural Networks, Computer
power spectral density
Signal Processing, Computer-Assisted
statistical correlation
Support Vector Machine
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SZQkHlIcImaxk5sH5eypUIqF1qpt2hiO3TVJVs1u0L9C_xqZuxslPAQF66ZSeLHeOYbafwNY29KhKhCuDx10BSptN6ltXMqlbBfaOXLRoSqyuPP5dGp_HRWnI1afVFNWKQHjgu3ZxGPA4apzDshCwkAwktiWNlHt5qX4Zpvps02mepTLYGZV-QREpjU73UYpzAZo6bmo-gTSPp_d8WjWPRrneTNTXsJ199huRwFocO77E6PHvksjvoeu-Hb--z2iFPwAfsxH_i7-arh8_lH_mXxlViSeX3Nqd08_YSjK7zgx6F9dMehdZxQZyBtRuEBteyIRXIcQS2PRD9BxfMPC_I0VEET5NT7A9eePj67WqzPv9GtSH4C3UX3kJ0ezk8OjtK-4UJqC6HWKd2L9WXhvNfOW-10AXjmFWZoddZkIHC3Mel0IGuDyEbkxtkG4ZhFjJPX0hvxiO20q9Y_YZxo-5QCXHZp0BdDnZUa8hwa3wgFmUvYu-1GVLZnI6emGMsKsxLas2rYs4S9GlQvIwXHn5Te024OCsSaHR6gLVW9LVX_sqWEvSVbqOhs42As9FcUcErEklXNlFFUzqJRc3eiiWfSTsVba6p6n9BVlJxR9mdwsC8HMb1JdW6tX21IR9HlZ5OZhD2OxjdMSWhtJH49YXpilpM5TyXt4jwwhmNAUxKhWcJeDxb897V8-j_W8hm7lSP-i1V1u2xnfbXxzxG_resX4aj-BIMOQSY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcEG8MBS0PCS5WXe_auz4glJaUCqkRglbqzVp7123UYIc4Eepf4Fczs34Q87pmJo7XMzvzjTP7DcCrGCEq5yb0jS4iX-TW-Jkx0hd6L1LSxgV3XZXH0_joVHw8i862YNqdhaG2yi4mukBtqpzeke8StCXsnMTvFt98mhpF_652IzR0O1rBvHUUY9dgOyRmrBFs70-mnz73JRjHiqzhF-JY7O_WmL-wSKNh5xtZyZH3_xmiN3LU7_2T19flQl991_P5RnI6vA23WlTJxo0b3IEtW96Fmxtcg_fgx6Tn9WZVwSaTD-zL7JzYk1l2xWgMPf0IwxB5yY7dWOma6dIwQqOOzBmFBzTKo2meYwh2WUMA5FQsez-jCESdNU5OM0HQJnTx8XK2uvhKpyXZia4v6_twejg5OTjy20EMfh5xufLpvKyNI2OtMjZXRkUaY4HEyi0LikBz9AIsRo0WWYKIh4eJyQuEaTlinzATNuEPYFRWpX0EjOj8pNT42EWCMVpnQax0GOrCFlzqwHjwpjNEmrcs5TQsY55itUI2S3ubefCiV1001Bx_U9ona_YKxKbtPqiW52m7OdMcaz6NUCiwhotIaK25FcTis4epO4yVB6_JF1La83gzuW6PLuCSiD0rHctEUpuLQs2dgSbu1Xwo7rwpbWNFnf7ybA-e92L6JvW_lbZak46kQ9FJkHjwsHG-fklcqUTg1T1QA7ccrHkoKWcXjkkcE50UCNk8eNl78L-f5eP_3_0TuBEi4mv66HZgtFqu7VNEbKvsWbsNfwLuO0C3
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4lGchUJALSHBJycZO7ByXsqVCaoVEVyqnyLEdutolWzVZVeUn8KuZSbJhUx7iGk8iP8Yz3ygz3wC8ihGicm5D3-o88oVx1s-slb7Qw0hJF-e8zqo8Oo4PJ-LjaXS6AburWpi1__ccw_G3JXoYDKOG8Q3YjCOE2wPYnBx_Gn2pq4ZC4aODCxrGoL58z8_UdPy_G901r3M9I_LmsjjXV5d6Pl9zNwd3fhXtNFkms71lle2Z79c4HP-5kruw1YJNNmq04x5suOI-3F6jIHwAP8Yd3Tdb5Gw8_sA-T78SqTLLrhh1p6eZMrScM3ZUd5sumS4sI5Baczzj4D51-Ghy6hhiYNbwAtUijr2fkmGihJt6nFqF4FHRx0cX0-rsGxVRshNdzsqHMDkYn-wf-m1_Bt9EXFY-ldG6OLLOKeuMsirSaCIkBnRZkAeao3JgjGq1yBIEQjxMrMkRvRmERGEmXMK3YVAsCvcYGLH8Salxh0SCpltnQax0GOrc5VzqwHrwZnWaqWnJy6mHxjzFIIa2N-2214MXneh5w9jxJ6F3pBKdAJFs1w_wxNL2zqYGQ0GNCClwlotIaK25E0TuM0SPHsbKg9ekUCmZApyM0W1FAy6JSLXSkUwkZb8olNzpSeIVNv3hlUqmrQkpU4rlKFhMcLK73TC9SWlxhVssSUZSrXQSJB48ajS4WxJXKhH4dQ9UT7d7a-6PFNOzmmAc_Z8UiOQ8eNldg7_v5ZP_knoKt0LEg02W3Q4Mqoule4Z4rsqetzf6J-eNRWA
  priority: 102
  providerName: Unpaywall
Title Evaluation of EEG Signals by Spectral Peak Methods and Statistical Correlation for Mental State Discrimination Induced by Arithmetic Tasks
URI https://www.ncbi.nlm.nih.gov/pubmed/38894108
https://www.proquest.com/docview/3067439996
https://www.proquest.com/docview/3070802909
https://pubmed.ncbi.nlm.nih.gov/PMC11174818
https://doi.org/10.3390/s24113316
https://doaj.org/article/c966a8200ed3454aaa3e482371471268
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: Geneva Foundation for Medical Education and Research Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: Geneva Foundation for Medical Education and Research Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (WRLC)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cQAOiDeBpTIPCS6BNHZi-4BQd0l3hdRqBVupnCIndnarLenSh6B_gV_NjJNGDSwSlx7iSRp7xjPftONvCHkVA0RlzIS-0UXk89waPzNG-Fx3IylsXDBXVTkYxicj_mkcjXfIpsdmvYCLa1M77Cc1mk_f_vy-_gAb_j1mnJCyv1tAFIJUqxvvkn0IUAo7OAx482dCyJhraI1nunyIh0FFMNS-tRWWHHv_3z56K0j9WUB5Y1Ve6fUPPZ1uRaf-HXK7hpW0V9nBXbJjy3vk1hbZ4H3yK2mIvemsoElyTL9MznEZaLam2Icev4SCj7ykA9dXekF1aSjCUcfmDINH2Mujqp6jgHZpxQDkRCz9OEEXhKU1bhybgoBS8OG9-WR58Q2PS9IzvbhcPCCjfnJ2dOLXnRj8PGJi6eOBWRtHxlppbC6NjDQ4AwGpWxYUgWZgBpCNGs0zBZCHhcrkBeC0HMBPmHGr2EOyV85K-5hQ5PMTQsOycwVOWmdBLHUY6sIWTOjAeOTNRhFpXtOUY7eMaQrpCuosbXTmkReN6FXFzXGd0CFqsxFAOm13YTY_T-vdmeaQ9GnAQoE1jEdca80sRxqfLsTuMJYeeY22kKIZwsvkuj67AFNC-qy0J5TAOhcJkgctSdiseXt4Y03pxtZTzNowLVTwss-bYbwTC-BKO1uhjMBT0SpQHnlUGV8zJSal4vB0j8iWWbbm3B4pJxeOShwineCA2TzysrHgf6_lk_9Z8KfkZgjAryqnOyB7y_nKPgPgtsw6ZFeMBXzK_nGH7B8mw9PPHfcjSMdtWLg2Gp72vv4GbYVEvw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEB5F6SHtoUrfNGm7fam9oBB2YeFQVW7i1GniXOpIvpGFXRIrLrjGVuS_0B_T39gZwMT0dcvVM8YsMzvzDZ79BuCNjxCVc-3aWqWeLRKj7VhraQu16wXS-Ckvuyr7J37vVHwZesM1-Lk8C0NtlcuYWAZqnSf0jnyHoC1h59D_OPlu09Qo-nd1OUKjcosjs7jCkq34cLiP9n3rugfdwV7PrqcK2InH5cymw5_G97QxgTZJoANPoWNLLENiJ3UUxyVhZaWViENM39wNdZIi5kgwkbuxMES-hCH_luAYS3D_yOF1gcex3qvYizgPnZ0CsyOWgDRKfSXnlaMB_kwAKxnw9-7MjXk2UYsrNR6vpL6DTbhbY1bWqZzsHqyZ7D7cWWEyfAA_ug1rOMtT1u1-Zl9H58TNzOIFoyH39CMMA_Al65dDqwumMs0I65ZU0Sjco0EhVWseQyjNKnqhUsWw_RHFN-rbKeU0cQQtThfvTEezi290FpMNVHFZPITTGzHII1jP8sw8AUZkgVIqfOwixAygYscPlOuq1KRcKkdb8H5piCipOdBpFMc4wlqIbBY1NrPgVaM6qYg__qb0iazZKBBXd_lBPj2P6q0fJVhRKgRajtFceEIpxY0gjqBdBAauH1jwjnwhooiCN5Oo-mAELom4uaKODCU10QSoud3SxEiQtMVLb4rqSFRE1_vGgpeNmL5J3XWZyeekI-nIdeiEFjyunK9ZEg-CUODVLQhabtlac1uSjS5KnnJMo1IgILTgdePB_36WT_9_9y9gozfoH0fHhydHW3DbRWxZdextw_psOjfPEBvO4uflhmRwdtMR4Bdlnnbi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VReJxQLxxKbC8RC9WXO_aax8QCk1CS2mFRCvlZtbedRs1tUOcqMpf4Cfx65jxqwmvW6-ZieP1zM5848x-A_DaR4jKuXZtrVLPFonRdqy1tIXa9gJp_JSXXZUHh_7usfg09IZr8LM5C0NtlU1MLAO1zhN6R94haEvYOfQ7ad0W8aU3eD_5btMEKfqntRmnUbnIvllcYPlWvNvroa3fuO6gf7Sza9cTBuzE43Jm00FQ43vamECbJNCBp9DJJZYksZM6iuPysMrSSsQhpnLuhjpJEX8kmNTdWBgiYsLwfw1XG1I7oRxeFnsca7-KyQiFTqfATInlII1VX8p_5ZiAP5PBUjb8vVPzxjybqMWFGo-X0uDgDtyu8SvrVg53F9ZMdg9uLbEa3ocf_ZZBnOUp6_c_sq-jE-JpZvGC0cB7-hGGwfiMHZQDrAumMs0I95a00SjcoaEhVZseQ1jNKqqhUsWw3ohiHfXwlHKaPoLWp4t3p6PZ6Tmdy2RHqjgrHsDxlRjkIaxneWYeAyPiQCkVPnYRYjZQseMHynVValIulaMt2GoMESU1HzqN5RhHWBeRzaLWZha8bFUnFQnI35Q-kDVbBeLtLj_IpydRHQaiBKtLhaDLMZoLTyiluBHEF7SNIMH1Awveki9EFF3wZhJVH5LAJRFPV9SVoaSGmgA1N1c0MSokq-LGm6I6KhXR5R6y4EUrpm9Sp11m8jnpSDp-HTqhBY8q52uXxIMgFHh1C4IVt1xZ86okG52WnOWYUqVAcGjBq9aD__0sN_5_98_hOu796PPe4f4TuOkizKya9zZhfTadm6cIE2fxs3I_Mvh21QHgFybReyU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE4lGchUJALSHBJycZO7ByXsqVCaoVEVyqnyLEdutolWzVZVeUn8KuZSbJhUx7iGk8iP8Yz3ygz3wC8ihGicm5D3-o88oVx1s-slb7Qw0hJF-e8zqo8Oo4PJ-LjaXS6AburWpi1__ccw_G3JXoYDKOG8Q3YjCOE2wPYnBx_Gn2pq4ZC4aODCxrGoL58z8_UdPy_G901r3M9I_LmsjjXV5d6Pl9zNwd3fhXtNFkms71lle2Z79c4HP-5kruw1YJNNmq04x5suOI-3F6jIHwAP8Yd3Tdb5Gw8_sA-T78SqTLLrhh1p6eZMrScM3ZUd5sumS4sI5Baczzj4D51-Ghy6hhiYNbwAtUijr2fkmGihJt6nFqF4FHRx0cX0-rsGxVRshNdzsqHMDkYn-wf-m1_Bt9EXFY-ldG6OLLOKeuMsirSaCIkBnRZkAeao3JgjGq1yBIEQjxMrMkRvRmERGEmXMK3YVAsCvcYGLH8Salxh0SCpltnQax0GOrc5VzqwHrwZnWaqWnJy6mHxjzFIIa2N-2214MXneh5w9jxJ6F3pBKdAJFs1w_wxNL2zqYGQ0GNCClwlotIaK25E0TuM0SPHsbKg9ekUCmZApyM0W1FAy6JSLXSkUwkZb8olNzpSeIVNv3hlUqmrQkpU4rlKFhMcLK73TC9SWlxhVssSUZSrXQSJB48ajS4WxJXKhH4dQ9UT7d7a-6PFNOzmmAc_Z8UiOQ8eNldg7_v5ZP_knoKt0LEg02W3Q4Mqoule4Z4rsqetzf6J-eNRWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+EEG+Signals+by+Spectral+Peak+Methods+and+Statistical+Correlation+for+Mental+State+Discrimination+Induced+by+Arithmetic+Tasks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Coman%2C+Daniela+Andreea&rft.au=Ionita%2C+Silviu&rft.au=Lita%2C+Ioan&rft.date=2024-06-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=11&rft.spage=3316&rft_id=info:doi/10.3390%2Fs24113316&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24113316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon